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Abstract. We are interested in translating three-dimensional arrays of
real numbers (images) into simpler structures that nevertheless capture
the topological/geometrical essence of the objects in the images. These
structures are to be used as descriptors of images in databases. A fore-
ground history tree structure (FHTS) contains all the information on the
relationships between connected components when the image is thresh-
olded at various levels. Unsimplified FHTSs are too sensitive to errors
in the image to be good descriptors. We present a method of simplifying
FHTSs, which can be shown to be robust in the sense of producing es-
sentially the same simplifications in the presence of small perturbations.
We demonstrate the potential applicability of our methodology to macro-
molecular databases by showing that the simplified FHTSs can be used
to distinguish between two slightly different versions of an adenovirus.

Key words: three-dimensional image, topological descriptor, database,
foreground history tree structure, FHTS, macromolecule

1 Introduction and Motivation

High-level structural information about macromolecules is now being organized
into databases. These include reconstructions from electron microscopic data;
i.e., three-dimensional arrays of real numbers (images) that are voxelizations of
macromolecular structures. The large size of these arrays, the arbitrary position
and orientation of the molecule in the array, and the possibility of non-linear
stretching of the range make standard methods of comparison between database
entries infeasible. We propose the use of simple descriptors that capture the
topological/geometrical essence of the macromolecules in the images for the ex-
ploration of such databases. We believe that these descriptors will be useful
in the identification and classification of macromolecules. In this paper we de-
fine our descriptors, describe efficient computer algorithms for producing them,
mathematically investigate their robustness, and provide a sample biological ap-
plication in which they are used to differentiate two versions of an adenovirus.
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2 Foreground History Tree Structures

2.1 Adjacency Relations, Spels, and Images

We use the term adjacency relation to mean an irreflexive symmetric binary
relation (i.e., a set κ of ordered pairs such that if (a, b) ∈ κ then a 6= b and
(b, a) ∈ κ). The members of the pairs that belong to any adjacency relation we
are using will be called spels. (As in, e.g., [2], “spel” is an abbreviation of “spatial
element”, and we think of spels as generalizations of pixels and voxels.) We use
the term grayscale image or, more briefly, the term image, to mean a real-valued
function whose domain is a nonempty set of spels.

In the practical work described in Section 4, we use the “6-adjacency” relation
[2, p. 16] on Z3 as our adjacency relation, and use grayscale images whose domain
is the finite set {(x, y, z) ∈ Z3 | 0 ≤ x ≤ 274, 0 ≤ y ≤ 274, 0 ≤ z ≤ 274}.

Let κ be an adjacency relation. We say that two disjoint sets of spels S1

and S2 are κ-adjacent if there exist s1 ∈ S1 and s2 ∈ S2 such that (s1, s2) ∈ κ.
We call a sequence s0, . . . , sl of l + 1 spels a κ-path if l = 0 or if l ≥ 1 and
(si, si+1) ∈ κ for 0 ≤ i < l. We say that a set S is κ-connected if for all s, s′ ∈ S

there exists a κ-path s0, . . . , sl such that s0 = s, sl = s′, and si ∈ S for 0 ≤ i ≤ l.
Let I : S → R be any image, let τ ∈ R, and let s ∈ S. Then Cκ(s, I, τ) will

denote the set of all s′ ∈ S for which there exists a κ-path s0, . . . , sl such that
s0 = s, sl = s′, and I(si) ≥ τ for 0 ≤ i ≤ l. Note that Cκ(s, I, τ) = ∅ if τ > I(s),
and s ∈ Cκ(s, I, τ) if τ ≤ I(s). We write Cκ(s, I) to denote the set Cκ(s, I, I(s)).
Readily, if t ∈ Cκ(s, I), then I(t) ≥ I(s) and either Cκ(t, I) = Cκ(s, I) or
Cκ(t, I) ( Cκ(s, I) according to whether I(t) = I(s) or I(t) > I(s).

2.2 Some Terminology and Notation Associated with Rooted Trees

Let £ be any partial order on a finite set V. Then we will say that £ is treelike
if for each v ∈ V the restriction of £ to {u ∈ V | u £ v} is a total order, and,
in addition, there exists an element r ∈ V such that r £ v for all v ∈ V.

We assume the reader is familiar with the concept of a rooted tree (as defined
in, e.g., [1, Appendix B.5.2]). Let T be any rooted tree. We write Nodes(T ) to
denote the (finite) set of all nodes of T , write root(T ) to denote the root of T ,
and write Leaves(T ) to denote the set of all leaves of T . For v ∈ Nodes(T ),
we write ChildrenT (v) to denote the set of all the children of v in T , and if
v 6= root(T ) then we write parentT (v) to denote the parent of v in T ; we
write T [v] to denote the subtree of T that is rooted at v.

Recall that if x ∈ Nodes(T ) and y ∈ Nodes(T [x]) then x is said to be an
ancestor of y in T , and y is said to be a descendant of x in T . We write x ¹T y
or y ºT x to mean that x,y ∈ Nodes(T ) and x is an ancestor of y in T . We
write x ≺T y or y ÂT x to mean that x ¹T y but x 6= y. If x ≺T y then x is
said to be a proper ancestor of y in T , and y a proper descendant of x in T .
Evidently, ¹T is a treelike partial order on Nodes(T ). It is also easy to verify
that if £ is any treelike partial order on a finite set V, then there exists a rooted
tree T £ such that Nodes(T £) = V and the partial order ¹T £

is £.
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We write x⇓T to denote the set {y ∈ Nodes(T ) | y ¹T x} and write
x↓T to denote the set x⇓T \ {x}. We similarly write x⇑T to denote the set
{y ∈ Nodes(T ) | y ºT x} and write x↑T to denote the set x⇑T \ {x}.

If ∅ 6= S ⊆ Nodes(T ) then we write
∧

T S to denote the closest common
ancestor of S, by which we mean the node v of T such that v⇓T =

⋂
u∈S u⇓T .

A node v of T is said to be critical if |ChildrenT (v)| 6= 1; thus v is a
critical node if and only if either v ∈ Leaves(T ) or |ChildrenT (v)| ≥ 2. We
write Crit(T ) to denote the set of all critical nodes of T . We write T crit to
denote the rooted tree whose set of nodes is Crit(T ), in which the ancestors
of each node c ∈ Crit(T ) are just the critical ancestors of c in T . We write
LCN(T ) to denote the lowest critical node of T , by which we mean the root of
T crit. If v ∈ Nodes(T ) then we say a is the immediate proper critical ancestor
of v in T if a ∈ Crit(T ), a ≺T v, and {c ∈ Crit(T ) | a ≺T c ≺T v} = ∅.
Readily, each v ∈ LCN(T )↑T has a unique immediate proper critical ancestor,
which we denote by IPCAT (v).

2.3 Definition of a κ-Foreground History Tree Structure (κ-FHTS);
Essential Isomorphism

Let κ be any adjacency relation. Then a κ-foreground history tree structure or
κ-FHTS is a pair (T , `) for which there exists a collection C of nonempty finite
κ-connected sets of spels such that:

1.
⋃

C ∈ C (i.e., C has an element that is a superset of every element of C).
2. For all u,v ∈ C, if u 6⊇ v and v 6⊇ u then the sets u and v are disjoint and

are not κ-adjacent.
3. ` is a real-valued function on C such that, for all u,v ∈ C, `(u) < `(v)

whenever u ) v.
4. T is the rooted tree such that Nodes(T ) = C and, for all u,v ∈ C, u ≺T v

if and only if u ) v.

Condition 1 implies that
⋃

C is a finite κ-connected set; since
⋃

C is finite, C

is a finite collection. Moreover, conditions 1 and 2 imply that the restriction of ⊇
to C is a treelike partial order. It follows that if C is any collection of nonempty
finite κ-connected sets that satisfies conditions 1 and 2, and ` any function that
satisfies condition 3, then there will exist a unique κ-FHTS (T , `) for which
Nodes(T ) = C and root(T ) =

⋃
C.

If each of F = (T , `) and F′ = (T ′, `′) is a κ-FHTS, then we write F′ v F to
mean that Nodes(T ′) ⊆ Nodes(T ) and `′ is the restriction of ` to Nodes(T ′).
For any κ-FHTS (T , `) and any V ⊆ Nodes(T ) such that LCN(T )⇓T 6⊆ V,
there is a κ-FHTS (T ′, `′) v (T , `) such that Nodes(T ′) = Nodes(T ) \ V;
this κ-FHTS (T ′, `′) will be denoted by (T , `)−V.

We write (T , `)crit to denote (T , `)−(Nodes(T )\Crit(T )). In other words,
(T , `)crit = (T crit, `crit), where `crit is the restriction of ` to Crit(T ).

We define depth(T ,`)(v) = (maxy∈Leaves(T [v]) `(y)) − `(v) for every node v
of T . Note that depth(T ,`)crit(c) = depth(T ,`)(c) for all c ∈ Crit(T ).
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We say that two κ-FHTSs F1 = (T 1, `1) and F2 = (T 2, `2) are essentially
isomorphic if T crit

1 and T crit
2 are isomorphic trees. Thus F1 and F2 are essen-

tially isomorphic if and only if there exists a mapping θ : Crit(T 1) → Crit(T 2)
such that θ[Crit(T 1)] = Crit(T 2) and, for all c, c′ ∈ Crit(T 1), c ¹T 1 c′ if
and only if θ(c) ¹T 2 θ(c′). (The latter property implies that θ is 1-to-1.) Any
such θ will be called an essential isomorphism of F1 to F2; if θ also satisfies
`1(x) = `2(θ(x)) for all x ∈ Crit(T 1), then we say that θ is level-preserving.

2.4 A Bijective Correspondence Between Images with Finite
κ-Connected Domains and κ-FHTSs

Let S be any nonempty finite κ-connected set of spels. Then we associate each
image I : S → R with the κ-foreground history tree structure FHTSκ(I) that
is defined by FHTSκ(I) = (T I , `I), where:

(a) Nodes(T I) = {Cκ(s, I) | s ∈ S} and, for all u,v ∈ Nodes(T I), we have
that u ¹T I v if and only if u ⊇ v.

(b) For all s ∈ S, `I(Cκ(s, I)) = I(s). (`I is well defined by this condition,
because I(s) = I(s′) whenever Cκ(s, I) = Cκ(s′, I).)

Note that a κ-FHTS with these two properties exists, since conditions 1 and 2
in the definition of a κ-FHTS hold when C = {Cκ(s, I) | s ∈ S}.

Conversely, we associate each κ-FHTS F = (T , `) with the image IF that we
now define. For each spel s ∈ root(T ), conditions 2 and 4 imply that, among
the elements of Nodes(T ) that contain s, there must be a smallest (i.e., a node
that is a descendant in T of every node that contains s); that element will be
denoted by nodeT (s). We define IF to be the image whose domain is root(T ),
and which satisfies IF(s) = `(nodeT (s)) for all s ∈ root(T ).

It is not difficult to prove that IFHTSκ(I) = I for any image I whose domain
is finite and κ-connected, and that FHTSκ(IF) = F for every κ-FHTS F. Thus
I 7→ FHTSκ(I) and F 7→ IF are mutually inverse bijections.

With some rather trivial modifications, the algorithm described in [5, pp. 265-
7] can be used to construct FHTSκ(I). In the next section we describe how we
simplify FHTSκ(I) to produce κ-FHTSs that are less sensitive to small errors
in the image I, and which may therefore be better descriptors of the image.

3 The (λ, k)-Simplification of a κ-FHTS

If F0 = (T 0, `0) is any κ-FHTS, then for every positive real value λ and every
nonnegative integer k < | root(T 0)| we define the (λ, k)-simplification of F0 to
be the κ-FHTS F3 that can be obtained from F0 in three steps, as follows:

Step 1: Prune F0 by removing nodes of size ≤ k, to produce F1 v F0.
Step 2: Prune F1 by removing branches of length ≤ λ, to produce F2 v F1.
Step 3: Collapse δ-equivalence classes of Fcrit

2 for δ ≤ λ, to produce the final
κ-FHTS F3 v Fcrit

2 .
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The final κ-FHTS F3 has the property that every node in its tree is critical.
Step 1 is essentially the same as the first step of the simplification method

of [5]. It is defined as follows: The result of pruning F0 = (T 0, `0) by removing
nodes of size ≤ k is F0−{v ∈ Nodes(T 0) | |v| ≤ k}. (As usual, |v| denotes the
cardinality of the set v—i.e., the number of spels in v.) Note that the result is
just F0 itself if k = 0. Steps 2 and 3 will be defined in Subsections 3.1 and 3.2.

While our simplification method is somewhat similar to the method of [5],
it has the robustness property that is stated in Theorem 1 below (which the
method of [5] does not have). A rough statement of this property is that if
I is any image, and I ′ is any image that is sufficiently close to I, then our
simplification method can be used to reduce FHTSκ(I ′) to a κ-FHTS that is
essentially isomorphic to FHTSκ(I). We now introduce some terminology that
will be used in our precise statement of this result.

Let I be any image whose domain is a finite κ-connected set S of spels, and
let (T , `) = FHTSκ(I). Then, for any λ > 0 and any integer k ≥ 0, we say that
the image I is (λ, k)-good if the following conditions both hold:

(a) There is no s ∈ S for which |Cκ(s, I)| ≤ k.
(b) There are no s, t ∈ S for which Cκ(s, I),Cκ(t, I) ∈ Crit(T ), t ∈ Cκ(s, I),

and I(s) < I(t) ≤ I(s) + λ. (Equivalently, there are no u,v ∈ Crit(T ) for
which u ÂT v and `(u) ≤ `(v) + λ.)

I is sure to be (λ, k)-good for all sufficiently small positive λ and k = 0. If I
is (λ, k)-good, then I is (λ′, k′)-good whenever 0 < λ′ ≤ λ and 0 ≤ k′ ≤ k.

If I is (λ, k)-good, then the (λ, k)-simplification of FHTSκ(I) is just
FHTSκ(I)crit. Moreover, if the κ-FHTS Fsimp = (T simp, `simp) is the (λ, k)-
simplification of a κ-FHTS, and I = IFsimp

, then I is (λ, k)-good and each node
of T simp is critical, so that I satisfies the following much stronger version of (b):

(b′) There are no s, t ∈ S for which t ∈ Cκ(s, I) and I(s) < I(t) ≤ I(s) + λ.

For any image I : S → R and any ε > 0, we use the term ε-perturbation of I
to mean an image I ′ : S → R such that |I(x)− I ′(x)| ≤ ε for all x ∈ S.

We now state the above-mentioned robustness property of our method:

Theorem 1. Let κ be any adjacency relation and I any grayscale image whose
domain is finite and κ-connected. Let ε > 0 be a real value and k ≥ 0 an integer
such that the image I is (4ε, k)-good, and let I ′ be any ε-perturbation of I. Then
the (2ε, k)-simplification of FHTSκ(I ′) is essentially isomorphic to FHTSκ(I).

Our simplification method was in fact designed with Theorem 1 in mind; it
was one of our main design goals to make this theorem true. We will outline a
proof of the theorem in Subsection 3.3. But first we give a precise definition of
Steps 2 and 3 of (λ, k)-simplification. The next two subsections will do this.

3.1 Pruning by Removing Branches of Length ≤ λ

For any κ-FHTS Fin = (T in, `in) and any λ > 0, the result of pruning Fin

by removing branches of length ≤ λ is the κ-FHTS Fout = (T out, `out) v Fin
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that is produced by Algorithm 1 below. Although Fout depends on the sequence
leaf[1], . . . , leaf[n], which is not uniquely determined by Fin if there are distinct
leaves x and y of T in for which `in(x) = `in(y), we will see that Fout is uniquely
determined by Fin and λ up to a level-preserving essential isomorphism.

Algorithm 1: Prune by Removing Branches of Length ≤ λ

inputs : a κ-FHTS Fin = (T in, `in); a positive real value λ
output: a κ-FHTS Fout = (T out, `out)

begin1

n ←− |Leaves(T in)|;2

Sort Leaves(T in) into a sequence leaf[1], . . . , leaf[n]3

such that `(leaf[1]) ≤ · · · ≤ `(leaf[n]);4

(T , `) ←− Fin;5

for j ←− 1 to n− 1 do6

a ←− IPCAT (leaf[j]);7

if `(leaf[j])− `(a) ≤ λ then (T , `) ←− (T , `)− (leaf[j]⇓T ∩ a↑T);8

Fout ←− (T , `);9

end10

For 2 ≤ i ≤ |Leaves(T in)|, let Fi and T i respectively denote the κ-FHTS
(T , `) and its tree T at the end of the i − 1st iteration of Algorithm 1’s for
loop—so that Fout = F|Leaves(T in)|. Let F1 = Fin and T 1 = T in. It is not
hard to show that, for 2 ≤ i ≤ |Leaves(T in)|, Leaves(T i) ⊆ Leaves(T i−1),
Crit(T i) ⊆ Crit(T i−1), depthFi

(u) = depthFin
(u) for every u in Nodes(T i),

and, for each v in Nodes(T in) \Nodes(T i), v⇑T in
∩ Nodes(T i) = ∅.

For each v ∈ Nodes(T in), we write lastLeaf(v) to denote the leaf of T in[v]
that appears last in the sequence leaf[1], . . . , leaf[n], and write Path(v) to denote
the set {x ∈ Nodes(T in) | v ¹T in

x ¹T in
lastLeaf(v)}. Note that lastLeaf(v)

and Path(v) might not be uniquely determined by T in and λ.
Let Uλ denote the set {v ∈ Nodes(T in) | depthFin

(v) > λ}, and let Vλ

denote the set {v ∈ Nodes(T in) \ Uλ | v↓T in
⊆ Uλ}. Then Nodes(T in) =

Uλ ∪⋃
v∈Vλ v⇑T in

and it is not hard to show that Uλ ( Nodes(T out). Hence:

Nodes(T out) = Uλ ∪
⋃

v∈Vλ

(v⇑T in
∩ Nodes(T out)) (1)

If depthFin
(root(T in)) > λ, then root(T in) ∈ Uλ and so root(T in) 6∈ Vλ; in

this case, let Vλ
1 = {v ∈ Vλ | depthFin

(v)+ `in(v)− `in(parentT in
(v)) > λ}. If

depthFin
(root(T in)) ≤ λ (so that Uλ = ∅), let Vλ

1 = {root(T in)} = Vλ. Then
it is readily confirmed that v⇑T in

∩ Nodes(T out) = Path(v) for all v ∈ Vλ
1 ,
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and v⇑T in
∩ Nodes(T out) = ∅ for all v ∈ Vλ \Vλ

1 . This and (1) imply that:

Nodes(T out) = Uλ ∪
⋃

v∈Vλ
1

Path(v) (2)

Uλ is determined by Fin and λ. For every v ∈ Vλ
1 we see from (2) that no

node in Path(v) \ {lastLeaf(v)} is a critical node of T out, and it is evident that
`out(lastLeaf(v)) = `in(lastLeaf(v)) is determined by Fin. Hence Fout is uniquely
determined up to a level-preserving essential isomorphism by Fin and λ.

The value of depthFin
(v) can be computed for every node v of T in during a

single bottom-up traversal of the tree. Thus (2) provides the basis for a somewhat
more efficient algorithm whose output is the same as that of Algorithm 1 up to
a level-preserving essential isomorphism.

3.2 Collapsing δ-Equivalence Classes for δ ≤ λ

For any κ-FHTS Fin = (T in, `in) and any λ > 0, the result of collapsing
δ-equivalence classes of Fin for δ ≤ λ is defined to be the κ-FHTS Fout =
(T out, `out) v Fin that is produced by Algorithm 2 below.

Note that root(T ) does not change at any iteration of Algorithm 2’s for loop.
Also note that min{`(v)− `(parentT (v)) | v ∈ root(T )↑T } ≥ δ[j] at the start
of each iteration of the for loop. It follows that root(T out) = root(T in), and
that every non-root node v of T out satisfies `out(v)− `out(parentT out

(v)) > λ.
In Step 3 of (λ, k)-simplification, collapsing δ-equivalence classes for δ ≤ λ is

done with Fcrit
2 as the input κ-FHTS Fin, where F2 is the result of pruning a

κ-FHTS F1 by removing branches of length ≤ λ. In this case Leaves(T ) does
not change at any iteration of Algorithm 2’s for loop, and at the end of each
iteration T still has the property that every node is critical. This implies that
Leaves(T out) = Leaves(T in), and that each node of T out is critical.

Algorithm 2: Collapse δ-Equivalence Classes for δ ≤ λ

inputs : a κ-FHTS Fin = (T in, `in); a positive real value λ
output: a κ-FHTS Fout = (T out, `out)

begin1

(T , `) ←− Fin;2

DiffSet ←− {`(y)− `(x) | x ≺T y and `(y)− `(x) ≤ λ};3

Sort DiffSet into a strictly increasing sequence δ[1] < · · · < δ[|DiffSet|];4

for j ←− 1 to |DiffSet| do5

(T , `) ←− (T , `)− {v ∈ root(T )↑T | `(v)− `(parentT (v)) = δ[j]};6

Fout ←− (T , `);7

end8

We now explain why we call this process “collapsing δ-equivalence classes for
δ ≤ λ”. For every κ-FHTS F = (T F, `F) and every positive δ, we write ρF

δ to
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denote the binary relation on Nodes(T F) such that (u,v) ∈ ρF
δ if and only if

u ¹T F
v and `F(v) − `F(u) ≤ δ, and we define δ-equivalence on Nodes(T F)

to be the equivalence relation that is the symmetric transitive closure of ρF
δ . Let

F0 = (T 0, `0) be the κ-FHTS Fin = (T in, `in) and, for 1 ≤ i ≤ |DiffSet|, let Fi =
(T i, `i) be the κ-FHTS (T , `) at the end of the ith iteration of Algorithm 2’s for
loop. Then, for 1 ≤ i ≤ |DiffSet|, Nodes(T i) ⊆ Nodes(T i−1) and it is readily
confirmed that, for each equivalence class C of the δ[i]-equivalence relation on
Nodes(T i−1), the set Nodes(T i) contains just one element of C, namely the
element which is an ancestor in T i−1 of every element of C.

When DiffSet is large, Algorithm 2 is slow; indeed, execution of line 6 in-
volves traversing the tree T , so the for loop performs |DiffSet| tree-traversals.
Algorithm 3 is then a much more efficient way to produce the same output
κ-FHTS Fout from Fin for Step 3 of (λ, k)-simplification. Algorithm 3 labels
each v ∈ Nodes(T in) \Nodes(T out) with the value of δ[j] at the iteration of
Algorithm 2’s for loop that removes v, and labels each v ∈ Nodes(T out) with
a value that exceeds λ. It does a top-down traversal of T in, during which the
repeat . . . until loop of the procedure labelDescendants is executed once for
each proper descendant of the root that is not a leaf, to compute the label of
that node from the labels of its proper ancestors. labelDescendants gives every
leaf of T in a label that exceeds λ, beacuse it assumes that no leaf of T in should
be removed—i.e., it assumes that Leaves(T out) = Leaves(T in). As mentioned
above, this assumption is correct for Step 3 of (λ, k)-simplification.

Algorithm 3: A Faster Version of Algorithm 2 for Simplification Step 3.
inputs : a κ-FHTS Fin = (T in, `in); a positive real value λ
output: a κ-FHTS Fout = (T out, `out)

begin1

(T , `) ←− Fin;2

root(T ).label ←− some value that exceeds λ;3

foreach c ∈ ChildrenT (root(T )) do labelDescendants(c,T ,`,λ);4

Fout ←− (T , `)− {v ∈ Nodes(T ) | v.label ≤ λ};5

end6

Procedure labelDescendants(node,T , `, λ)

if node ∈ Leaves(T ) then1

node.label ←− some value that exceeds λ;2

else3

ancestor ←− node;4

repeat5

ancestor ←− parentT (ancestor);6

node.label ←− `(node)− `(ancestor);7

until (node.label > λ or node.label ≤ ancestor.label);8

foreach c ∈ ChildrenT (node) do labelDescendants(c,T ,`,λ);9



History Trees of Grayscale Images 9

3.3 A Brief Outline of a Proof of Theorem 1

We now assume the hypotheses of Theorem 1 are satisfied, and explain how the
theorem can be proved.

Let S be the domain of I and I ′. Let F = (T , `) = FHTSκ(I) and F′ =
(T ′, `′) = FHTSκ(I ′). Let F1 = (T 1, `1) be the κ-FHTS that results from
pruning F′ by removing nodes of size ≤ k, let F2 = (T 2, `2) be the κ-FHTS
that results from pruning F1 by removing branches of length ≤ 2ε, and let
F3 = (T 3, `3) be the κ-FHTS that results from collapsing δ-equivalence classes
of Fcrit

2 for δ ≤ 2ε. Then F3 is the (2ε, k)-simplification of FHTSκ(I ′), and
what we need to show is that there exists an essential isomorphism of F to F3.

Let I∗ = IF1 , so that F1 = FHTSκ(I∗). Readily, I∗ is the image with
domain S such that, for every x ∈ S, I∗(x) is the greatest real value τ for which
|Cκ(x, I ′, τ)| ≥ k + 1. Thus I∗ ≤ I ′, and (since I is (4ε, k)-good and I ′ is an
ε-perturbation of I) it is not hard to verify that I∗ is an ε-perturbation of I.

Let v be any leaf of T , and let s be any spel in v such that Cκ(s, I) = v.
Then we define M(v, I, I∗) to be the set of all spels t in Cκ(s, I, I(s) − 2ε)
such that I∗(t) = max{I∗(w)|w ∈ Cκ(s, I, I(s) − 2ε)}. (M(v, I, I∗) depends
on v, but not on our choice of s in v such that Cκ(s, I) = v.) As (T 1, `1) =
F1 = FHTSκ(I∗), we can show (using the facts that I is (4ε, k)-good and I∗
is an ε-perturbation of I) that Cκ(t, I∗) is a leaf of T 1 for all t in M(v, I, I∗),
and that, when F1 is pruned by removing branches of length ≤ 2ε to produce
F2 = (T 2, `2), just one of the leaves in {Cκ(t, I∗) | t ∈ M(v, I, I∗)} is not
deleted; the leaf which remains is a leaf of T 2 that we will denote by φ(v).
This defines a mapping φ : Leaves(T ) → Leaves(T 2). We can show that φ is
a bijection onto Leaves(T 2), and that |`2(

∧
T 2

(φ[L]))− `(
∧

T L)| ≤ ε whenever
∅ 6= L ⊆ Leaves(T ) (which implies that, for all nonempty sets L ⊆ L′ ⊆
Leaves(T ), `2(

∧
T 2

(φ[L]))−`2(
∧

T 2
(φ[L′])) ≤ 2ε if and only if

∧
T L′ =

∧
T L).

We extend the bijection φ to a mapping ϕ : Crit(T ) → Crit(T 2) by defin-
ing ϕ(u) =

∧
T 2

φ[Leaves(T [u])]. Now it is not difficult to establish that:
(i) for all u ∈ Crit(T ), Leaves(T 2[ϕ(u)]) = ϕ[Leaves(T [u])]; (ii) for all
x ∈ ϕ[Crit(T )], there is no y ∈ x↓T 2 ∩ Crit(T 2) such that `2(x)− `2(y) ≤ 2ε;
(iii) for all x ∈ Crit(T 2), there exists some z ∈ x⇓T 2 ∩ ϕ[Crit(T )] such that
`2(x) − `2(z) ≤ 2ε. (For all x ∈ Crit(T 2), z = ϕ(

∧
T ϕ−1[Leaves(T 2[x])])

has the property stated in (iii).) As F3 = (T 3, `3) is the result of collapsing
δ-equivalence classes of Fcrit

2 for δ ≤ 2ε, (ii) and (iii) imply that ϕ[Crit(T )] =
Nodes(T 3) = Crit(T 3). Moreover, (i) implies that ϕ(u) ¹T 2 ϕ(u′) if and only
if u ¹T u′, for all u,u′ ∈ Crit(T ). So ϕ is an essential isomorphism of F to F3.

4 Demonstration of Potential Biological Applicability

To illustrate the potential usefulness of our simplified FHTSs in identifying struc-
tural differences between macromolecules, we looked for two structures that are
very similar, but not identical. Appropriate data sets were kindly provided by
Roberto Marabini of the Universidad Autónoma de Madrid.
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These data sets originate from the work of San Mart́ın et al. [4], which inves-
tigated some biological questions associated with adenoviruses. These viruses are
responsible for a large number of diseases in humans such as gastrointestinal and
respiratory infections, but can also be used in gene therapy and vaccine delivery
[3]. They have an icosahedral shape with a diameter of approximately 900 Å. At
each of the 12 vertices of the icosahedron there is a substructure referred to as
a penton, and the rest of the surface of the icosahedron consists of 240 hexons.
To reflect this, our simplified FHTSs of these viruses would be expected to have
252 leaves, one for each penton or hexon. This is indeed the case, as we will see.

In the course of their work, San Mart́ın et al. [4] produced a mutant version
of the wildtype version of the adenovirus they were investigating. The two are
identical except for a change in a protein (called IIIa). Surface renderings and
central cross-sections of the two versions are shown in Fig. 1. We now describe
how, in spite of their great similarity, the two versions can be distinguished from
each other by an obvious topological difference between their simplified FHTSs.

(a) (b) (c) (d)

Fig. 1: Adenovirus. Surface rendering (a) and central cross-section (b) of the wild-
type version. Surface rendering (c) and central cross-section (d) of the mutant
version.

Each version of the virus studied by San Mart́ın et al. [4] was represented by
a grayscale volume image on a 275×275×275 array of sample points. We further
quantized the gray levels in each of these images to a set of just 256 equally spaced
values represented by the integers 0, . . . , 255, where 0 corresponded to the mini-
mum and 255 the maximum gray value in the original image. For each resulting
image I, we constructed FHTSκ(I) using 6-adjacency as our adjacency relation
κ, and computed the (λ, k)-simplification of FHTSκ(I) for various choices of λ
and k. We found that λ = 10 and k = 799 were good choices that yielded topo-
logically different simplified FHTSs for the two versions of the virus, as shown
in Fig. 2. Here each simplified FHTS has 252 leaves, corresponding to the 12
pentons and 240 hexons. For the wildtype version, the root is the parent of all
252 leaves; see Fig. 2(a). For the mutant version, the root is the parent of the 12
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leaves that correspond to pentons, but is the grandparent of the 240 leaves that
correspond to hexons; see Fig. 2(b). This indicates that for the mutant version
of the virus there is a substantial range of threshold levels (such as level A in
Fig. 2(b)) at which the pentons are disconnected from each other and from the
hexons, but the hexons are connected to each other; for the wildtype version
there is no such range of threshold values. Interestingly, San Mart́ın et al. [4]
do not mention this difference between the two versions of the virus, although
they do point out that in images of the mutant version pentons have lower gray
values than hexons. (The latter can be seen in Fig. 1(d), and is also indicated by
Fig. 2(b); when the image of the mutant virus is thresholded at the gray level B
in Fig. 2(b), the hexons are observable but the pentons are not.)

(a) (b)

Fig. 2: (λ, k)-simplifications of FHTSs of wildtype (a) and mutant (b) aden-
oviruses, where λ = 10 and k = 799. In (a), the root (represented by the hori-
zontal line segment) is the parent of all 252 leaves of the tree. In (b), the root
(represented by the horizontal line segment above line A) is the parent of the
rightmost 12 leaves, which correspond to pentons, but is the grandparent of the
other 240 leaves, which correspond to hexons. (The representation of simplified
FHTSs (T , `) that we use here has the following properties: each non-leaf node
of T is represented by a horizontal line segment and, whenever a node p is the
parent of a node c, the edge of T from p to c is represented by a vertical line
segment of length proportional to `(c)− `(p) whose upper endpoint lies on the
horizontal segment that represents p; if c is not a leaf, then the lower endpoint
of that vertical segment lies on the horizontal segment that represents c.)

So our simplified FHTSs may possibly have revealed a previously unobserved
difference between the mutant and the wildtype versions of the virus: in the
mutant version, there is a substantial range of threshold values at which the
hexons are connected to each other, but no penton is connected to a hexon or
to another penton. To investigate whether this is a genuine difference between
the two versions of the virus or merely a difference between the specific volume
images from which we produced our FHTSs, we carried out a further study.

Ideally, we would have compared simplified FHTSs of, say, 10 independently
reconstructed volume images of each version, but such data were not available
to us. So we conducted the following approximation of such a study. For each
version of the virus, we randomly selected 2000 out of 3000 available projection
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images, and used them to reconstruct a volume image on a 275×275×275 array
of points. This was repeated 10 times. For each of the 20 resulting volume images,
we produced a simplified FHTS using the above-mentioned parameters. In each
of the 10 simplified FHTSs of the mutant adenovirus, the root had 13 children,
12 corresponding to the pentons and the 13th being the root of a subtree whose
leaves corresponded to the hexons, as in Fig. 2(b). This was not true of the
simplified FHTSs of the wildtype adenovirus; they were all similar to Fig. 2(a).

These results provide some evidence to support the hypothesis that images
of the mutant version of the virus can indeed be distinguished from images
of the wildtype version by the existence in the former (but not the latter) of
a substantial range of threshold values with the above-mentioned properties.
However, the evidence is based on very little data and is therefore quite tenuous.
More investigation would be needed to confirm the hypothesis.

In any event, this example illustrates how our simplified FHTSs may reveal
interesting structural differences between two similar macromolecules.

5 Conclusions

FHTSs can be used as descriptors of grayscale images, but unsimplified FHTSs
are too sensitive to errors in the image. A robust method of simplifying FHTSs
has been presented. The simplified FHTSs are potentially useful for the explo-
ration of macromolecular databases.
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