






Hence, the use of a correction factor with infrared-based
LST over the arid regions (to obtain an effective tem-
perature) essentially improves the LSE estimates.

Figure 5 shows the intercomparison of mean LSE
estimates for the month of January from 9-yr AMSR-E
(2003Ð11) and 5-yr AMSR2 (2013Ð17) observations. The
broadscale LSE features are very well depicted by both
estimates. Smaller magnitudes of LSE (e.g.,, 0.85) over
the arid regions such as over the Sahara Desert, the
Arabian Desert, and the Gobi Desert were identiÞed by
both sensors. This occurrence is due to minimal vegetation
and negligible moisture over the arid regions. The impact
of seasonal snow cover on LSE estimates over the northern
high-latitude regions are also clearly seen at lower-
(6.925GHz) and higher- (89GHz) frequency channels.
Lower-frequency channels show larger magnitudes of
LSE, whereas higher-frequency channels show smaller
magnitudes of LSE. This result clearly shows that LSE has
potential for the detection of seasonal snow cover and its
associated soil freezing and thawing. However, permanent

ice-covered areas of Greenland and the South Pole show
smaller magnitudes of LSE at all channels. LSE values
from both sensors show spatial pattern correlations of
0.97 for all frequency channels between the climatol-
ogies of the AMSR-E and AMSR2 estimates for the
month of January, which reveal that LSE estimates from
both sensors are consistent because of the use of co-
herent ancillary datasets and algorithms.

Since in situ observations of LSE at the global scale
are lacking, the estimated LSE values are compared
with other satellite-derived estimates. Figure 6 shows
the comparison of climatologies of LSE from 14 years of
AMSR-E and AMSR2 observations with independent
TELSEM 2 land emissivity for the month of January. As
TELSEM 2 is derived from the SSM/I observations, the
operating frequencies are different from AMSR-E and
AMSR2. LSE estimates from two nearby frequency
channels (one lower frequency and another higher fre-
quency), and their differences are shown for compari-
son. Both climatologies of LSE are in reasonably good

FIG . 6. Spatial distributions of LSE climatology at horizontal polarization from TELSEM 2 and the combined
14-yr AMSR-E/AMSR2 estimates along with their differences for the month of January. The Pr between both
estimates are also given.
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agreement with each other and show spatial pattern

correlations of 0.92 at both frequency channels for

the month of January, which suggest that about 15%

of the variance is explained by other factors. It should

also be noted that there are considerable differences

in input datasets and sensor characteristics like inci-

dence angle, frequencies, observation time, and ancillary

data between SSM/I and AMSR-E/AMSR2 estimates.

Moreover, TELSEM2 shows higher magnitudes of LSE

than do the present estimates in the tropics. At higher

latitudes of the Northern Hemisphere, TELSEM2 has

lower magnitudes of LSE than AMSR-E/AMSR2 esti-

mates at higher-frequency channels. Figure 7a shows

the PDFs of LSE differences between TELSEM2 and

the combined AMSR-E and AMSR2 estimates for the

month of January. Both LSE estimates are in good

agreement at lower-frequency channels, but there is a

notable difference between these two estimates at

higher-frequency channels. This differencemight be due

to water vapor and/or cloud contaminations primarily

around the tropics. AIRS atmospheric information has

its own uncertainty that could affect the accuracy of LSE

estimates at higher frequencies, however, the use of

concurrent water vapor and air temperature observa-

tions instead of reanalysis data that are used inTELSEM2

should benefit the present LSE retrieval. The corre-

sponding mean differences in LSE between these two

estimates for four different land-cover types are pre-

sented in Fig. 7b. The overestimation of LSE by the

present estimates when compared with TELSEM2 lin-

early decreases with a decrease in vegetation coverage

and notably underestimates LSE over the desert regions

during January. The LSE measurements from the air-

craft campaigns and ground observations primarily over

the arid regions are essential to validate satellite-based

estimates for further refinements.

Figure 8 shows the PDFs of LSE estimates at hori-

zontal and vertical polarizations of the AMSR-E and

AMSR2 sensors for the arid regions. Both sensors

exhibit similar characteristics, suggesting the LSE

FIG. 7. (a) Differences in the PDFs of mean LSE climatologies from TELSEM2 and the combined AMSR-E/

AMSR2 estimates at horizontal polarization for the month of January and (b) the corresponding mean difference

for four distinct land-cover types, viz., evergreen rain forest, deciduous woodland, grassland, and desert regions.

FIG. 8. PDFs of LSE from AMSR-E and AMSR2 observations for vertical and horizontal polarizations averaged

over the global arid regions.
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estimates are consistent. In general, LSE shows larger

variability associated with larger PDFs at vertical po-

larization than at horizontal polarization. The differ-

ences are largest for the lower-frequency channels, and

vice versa. These results are consistent with those from

earlier studies by Prigent et al. (1999). Figure 9 presents

the variations in mean LSE difference between vertical

and horizontal polarizations for four land-cover types

as a function of operating frequencies of the AMSR-E

and AMSR2 sensors. Both sensors show the same kind

of variations in LSE differences with frequency chan-

nels. The differences are smallest for the evergreen rain

forest and largest for the desert regions. The LSE dif-

ference between vertical and horizontal polariza-

tions overall decreases with the increase in frequency

for all four land-cover types because of changes in

FIG. 9. Variations in mean emissivity differences between vertical and horizontal polariza-

tions for four land-cover types as a function of operating frequencies of the AMSR-E and

AMSR2 sensors.

FIG. 10. Monthly variations of emissivity polarization differences (V 2 H) at different frequency channels of

AMSR-E/AMSR2 for four land-cover types of the Northern Hemisphere.
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penetration depths (Norouzi et al. 2015a). The monthly

variations of LSE polarization differences for the four

land-cover types in the Northern Hemisphere are pre-

sented in Fig. 10 after combining AMSR-E and AMSR2

estimates. As expected, evergreen rain forest and desert

regions show negligible seasonal variations in LSE as-

sociated with an almost homogeneous surface rough-

ness, whereas deciduous woodland and grassland show

considerable seasonal variations of LSE at all frequency

channels. The seasonal changes in LSE are associated

with the change in biomass density, which is at a mini-

mum during the Northern Hemisphere summer for de-

ciduous woodland and grassland areas.

Because of the sensitivity of LSE with seasonal snow

cover, LSE estimates were successfully utilized for high-

latitude snowpack detection (Shahroudi and Rossow

2014) and also for soil freeze–thaw state detection

(Prakash et al. 2017; Shati et al. 2018). These studies

demonstrated that the LSE differences between lower-

and higher-frequency channels are good indicators for

such analyses. Figure 11 shows the time series of daily

nighttime upper-layer soil temperature (e.g., at 5-cm

depth) from ground-based observations and the corre-

sponding LSE difference between 6.925 and 89GHz at

horizontal polarization for a specific location in Alaska.

Two years, 2009 and 2013, were selected from AMSR-E

and AMSR2 spans. The figure shows that colder soil

temperature during the Northern Hemisphere winter

corresponds to larger differences in LSE estimates, and

warmer soil temperature during the Northern Hemi-

sphere summer corresponds to smaller differences in

LSE. The range of LSE variations is smaller for the

warmer soil than for the colder soil. Hence, the present

consistent longer period LSE estimates would essen-

tially be useful for global freeze–thaw and snowpack

detection and for other land surface applications.

4. Conclusions

In this study, global cloud-free instantaneous LSEs

were estimated for the period from October 2002 to

September 2011 from the AMSR-E sensor and for the

period from July 2012 to June 2017 from the AMSR2

sensor by using an updated algorithm that alleviated the

discrepancy between microwave and infrared observa-

tions due to differences in penetration depths. Simulta-

neous ancillary datasets from the MODIS and AIRS

sensors were used for the computation of LSEs; this

approach essentially reduced the error of the estimates.

The impact of changes in LST on LSE estimates was also

assessed by the use of two consecutive versions (V6 and

V5) of the LST product that showed noticeable differ-

ences over the arid regions. Hence, a careful review

of previous findings and products that were based on

FIG. 11. Time series of daily nighttime (a) 5-cm soil temperature from ground observations and (b) satellite-

derived emissivity differences between 6.925 and 89GHz at horizontal polarization for 2009 and 2013 over

a SNOTEL site in Alaska.
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earlier version of MODIS LST seems to be necessary.

The consistency of LSE estimated by both sensors was

examined for different land-cover types. The compari-

son of global mean LSE features from the combined

use of AMSR-E and AMSR2 with an independent

product—TELSEM2—showed spatial pattern correla-

tions on the order of 0.92 at all the frequencies for the

month of January. The seasonal variations of the esti-

mated LSEwere also investigated for distinct land-cover

types. These consistent LSE estimates for a 14-yr period

are promising and potentially beneficial for global freeze–

thaw and snowpack detection and for other land surface

applications. Additionally, the synergism of other avail-

able PMW sensors may provide comprehensive global

multisatellite LSE estimates to better understand its

spatiotemporal variability and underlying processes.

Furthermore, extensive efforts are needed for the com-

putation of LSE under all weather conditions by taking

into account the effect of clouds in the radiative transfer

model and also to comprehensively quantify the un-

certainty of LSE estimates.
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