
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Computer Science Technical Reports CUNY Academic Works

2014

TR-2014003: On the Complexity of Two-Agent Justification Logic TR-2014003: On the Complexity of Two-Agent Justification Logic

Antonis Achilleos

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/gc_cs_tr/394

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/gc_cs_tr
https://academicworks.cuny.edu/
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/gc_cs_tr/394
https://academicworks.cuny.edu/gc_cs_tr/394
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

On the Complexity of
Two-agent Justification Logic

Antonis Achilleos

The Graduate Center of CUNY
365 Fifth Avenue

New York, NY 10016 USA
aachilleos@gc.cuny.edu

Abstract

We investigate the complexity of derivability for two-agent Justification Logic.
For this purpose we revisit Yavorskaya’s two-agent LP with interactions (2008), we
simplify the syntax and provide natural extensions. We consider two-agent versions
of other justification logics as well as ways to combine two justification logics. For
most of these cases we prove that the upper complexity bound established for the
single-agent cases are maintained: these logics’ derivability problem is in the second
step of the polynomial hierarchy. For certain logics, though, we discover a complex-
ity jump to PSPACE-completeness, which is a new phenomenon for Justification
Logic.

1 Introduction

Justification Logic is a family of logics which models the way justifications interact with
statements and can be viewed as an explicit counterpart of epistemic modal logic. It is
often the case that we want to express statements of the form “agent A knows/believes
φ because of justification J”. The most robust justification for a statement is a proof,
We use LP, the logic of proofs to formalize statements of the form “J is a proof of φ”.
LP is chronologically the first member of the Justification Logic family, introduced in
1995 by Artemov([3]). Its original purpose was to demonstrate the connection between
modal logic S4, intuitionistic logic and Peano arithmetic. Since then, several variations
have been introduced (ex. [4, 7]), which resulted in a wide system of logics to model
the interaction between belief, knowledge and justifications. Justification formulas are
formed using propositional connectives and justification terms: if φ is a formula and t
a term, t :φ is a formula. For a comprehensive review of Justification Logic, see [5].

An important aspect of Justification Logic is its complexity properties. It is known
that all LP theorems can be easily translated to S4 theorems by replacing each term
by a box (!) and on the other hand all S4 theorems can be translated to LP theo-
rems by replacing each box by an appropriate term. This was already proven in the
original paper by Artemov ([3]). Ladner showed in [16] that S4-satisfiability (and thus,
provability) is PSPACE-complete. Kuznets proved that LP-provability is in Πp

2 ([12]).

1

Furthermore, if φ is LP-provable, then there is a term t such that t : φ is provable and
vice-versa. Krupski has shown that LP-provability for formulas of the form t : φ is in
coNP ([11]). There is an easily recognizable class of terms t so that if a formula φ is
provable then t :φ is provable for some such t and the provability of t :φ is in P([6]). Of
course, this does not simplify theoremhood of S4 (which is PSPACE-complete), but it
demonstrates the complexity-theoretic difference between determining the provability
of a modal statement and determining the provability of a modal statement when given
appropriate evidence.

Our aim is to study epistemic situations where justifications matter. Thus it is useful
to consider situations with multiple agents and also allow influence among the agents’
justifications and beliefs. Yavorskaya in [21] presents two-agent versions of LP with
interactions between the agents (agent 1 and agent 2). To describe the interactions, she
introduced new operators on terms. In LP2 the two agents do not interact with each
other at all. In LP2

↑ one of the agents (agent 2) is more knowledgeable than the other: a

justification of φ for agent 1 can be converted to a justification of φ for agent 2. In LP2
! ,

agent 2 is aware of the knowledge of agent 1: if agent 1 has justification t of a formula
φ, then agent 2 has justification of the fact that agent 1 has justification t of a formula
φ. LP2

↑↑ and LP2
!! respectively extend these logics by also incorporating the converse of

these interactions (swapping 1 and 2). We claim this is an important approach that
will further illuminate the role of justification in epistemological situations.

In this paper we extend the above (from LP) to several justification logics and to
additional two-agent versions. We present Yavorskaya’s systems in a simplified notation.
In fact we only keep the single-agent operators and allowing the two agents to use
the same set of justifications. This results in a simpler system that resembles the
original, single-agent one, and yet has the intrinsic features of a multi-agent system
with interacting agents. We then provide a tableau procedure similar to the one that
Kuznets used in [13]. Then we introduce and examine two-agent versions of other
justification logics and extend the semantics and tableau rules for these cases. Finally,
we examine what happens when each agent can be based on a different justification
logic. We thus introduce and study two-agent logics which are combinations of two
different justification logics. For some of these logics we discover a complexity jump to
PSPACE-completeness. This is a different situation from what is the case for all (pure)
justification logics whose complexity has been studied.

Other multi-agent justification logics have already been introduced (for example,
see [8, 20]). They present a different approach. This paper focuses on interactions
between the agents’ justifications and not on any actual interaction between the agents
themselves.

2 Two-agent Variations of LP

In this section we present Yavorskaya’s systems in a simplified notation. In fact we
only keep the single-agent operators and allow the two agents to use the same set of
justifications. This results in a simpler system that resembles the original, single-agent
one. We then provide a tableau procedure similar to the one that Kuznets used in [13].

2

2.1 Syntax, Axioms, and Semantics

We start by introducing the family of two-agent variations of LP we are about to study.
We provide the syntax of the formulas, the axioms and rules of each logic and their
semantics. The proofs of the propositions that appear in this section are very similar
to the proofs of corresponding results for the single-agent logics and the reader can see
[5] or [13] for an overview.

The justification terms of the language L2 include all constants c1, c2, c3, . . . and
variables x1, x2, x3, . . . and if t1 and t2 are terms, then the following are also terms:
[t1 + t2], [t1 · t2], !t1.1 The set of terms will be referred to as Tm. We also use a set
SLet of propositional variables, or sentence letters. These will usually be p1, p2,
Formulas of the language L2 include all propositional variables and if φ,ψ are formulas,
t is a term, and i ∈ {1, 2}, then the following are also formulas of L2: ⊥, φ → ψ, t :iφ.
The remaining propositional connectives, whenever needed, are treated as constructed
from → and ⊥ in the usual way: ¬a := a → ⊥, a∨b := ¬a → b, and a∧b := ¬(¬a∨¬b).

The function of the operators ·,+ and ! becomes clear below as described by the
axioms. Intuitively, · applies a justification for a statement A → B to a justification
for A and gives a justification for B. Using + we can combine two justifications and
have a justification for anything that can be justified by any of the two initial terms
- much like the concatenation of two proofs. Finally, ! is a unary operator called the
proof checker. Given a justification t for φ, it gives another one, !t, for the fact that t
is a justification for φ.

The logics use modus ponens as a derivation rule and some of the following axioms:

Propositional Axioms: Finitely many schemes of classical propositional logic;

Application: s :i (φ → ψ) → (t :iφ → [s · t] :iψ);

Concatenation: s :iφ → [s+ t] :iφ, s :iφ → [t+ s] :iφ;

Factivity: t :iφ → φ;

Positive Introspection: t :iφ →!t :i t :iφ;

12-Verification: t :1φ →!t :2 t :1φ;

21-Verification: t :2φ →!t :1 t :2φ;

12-Conversion: t :1φ → t :2φ;

21-Conversion: t :2φ → t :1φ,

where in the above, φ and ψ are formulas in L2, s, t are terms and i ∈ {1, 2}.
(LP2)∅ is the logic with modus ponens as a derivation rule and the Propositional Axioms,
Application, Concatenation, Factivity and Positive Introspection as axioms. (LP2

!)∅
is (LP2)∅+ 12-Verification; (LP2

C)∅ is (LP2)∅+ 12-Conversion; (LP2
!!)∅ is (LP2)∅+ 12-

Verification + 21-Verification; (LP2
CC)∅ is (LP2)∅+ 12-Conversion + 21-Conversion.2

1[and] are used instead of parentheses inside justification terms. The purpose of this is to make it
easier to distinguish between formulas and terms. This is due to Sergei Artemov.

2The analogues of LP2
C and LP2

CC in [21] are called LP2
↑ and LP2

↑↑ respectively. ↑ is the conversion
operator, which we do not use, so for this paper we thought it more appropriate to use C instead of ↑.

3

A constant specification for a J from LP2, LP2
C , LP

2
CC , LP

2
! , and LP2

!! is any set

CS ⊆ {c :iA | c is a constant, A an axiom of J and i ∈ [n]}.

We say that axiom A is justified by a constant c for agent i, when c :iA ∈ CS.
A constant specification is: axiomatically appropriate if each axiom is justified by at

least one constant, schematic if every constant justifies only a certain number (possibly
zero) of schemes from the ones above (which implies that if c justifies A for i and B
results from A and substitution, then c justifies B for i) and schematically injective if
it is schematic and every constant justifies at most one scheme.

Let cl2(CS) be the smallest set such that CS ⊆ cl2(CS) and for every t :iφ ∈ cl2(CS),
it is also the case that for every j ∈ {1, 2}, !t :j t :iφ ∈ cl2(CS). Then, JCS is J∅ +R42CS ,
where R42CS introduces exactly the elements of cl2(CS).3

If we map each formula to a propositional formula by just removing all terms, it is
easy to see that each axiom is mapped to a propositional tautology and that modus
ponens preserves the mapping. Thus, we conclude that each of the logics defined above
is consistent. In fact, this reasoning can be applied to all the logics that will follow and
thus from now and on we will assume each logic we present is consistent.

The following proposition’s version for single-agent logics is a characteristic result
in justification logic and can be proven by induction on φ. It also holds for all the logics
presented above, as well as for the ones that follow.

Proposition 1. If CS is an axiomatically appropriate constant specification CS and
φ1, . . . ,φk ' φ, then for any i ∈ {1, 2}, there is some term t(t1, . . . , tk) depending on
terms t1, . . . , tk, such that t1 :iφ1, . . . , tk :iφk ' t(t1, . . . , tk) :iφ.

Proof. By induction on the proof of φ: If φ is an axiom, or introduced by R42CS ,
then by rule R42CS , the proposition holds. Furthermore the theorem obviously holds
for any φi, i ∈ [k]. This covers the base cases. Using the application axiom, if φ
is the result of ψ,χ and modus ponens, since the proposition holds for ψ,χ, then
t1 :i φ1, . . . , tk :i φk ' r :i ψ, s :i χ and thus for t = [r · s], t1 :i φ1, . . . , tk :i φk ' t :i φ
and this completes the inductive proof.

We now introduce models for our logic. In the single-agent cases, M-models (intro-
duced in [15, 18]) and F-models (introduced in [10, 15, 19]) are used and they are both
useful in the study of complexity issues. For the purposes of this section, M-models are
sufficient.

Definition 1. An M-model M for J is a triple (A1,A2,V), where for i ∈ {1, 2},
Ai : (Tm × Ln) −→ {true, false} and V : SLet −→ {true, false}. Furthermore, A1,A2

will often be seen and referred to as A : {1, 2}×Tm×L2 −→ {true, false} and A is called
an admissible evidence function. Additionally, A must satisfy the following conditions
for every i, j ∈ {1, 2}:

Application closure: for any formulas φ,ψ and justification terms t, s,
if Ai(s,φ → ψ) = true and Ai(t,φ) = true, then Ai(s · t,ψ) = true.

3A motivation for R42CS is that we want all agents to be aware of propositions provable in the logic.

4

Sum closure: for any formula φ and justification terms t, s,
if Ai(t,φ) = true or Ai(s,φ) = true, then Ai(t+ s,φ) = true.

CS-closure: for any t :iφ ∈ cl2(CS), Ai(t,φ) = true.

Positive Introspection Closure: If Ai(t,φ) = true, then Ai(!t, t :iφ) = true.

Verification Closure: If the logic includes ij-Verification and Ai(t,φ) = true, then
Aj(!t, t :iφ) = true.

Conversion Closure: If the logic includes ij-Conversion, then
if Ai(t,φ) = true, then Aj(t,φ) = true.

Truth in the model is defined in the following way:

• M *|= ⊥.

• If p is a propositional variable, then M |= p iff V(p) = true

• If φ,ψ are formulas, then M |= φ → ψ if and only if M |= ψ, or M *|= φ.

• If φ is a formula and t a term, then M |= t :iφ if and only if Ai(t,φ) = true and
M |= φ.

It can be proven that each of these logics is sound and complete with respect to its
M-models. The reader is referred to the corresponding proofs for the single-agent cases,
or to section 4, where we prove a different, general result, but that proof can be altered
and simplified to prove soundness and completeness for this case as well.

2.2 Tableau rules

In the same way as in [13], we present tableau rules to establish that satisfiability for
these variants of two-agent LP is in Σp

2, as it was argued in [21].
The formulas used in the tableau procedure below are prefixed by T or F . The

tableau procedure includes rules to decompose an L2 formula to simpler subformulas.
These are the following. For any term t, agent i = 1, 2 and formulas φ,ψ,

T φ → ψ

F φ | T ψ

F φ → ψ

T φ
F ψ

T t :iφ

T φ
T ∗i (t,φ)

F t :iφ

F φ | F ∗i (t,φ)

The two rules on the left will be referred to as the propositional rules and the ones
on the right as the term rules. Formulas of the form ∗i(t,φ), where t :iφ a formula, are
called ∗-expressions. The tableau procedure for φ starts from T φ and using the rules
above it (non-deterministically and in polynomial time) constructs a branch. If at some
point the branch includes T ψ and F ψ at the same time, the branch is propositionally
closed. If we reach a branch closed under the rules (which we will call complete) and
not propositionally closed, then it is accepting if and only if there is some admissible
evidence function, A, such that for every T ∗i (t,ψ) in the branch, Ai(t,ψ) = true and
for every F ∗i (t,ψ) in the branch, Ai(t,ψ) = false. This last condition is in coNP, by a
straightforward variation of the algorithm from [13] and [17], so confirming that there is

5

Base logic Contributes the Axioms:

J = J No additional axioms
J = JD Consistency
J = JT Factivity
J = J4 Positive Introspection
J = JD4 Consistency and

Positive Introspection
J = LP Factivity and

Positive Introspection

The Logic’s Subscript Contributes the Axioms:

J 2 No additional axioms
J 2
! 12-Verification

J 2
C 12-Conversion

J 2
!! 12-Verification and

21-Verification
J 2
CC 12-Conversion and

21-Conversion

Figure 1: The axioms for logic (J 2
s)CS , where J ∈ {J, JD, JT, J4, JD4, LP} and the

subscript s is either empty or one of !, C, !!, CC.

an accepting branch for a formula φ is in Σp
2. We can furthermore construct a model for

φ from a complete accepting branch and vice-versa: to construct a model, V(p) = true
iff T p appears and A is guaranteed by the acceptance condition, while to construct a
branch, make sure the model satisfies all that is nondeterministically produced by the
rules - for T ∗i (t,ψ) this means Ai(t,ψ) = true and for F x it means T x is not satisfied.
What remains is an inductive argument that the model then satisfies φ, or respectively
that the branch is accepting. This settles that satisfiability for any of these logics is in
Σp
2.

3 Two-agent Versions of Other Justification Logics

We can easily define two-agent versions of other justification logics as well. For each of
J, JT, J4, JD, and JD4 as the base logic J , we define J 2, J!, J!!, JC and JCC . If JT
is the base logic, then it suffices to remove the Positive Introspection axiom from the
corresponding logic’s axioms; if J4 is the base logic we remove the Factivity axiom; by
removing both the Factivity and the Positive Introspection Axiom, J is the base logic.
When JD4 is the base logic (resp. JD), then in addition to removing Factivity (resp.
and Positive Introspection), we need to add Consistency to the set of axioms: ¬t :i⊥.
The tables of figure 1 give the axioms for each of these two-agent logics, depending on
the base logic and the interactions.

In the same way, M-models for logics based on JT result from the M-models for the
corresponding logics based on LP, as defined in the previous section by removing the
Positive Introspection Closure condition for the admissible evidence functions. In fact,

6

whenever a logic lacks Positive Introspection, M-models for that logic do not have the
Positive Introspection closure condition for the admissible evidence functions. Whenever
the logic lacks Factivity, the definition of truth in the model changes to M |= t :iφ if and
only if Ai(t,φ) = true. This is enough to define M-models for the two-agent versions of
J, JT, and J4, but M-models for JD and JD4 must also include the Consistent Evidence
condition for the admissible evidence functions: Ai(t,⊥) = false.

To decide satisfiability for each of these logics, we have three cases. In the case of
the base logic being JT, we can simply use the same tableau rules as for the two-agent
logics based on LP. The difference in the base logic is reflected in the procedure that
handles the construction of the admissible evidence functions. If the base logic is either
J or J4, we have to change the term rules to the following ones and the rest is the same:
for any term t, agent i = 1, 2 and formula φ,

T t :iφ

T ∗i (t,φ)
F t :iφ

F ∗i (t,φ)
The third case is when the base logic has the Consistency axiom, namely, it is

either JD or JD4. Unfortunately in this case we cannot simply make a small change
to the tableau rules to decide satisfiability. The logics based on JD and JD4 include
the additional Consistent Evidence condition, which is not a closure condition and thus
cannot be handled by a straightforward variation of the above procedures. For these
logics we will adjust the methods introduced in [13] for JD and in [1] for JD4.

3.1 Satisfiability of Two-agent Logics Based on JD and JD4

To study the satisfiability of the two-agent versions of JD and JD4 we introduce F-
models for these logics. F-models for LP were introduced by Fitting in [10] and are
a combination of Kripke models and M-models. Let J be one of (JD2)CS , (JD

2
C)CS ,

(JD2
CC)CS , (JD

2
!)CS , (JD

2
!!)CS , (JD4

2)CS , (JD4
2
C)CS , (JD4

2
CC)CS , (JD4

2
!)CS , and (JD42!!)CS .

Definition 2. An F-model M for J is a tuple (W,R1, R2,A1,A2,V), where W a
nonempty set of states (occasionally referred to as worlds), R1, R2 ⊆ W 2 are binary
relations on W , for i ∈ {1, 2}, Ai : (Tm×Ln) −→ 2W , and V : SLet −→ 2W . Further-
more, A1,A2 will often be seen and referred to as A : {1, 2} × Tm × L2 −→ 2W and
A is called an admissible evidence function. Additionally, A must satisfy the following
conditions for every i, j ∈ {1, 2}:

Application closure: for any formulas φ,ψ and justification terms t, s,

Ai(s,φ → ψ) ∩Ai(t,φ) ⊆ Ai(s · t,ψ).

Sum closure: for any formula φ and justification terms t, s,

Ai(t,φ) ∪Ai(s,φ) ⊆ Ai(t+ s,φ).

CS-closure: for any t :iφ ∈ cl2(CS), Ai(t,φ) = W.

Positive Introspection Closure: If the logic includes the Positive Introspection ax-
iom (is based on JD4), then Ai(t,φ) ⊆ Ai(!t, t :iφ).

7

Distribution: If the logic includes Positive Introspection, then for any formula φ, jus-
tification term t, and a, b ∈ W , if aRib and a ∈ Ai(t,φ), then b ∈ Ai(t,φ).

Verification Closure: When a logic has ij-Verification, Ai(t,φ) ⊆ Aj(!t, t :iφ).

Conversion Closure: When a logic has ij-Conversion, Ai(t,φ) ⊆ Aj(t,φ).

V -Distribution: If the logic includes ij-Verification, then for any formula φ, justifi-
cation term t, and a, b ∈ W , if aRjb and a ∈ Ai(t,φ), then b ∈ Ai(t,φ).

The accessibility relations, R1, R2, must satisfy the following conditions: for every
i ∈ {1, 2},

• Ri must be serial (∀a ∈ W ∃b ∈ W aRib).

• If the logic includes the Positive Introspection axiom, then Ri must be transitive
(if aRibRic, then aRic).

• If the logic includes ij-Verification, then for any a, b, c ∈ W , if aRjbRic, we also
have aRic.

• If the logic includes ij-Conversion, then Rj ⊆ Ri.

Truth in the model is defined in the following way:

• M,u *|= ⊥.

• If p is a propositional variable, then M, u |= p iff u ∈ V(p)

• If φ,ψ are formulas, then M, u |= φ → ψ if and only if M,u |= ψ, or M, u *|= φ.

• If φ is a formula and t a term, then M, u |= t :i φ if and only if u ∈ Ai(t,φ) and
for every v ∈ W such that uRiv, M, v |= φ.

If (W,R1, R2,A1,A2,V) an F-model for logic J , then (W,R1, R2) is a frame for
J . (JD2)CS , (JD

2
C)CS , (JD

2
CC)CS , (JD

2
!)CS , (JD

2
!!)CS , (JD4

2)CS , (JD4
2
C)CS , (JD4

2
CC)CS ,

(JD42!)CS , and (JD42!!)CS are sound and complete with respect to their F-models, as
long as CS is axiomatically appropriate. They are also sound and complete w.r.to their
F-models that satisfy the Strong Evidence property: M, u |= t :iφ iff u ∈ Ai(t,φ). See
section 4 for a more formal treatment of this claim.

It is not hard to define F-models for the other logics as well. When instead of the
Consistency axiom the logic has the Factivity axiom, then R1, R2 need to be reflexive
instead of just serial. On the other hand, if the logic has neither Factivity nor Con-
sistency as axioms, then R1, R2 are neither required to be serial nor reflexive. Again,
these notions are made precise in section 4 for a more general case.

Now we look into the satisfiability problem for each of (JD2)CS , (JD
2
C)CS , (JD

2
CC)CS ,

(JD2
!)CS , (JD

2
!!)CS , (JD4

2)CS , (JD4
2
C)CS , (JD4

2
CC)CS , (JD4

2
!)CS , and (JD42!!)CS separately.

Actually, (JD2
CC)CS and (JD42CC)CS will not be considered, as they are essentially the

one-agent logics JDCS and JD4CS , respectively:4 for these logics, t :1 φ ↔ t :2 φ is a

4We would need to adjust CS for a single-agent logic, but it is not hard to imagine a straightforward
way to do this.

8

∗CS(F) Axioms: w ∗i (t,φ), where w ∈ W
and t :iφ ∈ cln(CS)

∗App(F):

w ∗i (s,φ → ψ) w ∗i (t,φ)
w ∗i (s · t,ψ)

∗Sum(F):

w ∗i (t,φ)
w ∗i (s+ t,φ)

w ∗i (s,φ)
w ∗i (s+ t,φ)

∗Dis(F): If (a, b) ∈ Ri and the logic has
Positive Introspection,

a ∗i (t,φ)
b ∗i (t,φ)

∗V(F): If the logic has ij-Verification,

w ∗i (t,φ)
w ∗j (!t, t :iφ)

∗C(F): If the logic has ij-Conversion,

w ∗i (t,φ)
w ∗j (t,φ)

∗V-Dis(F): If (a, b) ∈ Rj and the logic
has ij-Verification,

a ∗i (t,φ)
b ∗i (t,φ)

Figure 2: The ∗FCS(J)-calculus includes the above axioms and rules, for every
i, j ∈ {1, 2}, w ∈ W , s, t terms, φ,ψ formulas, where F = (W,R1, R2).

theorem for every t,φ, so there is no actual difference between the two agents.5 From
now and on we assume CS is axiomatically appropriate and schematic.

The ∗-calculus We introduce the ∗-calculus for logic J on frame F , an invaluable
tool when studying the complexity of justification logic. In the treatment of the logics
we have encountered so far the calculus was actually used silently in the background
without mentioning as part of the tableau procedures. The calculus is given in figure
2. The ∗-calculus was first introduced in [11], but its origins can be found in [18]. The
form on which the one in this section is based is from [13]. The following claims can be
proven with simple variations of the proofs in [11] and [13]. Notice that the calculus rules
correspond to the closure conditions of the admissible evidence functions. In fact and
because of this, given a frame F = (W,R1, R2) and a set S of ∗-expressions prefixed by
states of the frame, the function A such that Ai(t,φ) = {w ∈ W |S '∗FCS(J) w ∗i (t,φ)}
is an admissible evidence function and in fact it is the minimal admissible evidence
function such that for every w ∗i (t,φ) ∈ S, w ∈ Ai(t,φ).

If CS ∈ P, then deciding for some finite S and F if S '∗FCS(J) w ∗i (t,φ) is in NP. The
nondeterministic algorithm which decides derivability in the ∗-calculus, can first guess
the derivation tree, which is bounded in size by 2|t| · |F| and has ∗-expressions for nodes.
At this step the algorithm guesses and for every node v ∗j (s,ψ) it fills in v, j, s, but

5This is different from what is the case in [21], as there the conversion operator, ↑, keeps track of
justification conversions and each agent has their own separate set of terms.

9

with the exception of the formulas ψ. Then, the algorithm fills in these formulas for the
leaves of the tree by guessing an appropriate formula (or scheme), which could either
be an element of S, or in case s is a constant, the formula (scheme in this case - CS is
schematic) can be a product of R42CS . The algorithm then in turn and for each node
unifies the formulas of its children trying to result in a valid derivation of w ∗i (t,φ). If
it succeeds, then it accepts; otherwise it rejects.

When J , CS,F are clear from the context, ∗FCS(J) will simply be referred to as ∗.

We prove that satisfiability for the two-agent logics based on JD and JD4 is
in Σp

2. We look at each case separately.
For (JD2)CS we use the F-models presented above to give tableau rules. These rules

are:

w T φ → ψ

w F φ | w T ψ

w F φ → ψ

w T φ
w F ψ

w T t :iφ

w.i T φ
w T ∗i (t,φ)

w F t :iφ

w F ∗i (t,φ)

To test the satisfiability of φ, the tableau procedure starts from 0 T φ. When all
applicable rules have been applied, then we have a complete branch. If there are some
w T a and w F a in the branch then the branch is propositionally closed. If it is not
propositionally closed, then W is the set of world-prefixes appearing in the branch and
for i ∈ {1, 2},

Ri = {(w,w.i) ∈ W 2} ∪ {(w,w) ∈ W 2|w.i /∈ W}.

Then, F = (W,R1, R2) and V(p) = {w ∈ W |w T p appears in the branch}. Finally, let
S = {w ∗i (t,ψ)|w T ∗i (t,ψ) appears in the branch } and A be the admissible evidence
function such that

Ai(t,φ) = {w ∈ W |S '∗FCS(J) w ∗i (t,φ)}.

M = (W,R1, R2,A1,A2,V) is a model, as R1, R2 are serial and A is an admissible
evidence function and it is not hard to see by induction on the structure of formulas
ψ,ψ′ that for every w T ψ and w F ψ′ in the branch, M, w |= ψ and M, w *|= ψ′,
as long as there is no prefixed ∗-expression w F ∗i (t, υ) appearing in the branch
that w ∈ Ai(t, υ). Therefore, we say the branch is accepting exactly when it is not
propositionally closed and there is no prefixed ∗-expression w F e appearing in the
branch such that S '∗ w e.

If there is an accepting branch, then from the above we see that φ is satisfiable. On
the other hand it is not hard to see how to construct an accepting branch for φ given an
F-model for φ that satisfies the Strong Evidence property: we map each world prefix to a
world of the model such that 0 is mapped to a world satisfying φ and every w.i is mapped
to a world accessible through Ri from the world mapped from w. Then we ensure that
we only produce formulas w T ψ such that the world w maps to satisfies ψ and formulas
w F ψ such that the world w maps to does not satisfy ψ. Thus we ensure the branch is
accepting. That the number of formulas in the branch is polynomially bounded results
from the observation that the formulas prefixed by distinct world-prefixes are distinct -
assuming all subformulas of φ are distinct. This means that (JD2)CS-satisfiability for a
schematic and axiomatically appropriate CS ∈ P is in Σp

2.

10

For the cases that follow we use a similar tableau procedure and arguments for its
correctness and complexity. We will only explain what changes for each case as needed.

For (JD2
C)CS the situation is similar to the one of (JD2)CS . We can simplify the

tableau rules, by changing the term rules to the following ones (only one changes).
Then, M is defined as in the previous case, except

R1 = R2 = {(w,w.1) ∈ W 2} ∪ {(w,w) ∈ W 2|w.1 /∈ W}.

Then, trivially R2 ⊆ R1, so M is once more an F-model and the remaining reasoning
is as above.

w T t :iφ

w.1 T φ
w T ∗i (t,φ)

w F t :iφ

w F ∗i (t,φ)

In the case of (JD2
!)CS , notice the following. In a frame (W,R1, R2), because of

12Verification, whenever xR2yR1z, it must also be the case that xR1z. But this means
that whenever xR∗

2yR1z, it must also be the case that xR1z.6 Therefore we have the
following term rules.

w T t :1φ

w.σ.1 T φ
w T ∗1 (t,φ)

w T t :2φ

w.2 T φ
w T ∗2 (t,φ)

w F t :iφ

w F ∗i (t,φ)

for σ ∈ 2∗ and w.σ that has already appeared.7

The remaining reasoning remains similar. The difference from the (JD2)CS case is
that now in the definition of M, we also add w.2.1 to W for every w.2 ∈ W and

R1 = {(w,w.u.1) ∈ W 2|u ∈ 2∗} ∪ {(w,w) ∈ W 2| * ∃w.i ∈ W}.

R2 = {(w,w.2) ∈ W 2} ∪ {(w,w) ∈ W 2|w.2 /∈ W}

Thus, if aR2bR1c, then aR1c, so M is a model and we can continue as before.
The case of (JD2

!!)CS is somewhat different, as described by the following lemma. A
similar result with a similar proof appears in [1].

Lemma 2. If φ is (JD2
!!)CS-satisfiable, then there is some M = (W,R1, R2,A1,A2,V)

such that W = {u, a1, a2}, M, u |= φ, and Ri = {(x, ai) ∈ W 2}.

Proof. Consider an F-model for (JD2
!!)CS , M = (W,R1, R2,A1,A2,V), having the strong

evidence property and some u ∈ W such thatM, u |= φ. Let Φ be the set of subformulas
of φ of the form t :i ψ. Let a0, b0 ∈ W such that uR1a0 and a0R2b0. Then, for k ∈ N,
let ak+1, bk+1 ∈ W be such that bkR1ak+1R2bk+1. Then, for every l, k ∈ N such that
l < k, u, al, blR1ak and u, al, blR2bk. For every t :1 ψ and t′ :2 ψ′ ∈ Φ, there is some
k ∈ N such that for every l ≥ k, M, al |= t :1ψ → ψ and M, bl |= t′ :2ψ′ → ψ′: if there
is some x ∈ N such that M, ax *|= t :1 ψ → ψ, then M, ax |= t :1 ψ and thus for every
y > x, M, ay |= ψ; the same reasoning can be applied for t′ :2 ψ′. Since Φ is finite,

6R∗ is the reflexive transitive closure of binary relation R.
7a∗ is the set of all strings using symbol a. If A a set and not a binary relation, then A∗ is the set

of strings using A as an alphabet.

11

there is some k ∈ N such that for every l ≥ k, and t :i ψ ∈ Φ, M, al |= t :i ψ → ψ. Let
W ′ = {u, ak, bk}, R′

1 = {(a, ak)|a ∈ W ′}, R′
2 = {(a, bk)|a ∈ W ′}, and V ′(p) = V(p)∩W ′.

A′
i(t,ψ) = Ai(t,ψ)∩W ′ and A′ is then an admissible evidence function. If not, it should

violate one of its closure conditions, but it is not hard to see that they are all satisfied -
in particular, V -Distribution is the only one affected by the accessibility relations, but
it comes down to “if a ∈ Ai(t,ψ)’, then a ∈ Ai(t,ψ)’.

Then, M′ = (W ′, R′
1, R

′
2,A′,V ′) is a (JD2

!!)CS-model and we can determine in a
straightforward way that M′, u |= φ.

Thus, for the tableau procedure for (JD2
!!)CS , we only allow three world prefixes:

0, 0.1 and 0.2. After the tableau procedure runs, we can define M as usual, except
W = {0, 0.1, 0.2}, Ri = W × {0.i}.

w T t :iφ

0.i T φ
w T ∗i (t,φ)

w F t :iφ

w F ∗i (t,φ)

For the next four logics, based on JD4, we give the tableau rules in figure 3. The
reasoning behind them is an adaptation of the reasoning used for the logics that have
been treated so far. We only give the term rules for w T t :i φ for these logics, as the
propositional rules and the term rule for w F t :iφ remain the same:

w F t :iφ

w F ∗i (t,φ)

For these cases it is important to know the following lemma, as well as that every
logic that has been defined in this paper is complete with respect to its F-models that
have a finite amount of states. See corollary 6 for a proof of this claim.

Lemma 3. Let J be one of the two-agent logics based on JD4 from the ones that have
been defined in this section. If M = (W,R1, R2,A1,A2,V) is a J -model and W is finite,
then for every a ∈ W , i ∈ {1, 2}, there is some b ∈ W , such that aRibRib.

Proof. Consider such an F-model for J , M = (W,R1, R2,A1,A2,V). For some v ∈ W
let a10(v), a

2
0(v) ∈ W such that vR1a10(v) and vR2a20(v). Then, for every k ∈ N, let

a1k+1(v), a
2
k+1(v) ∈ W be such that a1k(v)R1a1k+1(v) and a2k(v)R2a2k+1(v). Then, for

every l, k ∈ N such that l < k, v, a1l (v)R1a1k(v) and v, a2l (v)R2a2k(v). But since W is
finite, there must be some a1l (v) = a1k(v), where l *= k and similarly there must be some
a2l (v) = a2k(v), where l *= k.

4 Combining Different Logics

The previous sections have dealt with two-agent versions of various justification logics.
In this section we turn our attention to the effect of having two agents that use a
different set of axioms, that is, to a combination of two different justification logics.
Given J1,J2 ∈ {J, JD, JT, J4, JD4, LP}, we define logics (J1 × J2)CS , (J1 ×! J2)CS ,
(J1 ×C J2)CS , (J1 ×!! J2)CS , and (J1 ×CC J2)CS .

In subsection 2.1 where we give the axioms for the two-agent version of LP, and at
the beginning of section 3, each of the Application, Concatenation, Factivity, Positive

12

(JD42)CS

w.i T t :iφ

w.i T φ
w.i T ∗i (t,φ)

w T t :iφ

w.i T φ
w T ∗i (t,φ)

where w is not of the form w′.i

The way to prove correctness for these tableau rules is similar to the one for JD2,
but this time when we construct a branch from a model, we consider a model with
a finite amount of states and with the strong evidence property and when prefix w
is mapped to state v, we map w.i to a state a such that vRiaRia - which we know
exists because of lemma 3.
On the other hand, when we construct a model from an accepting branch, we define
Ri = {(w,w.i) ∈ W 2} ∪ {(w.i, w.i) ∈ W 2} ∪ {(w,w) ∈ W 2| * ∃w.i ∈ W}.

(JD42C)CS

w T t :iφ

0.2 T φ
w T ∗i (t,φ)

The reasoning is the same as above, except in this case, we define W = {0, 0.2} and
R1 = R2 = W × {0.2}.

(JD42!)CS
w.i T t :iφ

w.i T φ
w.i T ∗i (t,φ)

w T t :1φ

w.s.2.1 T φ
w T ∗1 (t,φ)

where s ∈ {1, 2}∗ and
w.s.2 has already
appeared

w T t :iφ

w.i T φ
w T ∗i (t,φ)

where w is not of the form
w′.i

For this case when we construct the model M from the accepting branch, we also
add w.2.1 to W for every w.2 ∈ W and define

R1 = {(w,w.u.1) ∈ W 2} ∪ {(w.1, w.1) ∈ W 2}∪

{(w,w) ∈ W 2| * ∃w.i ∈ W}

and

R2 = {(w,w.2) ∈ W 2} ∪ {(w.2, w.2) ∈ W 2} ∪ {(w,w) ∈ W 2|w.2 /∈ W}.

Then, if aR2bR1c, then aR1c and if aRibRic, then aRic, thus M is a model; we
continue as usual.

(JD42!!)CS

w T t :iφ

0.i T φ
w T ∗i (t,φ)

See the case for (JD2
!!)CS .

Figure 3: Tableau rules for two-agent logics based on JD4.

13

Introspection, and Consistency axioms has a version for agent 1 and one for agent 2,
depending on what we substitute i for. We say agent 1 is based on logic J1 and agent
2 on logic J2 and we choose the axioms’ versions for each agent that correspond to
the logic the agent is based on. Thus, if J1 = J, we only keep agent 1’s version of
Application and Concatenation, while if J1 is JD4 we also keep agent 1’s version of
Positive Introspection and Consistency; similarly we choose the axioms for the second
agent. Then for (J1×!J2)CS we also include 12Verification, for (J1×C J2)CS we include
12Conversion, for (J1 ×!! J2)CS we include both 12Verification and 21Verification and
for (J1 ×CC J2)CS we include both 12Conversion and 21Conversion. CS is a constant
specification as it has been previously defined: a set of formulas of the form c :i A,
where c a constant and A an axiom. cl2(CS) is still the same. The axioms for each such
logic are provided in figure 4. For example, the logic (JT ×C JD4)CS is the logic with
modus ponens and R42CS as derivation rules and the following axioms:

Propositional Axioms: Finitely many schemes of classical propositional logic;

Application: s :i (φ → ψ) → (t :iφ → [s · t] :iψ);

Concatenation: s :iφ → [s+ t] :iφ, s :iφ → [t+ s] :iφ;

Factivity: t :1φ → φ;

Consistency: t :2⊥ → ⊥;

Positive Introspection: t :2φ →!t :2 t :2φ;

12-Conversion: t :1φ → t :2φ,

where in the above, φ and ψ are formulas in L2, s, t are terms, i ∈ {1, 2}.
As in the previous section, we do not concern ourselves with (J1 ×CC J2)CS , as it

is essentially a single-agent logic. We also leave it to the reader to extend M-models
for the new logics, as well as to give tableau rules based on these M-models for when
J1,J2 *= JD, JD4.

Definition 3. Let J1,J2 ∈ {J, JD, JT, J4, JD4, LP}, ×◦ ∈ {×,×!,×!!,×C ,×CC} and
J = (J1 ×◦ J2)CS . An F-model M for J is a tuple (W,R1, R2,A1,A2,V), where W a
nonempty set of states (occasionally referred to as worlds), for i ∈ {1, 2}, Ri ⊆ W 2 is
a binary relation on W , Ai : (Tm × Ln) −→ 2W , and V : SLet −→ 2W . Furthermore,
A1,A2 will often be seen and referred to as A : {1, 2}×Tm×L2 −→ 2W and A is called
an admissible evidence function. Additionally, A must satisfy the following conditions
for every i, j ∈ {1, 2}:

Application closure: for any formulas φ,ψ and justification terms t, s,

Ai(s,φ → ψ) ∩Ai(t,φ) ⊆ Ai(s · t,ψ).

Sum closure: for any formula φ and justification terms t, s,

Ai(t,φ) ∪Ai(s,φ) ⊆ Ai(t+ s,φ).

14

Logic Ji is Contributes the Axioms:

For all Ji

Propositional Axioms: Finitely many schemes of classical
propositional logic;
Application: s :i (φ → ψ) → (t :iφ → [s · t] :iψ);
Concatenation: s :iφ → [s+ t] :iφ, s :iφ → [t+ s] :iφ

Ji = J No additional axioms
Ji = JD Consistency: t :i⊥ → ⊥
Ji = JT Factivity: t :iφ → φ
Ji = J4 Positive Introspection: t :iφ →!t :i t :iφ
Ji = JD4 Consistency and Positive Introspection
Ji = LP Factivity and Positive Introspection

×◦ is Contributes the Axioms:

× No additional axioms
×! 12-Verification: t :1φ →!t :2 t :1φ
×C 12-Conversion: t :1φ → t :2φ
×!! 12-Verification and

21-Verification: t :2φ →!t :1 t :2φ
×CC 12-Conversion and

21-Conversion: t :2φ → t :1φ

Figure 4: The axioms for logic J = (J1×◦J2)CS , where J1,J2 ∈ {J, JD, JT, J4, JD4, LP},
×◦ ∈ {×,×!,×!!,×C ,×CC}.

CS-closure: for any t :iφ ∈ cl2(CS), Ai(t,φ) = W.

Positive Introspection Closure: When Ji is among J4, JD4, and LP,
Ai(t,φ) ⊆ Ai(!t, t :iφ).

Distribution: When Ji is among J4, JD4, and LP, then for any formula φ, justification
term t, and a, b ∈ W , if aRib and a ∈ Ai(t,φ), then b ∈ Ai(t,φ).

Verification Closure: When J has ij-Verification, Ai(t,φ) ⊆ Aj(!t, t :iφ).

Conversion Closure: When J has ij-Conversion, Ai(t,φ) ⊆ Aj(t,φ).

V -Distribution: If J includes ij-Verification, then for any formula φ, justification
term t, and a, b ∈ W , if aRjb and a ∈ Ai(t,φ), then b ∈ Ai(t,φ).

The accessibility relations, R1, R2, must satisfy the following conditions: for every
i ∈ {1, 2},

• If Ji ∈ {JT, LP}, then Ri must be reflexive.

• If Ji ∈ {JD, JD4}, then Ri must be serial (∀a ∈ W ∃b ∈ W aRib).

• If Ji ∈ {J4, JD4, LP}, then for any a, b, c ∈ W , if aRibRic, we also have aRic.

• If the logic includes ij-Verification, then for any a, b, c ∈ W , if aRjbRic, we also
have aRic.

15

• If the logic includes ij-Conversion, then Rj ⊆ Ri.

Truth in the model is defined in the following way:

• M,u *|= ⊥.

• If p is a propositional variable, then M, u |= p iff u ∈ V(p)

• If φ,ψ are formulas, then M, u |= φ → ψ if and only if M,u |= ψ, or M, u *|= φ.

• If φ is a formula and t a term, then M, u |= t :i φ if and only if u ∈ Ai(t,φ) and
for every v ∈ W such that uRiv, M, v |= φ.

Proposition 4. Let J1,J2 ∈ {J, JD, JT, J4, JD4, LP}, ×◦ ∈ {×,×!,×!!,×C ,×CC} and
J = (J1 ×◦ J2)CS . Then, J is sound and complete with respect to its F-models.

Proof. To prove soundness, it suffices to show that all axioms are satisfied in all worlds of
all models and that the inference rules preserve validity. LetM = (W,R1, R2,A1,A2,V)
be a model for J . M will satisfy all axioms of J in all of its worlds:

Application: If M, a |= s :i (φ → ψ) and M, a |= t :iφ, then a ∈ Ai(s,φ → ψ)∩Ai(t,φ)
and for every b ∈ W , if aRib, then M, b |= φ → ψ and M, b |= φ. Therefore, from
the definition of an F-model, a ∈ Ai(s·t,ψ) and if b ∈ W and aRib, thenM, b |= ψ.
Therefore, M, a |= [s · t] :iψ.

Concatenation: If M, a |= t :i φ or M, a |= s :i φ, then a ∈ Ai(t,φ) ∪Ai(s,φ) and for
every b ∈ W , if aRib, then M, b |= φ. Then, a ∈ Ai(t+ s,φ) and for every b ∈ W ,
if aRib, then M, b |= φ. This means that M, a |= [t+ s] :iφ.

Positive Introspection: See Verification.

Consistency: If M, a |= t :i⊥ and Ji ∈ {JD, JD4}, then by the definition there is some
b, accessible from a, such that M, b |= ⊥, a contradiction.

Factivity: If M, a |= t :i φ and Ji, then since Ri is reflexive, aRia and therefore,
M, a |= φ.

Verification: If ×◦ ∈ {×!,×!!}, J has ij-Verification as an axiom, and M, a *|=!t :j t :iφ,
then either a *∈ Aj(!t, t :i φ), in which case a *∈ Ai(t,φ), or there is some b ∈ W
s.t. aRib and M *|= t :i φ. This last case means that either b *∈ Ai(t,φ), in which
case, by V -Distribution, a *∈ Ai(t,φ), or that there is some c ∈ W , s.t. bRic and
M, b *|= φ. Then, aRic *|= φ. In all these cases, we can conclude that M, a *|= t :iφ.

Conversion: If J has ij-Conversion, then since Rj ⊆ Ri and Ai(t,φ) ⊆ Aj(t,φ), if
M, a |= t :iφ, then M, a |= t :j φ.

By the CS-closure condition of the admissible evidence function and the validity of the
axioms, the rule R42CS produces only valid formulas. Finally, modus ponens trivially
preserves validity.

Completeness will be proven using a canonical model construction. Let W be the
set of all maximal consistent subsets of L2. We know that W is not empty, because J

16

is consistent. For Γ ∈ W and i ∈ {1, 2}, let Γ#i = {φ ∈ L2|∃t ∈ Tm t :iφ ∈ Γ}. For any
i ∈ {1, 2}, Ri is a binary relation on W , such that ΓRi∆ if and only if Γ#i ⊆ ∆. Also,
for i ∈ {1, 2}, let Ai(t,φ) = {Γ ∈ W |t :iφ ∈ Γ}. Finally, V : Slet −→ P(W) is such that
V(p) = {Γ ∈ W |p ∈ Γ}. The canonical model is M = (W,R1, R2,A1,A2,V).

Define the relation between worlds of the canonical models and formulas of L2, |=,
as in the definition of models.

Lemma 5 (A Truth Lemma). For any Γ ∈ W , φ ∈ L2,

M,Γ |= φ ⇐⇒ φ ∈ Γ.

Proof. By induction on the structure of φ. The cases for φ = p, a propositional variable,
⊥, or ψ1 → ψ2, are immediate from the definition of V and |=.
If φ = t :iψ, then

M,Γ |= t :iψ ⇒ Γ ∈ Ai(t,ψ) ⇔ t :iψ ∈ Γ.

Furthermore,

t :iψ ∈ Γ ⇒ ∀∆ ∈ W (ΓRi∆ → ψ ∈ ∆) ⇒ ∀∆ ∈ W (ΓRi∆ → ∆ |= ψ)

and finally,

Γ ∈ Ai(t,ψ) and ∀∆ ∈ W (ΓRi∆ → ∆ |= ψ) ⇒ M,Γ |= t :iψ,

which completes the proof.

The canonical model is, indeed, a model for J . To establish this, we must show that
the conditions expected from R1, R2 and A1,A2 are satisfied.
First, the admissible evidence function conditions:

Application closure: If Γ ∈ Ai(s,φ → ψ)∩Ai(t,φ), then s :i (φ → ψ), t :iφ ∈ Γ, there-
fore, because of the application axiom, [s·t] :iψ ∈ Γ, concluding that Γ ∈ Ai(s·t,ψ).

Sum closure: If Γ ∈ Ai(t,φ), then t :i φ ∈ Γ, so, by the Concatenation axiom,
[s+ t] :iφ, [t+ s] :iφ ∈ Γ, therefore, Γ ∈ Ai(t+ s,φ) ∩Ai(s+ t,φ).

Positive Introspection closure: If Ji has Positive Introspection and Γ ∈ Ai(t,φ),
then t :i φ ∈ Γ and because of Positive Introspection, !t :i t :i φ ∈ Γ, therefore,
Γ ∈ Ai(!t, t :iφ).

CS closure: Since any Γ ∈ W must include all formulas produced by rule R42CS , it is
easy to see that this condition is satisfied.

Distribution: If Ji has Positive Introspection, ΓRi∆, and Γ ∈ Ai(t,φ), then t :iφ ∈ Γ
and by Positive Introspection, !t :i t :iφ ∈ Γ, thus t :iφ ∈ Γ#i ⊆ ∆, concluding that
∆ ∈ Ai(t,φ).

Verification closure: If J has ij-Verification and Γ ∈ Ai(t,φ), then t :i φ ∈ Γ and
because of ij-Verification, !t :j t :iφ ∈ Γ, therefore, Γ ∈ Aj(!t, t :iφ).

Conversion closure: If Γ ∈ Ai(t,φ), then t :i φ ∈ Γ and because of ij-Conversion,
t :j φ ∈ Γ, therefore, Γ ∈ Aj(t,φ).

17

V -Distribution: If ΓRj∆ and Γ ∈ Ai(t,φ), then t :i φ ∈ Γ and by ij-Verification,
!t :j t :iφ ∈ Γ, thus t :iφ ∈ Γ#j ⊆ ∆, concluding that ∆ ∈ Ai(t,φ).

Finally, to complete the proof, we must prove that R1, R2 satisfy the necessary
conditions:

If JI ∈ {JT, LP}, then Ri must be reflexive. For this, we just need to prove that if
Γ ∈ W , then Γ#i ⊆ Γ. If φ ∈ Γ#i , then there is some justification term, t, for
which t :i φ ∈ Γ. Because of the factivity axiom, ¬φ *∈ Γ, because {t :i φ,¬φ} is
inconsistent. Therefore, because Γ is maximal consistent, φ ∈ Γ.

If Ji ∈ {JD, JD4}, then Ri is serial. To establish this, we just need to show that Γ#i

is consistent. If it is not, then there are formulas φ1, . . . ,φk ∈ Γ#i s.t.

φ1, . . . ,φk ' ⊥.

This means that there are t1 :iφ1, . . . tk :iφk ∈ Γ, s.t.

t1 :iφ1, . . . tk :iφk ' t(t1, . . . , tk) :i⊥

(by proposition 1 and because CS is axiomatically appropriate), which is a con-
tradiction.

If Ji has Positive Introspection and ΓRi∆RiE, then ΓRiE. If t :i φ ∈ Γ, then
!t :i t :i φ ∈ Γ. Therefore, t :i φ ∈ Γ#i . So, if ΓRi∆, then t :i φ ∈ ∆. So,
Γ#i ⊆ ∆#i and if ∆RiE, then ΓRiE.

If J has ij-Verification and ΓRj∆RiE, then ΓRiE. If t :i φ ∈ Γ, then !t :j t :i φ ∈ Γ.
Therefore, t :iφ ∈ Γ#j . So, if ΓRj∆, then t :iφ ∈ ∆. So, Γ#i ⊆ ∆#i and if ∆RiE,
then ΓRiE.

If J has ij-Conversion, then Rj ⊆ Ri. From ij-Conversion, it is apparent that for any
Γ ∈ W , Γ#i ⊆ Γ#j . Therefore, Rj ⊆ Ri.

Finally, notice that the canonical model has the strong evidence property: if Γ ∈ Ai(t,φ)
then t :iφ ∈ Γ and by the Truth Lemma, Γ |= t :iφ.

Corollary 6. Let J be a two-agent justification logic as in the assumptions of propo-
sition 4. If CS is axiomatically appropriate and φ is J -satisfiable, then φ is satisfiable
by an F-model for J of at most 2|φ| states which has the strong evidence property.

Proof. Let M = (W,R1, R2,A1,A2,V) be the canonical model from the proof of propo-

sition 4, Mf = (W f , Rf
1 , R

f
2 ,A

f
1 ,A

f
2 ,Vf), where W f is the set of all maximally consis-

tent sets of subformulas of φ, for all i ∈ {1, 2}, X,Y ∈ Wf ,

• XRf
i Y iff there is some X ′ ∈ W such that X ⊆ X ′, for every Y ′ ∈ W such that

Y ⊆ Y ′ and X ′RiY ′;

• X ∈ Af
i (t,ψ) iff for every X ⊆ X ′ ∈ W , X ′ ∈ Ai(t,ψ) and

• X ∈ Vf (p) iff for every X ⊆ X ′ ∈ W , X ′ ∈ V(p).

18

Then, define Mf |= ψ in the usual way as for models. Notice that since the elements
of Wf are maximally consistent w.r.t. subformulas of φ, for every set Ψ of subformulas
of φ, Ψ ⊆ X ∈ Wf iff for every X ⊆ Γ ∈ W , Ψ ⊆ Γ. Also, for every X ∈ W f , let
X = {ψ ∈ L2|X ' ψ}. Then, for every X,Y ∈ Wf , propositional variable p and t :i ψ

subformula of φ, X ∈ Af
i (t,ψ) iff t :iψ ∈ X, and X ∈ Vf (p) iff p ∈ X.

Furthermore, XRf
i Y iff X

#i ⊆ Y : if XRf
i Y , then there is some X ′ ∈ W such that

X ⊆ X ′ and for every Y ′ ∈ W for which Y ⊆ Y ′, X ′RiY ′. Then, for every Y ′ ∈ W for

which Y ⊆ Y ′, X
#i ⊆ X ′#i ⊆ Y ′, so X

#i ⊆ Y . On the other hand, if X
#i ⊆ Y , then

let G = X ∪ {¬t :j ψ ∈ L2|t :j ψ /∈ X}. Then G is consistent (let AG
j (t,ψ) = true iff

t :j ψ ∈ G, so (AG,Vf) |= G) and can be expanded to a maximally consistent X ′ ∈ W .

X ′#i = X
#i ⊆ Y ⊆ Y ′ for every Y ′ ∈ W for which Y ⊆ Y ′. Thus, XRf

i Y .
It is not hard to follow the proof of lemma 5 to prove that for every subformula

ψ of φ and X ∈ W f , X |= ψ iff ψ ∈ X and then continue by following the proof of
proposition 4 to complete this one.

Now we take cases and look at each logic. As in the definition of F-models, let
J1,J2 ∈ {J, JD, JT, J4, JD4, LP}, ×◦ ∈ {×,×!,×!!,×C ,×CC}, J = (J1 ×◦ J2)CS .

No interactions: ×◦ = ×. In this case, since there are no interactions we simply use
the usual rule for w F t :iψ that gives w F ∗i(t,ψ) and one rule for each agent i depending
on what Ji is. These are given in the following together with the corresponding Ji. The
reasoning follows the one for the case of (JD2)CS , except for the case when Ji = JD4,
where when we construct an accepting branch from a model (of finite states and with
the strong evidence property), we can use lemma 3, which holds for Ri and thus if we
map w to a we map w.i to some b such that aRibRib.

w T t :iφ

w T ∗i (t,φ)
J

w T t :iφ

w.i T φ
w T ∗i (t,φ)

JD
w T t :iφ

w T φ
w T ∗i (t,φ)

JT

w T t :iφ

w T ∗i (t,φ)
J4

w T t :iφ

v.i T φ
w T ∗i (t,φ)

JD4

where if w of the form w′.i,
then v = w′ and otherwise
v = w

w T t :iφ

w T φ
w T ∗i (t,φ)

LP

Verification: ×◦ = ×! or ×◦ = ×!!. When ×◦ = ×!! and J1, J2 are among JD, JT,
JD4, and LP, it is not hard to see that lemma 2 is true for J as well and we can thus give
tableau rules similar to the ones for (JD2

!!)CS .
8 On the other hand if one of the two agents

is based on J or J4, then we can use the same rules and reasoning as for the case when
×◦ = ×. Thus we only examine the cases when ×◦ = ×! and J1,J2 ∈ {JD, JT, JD4, LP}.
For these cases we can use the same rules as in the case where ×◦ = × for J2 as well as

8In fact if one of J1,J2 is JT or LP, then only up to two worlds are required in the model, as these
logics require reflexivity and not seriality of their accessibility relation.

19

one of the following two rules for J1. The first should be used if J1 = JD, the second
one if J1 ∈ {JT, LP} and the third one should be used if J1 = JD4.

w T t :1φ

w.s.1 T φ
w T ∗1 (t,φ)

w T t :1φ

w.s T φ
w T ∗1 (t,φ)

w T t :1φ

v.1 T φ
w T ∗1 (t,φ)

where for the first two rules, s ∈ 2∗ and w.s has already appeared and for the third one,
either w of the form 0.a, where a ∈ 2∗ and v = w.s where s ∈ 2∗ and w.s has already
appeared, or w of the form 0.w1.1.w2 (and w1, w2 ∈ 2∗) and v = 0.w1.

The argument for this case is similar to the ones that have already been covered.
To justify the third rule, which is different from the ones we have encountered, we give
the following lemma:

Lemma 7. 9 Let J2 ∈ {JD, JT, JD4, LP} and J = (JD4×!J2)CS , where CS axiomatically
appropriate. Let F = (W,R1, R2) be a finite J-frame. Then, for every u ∈ W there is
some v ∈ W such that uR1vR1v and for every x, y ∈ W , if x, vR1y, then xR1v.

Proof. Let uR1v1. For every k ∈ N, if there is some x, y ∈ W , where x, vkR1y, and not
xR1vk, then let vk+1 = y (notice that then for every a ∈ W , if vk+1R1a, then xR1a),
otherwise vk+1 = vk. Since W is finite, there is some l ∈ N, such that for every k ≤ l,
vk = vl.

Then, when constructing a branch from a model, we map w.1 to such a v and when
we construct a model from an accepting branch, we can define W to be the set of all
world prefixes that appear in the branch as well as 0.s.1 for every s ∈ 2∗ such that no
world prefix 0.s.i where i ∈ {1, 2} appears and

R1 = {(w,w.u.1) ∈ W 2} ∪ {(w.1.u, w.1) ∈ W 2}.

Conversion: ×◦ = ×C . If J2 ∈ {JT, LP} then J ' t :1φ → φ. Thus if J1 ∈ {JD, JD4},
then the Consistency condition of M-models is redundant and thus we can use the
tableau rules based on M-models we already used for ((J1 + Factivity) ×C J2). The
cases J1 ∈ {J, JD, JT} or J2 ∈ {J, JT, JD4, J4, LP} are left to the reader and the only
cases that will interest us are the ones where J2 = JD and J1 ∈ {J4, JD4, LP}. In
fact, for these cases and in contrast to all other cases we have studied, J-satisfiability is
PSPACE-complete. We provide the following tableau rules for (JD4 ×C JD)CS , leaving
to the reader to complete the proof and to adjust these to the other cases. Notice that
we can keep exactly one world-prefix in memory each time: the only part of the process
which is affected by the frame is the application of rules ∗Dis(F) and ∗V-Dis(F), but
these can only be applied to a ∗1 (t,ψ), which means we can push all applications
∗Dis(F) and ∗V-Dis(F) to the leaves of the ∗-derivation, where they are unnecessary,
as we can see from the following rules. Since all prefixes are 0.2 . . . 2, we don’t even need
to keep the prefix as is in memory, just its length, which gives us a bound on the space
we use. The proof of PSPACE-hardness for (JD4×C JD)CS-satisfiability then follows.

9Notice that this lemma also applies to the case of (JD42!)CS . Using it would make proving a
polynomial bound on the number of world prefixes easier.

20

w T t :2φ

w.2 T φ
w T ∗2 (t,φ)

w T t :1φ

w T ∗1 (t,φ)
w T !φ

w T ! ∗1 (t,φ)

w T !α

w.2 T α
w.2 T !α

where w.2 has already
appeared and α ei-
ther a formula or a ∗-
expression.

Informally, w T !α stands for v “satisfies” α for every wR1v. When running the
tableau we are not guaranteed it will terminate, but we can artificially terminate it after
a sufficient length of prefixes is reached (exponential in |φ|, enough to know we have
reached the same set of expressions twice), or consider an infinite branch, closed under
the rules. When constructing a model from a branch, W is the collection of prefixes
(possibly infinite) and R2 = {(w,w.2) ∈ W 2} ∪ {(w,w) ∈ W 2|w.2 /∈ W} and R1 the
transitive closure of R2: {(w,w.u) ∈ W 2|u *= ε} ∪ {(w,w) ∈ W 2|w.2 /∈ W}.

We now prove PSPACE-hardness for (JD4 ×C JD)CS-satisfiability. The proof is
by reduction from a deterministic Turing machine of two tapes (input and working
tape) using polynomial space. It closely resembles the one in [9] and has been used
in [2] in a more general form to prove similar results. Let the machine be (Q,Σ, δ, s),
where Q the set of states, Σ the alphabet, δ the transition function and s the initial
state. Let x = x1x2 · · ·x|x| be the input, where for every i ∈ {1, 2, . . . , |x|}, xi ∈ Σ.
Since the Turing machine uses polynomial space, there is a polynomial p, such that the
working tape only uses cells 1 to p(|x|) for an input x. For the input tape, we only need
cells 0 through |x| + 1, because the head does not go any further and an output tape
is not needed, since we are interested only in decision problems. Therefore, there are
Y,N ∈ Q, the accepting and rejecting states respectively. Let r1 = {0, 1, 2, . . . , |x|+ 1}
and r2 = {1, 2, . . . , p(|x|)}.

• t1[i], t2[j], for every i ∈ r1, j ∈ r2; t1[i] will correspond to the head for the first
tape pointing at cell i and similarly for t2[j],

• σ1[a, i],σ2[a, j], for every a ∈ Σ, i ∈ r1, j ∈ r2; σ1[a, i] will correspond to cell i in
the first tape having the symbol a and similarly for σ2[a, j] and the second tape,

• q[a], for every a ∈ Q; q[a] means the machine is currently in state a.

We need the following formulas. Intuitively, a state in a model for φ corresponds to
a configuration of our Turing machine. q ensures there is exactly one state at every
configuration; σ that there is exactly one symbol at every position of every tape; t that
for each tape the head is located at exactly one position; σ′ ensures that the only symbols
that can change from one configuration to the next are the ones located in a position
the head points at; ac ensures we never reach a rejecting state (therefore the machine
accepts); st starts the computation at the starting configuration of the machine; finally,
d ensures for each configuration that the next one is given by the transition function.
Then, if com = q ∧ σ ∧ t ∧ σ′ ∧ ac ∧ d,

φ = st ∧ com ∧ x :1 com

21

q =

∨

a∈Q
q[a]

 ∧
∧

a,b∈Q,
a '=b

¬ (q[a] ∧ q[b])

σ =
∧

j∈{1,2},
i∈rj

(
∨

a∈Σ
σj [a, i]

)
∧

∧

a,b∈Σ,
a '=b

¬ (σj [a] ∧ σj [b])

t =
∧

j∈{1,2}

∨

i∈rj

tj [i]

 ∧
∧

i,k∈rj
i '=k

¬ (tj [i] ∧ tj [k])

σ′ =
∧

j∈{1,2},
i,i′∈rj ,
i '=i′,
a∈Σ

[(
tj [i] ∧ σj [a, i

′]
)
→ x :2σj [a, i

′]
]

ac = ¬q[N],
st = φc0 , where φc0 describes the initial configuration of the machine,

d =
∧

(a,i1,i2)∈E×Σ×Σ,
j1∈r1,
j2∈r2

[
q[a] ∧ σ1[i1, j1] ∧ σ2[i2, j2] ∧ t1[j1] ∧ t2[j2] −→

x :2 (q[a1] ∧ σ2[k1, j2] ∧ t1[j1 +m1] ∧ t2[j2 +m2])

]

where (a1, k1,m1,m2) = δ(a, i1, i2).
For every configuration c of the Turing machine, there is a formula that describes it.

This formula is the conjunction of the following and from now and on it will be denoted
as φc: q[a], if a is the state of the machine in c; t1[i] and t2[j], if the first tape’s head
is on cell i and the second tape’s head is on cell j; σ1[a1, i1],σ2[a2, i2], if i1 ∈ r1, i2 ∈ r2
and a1 is the symbol currently in cell i1 of the first tape and a2 is the symbol currently
in cell i2 of the second tape. Then, st is φc0 , where c0 is the initial configuration for the
machine on input x.

Claim: If for some model M, w |= φ and for some u, wR1u and u |= φc and c1 is
the next configuration from c, then there is some w, uR1u1, such that u1 |= φc1 .
From this claim, it immediately follows that if φ is satisfiable, then the Turing machine
accepts its input. We now prove the claim. Because of formulas q,σ, t, in every state v,
such that wR1v, there is exactly one φc satisfied. There is some state u1, (because of
seriality of R2) such that wR2u1 and if u1 |= φa, then because of d, a will differ from
c in all respects δ demands; furthermore, because of σ′, a differs only in the ways δ
demands. Therefore, a = c1.

On the other hand, assuming that the Turing machine accepts x, given its compu-
tation path for x, we can construct the following model M = (W,R1, R2,A1,A2,A3,V)
for φ. W is the set of configurations in the computation tree; let R2 be minimal such
that if a is a configuration and b its next configuration, then aR2b; let R1 be the tran-
sitive closure of R1. Ai(t,ψ) = W for all i, t,ψ. V is defined to be such that M, a |= φa

22

(every φa is a conjunction of propositional variables). Then, it is not hard to see that
M, c0 |= φ.

To summarize the complexity results of this paper, we present the following theorem.

Theorem 8. Let J1,J2 ∈ {J, JD, JT, J4, JD4, LP}, ×◦ ∈ {×,×!,×!!,×C ,×CC}, and
J = (J1 ×◦ J2)CS , where CS a schematic, axiomatically appropriate constant specifica-
tion. If J2 = JD, J1 ∈ {J4, JD4, LP} and ×◦ = ×C , then J-satisfiability is PSPACE-
complete. In every other case, J-satisfiability is in Σp

2.

References

[1] Antonis Achilleos. A complexity question in justification logic. In Proceedings of
the 18th international conference on Logic, language, information and computation,
WoLLIC’11, pages 8–19, Berlin, Heidelberg, 2011. Springer-Verlag.

[2] Antonis Achilleos. Modal logics with hard diamond-free fragments. CoRR,
abs/1401.5846, 2014.

[3] Sergei Artemov. Operational modal logic. Technical Report MSI 95–29, Cornell
University, December 1995.

[4] Sergei Artemov. Explicit provability and constructive semantics. Bulletin of Sym-
bolic Logic, 7(1):1–36, March 2001.

[5] Sergei Artemov. The logic of justification. The Review of Symbolic Logic, 1(4):477–
513, December 2008.

[6] Sergei Artemov and Roman Kuznets. Logical omniscience as a computational
complexity problem. In Aviad Heifetz, editor, TARK, pages 14–23, 2009.

[7] Vladimir N. Brezhnev. On explicit counterparts of modal logics. Technical Report
CFIS 2000–05, Cornell University, 2000.

[8] Samuel Bucheli, Roman Kuznets, and Thomas Studer. Justifications for common
knowledge. Journal of Applied Non-Classical Logics, 21(1):35–60, January–March
2011.

[9] Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular
programs. Journal of computer and system sciences, 18(2):194–211, 1979.

[10] Melvin Fitting. The logic of proofs, semantically. Annals of Pure and Applied
Logic, 132(1):1–25, February 2005.

[11] Nikolai V. Krupski. On the complexity of the reflected logic of proofs. Theoretical
Computer Science, 357(1–3):136–142, July 2006.

[12] Roman Kuznets. On the complexity of explicit modal logics. In Peter Clote and
Helmut Schwichtenberg, editors, CSL, volume 1862 of Lecture Notes in Computer
Science, pages 371–383. Springer, 2000. Errata concerning the explicit counterparts
of D and D4 are published as [14].

23

[13] Roman Kuznets. Complexity Issues in Justification Logic. PhD thesis, CUNY
Graduate Center, May 2008.

[14] Roman Kuznets. Complexity through tableaux in justification logic. In Ple-
nary Talks, Tutorials, Special Sessions, Contributed Talks of Logic Colloquium (LC
2008), Bern, Switzerland, pages 38–39, 2008.

[15] Roman Kuznets. Self-referentiality of justified knowledge. In Edward A. Hirsch,
Alexander A. Razborov, Alexei L. Semenov, and Anatol Slissenko, editors, CSR,
volume 5010 of Lecture Notes in Computer Science, pages 228–239. Springer, 2008.

[16] Richard E. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM Journal on Computing, 6(3):467–480, 1977.

[17] Robert Saxon Milnikel. Derivability in certain subsystems of the logic of proofs is
Πp

2-complete. Annals of Pure and Applied Logic, 145(3):223–239, 2007.

[18] Alexey Mkrtychev. Models for the logic of proofs. In Sergei Adian and Anil Nerode,
editors, Logical Foundations of Computer Science, 4th International Symposium,
LFCS’97, Yaroslavl, Russia, July 6–12, 1997, Proceedings, volume 1234 of Lecture
Notes in Computer Science, pages 266–275. Springer, 1997.

[19] Eric Pacuit. A note on some explicit modal logics. In Proceedings of the 5th Pan-
hellenic Logic Symposium, pages 117–125, Athens, Greece, July 25–28, 2005. Uni-
versity of Athens.

[20] Bryan Renne. Simple evidence elimination in justification logic. In Patrick Girard,
Olivier Roy, and Mathieu Marion, editors, Dynamic Formal Epistemology, volume
351 of Synthese Library, chapter 7, pages 127–149. Springer, 2011.

[21] Tatiana Yavorskaya (Sidon). Interacting explicit evidence systems. Theory Comput.
Syst., 43(2):272–293, 2008.

24

	TR-2014003: On the Complexity of Two-Agent Justification Logic
	tmp.1429565783.pdf.tDhwn

