Synthesis of a Model of the BC Ring System of Oxygenated Angucyclines

Abdullah Allaoa
CUNY New York City College of Technology

Dr. Tony E. Nicolas
CUNY New York City College of Technology

Xiaolan Wu
CUNY New York City College of Technology

How does access to this work benefit you? Let us know!
Follow this and additional works at: https://academicworks.cuny.edu/ny_pubs
Part of the Organic Chemistry Commons

Recommended Citation
https://academicworks.cuny.edu/ny_pubs/386
Synthesis of a Model of the BC Ring System of Oxygenated Angucyclines
Xiaolan Wu, Abdullah Allaooa, Dr. Tony E. Nicolas
Department of Chemistry, New York City College of Technology, City University of New York
300 Jay Street, Brooklyn, NY 11201

Abstract
Angucycline is a subclass of natural antibiotics, containing a characteristic tetracyclic ring structure, and featuring a wide range of biological functions, including antitumor, antiviral and antifungal properties. This extraordinarily therapeutic character has interested many chemists to develop efficient methodologies for synthesizing the tetracyclic ring system of angucycline. Construction of the BC ring configuration appears as a synthetic challenge. Successful installation of hydroxyl groups at the AB junction would pave the way for efficient syntheses. As a continuation of the previous work done on this system, our synthetic methodology focuses on the coupling of a suitably substituted Phthalide and an activated Alkyne through a tandem Michael addition/Dieckmann cyclization. The synthesis of the required phthalide and alkyne components is discussed, as well as our efforts towards the coupling components.

Introduction
As a third class of natural antibiotic, angucyclines have received much attention in recent years. Angucyclines contain a carboxybenzaldehyde suspended in 60 mL of THF under N₂ gas followed by the addition reaction mixture was extracted with diethyl ether. The reaction was quenched with 25 mL of water and 2.633 g of n-copper iodide along with 19.077 g of potassium carbonate and 2.633 g of n-butyl ammonium chloride. After the solution was cooled to 0°C, the reaction mixture was extracted with diethyl ether. The organic extract was dried over sodium sulfate.

Coupling of Allyl Phthalide and Ethyl-5-methylhex-5-en-2-yanoate
Elaboration of the coupling reaction was performed by Michael addition followed by Dieckmann condensation. Based on our synthetic methodology, a suspension of 1.46mmol of allyl phthalide in 3 mL of THF was prepared and further added into 1.76mmol of LDA solution under N₂ gas at -78°C. After stirring at -78°C for 15 minutes, the temperature was raised to -40°C. Then, 1.46mmol of Ethyl-5-methylhex-5-en-2-yanoate was introduced to the solution under N₂ gas. After stirring overnight, the reaction was quenched with ammonium chloride and extracted with diethyl ether. The resulting orange organic layer was dried over sodium sulfate.

Method and Result
Precursor of C ring: Synthesis of Allyl Phthalide from Allyl Bromide and 2-Carboxybenzaldehyde
The synthesis of allyl phthalide was achieved by an allylation of 2-carboxybenzaldehyde with allyl Bromide. In this approach, 478 grams of zinc was suspended in 60 mL of THF solution under N₂ gas followed by the addition of 8.1 mL of allyl bromide. Then, 4.602 g of 2-carboxybenzaldehyde suspended in 60 mL of THF solution was added to the reaction mixture. The reaction was allowed to proceed at room temperature for 2hr and 50 min. The reaction was quenched with 25 mL of water and extracted 3x with 20 mL of diethyl ether.

Conclusion
In summary, we developed a concise synthetic approach of a model of the BC Ring system of oxygenated angucycline by employing a tandem Michael addition/Dieckmann cyclization as the key reaction. We successfully synthesized the allyl phthalide by allylation, and yanoate by allyl substitution. Additionally, the synthesis of allyl phthalide and Ethyl-5-methylhex-5-en-2-yanoate has been partially accomplished. However, the construction of the BC ring system is a synthetic challenge. Future experiments will focus on establishing better coupling conditions for components, which will undergo Michael addition and Dieckmann condensation.

References

Acknowledgements
Our research is supported by the Emerging Scholar Program of NYCC.