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Abstract: Accurate estimates of long-term land surface temperature (Ts) and near-surface air 

temperature (Ta) at finer spatio-temporal resolutions are crucial for surface energy budget 

studies, for environmental applications, for land surface model data assimilation, and for climate 

change assessment and its associated impacts. The Atmospheric Infrared Sounder (AIRS) and 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Aqua satellite 

provide a unique opportunity to estimate both temperatures twice daily at the global scale. In this 

study, differences between Ta and Ts were assessed locally over regions of North America from 

2009 to 2013 using ground-based observations covering a wide range of geographical, 

topographical, and land cover types. The differences between Ta and Ts during non-precipitating 

conditions are generally 2–3 times larger than precipitating conditions. However, these 

differences show noticeable diurnal and seasonal variations. The differences between Ta and Ts 

were also investigated at the global scale using the AIRS estimates under clear-sky conditions for 

the period 2003–2015. The tropical regions showed about 5–20 C warmer Ts than Ta during the 

day-time, whereas opposite characteristics (about 2–5 C cooler Ts than Ta) are found over most 

parts of the globe during the night-time. Additionally, Ts estimates from the AIRS and the 

MODIS sensors were inter-compared. Although large-scale features of Ts were essentially 

similar for both sensors, considerable differences in magnitudes were observed (>6 C over 

mountainous regions). Finally, Ta and Ts estimates from the AIRS and MODIS sensors were 

validated against ground-based observations for the period of 2009–2013. The error 

characteristics notably varied with ground stations and no clear evidence of their dependency on 

land cover types or elevation was detected. However, the MODIS-derived Ts estimates generally 

showed larger biases and higher errors compared to the AIRS-derived estimates. The biases and 

errors increased steadily when the spatial resolution of the MODIS estimates changed from finer 
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to coarser. These results suggest that representativeness error should be properly accounted for 

when validating satellite-based temperature estimates with point observations.  

 

Keywords: Near-surface air temperature; Skin temperature; Polar-orbiting satellite; Ground-

based observations; Land cover  

 

1. Introduction 

 Reliable estimates of land surface temperature (skin temperature or LST or Ts) and near-

surface air temperature (Ta) are vital for surface energy budget computations, for land surface 

model data assimilation, for environmental applications, and for trend assessments and their 

associated impacts (Houser et al., 2010; Mazdiyasni and AghaKouchak, 2015; Stephens and 

L’Ecuyer, 2015; Cheval and Dumitrescu, 2017; Rahmstorf et al., 2017; Ruzmaikin et al., 2017). 

Estimates of Ts under clear-sky conditions from the Earth-observation satellites are readily 

available at global and regional scales. However, satellite-based estimates of Ta are rather sparse, 

and available at coarse spatial and temporal resolutions. Moreover, ground-based observations of 

Ts and Ta suffer from limited spatial coverage.  

 Two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors mounted on the 

Terra and Aqua satellites provide a unique opportunity to study the spatio-temporal variations of 

Ts at global and regional scales. The Atmospheric Infrared Sounder (AIRS) sensor onboard the 

Aqua satellite provides Ta and its vertical profile at coarse spatial resolution (~100 km). The need 

of fine resolution homogeneous estimates of Ta is realized for epidemiological and agricultural 

studies. Ts products at finer spatial resolution derived from the MODIS sensors were widely 

utilized for Ta estimation and for the study of intensity of urban heat islands (Ayanlade, 2016; 
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Noi et al., 2016; Didari et al., 2017; Yang et al., 2017). Satellite remote sensing along with 

ground-based observations have been proven to be promising for the characterization and 

variability of different kinds of urban heat islands such as canopy layer heat island, boundary 

layer heat island, and surface heat island (Fabrizi et al., 2010; Ramamurthy and Sangobanwo, 

2016; Cheval and Dumitrescu, 2017). However, satellite-derived geophysical products have 

errors due to sampling and algorithms. Ta and Ts estimates are also used as input datasets for 

estimating passive microwave land surface emissivity. The accuracy of these passive microwave 

land surface emissivity estimates largely depends on the error characteristics of the input datasets 

(Norouzi et al., 2011; Prakash et al., 2016, 2018). Hence, a comprehensive error characterization 

of these satellite-based Ts and Ta estimates is essential for their wider applicability.  

 The satellite infrared-based Ts measurements have been widely used for the indirect  

estimation of Ta (Good, 2016; Noi et al., 2016; Oyler et al., 2016; Didari et al., 2017; Sheng et 

al., 2017; Yang et al., 2017). Recently, Sheng et al. (2017) investigated the spatio-temporal 

relationship between Ta and Ts and its dependence on land cover types and elevation 

comprehensively over the southeastern China. Ts estimates from the MODIS were compared 

with other satellite-based estimates (Lee et al., 2013; Urban et al., 2013; Kang et al., 2015), 

however the evaluation of Ts and Ta products from the Aqua satellite against ground-based 

observations is rather lacking. Furthermore, the quantification of differences among Ts, Ta, and 

upper-layer soil temperature is crucial for a wide range of applications (Gallo et al., 2011; 

Moncet et al., 2011; Norouzi et al., 2015; Prakash et al., 2017; Shati et al., 2018).  Based on 

ground-based observations, Gallo et al. (2011) reported that although the magnitude of Ts is 

generally greater than Ta, the differences between Ts and Ta are larger during the clear-sky than 

the cloudy-sky conditions. However, their study was limited over a few ground stations having 
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nearly homogeneous land surface characteristics. A notable difference between Ta and upper-

layer soil temperature was also reported using ground-based observations (Shati et al., 2018).  

 The objective of this study is to critically assess the differences between Ts and Ta from 

the Aqua satellite and ground-based observations. The differences between these two variables 

are also evaluated for precipitating and non-precipitating conditions exclusively using ground-

based observations. Additionally, Ts estimates from the MODIS and the AIRS sensors are inter-

compared and validated with independent observations. It is to be noted that the infrared sensors 

provide Ts and Ta estimates only for the clear-sky conditions. 

 

2. Data and Methods 

2.1 Satellite data 

 The Aqua satellite, the first member of the afternoon constellation, was launched by the 

NASA on May 4, 2002 to collect a wide range of Earth system variables for better understanding 

of the global water and energy budget (Parkinson, 2013). There were six sensors onboard the 

satellite, namely: the Atmospheric Infrared Sounder (AIRS), the Moderate Resolution Imaging 

Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer for the Earth 

Observing System (AMSR-E), the Advanced Microwave Sounding Unit (AMSU), the Clouds 

and Earth’s Radiant Energy System (CERES), and the Humidity Sounder for Brazil (HSB). The 

local equatorial crossing times of this satellite are about 1:30 p.m. for the ascending orbits and 

about 1:30 a.m. for the descending orbits. The AIRS sensor makes measurements of atmospheric 

temperature, water vapor, trace gases, clouds and surface variables at 2378 infrared and 4 

visible/near infrared channels. The MODIS makes finer spatial resolution measurements of 

atmospheric, oceanic and land surface parameters at 36 visible and infrared channels. In this 
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study, infrared-based measurements of near-surface air temperature from the AIRS, and skin 

temperature estimates from the MODIS and AIRS under clear-sky conditions were used. The 

latest version (version 6) of daily level 3 gridded swath products from AIRS available at 1 

latitude/longitude resolution (Susskind et al., 2014), and from MODIS available at 0.05 climate 

modeling grid (Wan, 2014) for the period of 2003 to 2015 were used. Comparison of versions 6 

and 5 of the AIRS air temperature profiles with dropsonde observations over Antarctica, a region 

having complex surface and atmospheric conditions, showed a notable reduction of error in V6 

by 25% as compared to V5 (Boylan et al., 2015). The improvements in bias and error in V6 

estimates are primarily due to the inclusion of a new neural network based first guess approach, 

an improved cloud clearing algorithm, and rigorous quality control flags (Blackwell, 2012; 

Susskind et al., 2014). The AIRS datasets have been recently utilized for the study of diurnal 

cycle variability of the Earth surface temperature (Ruzmaikin et al., 2017). The MODIS-derived 

Ts version 6 product showed larger magnitude than version 5 product, primarily over the arid 

regions (Prakash et al., 2018).  The biases and errors in the MODIS-derived V6 product showed 

substantial improvement in Ts over V5 product due to refinements in the split-window retrieval 

algorithm and the adjustment in the emissivity difference for bare soil (Wan, 2014). 

Additionally, the global land cover climatology available at 0.5 km based on the MODIS data for 

2001 to 2010 (Broxton et al., 2014) were also utilized. 

 

2.2 Ground-based data 

 The U. S. Climate Reference Network (USCRN) is a systematic and sustained network of 

more than 100 climate monitoring stations that measure air temperature, precipitation, soil 

moisture, soil temperature, solar radiation, wind speed, relative humidity, and wetness (the 
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presence or absence of moisture due to precipitation as measured by wetness sensors and 

disdrometers) across the North America (Bell et al., 2013; Diamond et al., 2013). In order to 

maintain high accuracy and reliability in measurements, instruments at each station are calibrated 

annually and their performances are monitored on a daily basis. The observations are available at 

sub-hourly, hourly, daily, and monthly scales. Hourly quality-controlled precipitation, land 

surface temperature, and near-surface air temperature observations for 19 selected USCRN 

stations (Figure 1) for a 5–year period (2009–2013) were used in this study. These 19 stations 

were specially selected to cover a wide range of geographical, topographical, and vegetation 

categories (Table 1). The elevation of these stations varied from 11 meters to 1821 meters, and 

they covered six distinct land cover types. 

 

2.3 Methodology 

 Since the Aqua satellite provides measurements twice daily at 01:30 and 13:30 local time, 

hourly ground-based observations from USCRN at two consecutive hours were linearly 

interpolated for comparison. For instance, USCRN observations of 01:00 and 02:00 hours were 

linearly interpolated for the comparison of Aqua measurements at 01:30 hours. It is to be noted 

that the linear interpolation of consecutive hours of observations would not significantly impact 

the comparison results, in general (Shati et al., 2018). This was also confirmed from the diurnal 

analyses of ground-based Ts and Ta observations that are discussed in the later section of this 

study. In order to compare the point observations with gridded satellite products, temperature 

values (Ts or Ta) of the satellite grid nearest to the station location were considered. Four error 

metrics – correlation coefficient (r), bias, root-mean-square error (RMSE), and mean absolute 
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error (MAE) given by equations (1) – (4) were used to evaluate the satellite-based products 

against the USCRN observations. 

 

                … (1) 

 

                                       … (2) 

 

                            … (3) 

 

                                 … (4) 

 

 where, Si and Oi are the satellite- and ground-based observations, S and O are their 

respective means, and n is the total number of matches. It is to be noted that the computations 

with satellite data are performed only for clear-sky conditions, even though ground-based 

observations are available for all-weather conditions. 

 

3. Results 

3.1 Differences between air and skin temperatures from USCRN observations 

 In this section, the differences between concurrent Ta and Ts are assessed from the 

USCRN observations for the five-year period of 2009–2013. Since the selected 19 stations are 

located in different parts of North America and have distinct features (e.g., Figure 1), the 

assessment was done at each station separately. Two specific local times of 01:30 p.m. and 01:30 
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a.m. corresponding to ascending and descending overpass times of the Aqua satellite were 

chosen for the analysis. Figure 2(a) shows the mean differences between Ta and Ts for 

precipitating and non-precipitating conditions during the day-time. As expected, the magnitudes 

of Ts are generally greater than those for Ta during the day-time. However, the differences are 

about 2–3 times larger during non-precipitating conditions than during precipitating conditions. 

About 5–6 C higher Ts than Ta is evident during day-time, whereas about 1–2 C lower Ts than 

Ta is observed during night-time (Figure 2(b)) for non-precipitation conditions. The mean 

differences also vary with station. Two stations – Williams and Monahans situated in open 

shrublands show exceptionally larger difference between Ta and Ts. During non-precipitating 

conditions, the incoming solar radiation, and the difference in heat capacities between land and 

air play critical roles in producing the larger variations in Ta and Ts. The solar radiation that is 

absorbed at the ground warms the surface, alters the air temperature (sensible heat), and 

vaporizes surface moisture and water (latent heat). Therefore, higher latent heat will cause larger 

difference between Ta and Ts. The mean differences between Ta and Ts for precipitating and non-

precipitating conditions during night-time are shown in Figure 2(b). Interestingly, the 

magnitudes of Ta are generally larger than those of Ts during non-precipitating conditions. 

However, the magnitudes of differences are rather smaller during night-time than during the day-

time. The differences between Ta and Ts are very small or negligible during precipitating 

conditions. The land surface essentially warms faster than the air in the presence of solar 

insolation during the day-time, and it also cools rapidly in the absence of insolation during the 

night-time. The corresponding standard deviations of difference between Ta and Ts for ascending 

and descending overpasses under non-precipitating and precipitating conditions are illustrated in 

Figures 2(c) and 2(d). The differences between Ta and Ts exhibit larger variability during day-
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time than night-time. Similarly, larger standard deviations of Ta – Ts for non-precipitating 

conditions than precipitating conditions are observed.  

 In order to better understand the temporal variations of differences between Ta and Ts, 

diurnal variability of Ta and Ts has been investigated. Figure 3 presents the diurnal variations of 

Ta and Ts from hourly USCRN observations (all-weather observations) for four selected stations. 

These four stations are situated in distinct land cover types. Due to the consistency and the 

availability of the USCRN datasets, four months in 2013 – January, April, July, and October 

were selected as the seasonal representatives of the northern hemisphere winter, spring, summer, 

and fall, respectively. In general, Ts remained smaller than Ta during the night-time to early 

morning and then increased thereafter as compared to Ta. The magnitude of Ts became larger 

than Ta between late morning and evening, and then decreased again from the evening. This 

general behavior of temperatures can be seen for all the seasons. However, the magnitudes of 

differences varied with season and location (Ayanlade, 2016; Good, 2016). The differences 

between Ta and Ts are largest during the summer season and smallest during the winter season. 

Moreover, the magnitude of difference between Ts and Ta during day-time is larger for cropland 

and grassland stations than those from the stations having land cover types of deciduous 

broadleaf forest and cropland/natural vegetation mosaic. The standard deviations of Ta and Ts are 

rather larger during the afternoon especially for the month of April. However, Ts shows larger 

magnitude of standard deviation than Ta. These diurnal characteristics of differences between Ta 

and Ts are vital for the reliable estimation of Ta from Ts under all-weather conditions.  
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3.2 Differences between air and skin temperatures from AIRS data 

 In this section, the differences between Ta and Ts have been assessed at the global scale 

using AIRS version 6 data. These estimates are available only for clear-sky conditions. Although 

the spatial resolution of the AIRS products is rather coarse (1 latitude/longitude), it yet provides 

concurrent estimates of Ta and Ts from a single sensor. Figure 4 presents the spatial distributions 

of satellite-derived mean Ta and Ts, and their difference for the 13–year period of 2003–2015. 

The analysis is done for ascending and descending overpasses separately. The tropical areas are 

warmer than the sub-tropical areas in terms of both Ta and Ts, in general. The tropical arid 

regions show warmer Ts (>42 C) than Ta during the day-time. The differences between both 

temperatures are prominent (Ta – Ts ~ 10–20 C) over the major desert areas primarily during the 

day-time, but they decrease notably during the night-time. Ta shows about 2–5 C larger 

magnitude than Ts during the night-time over most parts of the globe. There is larger standard 

deviation in the difference is noticed during the day-time than the night-time. These results are in 

reasonably good agreement with the results obtained from the USCRN observations (e.g., Figure 

2) in terms of diurnal variability of both temperatures. 

 Figure 5 presents the 13–year mean difference between Ta and Ts for the months of 

January and July for ascending and descending orbits of the AIRS sensor. The difference 

between Ta and Ts shows clear seasonal variations during the day-time. Larger day-time 

differences between Ta and Ts are clearly seen in the tropics due to significant solar heating. The 

differences between both temperatures are smallest in the extra-tropics. In general, the northern 

hemisphere is warmer than the southern hemisphere, because most of the large deserts lie in the 

northern hemisphere. The northern hemisphere shows larger differences in July (corresponds to 

northern summer) than January (corresponds to northern winter). Ts shows generally larger 
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magnitude of standard deviation than Ta, particularly during day-time. The difference in standard 

deviations between day-time Ta and Ts is larger over the northern hemisphere than the southern 

hemisphere in July, similar to the differences in mean Ta and Ts patterns (e.g., Figure 5). 

 

3.3 Comparison of MODIS and AIRS skin temperatures 

Since both MODIS and AIRS onboard the Aqua satellite provides clear-sky Ts estimates 

at different spatial resolutions, their inter-comparison is instructive for understanding and 

perhaps reducing the error structure of satellite-derived geophysical products like Ts for land 

surface applications. Additionally, an inter-comparison of MODIS and AIRS can yield insights 

about the consistency of both products. The MODIS sensor provides global Ts estimates at finer 

spatial resolution than the AIRS sensor. The MODIS global Ts product was resampled at two 

distinct spatial resolutions of 0.25 and 1 latitude/longitude apart from its native spatial 

resolution for the comparison with AIRS-derived Ts estimates. Figure 6 presents the spatial 

distributions of mean monthly Ts from MODIS at three distinct spatial resolutions and from 

AIRS for the ascending orbits of January 2012. Despite the large-scale features, Ts estimates are 

qualitatively similar for both; however, there are considerable differences in magnitudes. The 

spatial distributions of differences between resampled MODIS and AIRS estimates, and a scatter 

plot of both sets of Ts are also shown in the Figure 6. In general, the MODIS estimates show 

larger Ts than the AIRS estimates over the tropical areas except near the equatorial region of 

Africa. The differences between both estimates are rather larger (>6 C) over mountainous 

regions. The MODIS estimates exhibit notably lower Ts than AIRS over the northern high-

latitude regions. It is to be noted that the differences between MODIS and AIRS estimates could 

partly be explained due to resampling. The differences could be potentially due to uncertainties 
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in retrieving skin temperature from MODIS observations too. In order to obtain Ts, accurate 

estimation of land surface emissivity is required which due to lack of ground-true values is hard 

to achieve, and may lead to inaccurate estimation of LST. Hence, these two Ts estimates need to 

be evaluated against ground-based observations to obtain their error characteristics. 

In order to investigate the large-scale changes in annual mean Ts and Ta during the Aqua-

era, differences between the last five years (e.g., 2011–2015) and the first five years (e.g., 2003–

2007) of the study period were computed for ascending and descending overpasses. Figure 7 

illustrates the spatial distributions of these differences for MODIS-based Ts, and AIRS-based Ts 

and Ta estimates. Both MODIS and AIRS based Ts estimates show similar patterns, which are 

supported by Ta estimates as well. Europe, Russia, and southern parts of North America show 

considerable warming between 2003 and 2015. However, Australia, India, northern China, 

northern parts of North America, and Alaska show noticeable cooling during this period. 

Although similar patterns can be seen in the ascending and descending overpasses, magnitudes 

are larger during day-time than night-time. However, despite being insightful, the 13–year period 

is inadequate for a complete robust trend analysis.   

 

3.4 Evaluation of satellite infrared-based air and skin temperatures 

In this section, satellite-based Ta and Ts estimates are evaluated against USCRN 

observations over North America for a five-year period from 2009 to 2013. The evaluation is 

performed at each USCRN stations separately for day-time and night-time. The stations cover a 

wide range of features and are located at different parts of the country (Figure 1). Figure 8 shows 

the comparison of Aqua-based infrared Ta and Ts estimates against ground-based observations 

for a specific site at Millbrook, NY for the day-time. The MODIS-derived Ts estimates are 
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compared at three distinct spatial resolutions. The satellite-based temperature estimates show 

statistically significant high correlation coefficient when compared to ground-based 

observations. The AIRS underestimates Ta by 0.7 C when compared to USCRN observations, 

and RMSE and MAE of the satellite estimates are 2.2 C and 1.7 C, respectively. However, the 

bias and errors are larger in Ts than Ta in the AIRS product. The MODIS-derived Ts estimates 

show rather larger underestimation and higher errors compared to AIRS-derived estimates. The 

biases and errors gradually amplify with decrease (e.g., from finer to coarser) in spatial 

resolutions. This result clearly reveals that the representativeness error increases with coarser 

resolutions of satellite-based temperature estimates, when compared with ground-based 

observations. Comparison of gridded satellite estimates with ground-based point measurements 

would essentially explain some discrepancies in terms of representativeness error. 

Figure 9 illustrates the bias, correlation coefficient, RMSE and MAE in satellite-based Ta 

and Ts estimates compared to ground-based observations for each USCRN stations for the day-

time, while Figure 10 shows these statistics for night-time. In general, both AIRS and MODIS 

estimates systematically underestimate Ta and Ts during the day-time, whereas the magnitude of 

biases is rather smaller during the night-time. Moreover, the underestimation or overestimation 

of temperatures by the AIRS and MODIS vary for all stations. The satellite-derived Ta and Ts 

estimates show exceptionally smaller correlation with ground-based observations during both 

day and night times at a station located at Merced, CA. The magnitudes of MAE and RMSE are 

also larger for this station. At Darrington, WA, the satellite-derived Ta and Ts estimates are in 

good agreement (r > 0.9) with ground-based observations during the day-time, but the 

correlation is smaller during the night-time. Although errors in the satellite-based estimates are 

smaller during the night-time than the day-time, no clear dependency of errors with land cover 
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type or elevation is observed. These results would essentially be useful for the estimation of Ta 

from satellite-based Ts estimates. 

 

4. Discussion 

The satellite-based Ta and Ts estimates were evaluated against ground observations from 

19 USCRN stations over North America, and their differences during precipitating and non-

precipitating conditions were also assessed for a five-year period. The differences between these 

two temperatures were generally larger for the non-precipitating cases than for the precipitating 

cases (Figure 2). The differences between Ta and Ts also exhibited notable temporal variability 

ranging from diurnal to seasonal (e.g., Figure 3). Additionally, the magnitude of their differences 

showed spatial variability that is associated with distinct land surface characteristics. This 

finding is corroborated by recent studies (e.g., Gallo et al. 2011; Bechtel, 2015). 

Since the AIRS and MODIS sensors provide concurrent measurements of both Ta and Ts, 

unique opportunities to assess their differences at the global scale exist. In this study, large-scale 

features of Ta and Ts were depicted well by the satellite estimates for the 13–year period. In 

general, larger Ts than Ta was evident over the globe during the day-time than during the night-

time. However, they showed noticeable differences over the desert regions (Figure 4). As 

expected, their differences also showed a seasonal cycle associated with solar heating (Figure 5). 

Desert regions have very few in-situ observations of Ta and Ts due to their uninhabitable 

environments. However, the Aqua clear-sky estimates are available over the global deserts; this 

bodes well for studies of the variability of Ta and Ts in the climate change perspective (Bechtel, 

2015; Zhou and Wang, 2016).   
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Additionally, Ts estimates from MODIS and AIRS sensors were also inter-compared 

(Figure 6). Although both sensors are onboard the Aqua satellite, their spatial resolutions and 

measurement principles are different. The MODIS sensor provides Ts estimates at finer spatial 

resolution than that from the AIRS sensor, which might lead to larger Ts over the tropical regions 

from the MODIS estimates. Finally, Ts and Ta estimates from both sensors were evaluated 

against USCRN observations for 2009–2013. Ts estimates derived from MODIS showed 

considerably larger biases and errors than those from AIRS estimates. The error characteristics 

also showed distinct differences during day and night times, and they also varied spatially 

(Figures 9 and 10). Larger discrepancies between MODIS-derived Ts and ground-based 

observations were also recently reported over South China (Liu et al., 2017). Overall, the results 

reveal the need of extensive efforts to further improve Ts retrieval algorithms.  

 Augmentation of ground-based observations of Ts and Ta over different parts of the globe 

is essential to better understand the error characteristics of the satellite-derived estimates. The 

infrared-based Ta and Ts estimates are limited to clear-sky conditions, and about 60% of the 

globe is usually covered by the cloud (Prigent et al., 2016). Passive microwave remote sensing 

has immense potential to retrieve these parameters under cloudy-sky conditions as well. Prigent 

et al. (2016) demonstrated an approach to estimate Ts under all-weather conditions through 

passive land surface emissivity, and the estimated Ts showed promising error characteristics. An 

empirical regression method by the combined use of effective Ta from the MODIS and passive 

microwave brightness temperature measurements was also proposed to estimate surface level Ta 

at finer spatial resolution under all-weather conditions (Jang et al., 2014). Additionally, the 

synergistic use of infrared and passive microwave estimates would essentially provide more 

accurate global Ta and Ts products at finer spatio-temporal resolutions. The study of Ta and Ts 
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differences is crucial for many applications and highlights the importance of each parameter and 

its associated limitations. Additionally, Ta and Ts are inter-changeably used for different 

applications such as freeze and thaw detections. This study reveals that the difference in each 

temperature type may be significant enough to directly affect results in particular applications. 

 

5. Conclusions 

In this study, differences between Ta and Ts were assessed for a five-year period using the 

USCRN observations that covered a wide range of vegetation type, elevation and geography over 

the North America. The analysis was carried out for two specific times of the day corresponding 

to the overpass times of the Aqua satellite. The magnitudes of Ts were generally found to be 

greater than Ta during non-precipitating conditions. However, the differences between Ta and Ts 

were generally 2–3 times smaller for precipitating conditions than non-precipitating conditions. 

Additionally, these differences showed considerable diurnal and seasonal variations. The 

differences between Ta and Ts were also assessed at the global scale using the AIRS estimates 

under clear-sky conditions for the period 2003 to 2015. The tropical regions showed about 5–20 

C higher Ts estimates than Ta estimates during the day-time, whereas opposite characteristics 

(~2–5 C cooler Ts than Ta) were found over most parts of the globe during the night-time. The 

well-known seasonal cycle of Ta and Ts was well represented by the AIRS estimates in both 

hemispheres. Furthermore, Ts estimates from AIRS and MODIS sensors were inter-compared for 

a 13–year period. Although large-scale features of Ts were similar in both estimates, considerable 

differences in magnitudes were observed. Finally, Ta and Ts estimates from the AIRS and 

MODIS were evaluated against ground-based observations for the period of 2009 to 2013. The 

error characteristics essentially varied with USCRN stations and no clear evidence of their 
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dependency on land cover types or elevation was found. However, the MODIS-derived Ts 

estimates generally showed larger biases and higher errors when compared to AIRS-derived 

estimates. The biases and errors gradually amplified with decrease (from finer to coarser) in 

spatial resolution. These results revealed that representativeness error should be taken into 

account when validating satellite-based temperature estimates with point observations. 

Moreover, there is a need for high-resolution satellite-based Ta and Ts estimates at the global 

scale for all-weather conditions.  
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Table 1: Location, elevation, and land cover type of the U. S. Climate Reference Network 

(USCRN) stations used in this study 
 

S. 

No. 
Station Name Latitude  Longitude  Elevation (m) LC Type 

1. 
Millbrook, NY 41.79 -73.74 

142 Deciduous Broadleaf 

Forests 
2. Charlottesville, 

VA 
38 -78.47 

206 Mixed Forests 

3. Darrington, WA 48.54 -121.45 110 
4. Williams, AZ 35.76 -112.34 1821 Open Shrublands 
5. Monahans, TX 31.62 -102.81 828 
6. Selma, AL 32.46 -87.24 63  

Grasslands 7. Manhattan, KS 39.1 -96.61 357 
8. Wolf Point, MT 48.31 -105.1 632 
9. Merced, CA 37.24 -120.88 24  

 

Croplands 
10. Sebring, FL 27.15 -81.37 46 
11. Des Moines, IA 41.56 -93.29 261 
12. Chillicothe, MO 39.87 -93.15 255 
13. Blackville, SC 33.36 -81.33 99 
14. Aberdeen, SD 45.71 -99.13 597 
15. Watkinsville, GA 33.78 -83.39 218  

 

Cropland/Natural 

Vegetation Mosaic 

16. Lafayette, LA 30.09 -91.87 11 
17. Limestone, ME 46.96 -67.88 239 
18. Coshocton, OH 40.37 -81.78 295 
19. Crossville, TN 36.01 -85.13 578 
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Figure 1: Spatial distributions of MODIS-based land cover type over the North America. 

Locations of the U. S. Climate Reference Network (USCRN) stations used in this study are also 

indicated and the station numbers are reference to Table 1. The color legend 1 to 16 corresponds 

to Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf Forests, 

Deciduous Broadleaf Forests, Mixed Forests, Closed Shrublands, Open Shrublands, Woody 

Savannas, Savannas, Grasslands, Permanent Wetlands, Croplands, Urban and Built-Up, 

Cropland/Natural Vegetation Mosaic, Snow and Ice, and Barren or Sparsely Vegetated, 

respectively. 
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Figure 2: Differences between air and skin temperatures (a, b) and their standard deviations (c, 

d) for the selected 19 ground-based stations of Table 1 during precipitating and non-precipitating 

cases (2009–2013). The observation timings of USCRN stations are chosen similar to timings of 

ascending (a, c) and descending (b, d) overpasses of the Aqua satellite. 
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Figure 3: Diurnal variations of air and skin temperatures for the months of January, April, July, 

and October 2013 from hourly ground-based observations. Land cover types of each USCRN 

stations are also mentioned. 
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Figure 4: Spatial distributions of mean near-surface air and skin temperatures, and their 

differences for ascending and descending orbits of the AIRS sensor for the period 2003–2015. 
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Figure 5: Spatial distributions of mean difference between near-surface air and skin 

temperatures (2003–2015) for ascending and descending orbits of the AIRS sensor averaged for 

the months of January and July. 
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Figure 6: Mean monthly skin temperatures from the MODIS, and from the AIRS for the 

ascending orbits of January 2012. The spatial distributions of difference between MODIS and 

AIRS skin temperatures at 1 latitude/longitude resolution, and corresponding scatter plot are 

shown in bottom-right panel. 
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Figure 7: Spatial distributions of differences in 5-year mean skin and air temperatures for 

ascending and descending orbits of the MODIS and the AIRS sensors at the end (2011–2015) 

and at the beginning (2003–2007) of the study period. 
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Figure 8: Scatter plots showing comparison of day-time AIRS air and skin temperatures, and 

MODIS skin temperatures at three distinct spatial resolutions with ground-based observations at 

Millbrook, NY for the period 2009–2013. 
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Figure 9: Bias, correlation coefficient, RMSE, and MAE after comparing day-time AIRS air and 

skin temperatures, and MODIS skin temperatures at three distinct spatial resolutions with 19 

ground-based observations for the period 2009–2013. The order of the USCRN stations at x-axis 

is same as Table 1. 
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Figure 10: Bias, correlation coefficient, RMSE, and MAE after comparing night-time AIRS air 

and skin temperatures, and MODIS skin temperatures at three distinct spatial resolutions with 19 

ground-based observations for the period 2009–2013. The order of the USCRN stations at x-axis 

is same as Table 1. 
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