
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Computer Science Technical Reports CUNY Academic Works

2010

TR-2010009: Solving Linear Systems with Randomized TR-2010009: Solving Linear Systems with Randomized

Augmentation II Augmentation II

Victor Y. Pan

Guoliang Qian

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/gc_cs_tr/345

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/gc_cs_tr
https://academicworks.cuny.edu/
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/gc_cs_tr/345
https://academicworks.cuny.edu/gc_cs_tr/345
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Solving Linear Systems

with Randomized Augmentation II ∗

Victor Y. Pan[1,2],[a] and Guoliang Qian[2],[b]

[1] Department of Mathematics and Computer Science
Lehman College of the City University of New York

Bronx, NY 10468 USA
[2] Ph.D. Programs in Mathematics and Computer Science
The Graduate Center of the City University of New York

New York, NY 10036 USA
[a] victor.pan@lehman.cuny.edu

http://comet.lehman.cuny.edu/vpan/
[b] gqian@gc.cuny.edu

Abstract

With a high probablilty our randomized augmentation of a matrix eliminates its rank defi-
ciency and ill conditioning. Our techniques avoid various drawbacks of the customary algorithms
based on pivoting and orthogonalization, e.g., we readily preserve matrix structure and sparse-
ness. Furthermore our randomized augmentation is expected to precondition quite a general
class of ill conditioned input matrices. As a result, we dramatically accelerate the solution of
both singular and ill conditioned linear systems of equations in terms of the estimated arithmetic
time and the observed CPU time. The progress has been extended to various other fundamental
matrix computations.

Key words: Linear systems of equations, Randomized augmentation, Conditioning of random
matrices, Toeplitz matrices

1 Introduction

1.1 Background: computations of vectors and bases in the null space

Solution of a homogeneous linear system of equations Ay = 0 is a fundamental problem and is
closely linked to some other central subjects of matrix computations (see our Sections 3.4 and 7,
[35, Sections 7.2 and 11.1], and [40]).

The solution vectors y are said to be the null vectors of the matrix A. They form the null space
N (A) = {y : Ay = 0}. If its basis is given by the columns of a matrix B, then we call B a null
matrix basis for a matrix A. Hereafter we refer to such a basis as a nmb(A).

The customary algorithms compute null vectors and nmbs of a matrix by employing its LU or
QR factorization with pivoting or its SVD. These computations are quite costly, particularly the
computation of the SVD, but even “pivoting usually degrades the performance” [19, page 119].

∗Supported by PSC CUNY Awards 61406–0039 and 62230–0040. Some results of this paper have been presented at
the Fifth International Computer Science Symposium in Russia (CSR 2010) in Kazan’ [36] and at the 16th Conference
of the International Linear Algebra Society (ILAS) in Pisa, Italy, both in June 2010.

1

1.2 Randomized northern augmentation

Our alternative recipe is randomized augmentation of the input matrix A, linked to additive prepro-
cessing in [32, Section 12] and [35, Section 4].

Let us otline some basic techniques. At first assume an m × n matrix A having a rank ρ < n
(and thus having the nullity r = n − ρ) and generate a random r × n matrix V . Then we readily

prove that with a probability close to one the northern augmentation A → C =
(

V
A

)
produces an

(m + r) × n matrix C that has full column rank and therefore has an n × (m + r) left inverse C(I),

such that C(I)C = In. It is also easy to prove that its n × r western block C(I)

(
Ir

O

)
is a nmb(A).

Thus with our augmentation we expect to regularize the nmb problem for a matrix A (possibly
rank deficient) by reducing the nmb task to solving r linear systems with the above matrix C of
full column rank. We involve neither pivoting nor orthogonalization, preserve matrix structure and
sparseness, and significantly accelerate the customary algorithms.

Table 9.1 displays the average CPU time in our extensive tests for the computation of null vectors
of an n × n singular Toeplitz matrix as well as the observed average acceleration factor f(n) versus
the QR-based solution. In particular f(512) > 15, f(1024) > 90, and f(2048) > 350.

We also prove that our randomized regularization is expected to cause no sacrifice in the output
accuracy. Namely assume standard Gaussian random matrix V and an input matrix A scaled so
that the norm ||A|| is neither large nor small in the context (we say mildly scaled). Then we prove
that the ratio condC

cond A is expected to be neither large nor small, and we support our formal estimates
with numerical experiments (see Tables 9.3 and 9.4).

Furthermore suppose our mildly scaled matrix A is well conditioned; then its small norm random
perturbation is expected to produce an ill conditioned matrix Ã of full rank having numerical nullity

r and having an approximate nmb C̃(I)

(
Ir

O

)
for C̃ =

(
V

Ã

)
. Furthermore the condition numbers

cond C̃ and condC are expected to be of the order of cond A provided V is standard Gaussian
random matrix.

1.3 Our topics and some by-products and extensions

In this paper we supply some details to the above outline and extend it further. In particular we
cover the computation of the nullity and numerical nullity, extend our northern augmentation to
enable preconditioning for quite general matrix classes, extend our techniques to solving nonsingular
ill conditioned linear systems of equations, estimate the complexity of our algorithms in the cases of
general, structured, and sparse input matrices, and describe our numerical experiments.

We outline some of our main techniques and results in the two next subsections.
Some by-products of our study can be of independent interest, e.g., the links between solving

homogeneous and nonhomogeneous linear systems of equations and between augmentation and ag-
gregation as well as our estimates for the condition numbers of partly randomized matrix products,
which enables us to extend the Smoothed Analysis of conditioning of random matrices in [43] to
employing them for preconditioning by means of randomized augmentation.

We refer the reader to the papers [32]–[40] on various further extensions and applications of our
approach to fundamental matrix and polynomial computations.

1.4 Randomized western and northwestern augmentation

While our scaled randomized northern augmentation is expected to have regularization power and
to create no numerical problems for the task of the nmb computation, its combination with our
scaled randomized western augmentation A → (B, A) is expected to have both regularization and
preconditioning power for the same task.

Assume that a random m × q matrix B has been appended as the leftmost block to an m ×
n matrix A (for q < m ≤ n). Then it is easy to prove that with a probability close to one

2

rank(B, A) = min{m, q + rank A}, so that the resulting matrix (B, A) is expected to have full rank
for q ≥ m − rank A.

Furthermore similarly to the northern augmentation assume a mildly scaled matrix A and stan-
dard Gaussian random matrix B. Then we prove that the condition number cond(B, A) is expected
to be of the order σ1(A)

σm−q(A) versus cond A = σ1(A)
σm(A) where σj(A) denotes the jth largest singular value

of the matrix A.
Therefore our western augmentation is expected to regularize the matrix A if q+rank A ≥ m and

to precondition it if it has a positive numerical nullity at most q or equivalently if it is ill conditioned,
whereas the ratio σ1(A)

σm−q (A)
is not large.

Such a regularization and preconditioning power is preserved when we combine our western and

northern augmentations into northwestern augmentation A → K =
(

W V
B A

)
. Assume an n × n

matrix A of a rank ρ and random matrices B, V , and W such that K is an (n + r)× (n + r) matrix.
Then it is expected that rank K = min{n + r, ρ + 2r}, that is the augmentation is expected to
produce a nonsingular matrix K if (and only if) r ≥ n − ρ.

Furthermore if A is a mildly scaled matrix and B, V , and W are standard Gaussian random
matrices, then cond K is expected to have the order σ1(A)

σn−r (A)
. Here we can even choose, say V = −B

to involve fewer random parameters (see Section 6.4).
Thus our augmentation is expected to regularize (resp. precondition) the matrix A if and only

if the matrix A has a positive nullity (resp. numerical nullity) at most r.
These observations can be a basis for binary search for the nullity, but we also propose a com-

petitive search by means of aggregation (cf. Section 3.3).
To use the benefits of our augmentation we must reduce our original computational task for an

input matrix A to computations with the matrix K. We specify such reductions for nmb compu-
tation with western and northwestern augmentations in Algorithms 5.1 and 6.1, but next we apply
northwestern augmentation to facilitate the inversion of a nonsingular ill conditioned matrix A as
well as the solution of a linear system Ay = b with such a matrix A.

1.5 Northwestern augmentation for matrix inversion and solving linear
systems of equations

Surely we can reduce the solution of such a linear system to computing a nonzero null vector of the
matrix (θb, A), obtained by appending a scaled vector b as the new leftmost (western) column to
the matrix A. On the average input pair of a matrix A and a vector b, both mildly scaled, this
map works as preconditioning (see Theorem 7.1). Randomized northwestern augmentation and the
following theorem enable even more powerful preconditioning of a linear system Ay = b.

Theorem 1.1. Let K =
(

W V
B A

)
where A, W and K are nonsingular matrices of sizes n×n, r×r,

and (n + r) × (n + r), respectively, for 0 < r < n. Write S = A − BW−1V and R = I + V BW−1.
(S is the Schur complement of the block W in the matrix K.) Then

(a) S−1 is the n × n trailing principal (that is southeastern) block of the matrix K−1 and
(b) A−1 = S−1 − S−1BW−1R−1V S−1.

(Part (a) is well known and is readily verified. Part (b) follows from the the Sherman–Morrison–
Woodbury formula [19, page 50].)

The theorem reduces the inversion of the matrix A to the inversion of the matrices W , K, and
R. Therefore our northwestern augmentation is expected to work as preconditioning where A is a
mildly scaled matrix having a positive numerical nullity at most r and B, V , and W are standard
Gaussian random matrices.

Namely, according to our analysis the matrix K is expected to have the condition number of the
order σ1(A)

σn−r (A)
and the matrices W and R are expected to be well conditioned. (Under further scaling

such that ||B|| ≈ ||V || ≈ ||W || ≈ ||A|| � 1, we can expect that R ≈ I.) Thus our augmentation

3

is expected to reduce the inversion of an ill conditioned matrix A to the inversion of three well
conditioned matrices and to some matrix-by-vector multiplications.

Of course, numerical problems cannot simply disappear from computations with an ill conditioned
matrix A, but our techniques confine them to the stage of iterative refinement of the inverse S−1,
which must be computed highly accurately. The refinement is reduced to a sequence of matrix-by-
vector multiplications performed with a low (e.g., double) precision [32], [38].

In Section 7.4 we adapt the above technique, based on Theorem 1.1, to the solution of a nonsin-
gular linear system Ay = b of n equations. In Section 8 we estimate that this approach accelerates
the customary solution algorithms by the factor n/r. We can replace this factor by n

d log n where
the matrices A and K have displacement structure of Toeplitz or Hankel type and are represented
with displacement generators of a length d. (Recall that d ≤ 2 for Toeplitz and Hankel matrices
[31].) The estimates also show significant acceleration of the known algorithms for computations
with sparse unstructred matrices as well as multilevel Toeplitz and Hankel matrices (see Section
8.4).

1.6 Organization of the paper

In the next section we first recall some definitions and basic facts and then estimate the ranks
and condition numbers of random matrices and randomized matrix products. In Sections 3, 5 and
6 we cover our randomized augmentation techniques, and in Section 4 the related techniques of
randomized post-multiplication. In Section 7 we cover our algorithms for a nonhomogeneous linear
system of equations and link them to computing nmbs and null vectors. In Section 8 we estimate
the computational cost of our randomized algorithms. In Section 9 we present the results of our
numerical tests, the contribution of the second author of this paper.

Acknowledgement. Marc Van Barel’s pointer to his Toeplitz solver in [45] was most helpful
for our tests.

2 Definitions and basic facts

2.1 General matrices, nmbs and annihilators

We use and extend the customary definitions in [19] and [42].
C (resp. R) is the field of complex (resp. real) numbers.
Flop is an arithmetic operation with such numbers.
AT and AH denote the transpose and the Hermitian transpose of an m×n matrix A, respectively.

(AH = AT for a real matrix A.)
A matrix A is Hermitian if A = AH . A matrix A = BHB is Hermitian positive definite if B is a

nonsingular matrix.
(B1 , . . . , Bk) = (Bj)k

j=1 is a 1 × k block matrix with blocks B1 , . . . , Bk.
diag(B1, . . . , Bk) = diag(Bj)k

j=1 is a k×k block diagonal matrix with diagonal blocks B1, . . . , Bk.
In or just I denote the identity matrix (ei)n

i=1 = (e1, . . . , en).
O and Ok,l denote the k × l matrix filled with zeros.
Ok,1, 0k, and 0 denote the vector of a dimension k filled with zeros.
A matrix U is unitary or orthonormal if UHU = I.
Q = Q(A) is the Q-factor in the unique thin QR factorization A = QR of a matrix A where the

upper triangular matrix R is a square matrix with positive diagonal entries [19, Theorem 5.2.2].
A matrix has full row (resp. column) rank if its rows (resp. columns) are linearly independent.
R(A) denotes the range of the matrix A, that is the linear space generated by its columns, N (A)

its null space {v : Av = 0}, ρ = rank A = dimR(A) its rank, and nulA = dimN (A) its nullity. v
is its null vector if Av = 0.

A matrix H is a complete annihilator of a matrix A if R(H) = N (A). Such an annihilator is a
null matrix basis if it has full column rank. We use the abbreviations nmb, ca, nmb(A), and ca(A).

4

Given a ca(A), we can compute a nmb(A) by applying its LUP or QR factorization or the following
simple fact.

Fact 2.1. [35]. Suppose H is a ca(A). Then
(a) H is a nmb(A) if and only if nulH = 0 and
(b) HY is a nmb(A) if X is a ca(H) and if (X, Y) is a nonsingular matrix.

2.2 SVD, inverses, norms, condition number, and numerical nullity

A = SAΣATH
A is SVD or full SVD of an m × n matrix A of a rank ρ if SASH

A = SH
A SA = Im,

TATH
A = TH

A TA = In, ΣA = diag(Σ̂A, Om−ρ,n−ρ), and Σ̂A = diag(σj)
ρ
j=1.

Here σj = σj(A) = σj(AH) is the jth largest singular value of a matrix A, j = 1, . . . , ρ, equal to
the distance from this matrix to a nearest matrix of rank j − 1 for j = 1, . . . , ρ, as this follows from
the Courant–Fischer minimax theorem [19, Theorem 8.1.2].

Σ+
A = diag((Σ̂A)−1, On−ρ,m−ρ) and A+ = TAΣ+

ASH
A are the Moore–Penrose generalized (or

pseudo) inverses of the matrices ΣA and A, respectively.
The matrix X = A(I) is a left (resp. right) inverse of a matrix A if XA = I (resp. AX = I).

A(I) = A+ for a matrix A of full rank, A(I) = A+ = A−1 for a nonsingular matrix A.
σ1(A) = ||A|| = ||AH || is the 2-norm of a matrix A = (ai,j)

m,n
i,j=1.

||A||F =
√∑m,n

i,j=1 |ai,j|2 is its Frobenius norm.

We have ||A||/√mn ≤ maxm,n
i,j=1|ai,j| ≤ ||A||, ||A|| ≤ ||A||F ≤ √

n||A||.
Hereafter the concepts “large”, “small”, ”nearby”, “approximate”, “ill conditioned” and “well

conditioned” as well as our notation ≈, �, and � are quantified in the context of the computational
task and computer environment.

We say that a matrix A is mildly scaled if its norm ||A|| is neither large nor small.
We write a � b and b � a if the ratio b/a is large and write a ≈ b if it is close to one or if b = 0

and |a| is small. For two matrices A and B we write A ≈ B if ||A− B|| � ||A||.
cond A = σ1(A)/σρ(A) = ||A|| ||A+|| is the condition number of a matrix A of a rank ρ. Such a

matrix is ill conditioned if σ1(A) � σρ(A) and is well conditioned otherwise. See [7], [19, Sections
2.3.2, 2.3.3, 3.5.4, 12.5], [21, Chapter 15], and [42, Section 5.3] on effective estimation of norms and
condition numbers.

We write SA,r = SA(Om−r,r , Ir)T , SA,r = R(SA,r), TA,r = TA(On−r,r, Ir)T , and TA,r = R(TA,r),
so that SA,r and TA,r denote the left and right trailing singular spaces associated with the r smallest
singular values of the matrix A, respectively.

An m × n matrix A where m ≥ n has numerical nullity r and numerical rank n − r if it has
exactly r singular values that are small relative to its norm. In an equivalent alternative definition,
numerical nullity (resp. numerical rank) of a matrix A is the maximal nullity (resp. minimal rank)
of a nearby martix Ã.

By zeroing the r smallest singular values of such a matrix A we turn it into a well conditioned
matrix Ã that lies nearby and has rank n − r. Conversely, in virtue of Corollary 2.2 in Section 2.4
a small norm random perturbation E of an n × n well conditioned matrix Ã of a rank n − r (for
0 < r < n) is likely to produce a nonsingular ill conditioned matrix A = Ã + E that has numerical
nullity r.

The linear space TA,r approximates the null space of the matrix Ã, and likewise the linear space
SA,r approximates the null space of the matrix ÃH . Hereafter a matrix B is said to be an approximate
nmb (resp. an approximate ca) of a matrix A if B ≈ nmb(Ã) (resp. if B ≈ ca(Ã)).

We employ an approximate nmb in the following simple theorem to approximate the matrix A
by a matrix of a smaller rank.

Theorem 2.1. (See [35, Section 7.2].) Suppose an n× n matrix A has a positive numerical nullity
r and suppose B is an n × r matrix such that the r × r matrix BHB is nonsingular and ||AB|| �
||A|| ||B||. Then the matrix Â = A(I −B(BHB)−1BH) closely approximates the matrix A, has rank
n − r, and turns into the matrix A(I − BBH) if B is a unitary matrix.

5

Remark 2.1. Unlike the nullity and the rank, numerical nullity and numerical rank are not well
defined for a large class of ill conditioned matrices, in particular for all matrices A having nested
clusters of small singular values but also for the matrix class exemplified by for a 1000×1000 matrix
A with singular values σj(A) = 101000−j, j = 1, 2, . . . , 1000.

Theorem 2.2. [37]. Let A ∈ C
m×r and B ∈ C

r×n and write rA = rank A, rB = rank B, r− =
min{rA, rB} and r+ = max{rA, rB}. Let r+ = r. (In particular this holds if at least one of
the matrices A and B is nonsingular.) Then rank(AB) = r−, σr−(AB) ≥ σrA(A)σrB (B) and
cond(AB) ≤ (cond A) cond B.

2.3 Structured matrices

J = Jn = (e1, . . . , en) = (ji,k)n−1
i,k=0 is n × n the reflection matrix, ji,k = 1 if i + k = n − 1, ji,k = 0

unless i + k = n − 1. (J2 = I.)
An m × n Toeplitz matrix T = (ti−j)

m−1,n−1
i=0,j=0 (resp. Hankel matrix H = (hi+j)

m−1,n−1
i=0,j=0) is

defined by its m + n − 1 entries, e.g., by its first row and first (resp. last) column. TJ and JT are
Hankel matrices for a Toeplitz matrix T , whereas HJ and JH are Toeplitz matrices for a Hankel
matrix H .

Z(v) denotes the lower triangular Toeplitz matrix defined by its first column vector v = Z(v)e1.
Z(v) = (Z(v))T denotes its transpose.

The Gohberg–Semencul formula expresses the inverse of a nonsingular n × n Toeplitz matrix T
via its first column T−1e1 and its last column T−1en provided eT

1 T−1e1
= 0 (see [18], [44]). The
latter provision has been relaxed in [20] and [17]. The following theorem (in [18] and [3, Theorem 7])
expresses the inverse via two columns (the first v and the last w) of the inverse of an (n+1)×(n+1)
Toeplitz matrix with the n × n leading principal (that is northwestern) block T .

Theorem 2.3. Suppose K = (ti,j)n
i,j=0 is a nonsingular (n + 1) × (n + 1) Toeplitz matrix, write

T = (ti,j)n−1
i,j=0, v̂ = (vi)n

i=0 = K−1e1, v = (vi)n−1
i=0 , v′ = (vi)n

i=1, ŵ = (wi)n
i=0 = K−1en+1,

w = (wi)n−1
i=0 , and w′ = (wi)n

i=1, and assume that v0
= 0. Then the matrix T = (ti,j)n−1
i,j=0 is

nonsingular and v0T
−1 = Z(v)ZT (Jw) − Z(w′)ZT (Jv′).

Remark 2.2. For any fixed positive integer q we can embed a nonsingular n × n Toeplitz matrix
T into an (n + q) × (n + q) Toeplitz matrix Kq that has the n × n leading principal block T . Then
we can recursively apply Theorem 2.3 to express the inverse T−1 via the two column vectors K−1

q e1

and K−1
q en+q.

A more general class of structured matrices having small displacement ranks d extends the classes
of Toeplitz and Hankel matrices, for which d ≤ 2. Such an m × n matrix can be represented by
(m + n)d parameters and can be multiplied and inverted fast provided its displacement rank d is
small [4], [17], [22], [24], [31].

2.4 Random sampling and random matrices

|∆| is the cardinality of a set ∆. Random sampling of elements from a set ∆ is their selection from
this set at random and independently of each other. A matrix is random if its entries are randomly
sampled from a fixed set ∆. Random sampling is uniform if it is done under the uniform probability
distribution on the set ∆.

Recall that the total degree of a polynomial in m variables is the sum of its degrees in each
variable.

Lemma 2.1. [10], [41], [49]. For a set ∆ of cardinality |∆| (in a fixed ring or field, e.g., in C) let
a polynomial in m variables have a total degree d, and let it not vanish identically on this set. Then
the polynomial vanishes in at most d|∆|m−1 points.

Lemma 2.1 implies that a fixed nonvanishing polynomial vanishes with a probablity converging
to zero if the values of its variables are sampled under any reasonable probability distribution on

6

the set ∆ whose cardinality converges to the infinity. Under the uniform probability distribution
the probability that the polynomial vanishes is estimated most readily.

Corollary 2.1. Under the assumptions of Lemma 2.1 let the values of the variables of the polynomial
be randomly and uniformly sampled from the set ∆. Then the polynomial vanishes with a probability
of at most d

|∆| .

Corollary 2.2. Let A be an m× n matrix with random entries uniformly sampled from a finite set
∆ of cardinality |∆|. Let l = min{m, n} and let M be any fixed m × n matrix. Then any k × k
submatrix of the matrix A + M for k ≤ l is singular with a probability at most k/|∆|.
Proof. The claimed bound holds for generic matrices. The singilarity of a k × k matrix means that
its determinant vanishes, but the determinant is a polynomial of degree k in the entries.

A matrix (resp. vector) is a Gaussian random matrix (resp. vector) with a mean µ and a
variance σ2 if it is filled with independent Gaussian random variables, all having the same mean µ
and variance σ2. If µ = 0 and σ2 = 1, this is a standard Gaussian random matrix (resp. vector).

Definition 2.1. FX(y) = Probability{X ≤ y} for a real random variable X is the cumulative
distribution function (CDF) of X evaluated at y. FA(y) = Fσl(A)(y) for an m × n matrix A and

an integer l = min{m, n}. Fµ,σ(y) = 1
σ
√

2π

∫ y

−∞ exp(− (x−µ)2

2σ2)dx is the CDF for a Gaussian random
variable with a mean µ and a variance σ2. Φµ,σ(y) = Fµ,σ(µ + y) − Fµ,σ(µ − y) for y ≥ 0.

2.5 The extreme singular values of randomized matrix products

A standard Gaussian random matrix A (cf. Definition 2.1) is well conditioned with a high probability
[8], [12]. Even perturbations by such a matrix is expected to turn any mildly scaled matrix M into
a well conditioned matrix. We specify the respective estimates in Theorem 2.4, taken from [43] and
cited in our Section 8. This theorem is also used in the proof of Theorem 2.7 from [38], which is
extensively used in our present paper. Theorem 2.6 is not used and is included just to introduce
Theorem 2.7 and to provide some insight into the subject.

Theorem 2.4. (See [11, Theorem II.7].) Suppose A ∈ Rn×n is a Gaussian random matrix with
mean zero and a variance σ2. Then F||A||(y) ≥ 1 − exp(−x2/2) for x = y/σ − 2

√
n ≥ 0.

Theorem 2.5. (See [43, Theorem 3.3].) Suppose M ∈ Rm×n, Ū ∈ Rm×m, and V̄ ∈ Rn×n are three
fixed matrices, Ū and V̄ are unitary matrices, A ∈ Rm×n is a Gaussian random matrix independent
of the matrix M and having mean zero and a variance σ2, W = Ū(A + M)V̄ , l = min{m, n}, and
y ≥ 0. Then FW (y) ≤ 2.35 y

√
l/σ.

Corollary 2.3. (See [43, Theorem 3.1].) Under the assumptions of Theorem 2.5, let ||M || ≤ √
l.

Then Fcond(W)(y) ≥ 1 − (14.1 + 4.7
√

(2 lny)/n)n/(yσ) for all y ≥ 1.

This bound has been improved by the factor
√

logn in [48].

Theorem 2.6. [37]. Suppose G ∈ Rq×m, H ∈ Rn×r, and a standard Gaussian random matrix
W ∈ Rm×n has full rank ρ with probability one. Write rG = rank G and rH = rank H. Then
FGW (y) ≤ FW (y/σrG (G)) if rG = m, whereas FWH(y) ≤ FW (y/σrG (H)) if rH = n.

The value cond(AB) can be arbitrarily large even for m×r unitary matrices A and BH if m > r,
and so we cannot merely drop the above assumptions that rG = m and rH = n, but the following
theorem enables us to circumvent this problem.

Theorem 2.7. [37]. Suppose G ∈ RrG×m, H ∈ Rn×rH , W ∈ Rm×n, rank G = rG < m, rank H =
rH < n, and the assumptions of Theorem 2.4 hold. Then (a) FGW (y) ≤ 2.35y

√
l/(σrG (G)σ) and

(b) FWH(y) ≤ 2.35y
√

l/(σrH (H)σ).

7

3 A nmb of a matrix via randomized northern augmentation

Our first algorithm begins with appending new scaled Gaussian random rows at the top of an m×n

matrix A of a rank ρ < n such that the matrix C =
(

V
A

)
is expected to have full column rank (cf.

Theorem 3.1). If it does have it, then the algorithm computes the first r = n − ρ columns of the
left inverse C(I) and outputs them as a nmb(A). The matrix C is also expected to have condition
number of the order of condA, so that our randomized algorithm is expected to solve the rank nmb
problem without creating new numerical problems.

We refer the reader to Sections 3.4 and 6.3 and Remark 5.3 on our treatment of ill conditioned
inputs and to Section 4 on an alternative approach in the case where the input matrix A has full
rank m.

One can similarly employ the southern augmentation A →
(

A
V

)
=
(

O Im

Ir O

)(
V
A

)
.

3.1 Randomized northern augmentation: an algorithm

Algorithm 3.1. A nmb via randomized northern augmentation.

Input: Three positive integers ρ, m, and n, an m× n matrix A of a rank ρ, and a random number
generator.

Output: FAILURE or a matrix B = nmb(A).

Computations:

1. Write r = n−ρ. If r = 0, output the empty nmb(A). Otherwise generate a r×n random
matrix V .

2. Output FAILURE and stop if the matrix C is column rank deficient.

3. Otherwise compute and output the block submatrix B = C(I)

(
Ir

O

)
, formed by the first r

columns of a left inverse C(I) of the matrix C =
(

V
A

)
(cf. [19, Section 5.7]); then stop.

Correctness proof. Let Y = nmb(A) ∈ Cn×r and write B = C(I)

(
Ir

O

)
. Then CY =

(
V Y
O

)
,

Y = C(I)

(
V Y
O

)
= C(I)

(
Ir

O

)
V Y , and so

N (A) = R(Y) ⊆ R(B). (3.1)

It follows that R(B) = N (A) because dim(R(B)) = rank B = r = dim(N (A)).

3.2 Regularization power and conditioning of northern augmentation

Both our next theorem and Corollary 3.2 show that our randomized augmentation is likely to fix
the input degeneracy, so that Algorithm 3.1 is unlikely to fail.

Theorem 3.1. Suppose a random number generator in Algorithm 3.1 generates the matrices U and
V by uniformly sampling their entries from a set ∆ ∈ C of a cardinality |∆|. Then the matrix C
has full column rank n with a probability at least 1 − r/|∆|.

Proof. Let a ρ×n submatrix Aρ,n of the matrix A have full rank ρ and let Cn,n =
(

V
Aρ,n

)
. Clearly,

det Cn,n is a polynomial of a degree at most r in the entries of the matrix V . It does not vanish
identically in these entries (because the matrix Aρ,n has full rank), and so for random matrix V it
vanishes with a probability at most r/|∆| in virtue of Corollary 2.1.

8

Under the assumptions of Theorem 3.1 let the set ∆ have a large cardinality. Then Theorem
3.1 implies that the matrix C computed in Algorithm 3.1 is likely to have full rank, that is the
randomized augmentation A → C is likely to yield regularization.

In the rest of this subsection we prove that the condition number condC tends to be of the order
σ1(A)
σρ(A) = cond A where V is Gaussian random matrix with the mean zero and a variance of the order
||A||2, e.g., where the matrix A is mildly scaled, whereas V is standard Gaussian random matrix.

Theorem 3.2. Suppose that A ∈ Cm×n, V ∈ Cr×n, C =
(

V
A

)
, rank C = n, rank A = n − r, and

rank V = r. Let A = SAΣATH
A be full SVD of the matrix A (where ΣA = diag(Σ̂A, O) and Σ̂A is a

ρ × ρ diagonal matrix of the singular values). Write

diag(Ir , S
H
A)CTA =

(
M
O

)
, M =

(
V0 V1

Σ̂A O

)
. (3.2)

Then cond C ≤ (1
σρ(A) + 1

σr(V1)
+ ||V0||

σρ(A)σr(V1)
)||C||.

Proof. ||M−1|| ≤ ||Σ̂−1
A || + ||V −1

1 || + ||Σ̂−1
A || ||V −1

1 || ||V0|| because M−1 =

(
O Σ̂−1

A

V −1
1 −V −1

1 V0Σ̂−1
A

)
.

Substitute ||Σ̂−1
A || = 1

σρ(A)
, ||V −1

1 || = 1
σr(V1)

, ||M−1|| = 1
σn(M)

= 1
σn(C)

, and cond C = ||C||
σn(C)

and
obtain the theorem.

Corollary 3.1. Under the assumptions of Theorem 3.2 suppose the matrices A and V have been
scaled so that ||A|| = ||V || and write κ = cond A and κ1 = ||V ||

σr(V1)
. Then cond C ≤ √

2(κ+κ1 +κκ1).

Proof. We have ||C|| ≤ √||A||2 + ||V ||2 =
√

2||A|| =
√

2||V || because ||A|| = ||V ||. Moreover
||V0|| ≤ ||V TA|| = ||V || for (V0, V1) = V TA. Substitute these bounds into Theorem 3.2.

In the following theorem we assume that V is Gaussian random matrix and probabilistically
estimate the value σr(V1) from below.

Theorem 3.3. Under the assumptions of Theorem 3.2 suppose V ∈ Rr×n is a Gaussian random
matrix with mean zero and a variance σ2. Then FV1(y) ≤ 2.35y

√
r/σ.

Proof. Apply part (b) of Theorem 2.7 for W = V , H = TA

(
O
Ir

)
, l = rH = r, V1 = WH , and

σrH (H) = 1.

Corollary 3.2. Under the assumptions of Theorem 3.2 the matrix C is column rank deficient with
the probability zero.

Proof. Theorem 3.3 implies that the matrix V1 is singular with the probability zero. Therefore the
corollary follows from equation (3.2).

3.3 The choice of the augmentation size via binary search or aggregation

In Algorithm 3.1 we assume that the rank ρ and the nullity r = n− ρ are given to us, but otherwise
we can compute r as the smallest integer for which the matrix C is expected to have full column
rank n.

We can find this integer by testing the existence of a left inverse C(I) for various candidate values
r. If the test fails, we would increment the integer parameter r. Otherwise we would either output
it if the integer r − 1 has already failed the test or decrement this parameter.

To succeed with fewer tests we can apply binary search (where instead of minimizing the integer
r that passes the test we can alternatively request that AB = O) or the following option.

9

Subalgorithm 3.1. As soon as the current integer r = q has passed the test, compute a matrix

X = ca(AB(q)) (3.3)

for B(q) = C(I)

(
Iq

O

)
. (If AB(q) = O, then X = I and B(q) is a nmb(A).) Compute ca(A) = B(q)X

and then a nmb(A), e.g., based on Fact 2.1.

One can restrict this technique to computing just the nullity nulA = nulB(q) and then obtain a
nmb(A) by applying Algorithm 3.1.

Theorem 3.4. The matrix B(q)X computed in Subalgorithm 3.1 is a ca(A).

Proof. First deduce from equation (3.3) that AB(q)X = O, that is, N (A) ⊇ R(B(q)X). It remains
to prove that N (A) ⊆ R(B(q)X), that is, y = B(q)Xw for some vector w as soon as Ay = 0 for
some vector y. Clearly inclusion (3.1) holds for B = B(q) since the integer q has passed the test.
This implies that y = B(q)z for some vector z. Now it remains to prove that z = Xw for some
vector w. The latter equation follows because Ay = AB(q)z = 0 and because X = ca(AB(q)) by
assumption.

Searching for a ca(AB(q)) is simpler than for a ca(A) if q � m because of the decrease of the
input size from m × n to n × q.

The above reduction of the input size exemplifies aggregation methods, which successively perform
the following stages.

(a) Aggregate an input matrix M into a matrix M1 of a smaller size. (M = A and M1 = AB(q)

in the above example.)
(b) Compute the solution Z1 for a given task, but for the aggregated input M1. (Assuming

the task of the computation of a ca, we have Z1 = X.) At this stage, one can recursively reapply
aggregation.

(c) Disaggregate the aggregated solution Z1 to produce the solution Z for the original input M .
(In the case of computing a nmb, we have Z = B(q)X.)

Fact 2.1 defines aggregation of a matrix A into its complete annihilator H = ca(A) for the task
of computing a nmb of a matrix A. Two examples of aggregation are also given in Sections 5 and
6 (cf. Remarks 5.2 and 6.1 and the Schur Aggregation in [32]). Among many other examples we
recall the hierarchial aggregation processes in [27], which in the 1980s served as the springboard
for Algebraic Multigrid, and trilinear aggregating in [23], [26], [29], [30], and [9], which is the basis
of the fastest known algorithms for n × n matrix multiplication for 20 ≤ n ≤ 220, is an important
ingredient of the algorithm in [6] that supports the record exponent ω < 2.376 for the complexity of
matrix multiplication, and gave the first example where a nontrivial tensor decomposition enabled
acceleration of some fundamental matrix computations.

3.4 Computing approximate nmbs

In numerical implementation of Algorithm 3.1, the input set consists of three integers m, n, and ρ,
an m × n matrix A that has a numerical rank ρ, and a random number generator that generates a
Gaussian random matrix V with the mean zero and a variance of the order of ||A||2 (e.g., a standard
Gaussain random matrix V where the matrix A is mildly scaled). Then the algorithm computes a
numerical nmb(A) by modifying Stage 2 of the algorithm as follows:

2. Output FAILURE and stop if the matrix C is rank deficient or ill conditioned.

Hereafter we refer to this algorithm as Algorithm 3.1(num).

10

Suppose rank Ã = ρ and Ã ≈ A, so that C =
(

V
A

)
≈ C̃ =

(
V

Ã

)
, B = C(I)

(
Ir

O

)
≈ B̃ =

C̃(I)

(
Ir

O

)
, B̃ − B = (C̃(I) − C(I))

(
Ir

0

)
, and therefore ||B̃ − B|| ≤ ||C̃(I) − C(I)||.

We can set C(I) = C+, C̃(I) = C̃+ and obtain that ||B̃ − B|| ≤ ||C̃+ − C+|| ≤ 2||C̃ −
C||F max{||C+||2, ||C̃+||2} (see [19, Section 5.5.5]) and consequently condC ≈ cond C̃. Further-
more these two condition numbers are likely to have the order of cond Ã = σ1(Ã)

σρ(Ã)
≈ σ1(A)

σρ(A) provided

V is a Gaussian random matrix with the mean zero and a variance of the order of ||A||2 (cf. Section
3.2).

By extending our recipes from the previous subsection we can extend Algorithm 3.1(num) to the
case where the input matrix A has an unknown positive numerical nullity (cf. Remark 2.1).

4 Nmbs of a matrix of full row rank via post-multiplication

In this section and in the next one we seek nmbs of m×n input matrices A having at least as many
columns as rows. For m > n, we can apply the alternative techniques from our Sections 3 and 6
or from [35] or can shift the study to the case m ≤ n based on the equations N (A) = N (AHA)
or N (A) = ∩h

i=1N (Bi) where A =
∑h

i=1(O, Bi, O)T , Bi are ki × n matrices for i = 1, . . . , h, and∑h
i=1 ki ≥ m. [19, Theorem 12.4.1] enables us to simplify the computation of a nmb(A) from nmbs

of the h matrices (O, Bi, O)T for i = 1, . . . , h.
Now suppose A = (Aw, Ae) is an m × n matrix, m ≤ n, and the m × m western block Aw is

nonsingular. Then we can immediately compute a nmb(A) =
(−A−1

w Ae

In−m

)
. If, however, the block

Aw is singular, but the matrix A has full rank m, we first choose an appropriate n×m matrix S that
enables us to obtain a nonsingular m × m matrix AS; then we readily compute a desired nmb(A).
The algorithm is restricted to input matrices of full rank, and within this input class saves some
flops and memory space versus Algorithm 3.1.

Algorithm 4.1. A nmb via post-multiplication.

Input and Output as in Algorithm 3.1, except that we have an input matrix A ∈ Cm×n of full
rank m ≤ n, rather than just any matrix A in Cm×n and have an option of using no random
number generator.

Computations:

1. Generate a nonsingular n × n matrix W = (S, T) where S ∈ Cn×m.

2. Compute the m × m matrix AS.

3. Compute and output the matrix W

(−(AS)−1AT
In−m

)
, a nmb(A). This computation fails

only if the matrix AS is singular. In this case output FAILURE and stop.

Here are some relevant choices of the matrix S.

Theorem 4.1. [19]. Let the matrix A in Algorithm 4.1 have full rank and write S = AH . Then the
matrix AS is nonsingular and cond(AS) = (cond A)2.

Theorem 4.2. Assume that m ≤ n, an m × n matrix A has full rank, and S is an n × m Toeplitz
(resp. general) matrix with m + n − 1 (resp. mn) random entries uniformly sampled from a finite
set ∆ ∈ C of cardinality |∆|. Then the matrix AS is nonsingular (in which case the matrix S has
full rank m) with a probability at least 1 − m/|∆|.
Proof. det(AS) is a polynomial of a degree at most m in the entries of the matrix S. The polynomial
does not vanish identically in these entries because the matrix A has full rank. Now the theorem
follows from Corollary 2.1.

11

The theorem implies that Algorithm 4.1 is unlikely to fail. In numerical implementation we
would stop and output FAILURE if the matrix AS is ill conditioned. Let us present some relevant
estimates.

Theorem 4.3. Assume that an m× n matrix A has full rank (so that m ≤ n) and that the m × m
matrix AS is nonsingular. Then σm(AS) ≥ σm(A)σm(S) and cond(AS) ≤ (cond A) cond S.

Proof. The theorem follows from Theorem 2.2.

We can scale the matrix S to have its norm within a desired range. Next we probabilistically
estimate the value σm(AS) from below.

Theorem 4.4. Under the assumptions of Theorem 4.3 suppose S ∈ Rn×n is a Gaussian random
matrix with mean zero and a variance σ2. Then FAS(y) ≤ cy

√
m/(σm(A)σ).

Proof. The theorem follows from part (a) of Theorem 2.7 for G replaced by A, W by S, m by n,
and rG and l by m.

Corollary 4.1. Under the assumptions of Theorem 4.4 the matrix AS is singular with the probability
zero.

5 Rrandomized western augmentation

Our next idea is to append q scaled random columns on the left of a matrix A ∈ Cm×n of a rank ρ such
that 0 < ρ ≤ m ≤ n, m − ρ ≤ q < m. As we prove later in this section, such a randomized western
augmentation is expected to turn the matrix A into a matrix (B, A) of full rank. Furthermore, if V
is a Gaussain random matrix with the mean zero and a variance of the order of ||A||2, then we can
expect to have the condition number condA = σ1(A)

σρ(A)
at the level of cond(B, A) = σ1(A)

σm−q (A)
. In other

words our augmentation is likely to yield both regularization and (for q > m − ρ) preconditioning.
The respective algorithm works as an aggregation process.

One can similarly employ the eastern augmentation A → (A, B) = (B, A)
(

O Iq

In O

)
.

5.1 Cas and nmbs via randomized western augmentation: an algorithm

Algorithm 5.1. A ca via randomized western augmentation.

Input: Three positive integers m, n, and q and a matrix A ∈ Cm×n such that n ≥ m and q ≥ r =
nulAH , a random number generator, and a randomized Subroutine CA (e.g., Algorithm 3.1
or 4.1) that either computes a ca of its input matrix or outputs FAILURE. (We assume that
the subroutine definitely outputs FAILURE if its input matrix is rank deficient, but only with
a low probability otherwise.)

Output: FAILURE or the nullity r = nul AH and ca(A).

Computations:

1. (Western augmentation.) Generate a random m × q matrix B and apply the Subroutine
CA to the matrix (B, A). If the subroutine fails, conclude that the matrix (B, A) is
probably rank deficient, output FAILURE and stop.

2. (Aggregation.) Otherwise the subroutine computes a matrix Z =
(

Z0

Z1

)
= ca(B, A)

where Z0 ∈ Cq×s, Z1 ∈ Cn×s, and q ≤ s ≤ q + r. Compute and output the nullity
r = nul Z0 = nulAH .

3. Then apply Algorithm 5.1 to the matrix Z0 to compute an s × r matrix X = ca(Z0).

4. (Disaggregation.) Compute and output the n × r matrix Y = Z1X = ca(A).

12

Correctness proof (cf. also Theorems 6.1 and 6.2 and Corollary 6.1). By the definition of the
matrices Z and X, we have BZ0 + AZ1 = O and BZ0X = O. Therefore AY = AZ1X = O.

Conversely, if Aŷ = 0, then (B, A)
(

0
ŷ

)
= 0. It follows that Zx̂ =

(
0
ŷ

)
for some vector x̂ because

Z = nmb((B, A)). Consequently Z1x̂ = ŷ.

Remark 5.1. Having a ca(A) available, we can obtain a nmb(A), e.g., based on Fact 2.1.

Remark 5.2. Algorithm 5.1 is an aggregation process that first aggregates an input matrix A into
the matrix Z0 of a smaller size, then reapplies itself to this matrix to compute the matrix X = ca(Z0),
and finally disaggregates this output to produce the solution Y = Z1X = ca(A).

5.2 The regularization and preconditioning power of randomized western
augmentation

Theorem 5.1. Assume that A ∈ Cm×n, m ≤ n and r = m − rank A. Then (a) the matrices
C = (B, A) in Algorithm 5.1 are rank deficient for q < r, whereas (b) for q ≥ r the matrices B and
(B, A) are rank deficient with a probability at most r

|∆| provided that the entries of the matrix B are
randomly and uniformly sampled from a finite set ∆ ∈ C of cardinality |∆| and that the Subroutine
CA fails with probability zero if its input matrix has full rank.

Proof. rank(B, A) ≤ rank B + rank A ≤ q + rank A = q + m − r. This implies part (a). If q ≥
m − rank A and the entries of the matrix B are indeterminates, then clearly the matrices B and
(B, A) have full rank. Now part (b) of the theorem follows from Corollary 2.1.

Theorem 5.1 implies that for q ≥ r the failure probability of Algorithm 5.1 is at most r
|∆| .

Our expected regularization is likely to decrease the condition number of the matrix A to the
level of σ1(A)

σm−q (A) provided that m − ρ < q < m and B is a Gaussian random matrix with the mean
zero and a variance of the order ||A||2. This is implied by the two following theorems.

Theorem 5.2. Suppose the matrix C = (B, A) in Algorithm 5.1 has been scaled so that ||C|| ≤ 1.
Let rank C = m, rankB = q, and ρ = rank A = m − q > 0. Let A = SAΣATH

A be a full SVD of the
matrix A and write

SH
A C diag(Iq , TA) = (B̄, ΣA). (5.1)

Note that the n− m last columns of the matrix (B̄, ΣA) in (5.1) vanish. Delete them and denote by

M =
(

B̄0 Σ̂A

B̄1 O

)
(5.2)

the resulting nonsingular m × m matrix where Σ̂A is the (m − q) × (m − q) leading principlal
(northwestern) submatrix of the matrix ΣA. Then cond C ≤ (1

σm−q (A) + 1
σq(B̄1)

+ ||B̄0||
σm−q (A)σq(B̄1)

)||C||.

Proof. We have
(

B̄0

B̄1

)
= SH

A B, so that ||(B̄T
0 , B̄T

1)|| = ||B||. Invert equation (5.2) to obtain M−1 =(
O B̄−1

1

Σ̂−1
A −Σ̂−1

A B̄0B̄
−1
1

)
and deduce that ||M−1|| ≤ ||Σ̂−1

A ||+||B̄−1
1 ||+||Σ̂−1

A || ||B̄−1
1 || ||B̄0||. Substitute

||Σ̂−1
A || = 1

σm−q(Σ̂A)
= 1

σm−q(A)
, ||B̄−1

1 || = 1
σq(B̄1)

, and ||M−1|| = 1
σm(M)

= 1
σm(C)

. Obtain that
1

σm(C)
≤ 1

σm−q (A)
+ 1

σq(B̄1)
+ ||B̄0||

σm−q (A)σq(B̄1)
, which implies the theorem.

Corollary 5.1. Under the assumptions of Theorem 5.2 suppose ||B|| = ||A|| and write κ = cond A

and κ0 = ||B̄0||
σq(B̄1)

. Then cond C ≤ √
2(κ + κ0 + κκ0).

Proof. Note that ||C|| ≤ √||A||2 + ||B||2 =
√

2||A|| =
√

2||B|| for ||A|| = ||B||. Moreover SH
A B =

B̄ =
(

B̄0

B̄1

)
, and so ||B|| = ||B̄|| ≥ ||B̄0||. Substitute these relationships into Theorem 5.2.

13

Next we assume that B ∈ Cm×q is Gaussian random matrix and estimate the value σq(B̄1).

Theorem 5.3. Under the assumptions of Theorem 5.2 suppose B ∈ Rn×n is a Gaussian random
matrix with mean zero and a variance σ2. Then FB̄1

(y) ≤ cy
√

q/σ.

Proof. Apply part (a) of Theorem 2.7 for G = (O, Iq)SH
A , W = B, rG = l = q ≤ m, GW = B̄1, and

σrG(G) = 1.

Corollary 5.2. Under the assumptions of Theorem 5.3 the matrix C = (B, A) is rank deficient with
the probability zero.

Proof. Theorem 5.3 implies that the matrix B1 is singular with the probability zero. Therefore the
corollary follows from equations (5.1) and (5.2).

5.3 Further remarks

Remark 5.3. Our correctness proof for Algorithm 5.1 applies to any integer q ≥ nul A. The
following observations can guide us in choosing the integer parameter q. (Note some differences with
the choice of the integer parameter r in northern augmentation.)

1. In virtue of Theorem 5.1 rank(B, A) < m if q < m−rank A, but we expect to have rank(B, A) =
m if B is a scaled random m × q matrix and if q ≥ m − rank A.

2. According to the previous subsection, the condition number cond(B, A) is expected to be of the
order σ1(A)

σm−q(A) in the case of an m × q scaled Gaussian random matrix B. Consequently by
incrementing the integer parameter q we would expect to improve conditioning of the matrix
(B, A) and thus to simplify the computation of its ca.

3. This advantage, however, should be weighed against the disadvantage of increasing the sizes of
the m× (n + q) matrix (B, A) and the q × s matrix Z0.

4. In numerical implementation of Algorithm 5.1 one should generate a Gaussian random matrix
B with the mean zero and a variance of the order ||A||2 and work with numerical cas and
numerical nullity instead of cas and nullity. For a fixed positive integer q one should seek a
numerical ca of an m× n (possibly rank deficient or ill conditioned) input matrix A having an
unknown positive numerical nullity r where m ≤ n and r ≤ q. In this case one should apply
(to the matrices (B, A) and Z0) a randomized Subroutine NUMERICAL CA (e.g., numerical
version of Algorithm 3.1 or 4.1) that either computes a numerical ca of an input matrix or
outputs FAILURE, definitely if the matrix is rank deficient or ill conditioned, but only with a
low probability otherwise.

5. Suppose an m × n matrix A is ill conditioned, whereas the (m + q) × n matrix (B, A) is well
conditioned, that is western augmentation acts as preconditioning. (According to the previous
subsection one should expect such a development under the choice of a scaled random matrix
B unless the ratio σ1(A)/σm−q is large.) Then in numerical implementation of Algorithm 5.1
one must compute a ca(B, A) with high accuracy [32, Section 7], e.g., by applying iterative
refinement and expecting that overall this would still simplify the original task wherever q �
min{m, n} (see our Section 8 as well as [32, Sections 8 and 9] and [38]).

We conclude with a recipe for saving some flops by combining western augmentation with a
proper form of post-multiplication.

Remark 5.4. Assume that Algorithm 5.1 produces the matrix (B, A) at its stage of western aug-
mentation and that Algorithm 4.1 has been applied as the Subroutine CA. Then we can save some
flops in Algorithm 5.1 by choosing W = diag(Iq, T) where either T = AH or T is a random n × m
matrix scaled so that ||T || ≈ 1. One can readily modify Theorems 4.1–4.4 to cover this case.

14

6 Randomized northwestern augmentation

Given two positive integers m and n and a matrix A ∈ Cm×n, one can compute a ca(A) by applying
Algorithm 5.1 with Algorithm 3.1 serving as the Subroutine CA. In this section we specify the

resulting northwestern augmentation A → K =
(

W V
B A

)
, analyze it by combining the analysis

in Sections 3 and 5, and supply some additional comments. In Section 7.4 we apply northwestern
augmentation to preconditioning a nonsingular nonhomogeneous linear system of equations.

One can similarly employ the southeastern, southwestern or northeastern augmentations.

6.1 Cas and nmbs via randomized northwestern augmentation: an algo-
rithm

Algorithm 6.1. A ca via randomized northwestern augmentation.

Input: Three positive integers m, n, and ρ, a matrix A ∈ C
m×n of rank ρ, and a random number

generator.

Output: FAILURE or a ca(A) (cf. Remark 5.1).

Initialization: Fix two nonnegative integers q ≥ n − ρ and r ≥ m + q − n (see Remark 6.2).

Computations:

1. (Norhwestern augmentation.) Generate three random matrices V in Cr×n, B in Cm×q,

and W in Cr×q. If the matrix K =
(

W V
B A

)
∈ C(m+r)×(n+q) is column rank deficient,

output FAILURE and stop.

2. (Aggregation.) Otherwise compute matrices

Y = (O, In)K(I)

(
O
B

)
(6.1)

and AY . IF AY = O, output Y = ca(A).

3. Otherwise apply Algorithm 6.1 to the matrix AY to compute a q× s matrix Z = ca(AY).

4. (Disaggregation.) If the matrix Z has rank q, then compute and output the n × r matrix
Y Z = ca(A). Otherwise output FAILURE and stop.

Note that Y = I and Z is a ca(A) if AY = O.
Our remarks about Algorithms 3.1 and 5.1 can be readily extended to Algorithm 6.1. In particular

Remark 5.1 can be applied unchanged, whereas Remark 5.2 changes as follows.

Remark 6.1. Algorithm 6.1 is an aggregation process that first aggregates an input matrix A into
the matrix AY of a smaller size, then reapplies itself to this matrix to output a matrix Z, and finally
disaggregates this output to produce the solution Y Z = ca(A) to the original input A.

Here are some additional comments.

Remark 6.2. We can first define the integer parameter q and generate a scaled random matrix
B ∈ Cm×q by following the recipes in Remark 5.3. Then we can compute the integer parameter r by
following the recipes in Section 3.3 applied to the matrix (B, A) replacing A.

The analysis of randomized northwestern augmentation in the next subsection combines our
earlier analysis of northern and western augmentation and implies correctness of Algorithm 6.1.

15

6.2 Analysis of randomized northwestern augmentation

Theorem 6.1. (a) Assume six positive integers m, n, q, r, s, and ρ such that ρ ≤ min{m, n}
and s = min{m + r, n + q, ρ + q + r}, and five matrices A ∈ Cm×n of rank ρ, V in Cr×n, B in

Cm×q, W in Cr×q, and K =
(

W V
B A

)
∈ C(m+r)×(n+q). Then we have rank K ≤ s.

(b) Suppose under the assumptions of part (a) that either the entries of the matrices B, V , and W
have been randomly and uniformly sampled from a set ∆ ∈ C of cardinality |∆| or the entries of
the matrices V and W have been randomly and uniformly sampled from such a set and B = V .
Furthermore let m ≤ min{n, ρ+ q}. Then the matrix (B, A) has full rank m with a probability
at least 1 − q

|∆| . If in addition r ≥ n + q − m, then rankK = n + q = s with a probability at
least 1 − q+r

|∆| .

Proof. Part (a) of the theorem can be immediately verified. Part (b) is proved similarly to Theorems
3.1 and 5.1, based on Corollary 2.1.

Theorem 6.2. Under the assumptions of part (a) of Theorem 6.1, suppose that

n + q ≤ m + r, q ≤ r, K(I)K = In+q and W (I)W = Iq (6.2)

for some matrices K(I) and W (I). Then

N (A) ⊆ R(Y) for Y = (O, In)K(I)

(
O
B

)
. (6.3)

Furthermore if rank B ≤ nulA, then
R(Y) = N (A). (6.4)

Proof. Let y ∈ N (A) and x ∈ Cq . Then K

(
x
y

)
=
(

Wx + V y
Bx

)
. Substitute x = −W (I)V y and

obtain that K

(
x
y

)
=
(

0
Bx

)
. Therefore y = (O, In)K(I)

(
0

Bx

)
. This proves claim (6.3), which

implies claim (6.4) if rank B ≤ nulA because rank(Y) ≤ rankB.

Corollary 6.1. Under the assumptions of part (a) of Theorem 6.1, suppose equations (6.2) hold

and write Y = (O, In)K(I)

(
O
B

)
. Then

(a) Y Z is a ca(A) if Z is a ca(AY), in particular if AY = O and Z = I, and furthermore
(b) Z is a ca(AY) if Y Z is a ca(A) and if the matrix Y has full column rank q.

Proof. (a) Clearly A(Y Z) = (AY)Z = O if Z is a ca(AY). Conversely let Au = 0. Then u = Y v
for some vector v in virtue of (6.3). Therefore AY v = Au = 0. It follows that v = Zz for some
vector z because Z is a ca(AY). Consequently u = Y v = Y Zz.

(b) Surely (AY)Z = A(Y Z) = O if Y Z is a ca(A). Conversely let AY u = A(Y u) = 0. Then
Y u = Y Zv for some vector v because Y Z is a ca(A). Therefore u = Zv since rank Y = q.

Assume the following specification of Algorithm 6.1 applied to an m × n matrix A: recursively
augment the matrix A by appending new Gaussian random northern rows and western columns with
the mean zero and a variance of the order ||A||2 (e.g., in the case of a mildly scaled input matrix
A append standard Gaussian random rows and columns) until you arrive at an h × h nonsingular

matrix K for h = m + r = n + q; then compute and output the matrix (O, In)K(I)

(
O
B

)
, expected

to be a ca(A) if rank B ≤ nul A.
In virtue of our next theorem combined with Theorems 3.3 and 5.3, the above matrix K is

expected to have condition number of the order of cond A.

16

Theorem 6.3. Assume dealing with the matrices A, B, V , W , and K in part (a) of Theorem 6.1.
Suppose A = SAΣATH

A is a full SVD of the matrix A, m+r = n+q, ΣA = diag(Σ̂A, O), the matrices
K and Σ̂A are nonsingular, and rank A = rank ΣA = rank Σ̂A = ρ. Write

M = diag(Ir , S
H
A)K diag(Iq, TA) =

W V0 V1

B̄0 Σ̂A O
B̄1 O O

 , (6.5)

f1(σ) =
1

σρ(A)
+

1
σq(B̄1)

+
1

σr(V1)
, (6.6)

f2(σ) =
||B̄0||

σρ(A)σq(B̄1)
+

||V0||
σρ(A)σr(V1)

+
||W ||

σq(B̄1)σr(V1)
, (6.7)

f3(σ) =
||B̄0|| ||V0||

σρ(A)σq(B̄1)σr(V1)
(6.8)

and assume that q = rank B̄1 = m − ρ and r = rank V1 = n − ρ, so that the matrices B̄1 and V̄1

are nonsingular, except that B̄1 (resp. V1) is a dummy empty matrix if ρ = m (resp. ρ = n). Then
cond K ≤ (f1(σ) + f2(σ) + f3(σ))||K||.
Proof. By assumption the matrices K (and thus also M), B̄1, ΣA, and V1 are nonsingular, and
clearly ||K−1|| = ||M−1||. Equation (6.5) implies that

M−1 =

 O O B̄−1
1

O Σ̂−1
A −Σ̂−1

A B̄0B̄
−1
1

V −1
1 −V −1

1 V0Σ̂−1
A V −1

1 (V0Σ̂−1
A B̄0 − W)B̄−1

1

 .

Deduce that ||K−1|| = ||M−1|| = f1 + f2 + f3 for f1 = ||Σ̂−1
A ||+ ||B̄−1

1 ||+ ||V −1
1 ||,

f2 = ||Σ̂−1
A || ||B̄−1

1 || ||B̄0||+ ||Σ̂−1
A || ||V −1

1 || ||V0||+ ||B̄−1
1 || ||V −1

1 || ||W ||,

and f3 = ||Σ̂−1
A || ||B̄−1

1 || ||V −1
1 || ||B̄0|| ||V0||.

Substitute ||Σ̂−1
A || = 1

σρ(Σ̂A)
= 1

σρ(A)
, ||B̄−1

1 || = 1
σq(B̄1)

, and ||V −1
1 || = 1

σr(V1)
and obtain the

claimed bound on the condition number condK.

Corollary 6.2. Under the assumptions of Theorem 6.3 let ||A|| = ||B|| = ||V || = ||W ||. Write
κ = cond A, κ0 = ||B̄0||

σq(B̄1)
, and κ1 = ||V0||

σ1(V̄1)
. Then cond C ≤ 2(κ+κ0 +κ1+κκ0 +κκ1+κ0κ1+κκ0κ1).

Proof. Note that ||C||2 ≤ ||A||2 + ||B||2 + ||V ||2 + ||W ||2, and so ||C|| ≤ 2||A|| = 2||B|| = 2||V || =

2||W ||. Moreover SH
A B =

(
B̄0

B̄1

)
, and so ||B̄0|| ≤ ||SH

A B|| = ||B||. Similarly deduce that ||V0|| ≤
||V TA|| = ||V ||. Substitute these relationships into Theorem 6.3.

Theorems 3.3 and 5.3 bound the values σr(V1) and σq(B̄1) provided B, V , and W are Gaussian
random matrices.

6.3 Strong regularization and strong preconditioning

All our results on the regularization and preconditioning power of northern, western, and northwest-
ern augmentations and post-multiplication of the input matrix can be also applied to all its leading
principal (that is northwestern) submatrices. In particular wherever the output matrix is expected
to be nonsingular or well conditioned, so are its leading principal submatrices.

We refer the reader to [37] on some algorithmic applications of these properties.

17

6.4 Saving random parameters and a pitfall

Our analysis can be readily extended to the case where the matrix V is chosen to equal aBH for a
proper scalar a of our choice, e.g., a = −1. In this way we would involve fewer random parameters.
The particular choice of V = BH can work as well, but is numerically inefficient where we request to

obtain a Hermitian positive definite matrix K =
(

W BH

B A

)
. Indeed in this case the augmentation

A =⇒ K cannot decrease the condition number due to the Interlacing Property of the eigenvalues
of Hermitian matrices [19, Theorem 8.1.7].

7 The solution of a nonhomogeneous linear system of equa-
tions

In the previous sections we reduced a homogeneous linear system Ay = 0 to nonhomogeneous
ones, of the form CW = U . Conversely, in the next two subsections we reduce the solution of a
nonsingular linear system Ay = b to computing a null vector of either the matrix (−ηb, A) for
a nonzero scalar η or the matrix (In − bbH

bHb)A. In Subsections 7.3 and 7.4 we employ our earlier
techniques to precondition a linear system Ay = b provided a matrix A has a positive numerical
nullity: we employ an approximate nmb(A) in Subsection 7.3 and randomized scaled northwestern
augmentation in Subsection 7.4.

7.1 Solution with an auxiliary matrix defined by western augmentation

The null vector z =
(

1/η
y

)
of the matrix C = (−ηb, A) for a nonzero scalar η contains the vector

y as a subvector. To compute the null vector we can apply the algorithms in the previous sections.
One can scale the matrix A to ensure that ||A|| = 1 and can select the scalar η such that

||ηb|| = ||A||. So we assume that ||b|| = ||A|| = 1 and then show that the map A → C = (−ηb, A)
is expected to have preconditioning power on the average input A and b.

Theorem 7.1. Suppose C = (−b, A), ||A|| = ||b|| = 1, A = SAΣATH
A is a full SVD of an n × n

matrix A, SH
A SA = SASH

A = TH
A TA = TATH

A = In, ΣA = diag(σi)n
i=1, σi = σi(A) for all i,

f = (fi)n
i=1 = −SH

A b, fn
= 0, and γ(f) = maxn−1
i=1 |fi|. Then σn(C) ≥ |fn|σn−1−(1+|fn|)σn

1+|fn| .

Proof. Write Σ = ΣA and (f , Σ) = SH
A C diag(1, TA), so that ||f || = ||b|| = 1 and σn(C) = σn(f , Σ).

Let G be the n × n matrix obtained by deleting the last column of the matrix (f , Σ). The
matrix G is nonsingular for fn
= 0, and we deduce from the Courant–Fischer minimax theorem that
σn(f , Σ) ≥ σn(G) − σn. Therefore

σn(C) ≥ σn(G) − σn. (7.1)

It remains to estimate the values σn(G) = 1
||G−1|| from below or ||G−1|| from above. Write

gi = σi−1 and f̂i = fi−1 for i = 2, . . . , n; g1 = fn , f̂1 = 0, and f̂ = (f̂i)n
i=1 (7.2)

and cyclically shift the rows of the matrix G down to arrive at the matrix Ĝ = diag(gi)n
i=1 + f̂ eT

1 .
Clearly ||Ĝ−1|| = ||G−1||.

We have Ĝ = diag(gi)n
i=1(In +(f̂i

gi
)n
i=1e1). Combine this equation and equations (7.2) and deduce

that

Ĝ−1 = (In − (
f̂i

gi
)n
i=1e

T
1) diag(

1
gi

)n
i=1 = diag(0, diag(

1
σi

)n−1
i=1) − (

f̂i

gifn
)n
i=1e

T
1 +

1
fn

e1eT
1 .

Substitute f̂i = fi−1 for i = 2, . . . , n; f̂1 = 0 (cf. (7.2)), and 1
fn

= fn

fng1
and obtain that

||G−1|| = ||Ĝ−1|| ≤ || diag(
1
σi

)n−1
i=1 || + ||(fi

gifn
)n
i=1e

T
n ||.

18

Since gi = σi ≥ σn−1 for i < n and ||(fi)n−1
i=1 || ≤ ||f || = 1, it follows that

||G−1|| ≤ 1
σn−1

+
1

|fn|σn−1
||(fi)n

i=1|| ≤
1

σn−1
+

1
|fn|σn−1

=
1 + |fn|
|fn|σn−1

.

Consequently σn(G) ≥ |fn|σn−1
1+|fn| and σn(C) ≥ |fn|σn−1

1+|fn| − σn = |fn|σn−1−(1+|fn|)σn

1+|fn| .

Corollary 7.1. Under the assumptions of Theorem 7.1 we have cond C ≤ (1+|fn|)√2
|fn|σn−1−(1+|fn|)σn

.

Proof. Recall that cond C = ||C||
σn(C) and ||C|| ≤ √||A||+ ||b|| =

√
2||A|| =

√
2. Substitute these

relationships into Theorem 7.1.

The corollary shows that condC has the order of at most σ1/σn−1 (rather than σ1/σn) unless
the value |fn| is small. (Note the similarity of this result to Theorem 5.2 for q = 1.) Therefore
unless the value |fn| is small, we can expect to arrive at a well conditioned matrix C where the input
matrix A is ill conditioned and has numerical nullity one. (Note that on the average |fn| = 1√

n
on

the unit sphere ||f ||= 1.)
We would still need to perform some stages of our solution algorithm with a high precision, but

we decrease the overall computational cost by confining the high precision computations to relatively
few flops performed in iterative refinement of a null vector of the well conditioned matrix C. At that
stage we would apply fast advanced algorithms for accurate sums and products (see our Section 8
and the papers [32], [38]).

7.2 Solution with an auxiliary matrix defined via projection

Next we solve a linear system Ay = b via computing a null vector of the auxiliary matrix (In−bbH

bHb
)A,

which projects the input matrix A into the linear space orthogonal to the vector b.
The projection little affects the condition number condA on the average input A and b of a large

size (although decreases it to one for 2 × 2 inputs).

Algorithm 7.1. Solution with an auxiliary matrix defined by projection

Input: A nonsingular n × n matrix A and a vector b of dimension n.

Output: The solution y to the linear system Ay = b.

Computations:

1. Compute the projection matrix In − bbH

bHb and the auxiliary matrix Â = (In − bbH

bHb)A
(having rank n − 1 in virtue of Corollary 7.2 below).

2. Compute its nontrivial null vector ŷ = xy
= 0 (e.g., based on the algorithms in the
previous sections).

3. Compute the scalar x from the vector equation Aŷ = xb.

4. Compute and output the solution vector y = ŷ/x.

The following simple results together imply correctness of the algorithm.

Lemma 7.1. (In − bbH

bHb
)b = 0.

Corollary 7.2. rank Â = rank(In − bbH

bHb
) = n − 1.

Corollary 7.3. Ây = 0.

Proof. Ây = ((In − bbH

bHb
)A)(A−1b) because Â = (In − bbH

bHb
)A and y = A−1b. Therefore Ây =

(In − bbH

bHb
)b, which vanishes in virtue of Lemma 7.1.

19

7.3 Solution with auxiliary matrices defined by approximate nmbs

Assume that an n × n nonsingular normalized input matrix A with ||A|| = 1 has a small positive
numerical nullity r (so that the ratio σ1(A)

σn−r(A) is not large, whereas σ1(A) � σn−r+1(A)). Further
assume that approximate nmbs M1 and N1 in Cn×r of the matrices A and AH , respectively, are
available (possibly computed based on a numerical version of one of our algorithms in the previous
sections).

Then we can generate two standard Gaussian random matrices S, T ∈ Cn×(n−r) and compute the

matrices M0 = AS, N0 = AT , and F = (M0, M1)HA(N0 , N1) =
(

F00 F01

F10 F11

)
where Fij = MH

i ANj

for each of i, j being zero or one.
The matrices AM1 and AHN1, and consequently also the block submatrices F01 ∈ Cn×r, F10 ∈

Cr×n, and F11 ∈ Cr×r nearly vanish, having the norms of at most the order of σn−r+1(A) �
σn−r(A). Therefore the O(n2r) flops involved in the computation of the (2n − r)r entries of these
blocks (versus the order of n3 flops used overall) must be performed in extended precision to counter
the expected cancellation of the leading digits.

In contrast the value σn−r(F00) ∈ C(n−r)×(n−r) is likely to have the order of σn−r(A) in virtue
of Theorem 2.7, and therefore the block F00 in the 2 × 2 block matrix F is dominant, nonsingular
and well conditioned.

The map A =⇒ F and the block Gaussian elimination reduce the computation of the inverse
A−1 and the solution of a linear system Ay = b to the similar operations with the matrices F00 and
G = F11 − F10F

−1
00 F01 ∈ Cn×r of smaller sizes, expected to be nonsingular and better conditioned.

(The matrix G is called the Gauss transform and Schur complement [19].)
The tests of this technique in [38] have confirmed its strong preconditioning power.

7.4 Solution with preconditioning via northwestern augmentation

Suppose the n × n input matrix A has a small positive numerical nullity r. Then according to

our study in Section 6.2, northwestern augmentation K =
(

W V
B A

)
for Gaussian random matrices

W ∈ Cr×r, V , and B with the mean zero and a variance of the order ||A||2 produces a matrix K
expected to be nonsingular and well conditioned, together with its block W . Theorem 1.1 implies that

y = A−1b = (In − S−1BW−1R−1V S−1)b for R = I + V BW−1 and S−1 = (On,r, In)K−1

(
Or,n

In

)
denoting the n × n trailing principal block of the matrix K−1 =

(
X Y
Z S−1

)
. This reduces the

solution of the linear system Ay = b essentially to the inversion of the matrices W and R and
the computation of the products S−1b and S−1B. The matrix equation K−1K = In+r implies
that ZW + S−1B = On,r and consequently ZW = −S−1B. Therefor we can compute the product

ZW = (On,r, In)K−1

(
W

Or,n

)
instead of the product −S−1B.

If the matrices R, W and K are well conditioned (as we can expect provided W , V , and B
are Gaussian random matrices with the mean zero and a variance of the order ||A||2), then we can
decrease the overall cost of computing the solution (see Section 8).

If the matrix A is given with its displacement generator of a small length d, we are motivated to
choose scaled random matrices W , B, and V with consistent structure, representing them as well as
the matrix K with displacement generators of length in O(d). By employing this structure we can
accelerate our computations with these matrices (cf. [31]). In the special case of a Toeplitz matrix
A we can choose augmentation that produces a Toeplitz matrix K and then we can exploit this
structure based either on Theorem 1.1 or alternatively on Theorem 2.3 and Remark 2.2. Our formal
(resp. empirical) support for the regularization (resp. preconditioning) power of our randomized
augmentation techniques can be extended to the respective randomized structured augmentation
techniques.

20

8 Computational cost estimates

Clearly our algorithms accelerate the customary computation of nmbs and null vectors by avoiding
pivoting and orthogonalization. Table 9.1 shows the respective decrease of the CPU time for the
computation of null vectors of Toeplitz matrices versus the customary algorithms, whereas Tables
9.3 and 9.4 show that the output accuracy of the customary solution is matched by our algorithms
and furthermore can be dramatically enhanced in a few loops of iterative refinement.

On the top of such advances (due to the regularization power of our randomized augmentation),
the augmentation is also expected to have preconditioning power under proper scaling (cf. Table
9.2). This enables acceleration of the customary algorithms by roughly the factor n/ min{d, r} where
an n × n input matrix has a positive numerical nullity r and a displacement rank d.

In this section we specify the latter advance for the solution of a nonsingular ill conditioned linear
system of equations, but the resulting estimates and their derivation can be readily extended to the
computation of a nmb or a null vector of an ill conditioned matrix, which can be reduced to solving
the associated nonsingular linear systems of equations (see Algorithms 3.1, 4.1, 5.1, and 6.1, and
Part 5 of Remark 5.3).

If an n × n matrix A has a positive numerical nullity r, then the singular value σn−r+j(A) is
small relatively to the norm ||A||, so that the matrix A lies near the algebraic variety of dimension
n − r defined by the r equations σn−r+j(A) = 0 for j = 1, 2, . . . , r. Next we specially consider the
most typical case where r = 1 and the variety has the largest dimension n − 1.

8.1 The case of input matrices with numerical nullity one: outline

Suppose we apply augmentation in Section 7.1 to solve a nonsingular linear system Ay = b of n
equations whose matrix has numerical nullity one, whereas the n × (n + 1) matrix (b, A) is well
conditioned and cond(b, A) ≈ σ1(A)

σn−1(A) � cond A (cf. Sections 5.2, 5.3, and 7.1). Furthermore
suppose that application of Algorithms 3.1 or 4.1 has reduced the computation of a null vector of
the matrix (b, A) to the solution of a nonsingular and well conditioned linear system Fx = c of
n + 1 or n equations, respectively. Likewise we can expect to arrive at such a nonsingular and well
conditioned linear system Fx = c of n + 1 equations by applying randomized scaled northwestern
augmentation in Section 7.4 for r = 1.

In all these cases we need a highly accurate solution of the linear system Fx = c because the
input matrix A is ill conditioned. We, however, involve no flops in a high precision and instead apply
more flops in a low precision; overall we still solve the original linear system Ay = b faster.

We first compute an approximate inverse X ≈ F−1 of the well conditioned matrix F and then
iteratively refine the crude initial solution Xc to the linear system Fx = c (cf. [32], [38]). (Instead
of an approximate inverse one can employ, e.g., LU factorization of the matrix F .)

We can compute a matrix X by means of Gaussian elimination, whose computational cost dom-
inates the cost of preprocessing. This stage involves as many flops as the direct solution of the
original linear system Ay = b, but the matrix F is expected to be well conditioned (unlike the
matrix A), and if it is well conditioned, we can perform these flops in a lower precision.

At the stage of iterative refinement the computational cost is lower than in Gaussian elimination
by roughly the factor LA/MF . Here and hereafter MW and LW denote the number of flops used in
the customary algorithms for multiplication of a matrix W by a vector and solving a nonsingular
linear system of equations with the coefficient matrix W , respectively. In the case of n × n general
(resp. Toeplitz or Hankel) matrix W , Gaussian elimination (resp. its structured variant in [16])
supports the upper bound on LW of the order n3 (resp. n2), whereas MW = 2n2 − n (resp.
MW = O(n log n)).

Thus in both of the above stages we significantly accelerate the customary solution.

8.2 The case of input matrices with numerical nullity one: elaboration

Next we specify the cost estimates outlined in the previous subsection.

21

Let µ(l) denote the time-complexity of a flop performed with a precision l. Expressed in terms
of the number of bit-operations involved, µ(l) is a superlinear function, which ranges between the
orders of (l log l) log log l and l2, depending on the computer environement (cf. [2], [14], and our
Remark 8.1).

Then the customary algorithms solve the original and auxiliary linear systems Ay = b and
Fx = c within the time-complexity bounds cls = LAµ(ps) and cme = LF µ(p), respectively, where
ps and p denote the precision used in these computations. We choose the precison p substantially
smaller than ps where the matrix F is well conditioned, but the matrix A is not.

Every loop of iterative refinement amounts essentially to multiplying each of the matrices F
and X ≈ F−1 by a vector and contributes the order of p − log2 cond F correct bits per an output
entry provided that p exceeds log2 cond F [19], [21], [32], [42]. Iterative refinement can produce the
output values as the sums implicitly represented with a high precision by their lower (e.g., single
or double) precision summands, where every refinement step contrributes a summand to every sum
until convergence (cf. [32], [34]). To ensure the output precision ps we use the order of h refinement
steps where (p − log2 cond F)h = ps. For a well conditioned matrix F we can realistically assume
that 2 log2 cond F ≤ p (so that ph ≤ 2ps). Then the overall cost of performing iterative refinement
cir is in O(MF µ(p)ps

p). This implies acceleration by the factor µ(ps)
µ(p) , which is significant where p is

significantly less than ps.
Let us compare this bound with the time-complexity cls = LAµ(ps) of solving the original linear

system by means of the customary algorithms. The ratio cir/cls is essentially the product of two
factors f1 = LA/MF and f2 = µ(ps)p/(µ(p)ps), roughly representing the two decreases in the
number of flops and in computational precision, respectively.

The first factor f1 has the order n where both matrices A and F are general and has the order
n/ logn where both are Toeplitz or Hankel matrices or have the structure of Toeplitz or Hankel
type. In both cases we achieve dramatic acceleration of the customary algorithms because f2 > 1
for ps > p. More precisely, the second factor f2 is close to one where µ(l) is close to a linear function
in l and has the order ps/p where µ(l) is quadratic function.

To support the latter estimates in the case of matrices A with Toeplitz or Hankel structure, we
must preserve the structure for the matrix F as well. This, however, comes almost automatically
because appending c columns and r rows to a matrix can increase its displacement rank by at most
c + r [31], and in our case c = r = 1.

Remark 8.1. We separately estimate the acceleration of the customary algorithms due to saving
the flops involved and to decreasing the computational precision, but one can readily combine these
estimates into a single acceleration factor under the Boolean or bit operation model of computing.
(This model reflects the impact of both number of flops used and the precision of computing.) If the
ratio ps/p is sufficiently large, then under this model our algorithms support nearly optimal upper
bounds on the computational cost, which are smaller than the cost of the customary algorithms by
roughly the factor of n and are within a polylogarithmic factor from an information lower bound
[38].

8.3 The case where numerical nullity exceeds one

Our analysis can be quite readily extended to the case where the input matrix A has any positive
numerical nullity q and where we apply randomized scaled northwestern augmentation in Section
7.4 for r = q.

In this case the original task is reduced essentially to solving q+1 linear systems with an n×n well
conditioned auxiliary matrix F . The acceleration factor versus the customary algorithms becomes
roughly n/(q + 1), and so we can still achieve their significant acceleration where q + 1 � n.

If however, the input matrix A as well as the the structured auxiliary matrix F are represented
with their displacement generators of a small length d, then the matrix F−1 has the same dis-
placement rank as F and is readily expressed via the solution of 2d linear systems of equations
with the matrices F and F T [31, Theorem 1.5.3 and Section 4.4]. Therefore in this case we have
cir = O(dMF µ(p)ps

p), which implies acceleration by roughly the factor n/d of the customary solution

22

to a nonsingular linear system Ay = b of n equations, even where the structured matrix A has a
large numerical nullity.

There is a delicate point here, however. To keep the displacement rank of the matrix F small
we must restrict the number of random parameters used in the augmentation. E.g., given a Hankel
matrix A, we can choose Hankel matrices W ∈ Cq×q, V and B that define a Hankel matrix K =(

W V
B A

)
, but due to its structure all its entries are already defined by the matrix A, except for

2q − 1 leading entries in the first row, which we can choose at random.
All our results on regularization and preconditioning by means of augmentation can be quite

readily extended under this restriction, except for the extension of our basic Theorem 2.4, taken
from [43]. Such an extension is an open problem. Consequently the proof of the preconditioning
power of randomized scaled augmentation is also an open problem in the case of large structured
inputs of this class.

Motivated by the test results in Table 9.1 and in [37] (the latter tests show that random Toeplitz
matrices tend to be well conditioned), we conjecture that Theorem 2.4 still holds at least in the case
of Toeplitz and Hankel matrices.

Finally we can avoid this and some other problems by devising algorithms based on the homotopy
continuation techniques that involve no randomization, do not depend on numerical nullity, but still
accelerate the customary algorithms by roughly the factor n/ log2 n [38] .

8.4 Sparse inputs, multilevel Toeplitz or Hankel inputs, and iterations
using no approximate inverses

In lieu of iterative refinement one can employ other iterations such as the Conjugate Gradient and
GMRES algorithms (cf. [1], [15], [19, Sections 10.2–10.4]). Like iterative refinement, they perform
O(MA) flops per iteration loop, but unlike iterative refinement, they use no approximate inverse and
thus save flops required for its computation. This is a significant advantage in the case of a sparse
unstructured linear system as well as a multilevel Toeplitz or Hankel linear system, whose solution
is generally much harder than multiplication of its coefficient matrix by a vector.

Typically decreasing the condition number of an input matrix is more critical (and thus pre-
conditioning is more important) for the convergence of such algorithms versus iterative refinement.
Theoretically the Conjugate Gradient algorithm requires at most n iteration loops to yield the solu-
tion of a nonsingular linear system of n equations, thus implying the bound LA = O(nMA) for any
n × n nonsingular matrix A, but these results are only proved for error-free computations and are
not observed in the presence of rounding errors.

Various important algebraic geometric computations are routinely reduced to the solution of
multivariate polynomial systems of equations and further to linear systems of equations with mul-
tilevel Toeplitz or Hankel coefficient matrices. For such an n × n multilevel Toeplitz or Hankel
input matrices A, we have MA in O(n logn) and frequently in O(n), due to sparseness [13], [28].
The known numerical algorithms for the solution of linear systems with these multilevel matrices,
however, run in cubic time.

Likewise sparse matrices A are also characterized by the bound MA � LA.
Generally we have neither effective displacement representation for a sparse or multilevel Toeplitz

or Hankel matrix nor expressions for its inverse via the solutions of a small number of linear systems of
equations with this matrix. The computation of its approximate inverse or factorization supporting
iterative refinement becomes expensive, but our regularization and preconditioning techniques based
on the other iterations such as the CG and GMRES algorithms keep their power. In particular if a
sparse or multilevel Toeplitz or Hankel matrix A has a small positive numerical nullity r, then our
randomized augmentations can reduce the computations with this matrix to the case of a matrix F
expected to be well conditioned, and if it is indeed well conditioned, then our techniques support
the acceleration of the known algorithms for a nonsingular sparse or multilevel Toeplitz and Hankel
linear system of n equations by the factor (n/r)µ(ps)p/(µ(p)ps).

23

9 Numerical tests

In a series of numerical experiments performed in the Graduate Center of the City University of
New York, we tested our algorithms for computing nmbs and null vectors of general and Toeplitz
matrices. We conducted the tests on a Dell server with a dual core 1.86 GHz Xeon processor
and 2G memory running Windows Server 2003 R2. The test Fortran code was compiled with the
GNU gfortran compiler within the Cygwin environment. Random numbers were generated with the
random number intrinsic Fortran function assuming the uniform probability distribution over the
range {x : 0 ≤ x < 1}. To shift to the range {y : b ≤ y ≤ a + b} for fixed real a and b, we
applied the linear transform x → y = ax + b. CPU time was measured with the mclock function.
We computed QR factorizations and SVDs by applying the LAPACK procedures DGEQRF and
DGESVD, respectively.

9.1 Computations with Toeplitz matrices

a) Generation of singular Toeplitz matrices

To generate an n × n singular Toeplitz matrix, we first sampled 2n − 2 random entries ai,j for
j = 1, i = 1, . . . , n − 1 and for i = 1, j = 2, . . . , n in the range [−1, 1), then defined the (n − 1)2

entries ai+1,j+1 = ai,j for i, j = 1, . . . , n−1, and finally set an,1 = 0. We arrived at an n×n Toeplitz
matrix A0 = (ai,j)n

i,j=1, computed the entry yn,1 of its inverse A−1
0 = (yi,j)n−1

i,j=0, and changed the
(1, n)th entry of the matrix A0 into an,1 = −1/yn,1. (As we expected in virtue of Lemma 2.1, we
always had yn,1 detA0
= 0 in our tests. Had we had yn,1 = 0, we could have regenerated the matrix
A0, whereas had it been singular, we would have stopped the computations and output it.)

The resulting matrix A = (ai,j)n
i,j=1 had nullity one. Indeed it was a rank-one A-modification of

a nonsingular matrix A0, whereas Ay = 0 for y = A−1
0 e1 because A0y = e1, A = A0 − 1

yn,1
e1eT

n ,
and eT

ny = yn,1.

b) Augmentation of singular Toeplitz matrices and
the computation of their null vectors

We embedded our n × n singular Toeplitz matrix A = (ai,j)n
i,j=1 into an (n + 1) × (n + 1)

Toeplitz matrix K = (ai,j)n
i,j=0 =

(
w vT

b A0

)
for w = a0,0, b = (ai,0)n

i=1, and v = (a0,j)n
j=1. We

defined the entries ai,0 and a0,j for i, j = 0, 1, . . . , n − 1 by applying the equations ai,j = ai+1,j+1

and sampled the two entries an,0 and a0,n at random in the range [−1, 1). For such a matrix K
we applied Theorem 6.2 for r = 1, to compute a null vector of the matrix A given by the vector

(0, In)K−1

(
0
b

)
. This amounted to solving a nonsingular Toeplitz linear systems of equations with

the matrix K. For that task we applied the code in [45], based on the algorithms in [25], [46], [47].
For comparison we also obtained the null vectors of the same matrices A based on computing their
QR factorizations and SVDs. We have a little decreased the CPU time by using QR (rather than
QRP) factorization. The latter one, that is QR factorization with pivoting (performed by LAPACK
procedures DGEQPF and DGEQP3) is recommended for dealing with ill conditioned inputs [19,
Section 5.5], but we avoided them in our tests.

c) Output data in the tests with Toeplitz matrices

We use the abbreviations “n.-w.a.”, “QR”, and “SVD” as our pointers to the northwestern
augmentation (based on Algorithm 6.1), QR factorization, and SVD, respectively. Table 9.1 covers
our computation of null vectors for Toeplitz matrices. It shows the CPU time of this computation
for each of the three methods as well as the ratios of these data for the QR-based and SVD-based
solutions versus northwestern augmentation. The ratios are displayed in the last two columns of the

24

table. The CPU time is measured in terms of the CPU cycles. They can be converted into seconds
by dividing them by a constant CLOCKS PER SEC, which is 1000 on our platform.

In all our tests the computed approximate null vectors y had relative residual norms ||Ay||
||A|| ||y|| of

the order of 10−17.
All data are average over 100 tests for each input size 2k from 256 to 8192. The table entries are

marked by a hyphen ”-” where the tests required too long runtime and were not completed.

Table 9.1: CPU time for computing a null vector of a Toeplitz matrix

dimension n.-w.a. QR SVD QR/n.-w.a. SVD/n.-w.a
256 3.8 18.4 317.8 4.8 83.6
512 8.0 148.0 5242.1 18.5 655.3
1024 16.1 1534.2 87371.2 97.0 5522.6
2048 33.6 11750.3 − 357.7 −
4096 79.5 − − − −
8192 169.5 − − − −

9.2 Computations with unstructured matrices

a) Generation of input matrices

We first fixed pairs of n and k for n = 64, 128 and k = 7. Then for every pair (n, k) we generated
m = 100 instances of matrices A, B, V0, and V1 and vectors b as follows.

The matrices A have been generated as the error-free products SΣTH where S and T were
n×n random orthonormal matrices (generated with double precision) and Σ = diag(σj)n

j=1, σn−j =
10j−17 for j = 1, . . . , k, and σn−j = 1/(n − j) for j = k + 1, . . . , n− 1 (cf. [21, Section 28.3]).

B was random n × k matrix with ||B|| = ||A||.
V was k × (n + k) matrix V = (V0, V1) where and V0 was the k × k identity matrix Ik and

V1 = BT .
For every choice of these matrices we performed preconditioning tests and the solution tests as

follows.

b) Preconditioning tests

We computed m ratios cond A
cond M for M =

(
V0 V1

B A

)
.

Table 9.2 displays the average (mean), minimum, maximum, and standard deviation for the m
ratios for n = 64 and n = 128.

Table 9.2: ratios cond A
cond M

matrix size min max mean std
64 × 64 3.29× 109 1.65× 1013 2.49× 1012 2.60× 1012

128× 128 8.27× 108 2.56× 1012 5.51× 1011 6.44× 1011

c) The solution tests

25

We solved nonsingular linear systems Ay = b where A was the matrix generated above, b was
a random vector, and we scaled them to have ||b|| = ||A|| = 1. We first computed the null vector
z of the matrix (−b, A), then scaled it to obtain the vector (1, y)H , and finally output the solution
vector y.

Tables 9.3 and 9.4 display the average (mean), minimum, maximum, and standard deviation for
the relative residual norms ||Ay−b||

||y|| in our tests for n = 64 and n = 128, respectively. For each input
instance we computed the solution in two ways, that is by performing two iterations of the extended
iterative refinement and with no such iteratiion.

Table 9.3: relative residual norms in the solution tests with 64 × 64 inputs

refinement min max mean std
2 iterations 7.89× 10−48 8.26× 10−44 1.40× 10−45 8.47× 10−45

no iteration 1.43× 10−31 7.30× 10−28 1.69× 10−29 9.12× 10−29

Table 9.4: relative residual norms in the solution tests with 128× 128 inputs

refinement min max mean std
2 iterations 1.31× 10−46 1.37× 10−43 4.11× 10−45 1.67× 10−44

no iteration 8.57× 10−31 1.92× 10−27 5.12× 10−29 2.55× 10−28

References

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, England,
1994.

[2] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Algorithms. Addison-
Wesley, Reading, MA, 1974.

[3] R. P. Brent, F. G. Gustavson, D. Y. Y. Yun, Fast Solution of Toeplitz Systems of Equations
and Computation of Padé Approximations, J. Algorithms, 1, 259–295, 1980.

[4] D. Bini, V. Y. Pan, Polynomial and Matrix Computations, volume 1: Fundamental Algorithms,
Birkhäuser, Boston, 1994.

[5] R.E. Cline, R.J. Plemmons, and G. Worm, Generalized inverses of certain Toeplitz matrices.
Linear Algebra and Its Applications, 8, 25–33, 1974.

[6] Coppersmith, S. Winograd, Matrix Multiplicaton via Arithmetic Progressions. J. Symbolic
Comput., 9(3), 251–280, 1990.

[7] J. D. Dixon, Estimating Extremal Eigenvalues and Condition Numbers of Matrices, SIAM J.
on Numerical Analysis, 20, 4, 812–814, 1983.

[8] J. Demmel, The Probability That a Numerical Analysis Problem Is Difficult, Math. of Com-
putation, 50, 449–480, 1988.

[9] C.-E. Drevet, M. N. Islam, E. Schost, Optimization Techniques for Small Matrix Multiplication,
preprint, 2010.

26

[10] R. A. Demillo, R. J. Lipton, A Probabilistic Remark on Algebraic Program Testing, Informa-
tion Processing Letters, 7, 4, 193–195, 1978.

[11] K. R. Davidson, S. J. Szarek, Local Operator Theory, Random Matrices, and Banach Spaces,
in Handbook on the Geometry of Banach Spaces (W. B. Johnson and J. Lindenstrauss editors),
pages 317–368, North Holland, Amsterdam, 2001.

[12] A. Edelman, Eigenvalues and Condition Numbers of Random Matrices, PhD Thesis (106
pages), Math Dept., MIT, 1989 and SIAM J. on Matrix Analysis and Applications, 9, 4,
543–560, 1988.

[13] I. Z. Emiris, V. Y. Pan, Symbolic and Numerical Methods for Exploiting Structure in Con-
structing Resultant Matrices, J. of Symbolic Computation, 33, 393-413, 2002. Proc. Version in
ISSAC 97.

[14] M. Fürer, Faster Integer Multiplication, Proceedings of 39th Annual Symposium on Theory of
Computing (STOC 2007), 57–66, ACM Press, New York, 2007.

[15] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.

[16] I. Gohberg, T. Kailath, V. Olshevsky, Fast Gaussian Elimination with Partial Pivoting for
Matrices with Displacement Structure, Mathematics of Computation, 64, 1557–1576, 1995.

[17] I. Gohberg, V. Olshevsky, Complexity of Multiplication with Vectors for Structured Matrices,
Linear Algebra and Its Applications, 202, 163–192, 1994.

[18] I. Gohberg, A. Semencul, On the Inversion of Finite Toeplitz Matrices and Their Continuous
Analogs, Matematicheskiie Issledovaniia, 2, 187–224, 1972.

[19] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd edition, The Johns Hopkins University
Press, Baltimore, Maryland, 1996.

[20] G. Heinig, Beitrage zur spektraltheorie von Operatorbuschen und zur algebraischen Theorie
von Toeplitzmatrizen, Dissertation B, TH Karl-Marx-Stadt, 1979.

[21] N. J. Higham, Accuracy and Stability in Numerical Analysis, SIAM, Philadelphia, 2002 (second
edition).

[22] G. Heinig, K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Operator
Theory, 13, Birkhäuser, 1984.

[23] I. Kaporin, The Aggregation and Cancellation Techniques As a Practical Tool for Faster Matrix
Multiplication, Theoretical Computer Science, 315, 2–3, 469–510, 2004.

[24] T. Kailath, S. Y. Kung, M. Morf, Displacement Ranks of Matrices and Linear Equations,
Journal Math. Analysis and Appls, 68(2), 395–407, 1979.

[25] P. Kravanja, M. Van Barel, Algorithms for Solving Rational Interpolation Problems Related
to Fast and Superfast Solvers for Toeplitz Systems, SPIE, 359–370, 1999.

[26] J. Laderman, V. Y. Pan, H. X. Sha, On Practical Algorithms for Accelerated Matrix Multi-
plication, Linear Algebra and Its Applications, 162–164, 557–588, 1992.

[27] W. L. Miranker, V. Y. Pan, Methods of Aggregations, Linear Algebra and Its Applications,
29, 231–257, 1980.

[28] B. Mourrain, V. Y. Pan, Multivariate Polynomials, Duality and Structured Matrices, J. of
Complexity, 16, 1, 110–180, 2000. (Proceedings Version in STOC’98.)

[29] V. Y. Pan, On Schemes for the Evaluation of Products and Inverses of Matrices (in Russian),
Uspekhi Matematicheskikh Nauk, 27, 5 (167), 249-250, 1972.

27

[30] V. Y. Pan, How Can We Speed up Matrix Multiplication? SIAM Review, 26, 3, 393–415,
1984.

[31] V. Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhäu-
ser/Springer, Boston/New York, 2001.

[32] V. Y. Pan, D. Grady, B. Murphy, G. Qian, R. E. Rosholt, A. Ruslanov, Schur Aggregation for
Linear Systems and Determinants, Theoretical Computer Science, Special Issue on Symbolic–
Numerical Algorithms (D.A. Bini, V.Y. Pan, J. Verschelde editors), 409, 2, 255–268, 2008.

[33] V. Y. Pan, D. Ivolgin, B. Murphy, R. E. Rosholt, Y. Tang, X. Yan, Additive Preconditioning for
Matrix Computations, Linear Algebra and Its Applications, 432, 1070–1089, 2010. Proceedings
version in Proc. of the Third International Computer Science Symposium in Russia (CSR
2008), Lecture Notes in Computer Science (LNCS), 5010, 372–383, 2008.

[34] V. Y. Pan, B. Murphy, G. Qian, R. E. Rosholt, A New Error-free Floating-Point Summation
Algorithm, Computers and Mathematics with Applications, 57, 560–564, 2009.

[35] V. Y. Pan, G. Qian, Randomized Preprocessing of Homogeneous Linear Systems, Linear Al-
gebra and Its Applications, 432, 3272–3318, 2010.

[36] V. Y. Pan, G. Qian, A. Zheng, Advancing Matrix Computations with Randomized Preprocess-
ing, in Proc. of the Fifth International Computer Science Symposium in Russia (CSR 2010),
Kazan, Russia, June 2010 , Farid Ablaev, Ernst W. Mayr (Eds.), Lecture Notes in Computer
Science (LNCS), pages 303-314, Springer, Berlin, 2010.

[37] V. Y. Pan, G. Qian, A. Zheng, Randomized Preconditioning versus Pivoting, Tech. Reports
TRs 2009010 and 20100xx, Ph.D. Program in Computer Science, Graduate Center, the City
University of New York, 2009 and 2010.

Available at http://www.cs.gc.cuny.edu/tr/techreport.php?id=352

[38] V. Y. Pan, G. Qian, A. Zheng, Randomized Preconditioning of Linear Systems of Equations,
Tech. Report TR 20100xx, Ph.D. Program in Computer Science, Graduate Center, the City
University of New York, 2010.

Available at http://www.cs.gc.cuny.edu/tr/techreport.php?id=352

[39] V. Y. Pan, G. Qian, A. Zheng, Z. Chen, Matrix Computations and Polynomial Root-finding
with Preprocessing, Linear Algebra and Its Applications, in print.

[40] V. Y. Pan, X. Yan, Additive Preconditioning, Eigenspaces, and the Inverse Iteration, Linear
Algebra and Its Applications, 430, 186–203, 2009.

[41] J. T. Schwartz, Fast Probabilistic Algorithms for Verification of Polynomial Identities, Journal
of ACM, 27, 4, 701–717, 1980.

[42] G. W. Stewart, Matrix Algorithms, Vol I: Basic Decompositions, SIAM, Philadelphia, 1998.

[43] A. Sankar, D. Spielman, S.-H. Teng, Smoothed Analysis of the Condition Numbers and Growth
Factors of Matrices, SIAM Journal on Matrix Analysis, 28, 2, 446–476, 2006.

[44] W. F. Trench, A Note on a Toeplitz Inversion Formula, Linear Algebra and Its Applications,
29, 55–61, 1990.

[45] M. Van Barel, A Supefast Toeplitz Solver, 1999.
Available at http://www.cs.kuleuven.be/˜ marc/software/index.html

[46] M. Van Barel, G. Heinig, P. Kravanja, A Stabilized Superfast Solver for Nonsymmetric Toeplitz
Systems, SIAM Journal on Matrix Analysis and Applications, 23, 2, 494–510, 2001.

28

[47] M. Van Barel, P. Kravanja, A Stabilized Superfast Solver for Indefinite Hankel Systems, Linear
Algebra and its Applications, 284, 1–3, 335–355, 1998.

[48] M. Wschebor, Smoothed Analysis of κ(a), J. of Complexity, 20, 97–107, 2004.

[49] R. E. Zippel, Probabilistic Algorithms for Sparse Polynomials, Proceedings of EUROSAM’79,
Lecture Notes in Computer Science, 72, 216–226, Springer, Berlin, 1979.

29

	TR-2010009: Solving Linear Systems with Randomized Augmentation II
	augtr.DVI

