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Abstract. Univariate polynomial root-finding is both classical and im-
portant for modern computing. Frequently one seeks just the real roots
of a polynomial with real coefficients. They can be approximated at a
low computational cost if the polynomial has no nonreal roots, but typ-
ically nonreal roots are much more numerous than the real ones. We
dramatically accelerate the known algorithms in this case by exploiting
the correlation between the computations with matrices and polynomi-
als, extending the techniques of the matrix sign iteration, and exploiting
the structure of the companion matrix of the input polynomial.

Keywords: Polynomials, Real roots, Matrices, Matrix sign iteration, Companion
matrix, Real eigenvalues, Frobenius algebra, Square root iteration, Root squaring

1 Introduction

Assume a univariate polynomial of degree n with real coefficients,

p(x) =
n∑

i=0

pix
i = pn

n∏
j=1

(x− xj), pn 6= 0, (1)

which has r real roots x1, . . . , xr and s = (n−r)/2 pairs of nonreal complex con-
jugate roots. In some applications, e.g., to algebraic and geometric optimization,
one seeks just the r real roots, which make up just a small fraction of all roots.
This is a well studied subject (see [13, Chapter 15], [21], [25], and the bibliogra-
phy therein), but we dramatically accelerate the known algorithms by combining
and extending the techniques of [23] and [20]. At first our iterative Algorithm 1
reduces the original problem to the same problem for an auxiliary polynomial
of degree r having r real roots. Our iterations converge with quadratic rate, and
so we need only k = O(b+ d) iterations, assuming the tolerance 2−b to the error
norm of the approximation to the auxiliary polynomial (we denote it vk(x)) and
the minimal distance 2−d of the nonreal roots from the real axis. The values d
and k are large for the input polynomials with nonreal roots lying very close to
the real axis, but our techniques of Remark 4 enable us to handle such harder



inputs as well. The known algorithms approximate the roots of vk(x) at a low
arithmetic cost, and then we recover the r real roots of the input polynomial
p(x). Overall we perform O(kn log(n)) arithmetic operations. This arithmetic
cost bound is quite low, but in the case of large degree n, the algorithm is prone
to numerical problems, and so we devise dual Algorithm 2 and propose some
special recipes in Remark 8 to avoid the latter problems. This works quite well
according to our test results, but the formal study of the issue and of the Boolean
complexity of the algorithm is left as a research challenge.

Let us comment briefly on the techniques involved and the complexity of
the algorithm. It performs computations in the Frobenius matrix algebra gen-
erated by the companion matrix of the input polynomial. By using FFT and
exploiting the structure of the matrices in the algebra, we operate with them as
fast as with polynomials. Real polynomial root-finding is reduced to real eigen-
solving for the companion matrix. Transition to matrices and the randomization
techniques, extended from [20, Section 5], streamline and simplify the iterative
process of Algorithm 1. Now this process outputs an auxiliary r × r matrix L
whose eigenvalues are real and approximate the r real eigenvalues of the com-
panion matrix. It remains to apply the QR algorithm to the matrix L, at the
arithmetic cost O(r3) (cf. [9, page 359]), dominated if r3 = O(kn log(n)).

We engage, extend, and combine the number of efficient methods available
for complex polynomial root-finding, particularly the ones of [23] and [20], but
we also propose new techniques and employ some old methods in novel and
nontrivial ways. Our Algorithm 1 streamlines and substantially modifies [23,
Algorithm 9.1] by avoiding the stage of root-squaring and the application of
the Cayley map. Some techniques of Algorithm 2 are implicit in [20, Section 5],
but we specify a distinct iterative process, employ the Frobenius matrix algebra,
extend the matrix sign iteration to real eigen-solving, employ randomization and
the QR algorithm, and include the initial acceleration by scaling. Our Algorithm
3 naturally extends Algorithms 1 and 2, but we show that this extension is prone
to the problems of numerical stability, and our finding can be applied to the
similar iterations of [3] and [7] as well. Algorithm 4 can be linked to Algorithm 1
and hence to [20, Section 5], but incorporates some novel promising techniques.
Our simple recipe for real root-finding by means of combining the root radii
algorithm with Newton’s iteration in Algorithm 5 and even the extension of
our Algorithm 2 to the approximation of real eigenvalues of a real matrix are
also novel and promising. Some of our algorithms take advantage of combining
the power of operating with matrices and polynomials (see Remarks 11 and
13). Finding their deeper synergistic combinations is another natural research
challenge, traced back to [14] and [2]. Our exploitation of the complex plane
geometry, various transforms of the variable and of the roots (including simple
but apparently novel Theorem 1) can be of independent interest.

Hereafter “ops” stands for “arithmetic operations”, “lc(p)” stands for “the
leading coefficient of p(x)”. D(X, r) = {x : |x − X| ≤ r} and C(X, r) = {x :
|x −X| = r} denote a disc and a circle on the complex plane, respectively. We
write ||

∑
i vix

i||q = (
∑

i |vi|q)1/q for q = 1, 2 and ||
∑

i vix
i||∞ = maxi |vi|. A



function is in Õ(f(bc)) if it is in O(f(bc)) up to polylogarithmic factors in b and c.
agcd(u, v) denotes the approximate greatest common divisor of two polynomials
u(x) and v(x) (see [1] on definitions and algorithms).

2 Some Basic Results for Polynomial Computations

Next we cover the auxiliary algorithms that map polynomial roots, approximate
their absolute values, split a polynomial into two factors, and approximate its
roots if it has only real roots (the two latter algorithms are the two basic blocks
of our first algorithm, cited in the introduction).

Theorem 1. (Mapping the Roots.) Assume a polynomial p(x) of (1) and a
rational function y(x) = w(x) + u(x)/v(x) for three polynomials w(x), u(x),
and v(x) of degree k, l, and m, respectively, where l < m. Assume n values
s1, . . . , sn such that the values y(s1), . . . , y(sn) are distinct. (They are distinct
with probability 1 if s1, . . . , sn are independent Gaussian random variables.) Then
it is sufficient to apply O(m log2(n) + n log2(m)) ops in order to compute the
polynomial q(x) =

∏n
j=1(x− yj) such that yj = y(xj) for j = 1, . . . , n.

Proof. Compute the values q(y(sj)) = p(sj) for j = 1, . . . , n, interpolate to the
polynomial q(x), and recall the known cost estimates for polynomial evaluation
and interpolation (cf. [17, Sections 3.1 and 3.3]).

We can compute some important maps of the roots at a little lower cost.

Theorem 2. (Root Inversion, Shift and Scaling, cf. [17].) Given a polynomial
p(x) of (1) and two scalars a and b, we can compute the coefficients of the
polynomial q(x) = p(ax + b) by using O(n log(n)) ops. We need only 2n− 1 ops
if b = 0. Reversing a polynomial inverts all its roots involving no ops, that is,
prev(x) = xnp(1/x) =

∑n
i=0 pix

n−i = pn

∏n
j=1(1− xxj).

Theorem 3. (Root Squaring, cf. [10].) (i) Assume that a polynomial p(x) of
(1) is monic. Then the map q(x) = (−1)np(

√
x)p(−

√
x) squares the roots, that

is, q(x) =
∏n

j=1(x−x2
j ), and (ii) one can evaluate p(x) at the k-th roots of unity

for k > 2n and then interpolate to q(x) by using O(n log(n)) ops.

Theorem 4. (The Cayley Maps, cf. [9].) The maps y = (x−
√
−1)/(x +

√
−1)

and x =
√
−1(y + 1)/(y − 1) send the real axis {x : x is real} onto the unit

circle C(0, 1) = {y : |y| = 1}, and vice versa.

Theorem 5. (Möbius Map.) (i) The maps ŷ = 1
2 (x̂ + 1/x̂), x̂ = ŷ ±

√
ŷ2 − 1

and y = 1
2 (x−1/x), x = y±

√
y2 + 1 send the unit circle C(0, 1) = {x : |x = 1|}

into the line intervals [−1, 1] = {ŷ : =(ŷ) = 0, −1 ≤ ŷ ≤ 1} and [−
√

1,
√
−1] =

{y : <(y) = 0, − 1 ≤ y
√
−1 ≤ 1}, and vice versa. (ii) Write ŷ = 1

2 (x̂ + 1/x̂),
ŷj = 1

2 (x̂j + 1/x̂j), y = 1
2 (x − 1/x), and yj = 1

2 (xj − 1/xj), for j = 1, . . . , n.
Then q̂(ŷ) = p(x̂)p(1/x̂) = q̂n

∏n
j=1(ŷ − ŷj) (cf. [3, equation (14)]) and q(y) =

p(x)p(−1/x) = qn

∏n
j=1(y − yj). (iii) Given a polynomial p(x) of (1), one can

interpolate to the polynomials q̂(y) and q(y) by using O(n log(n)) ops.



Proof. Follow the proof of Theorem 1 for sj = exp(2πj
√
−1/n), j = 0, . . . , n−1.

Use FFT for the evaluation. Note that 1
2 (x + 1/x) = cos(φ) and 1

2 (x − 1/x) =
sin(φ) for x = exp(φ

√
−1) and real φ, and extend the algorithms of [16] for the

interpolation (cf. [3, Section 2]).

Theorem 6. (Error Bounds of the Möbius Iteration.) Fix a complex x = x(0)

and define the iterations

x(h+1) =
1
2
(x(h) + 1/x(h)) and γ =

√
−1 for h = 0, 1, . . . , (2)

x(h+1) =
1
2
(x(h) − 1/x(h)) and γ = 1 for h = 0, 1, . . . (3)

If x(0)γ is real, then x(h)γ are real for all h. Otherwise |x(h)− sign(x)
√
−1/γ| ≤

2τ2h

1−τ2h for τ = |x−sign(x)
x+sign(x) | and h = 0, 1, . . .

Proof. Under (2), for γ =
√
−1, the bound is from [3, page 500]). It is readily

extended to the case of (3), for γ = 1.

Theorem 7. (Root Radii Approximation, cf. [24], [13, Section 15.4], [5].) As-
sume a polynomial p(x) of (1) and two real scalars c > 0 and d. Define the n
root radii rj = |xkj

| for j = 1, . . . , n and r1 ≥ r2 ≥ · · · ≥ rn. Then we can
compute approximations r̃j such that r̃j ≤ rj ≤ (1 + c/nd)r̃j, for j = 1, . . . , n,
by using O(n log2(n)) ops.

By combining Theorems 7 and 2 we can move the roots of a polynomial into
a fixed disc, e.g., D(0, 1) = {x : |x| ≤ 1}.

Theorem 8. (Root-finding Where All Roots Are Real). The modified Laguerre
algorithm of [8] converges to all roots of a polynomial p(x) of (1) right from the
start, uses O(n) ops per iteration, and therefore approximates all n roots within
ε = 1/2b by using O(log(b)) iterations and performing Õ(n log(b)) ops overall.
This asymptotic cost bound is optimal and is also supported by the alternative
algorithms of [6] and [4].

Theorem 9. (Splitting a Polynomial into Two Factors Over a Circle, cf. [24]
or [13, Chapter 15].) Suppose a polynomial t(x) of degree n has r roots inside the
circle C(0, ρ) and n− r roots outside the circle C(0, R) for R/ρ ≥ 1 + 1/n. Let
ε = 1/2b for b ≥ n. Then by performing O((log2(n) + log(b))n log(n)) ops (that
is, O(n log3(n)) ops for log(b) = O(log2(n))), with a precision of O(b) bits, we
can compute two polynomials f̃ and g̃ such that ||p− f̃ g̃||q ≤ ε||p||q for q = 1, 2
or ∞, the polynomial f̃ of degree r has r roots inside the circle C(0, 1), and the
polynomial g̃ of degree n− r has n− r roots outside this circle.

Remark 1. (Increasing Isolation by Means of Repeated Squaring.) Let the as-
sumptions of Theorem 9 hold, except that R/ρ = 1 + c/nd < 1 + 1/n, for two
positive constants c and d. Then the map of Theorem 3 squares the ratio R/ρ,
and so d = O(log(n)) applications of this map (using O(n log2(n)) ops overall)
increase the ratio above 1 + 1/n, which supports the application of Theorem 9.



3 Root-finding As Eigen-solving and Basic Definitions
and Results for Matrix Computations

3.1 Some Basic Definitions for Matrix Computations

MT = (mji)
n,m
i,j=1 is the transpose of a matrix M = (mij)

m,n
i,j=1. MH is its

Hermitian transpose. I = In = (e1 | e2 | . . . | en) is the n × n identity ma-
trix, whose columns are the n coordinate vectors e1, e2, . . . , en. J = Jn =
(en | en−1 | . . . | e1) is the n×n reversion matrix, J(vi)n

i=1 = (vi)1i=n. diag(bj)s
j=1 =

diag(b1, . . . , bs) is the s× s diagonal matrix with the diagonal entries b1, . . . , bs.
A matrix Q is unitary if QHQ = I or QQH = I. (Q,R) = (Q(M), R(M))

for an m×n matrix M of rank n denotes a unique pair of unitary m×n matrix
Q and upper triangular n × n matrix R such that M = QR and all diagonal
entries of the matrix R are positive [9, Theorem 5.2.2].

M+ is the Moore–Penrose pseudo inverse of M [9, Section 5.5.4]. An n×m
matrix X = M (I) is a left (resp. right) inverse of an m×n matrix M if XM = In

(resp. if MY = Im). M (I) = M+ for a matrix M of full rank. M (I) = MH for a
unitary matrix M . M (I) = M+ = M−1 for a nonsingular matrix M .

R(M) is the range of a matrix M , that is the linear space generated by its
columns. A matrix of full column rank is a matrix basis of its range.

Definition 1. S is the invariant subspace of a square matrix M if MS = {Mv :
v ∈ S} ⊆ S. A scalar λ is an eigenvalue of a matrix M associated with an
eigenvector v if Mv = λv. All eigenvectors associated with an eigenvalue λ of
M form an eigenspace S(M,λ), which is an invariant space. Its dimension d is
the geometric multiplicity of λ. The eigenvalue is simple if its multiplicity is 1.
The set Λ(M) of all eigenvalues of a matrix M is called its spectrum.

3.2 The Companion Matrix and the Frobenius Algebra

Cp =



0 −p0/pn

1
. . . −p1/pn

. . . . . .
...

. . . 0 −pn−2/pn

1 −pn−1/pn


and Cprev =



0 −pn/p0

1
. . . −pn−1/p0

. . . . . .
...

. . . 0 −p2/p0

1 −p1/p0


for p0 6= 0 denote the companion matrices of the polynomials p(x) of (1) and
prev(x) of Theorem 2, respectively, C−1

p = JCprevJ . p(x) = cCp(x) = det(xIn −
Cp) is the characteristic polynomial of p(x). Its roots form the spectrum of Cp,
and so real root-finding for p(x) turns into real eigen-solving for the matrix Cp.

Theorem 10. (The Cost of Computations in the Frobenius Matrix Algebra, cf.
[7].) The companion matrix Cp ∈ Cn×n of a polynomial p(x) of (1) generates
the Frobenius matrix algebra Ap. One needs O(n) ops for addition, O(n log(n))
ops for multiplication, and O(n log2(n)) ops for inversion in this algebra. One
needs O(n log(n)) ops to multiply a matrix in this algebra by a vector.



3.3 Decreasing the Size of an Eigenproblem

Next we reduce eigen-solving for the matrix Cp to the study of its invariant
space generated by the r eigenspaces associated with the r real eigenvalues. The
following theorem is basic for this step.

Theorem 11. (Decreasing the Eigenproblem Size to the Dimension of an In-
variant Space, cf. [26, Section 2.1].) Let U ∈ Cn×r, R(U) = U , and M ∈ Cn×n.
Then U is an invariant space of M if and only if there exists a matrix L ∈ Ck×k

such that MU = UL or equivalently L = U (I)MU . The matrix L is unique (that
is independent of the choice of the left inverse U (I)) if U is a matrix basis for
the space U . (Hence MUv = λUv if Lv = λv, Λ(L) ⊆ Λ(M), and if U is a
unitary matrix, then L = UHMU .)

By virtue of the following theorem, a matrix function shares its invariant
spaces with the matrix Cp, and so we can facilitate the computation of the
desired invariant space of Cp if we reduce the task to the case of an appropriate
matrix function, for which the solution is simpler.

Theorem 12. (The Eigenproblems for a Matrix and Its Function.) Suppose
M is a square matrix, a rational function f(λ) is defined on its spectrum, and
Mv = λv. Then (i) f(M)v = f(λ)v. (ii) Let U be the eigenspace of the matrix
f(M) associated with its eigenvalue µ. Then this is an invariant space of the
matrix M generated by its eigenspaces associated with all its eigenvalues λ such
that f(λ) = µ. (iii) The space U is associated with a single eigenvalue of M if µ
is a simple eigenvalue of f(M).

Proof. We readily verify part (i), which implies parts (ii) and (iii).

Suppose we have computed a matrix basis U ∈ Cn×r for an invariant space U
of a matrix function f(M) of an n×n matrix M . By virtue of Theorem 12, this
is a matrix basis of an invariant space of the matrix M . We can first compute a
left inverse U (I) or the orthogonalization Q = Q(U) and then approximate the
eigenvalues of M associated with this eigenspace as the eigenvalues of the r × r
matrix L = U (I)MU = QHMQ (cf. Theorem 11).

Given an approximation µ̃ to a simple eigenvalue of a matrix function f(M),
we can compute an approximation ũ to an eigenvector u of the matrix f(M)
associated with this eigenvalue, recall from part (iii) of Theorem 12 that this is
also an eigenvector of the matrix M , associated with its simple eigenvalue, and
approximate this eigenvalue by the Rayleigh Quotient ũT Mũ

ũT ũ
.

3.4 Some Maps in the Frobenius Matrix Algebra

Part (i) of Theorem 12 implies that for a polynomial p(x) of (1) and a rational
function f(x) defined on the set {xi}n

i=1 of its roots, the rational matrix function
f(Cp) has spectrum Λ(f(Cp)) = {f(xi)}n

i=1. In particular, the maps

Cp → C−1
p , Cp → aCp + bI, Cp → C2

p , Cp →
Cp + C−1

p

2
, and Cp →

Cp − C−1
p

2



induce the maps of the eigenvalues of the matrix Cp, and thus induce the maps
of the roots of its characteristic polynomial p(x) given by the equations

y = 1/x, y = ax + b, y = x2, y = 0.5(x + 1/x), and y = 0.5(x− 1/x),

respectively. By using the reduction modulo p(x), define the five dual maps

y = (1/x) mod p(x), y = ax + b mod p(x), y = x2 mod p(x),
y = 0.5(x + 1/x) mod p(x), and y = 0.5(x− 1/x) mod p(x),

where y = y(x) denotes polynomials. Apply the two latter maps recursively, to
define two iterations with polynomials modulo p(x) as follows, y0 = x, yh+1 =
0.5(yh +1/yh) mod p(x) (cf. (2)) and y0 = x, yh+1 = 0.5(yh− 1/yh) mod p(x)
(cf. (3)), h = 0, 1, . . . . More generally, define the iteration y0 = x, yh+1 =
ayh + b/yh mod p(x), h = 0, 1, . . . , for any pair of scalars a and b.

4 Real Root-finders

4.1 Möbius Iteration

Theorem 6 implies that right from the start of iteration (3) the values x(h)

converge fast to ±
√
−1 unless the initial value x(0) is real, in which case all

iterates x(h) are real. It follows that right from the start the values y(h) =
(x(h))2 + 1 converge fast to 0 unless x(0) is real, whereas all values y(h) are real
and exceed 1 if x(0) is real. Write th(y) =

∏n
j=1(y− (x(h)

j )2 − 1) for h = 1, 2, . . .

and vh(y) =
∏r

j=1(y− (x(h)
j )2−1). The roots of the polynomials th(y) and vh(y)

are the images of all roots and of the real roots of the polynomial p(x) of (1),
respectively, produced by the composition of the maps (3) and y(h) = (x(h))2+1.
Hence th(y) ≈ y2svh(y) for large integers h where the polynomial vh(y) has
degree r and exactly r real roots, all exceeding 1, and so for large integers h, the
sum of the r + 1 leading terms of the polynomial th(y) closely approximates the
polynomial y2svh(y). (To verify that the 2s trailing coefficients nearly vanish,
we need just 2s comparisons.) The above argument shows correctness of the
following algorithm. (One can similarly employ and analyze iteration (2).)

Algorithm 1. Möbius iteration for real root-finding.
Input: two integers n and r, 0 < r < n, and the coefficients of a polynomial
p(x) of equation (1) where p(0) 6= 0.
Output: approximations to the real roots x1, . . . , xr of p(x).
Computations:

1. Write p0(x) = p(x) and recursively compute the polynomials ph+1(y) such
that ph+1(y) = ph(x) ph(−1/x) for y = (x − 1/x)/2 and h = 0, 1, . . . (Part
(ii) of Theorem 5 and Theorem 6 combined define the images of the real and
nonreal roots of the polynomial p(x) for all h.)



2. Periodically, at some selected Stages k, compute the polynomials

th(y) = (−1)nqk(
√

y + 1) qh(−
√

y + 1)

where qk(y) = pk(y)/lc(pk) (cf. Theorems 2 and 3). When the integer k
becomes large enough, so that 2s trailing coefficients of the polynomial qk(x)
nearly vanish, compute an approximate factor vk(x) of the polynomial tk(x)
that has degree r and has r real roots on the ray {x : x ≥ 1}.

3. Apply one of the algorithms of [6], [4], and [8] (cf. Theorem 8) to approximate
the r roots of the polynomial vk(x).

4. Extend the descending process from [15], [18] and [3] to recover approxi-
mations to the r roots x1, . . . , xr of the polynomial p0(x) = p(x). At first
having the r roots wj of the polynomial vk(x), compute the 2r candidates
±

√
wj − 1, j = 1, . . . , r, for being approximations to the r real roots of the

polynomials qk(y) and pk(y). Then select r of them on which the polynomials
qk(y) vanishes or nearly vanishes. Apply part (i) of Theorem 5 to define from
these r roots the 2r candidates for approximating the r real roots of pk−1(x).
Recursively descend down to the r real roots of p0(x) = p(x). This process is
not ambiguous because only r roots of the polynomial ph(x) are real for each
h, by virtue of Theorem 6.

Like lifting Stage 1, descending Stage 4 involves order of kn log(n) ops, which
also bounds the overall cost of performing the algorithm.

Remark 2. (Countering Degeneracy.) If p(0) = p0 = · · · = pm = 0 6= pm+1, then
we should output the real root x0 = 0 of multiplicity m and apply the algorithm
to the polynomial p(x)/xm to approximate the other real roots. Alternatively
we can apply the algorithm to the polynomial q(x) = p(x− s) for a shift value s
such that q(0) 6= 0. With probability 1, q(0) 6= 0 for Gaussian random variable
s, but we can approximate the root radii of the polynomial p(x) (cf. Theorem
7) and then deterministically find a scalar s such that q(x) has no roots near
0. Moreover, we can avoid both degeneracy problem and numerical problems by
extending our recipes of Remark 8, proposed for dual Algorithm 2.

Remark 3. (Saving the Recursive Steps of Stage 1.) The basic step of the algo-
rithm is the computation of an approximate factor vk(x) of tk(x), having degree
r and r real roots. We would decrease the overall computational cost if we com-
pute such a polynomial vk(x) for a smaller integer k. Theorem 9 enables us to
do this (at a reasonable cost) if its assumptions are satisfied for t(x) = tk(x),
which we can verify by applying the root radii algorithm of Theorem 7. For a
fixed k this requires O(n log2(n)) ops, so even the verification for all integers k
in the range is not costly, unless the range is large, but we can apply the binary
search for the minimum integer k satisfying Theorem 9, and then we would need
only O(log(n)) approximations of the n root radii, by using O(n log3(n)) ops.

Remark 4. (Handling the Nearly Real Roots.) The integer parameter k and the
overall arithmetic cost of performing the algorithm are large if the value 2−d =



minn
j=r+1 |=(xj)| is small. We can counter this deficiency by splitting out from

the polynomial tk(x) its factor vk,+(x) of degree r+ > r that has r+ real and
nearly real roots such that the other nonreal roots lie sufficiently far from the
real axis. Our convergence analysis and the techniques for splitting out the factor
vk(x) can be readily extended. At a low cost we can compute its roots (r of
which are real) if the integer r+ is small. For any r, we can apply the modified
Laguerre algorithm of [8], expecting that it still converges fast to the r+ roots
of the polynomial vk,+(x) if all of them lie on or close enough to the real axis.

Remark 5. (The Number of Real Roots.) We assume that we know the number
r of the real roots (e.g., supplied by noncostly algorithms of computer algebra),
but we can compute this number as by-product of Stage 2, and similarly for our
other algorithms. With a proper policy we can compute the integer r by testing
at most 2 + 2dlog(r)e candidates in the range [0, 2r − 1].

Remark 6. The known upper bounds on the condition numbers of the roots of
the computed polynomials pk(y) grow exponentially as k grows large (cf. [3,
Section 3]). So, unless these bounds are overly pessimistic, Algorithm 1 is prone
to numerical stability problems already for moderately large integers k.

4.2 Extended Matrix Sign Iteration

To avoid the latter potential deficiency, we replace the polynomial iteration at
Stages 1 and 2 by the dual iteration

Yh+1 = 0.5(Yh − Y −1
h ) for h = 0, 1, . . . , (4)

which extends the matrix sign iteration Ŷh+1 = 0.5(Ŷh + Ŷ −1
h ) for h = 0, 1, . . .

(cf. (2), (3), part (ii) of our Theorem 5, and [11]) and maps the eigenvalues
of the matrix Y0 according to (3). Therefore Stage 1 of Algorithm 1 maps the
characteristic polynomials of the above matrices Yh. Unlike the case of the latter
map, working with matrices enables us to recover the desired real eigenvalues of
the matrix Cp by means of our recipes of Section 3, without recursive descending.

Algorithm 2. Matrix sign iteration modified for real eigen-solving.
Input and Output as in Algorithm 1, except that FAILURE can be output
with a probability close to 0.
Computations:

1. Write Y0 = Cp and recursively compute the matrices Yh+1 of (4) for h =
0, 1, . . . (2s eigenvalues of the matrix Yh converge to ±

√
−1 as h → ∞,

whereas its r other eigenvalues are real for all h, by virtue of Theorem 6.)
2. Fix a sufficiently large integer k and compute the matrix Y = Y 2

k + In.
(The map Y0 = Cp → Y sends all nonreal eigenvalues of Cp into a small
neighborhood of the origin 0 and sends all real eigenvalues of Cp into the ray
{x : x ≥ 1}.)



3. Apply the randomized algorithms of [12] to compute the numerical rank of
the matrix Y . Suppose it equals r. (It is at least r, and if it exceeds r, then
go back to Stage 1.) Generate a standard Gaussian random n × r matrix
G and compute the matrices H = Y Q(G) and Q = Q(H). (The analysis
of preprocessing with Gaussian random multipliers in [12, Section 4], [19,
Section 5.3] shows that, with a probability close to 1, the columns of the
matrix Q closely approximate a unitary basis of the invariant space of the
matrix Y associated with its r absolutely largest eigenvalues, which are the
images of the real eigenvalues of the matrix Cp. Having this approximation is
equivalent to having a small upper bound on the residual norm ||Y −QQHY ||
[12], [19].) Verify the latter bound. In the unlikely case where the verification
is failed, output FAILURE and stop the computations.

4. Otherwise compute and output approximations to the r eigenvalues of the
r×r matrix L = QHCpQ. They approximate the real roots of the polynomial
p(x). (Indeed, by virtue of Theorem 12, Q is an approximate matrix basis
for the invariant space of the matrix Cp associated with its r real eigenval-
ues. Therefore, by virtue of Theorem 11, the r eigenvalues of the matrix L
approximate the r real eigenvalues of the matrix Cp.)

Stages 1 and 2 involve O(kn log2(n)) ops by virtue of Theorem 10. This
exceeds the estimate for Algorithm 1 by a factor of log(n). Stage 3 adds O(nr2)
ops and the cost arn of generating n× r standard Gaussian random matrix. The
cost bounds are O(r3) at Stage 4 and O((kn log2(n) + nr2) + arn overall.

Remark 7. (Counting Real Eigenvalues.) If the number of real eigenvalues is not
given, we can apply binary search to compute it as the numerical rank of the
matrices Y 2

k + I when this rank stabilizes.

Remark 8. (Avoiding Numerical Problems.) The images of nonreal eigenvalues
of the matrix Cp converge to ±

√
−1 in the iteration of Stage 1, but the iteration

would involve ill conditioned matrices if the images of some real eigenvalues of Cp

lie close to 0. We can detect that the matrix Yh is ill conditioned by computing its
smallest singular value (e.g., by applying the Lanczos algorithm [9, Proposition
9.1.4]) or by encountering difficulty in its numerical inversion. In such cases we
can shift the matrix (and hence shift its eigenvalues) by adding the matrix sI for
a reasonably small real scalar s, which we can select heuristically or by applying
Theorem 7 or randomization. For a more radical recipe, apply Stage 1 of the
algorithm to the two matrices α

√
−1 I +Cp and α

√
−1 I −Cp and then use the

sum of the two resulting matrix functions as the matrix Y at Stages 2. Here α is
a small positive scalar such that no eigenvalues of the matrix Cp have imaginary
parts close to ±α

√
−1.

Remark 9. (Acceleration by Using Random Circulant Multiplier.) We can de-
crease the cost of performing Stage 3 to an+r + O(n log(n)) and the overall
arithmetic cost to O(kn log2(n) + nr2) + ar+n if we replace an n × r standard
Gaussian random multiplier by the product ΩCP where Ω and C are n×n ma-
trices, Ω is the matrix of the discrete Fourier transform, C is a random circulant



matrix, and P is an n× l random permutation matrix, for a sufficiently large l
of order r log(r). See [12, Section 11], [19, Section 6] for the analysis and for the
supporting probability estimates. They are only slightly less favorable than in
the case of a Gaussian random multiplier.

Remark 10. (Acceleration by Means of Scaling.) We can dramatically accelerate
the initial convergence of Algorithm 2 by applying determinantal scaling (cf.
[11]), that is, by computing the matrix Y1 as follows, Y1 = 0.5(νY0 − (νY0)−1)
for ν = 1/|det(Y0)|1/n = |pn/p0|, Y0 = Cp.

Remark 11. (Hybrid Matrix and Polynomial Algorithms.) Can we modify Algo-
rithm 2 to keep its advantages but to decrease the arithmetic cost of its Stage
1 to the level kn log(n) of Algorithm 1? Yes, if all or almost all nonreal roots of
the polynomial p(x) lie not too far from the points ±

√
−1, namely in the discs

D(±
√
−1, 1/2). Indeed in this case both iterations Yh+1 = 0.5(Y 3

h + 3Yh) and
Yh+1 = −0.125(3Y 5

h + 10Y 3
h + 15Yh) for h = 0, 1, . . . involve no inversions and

use O(n log(n)) ops per loop. Right from the start, they send the nonreal roots
lying in these discs toward the two points ±

√
−1 with quadratic and cubic con-

vergence rates, respectively. (To prove this, extend the proof of [3, Proposition
4.1].) Both iterations keep the real roots real. This suggests the following policy.
Perform the iterations of Algorithm 1 as long as the outputs are not corrupted by
rounding errors. (Choose the number of iterations of Algorithm 1 heuristically
and shift the iterates as in Remark 8 to counter numerical problems.) For a large
class of inputs, the iterations (even under the above limitation on their number)
should still bring the images of the nonreal eigenvalues of Cp into the basin
of convergence of the inversion-free matrix iterations above. Then apply one of
these inversion-free iterations to the companion matrix Cqh

of the polynomial
qh(x) output by Algorithm 1, to approximate the real roots of this polynomial.
Descend from them to the real roots of the polynomial p(x) as in Algorithms 1.
The hybrid algorithm combines the power of Algorithms 1 and 2.

4.3 Square Root Iteration (a Modified Modular Version)

Our next algorithm is another dual polynomial version of Algorithm 2. It ex-
tend the square root iteration yh+1 = 1

2 (yh + 1/yh), h = 0, 1, . . . . Compared to
Algorithm 2, we first replace all rational functions in the matrix Cp by the same
rational functions in the variable x and then reduce every function modulo the
input polynomial p(x). The reduction does not affect the values of the functions
at the roots of p(x), and so these values are precisely the eigenvalues of the
rational matrix functions involved in Algorithm 2.

Algorithm 3. Square root modular iteration modified for real root-finding.
Input and Output as in Algorithm 1.
Computations:

1. Write y0 = x and (cf. (4)) compute the polynomials

yh+1 =
1
2
(yh − 1/yh) mod p(x), h = 0, 1, . . . . (5)



2. Periodically, for selected integers k, compute the polynomials tk = y2
k + 1

mod p(x) and gk(x) = agcd(p, tk).
3. If deg(gk(x)) = n − r = 2s, compute the polynomial vk ≈ p(x)/gk(x) of

degree r. Otherwise continue the iteration of Stage 1.
4. Apply one of the algorithms of [6], [4], and [8] (cf. Theorem 8) to approximate

the r roots y1, . . . , yr of the polynomial vk. Output these approximations.

By virtue of our comments preceding this algorithm, the values of the poly-
nomials tk at the roots of p(x) equal to the images of the eigenvalues of the
matrix Cp in Algorithm 2. Hence the values of the polynomials tk at the nonreal
roots of p(x) converge to 0 as k → ∞, whereas their values at the real roots of
p(x) stay far from 0. Therefore, for sufficiently large integers k, agcd(p, tk) turn
into the polynomial

∏n
j=r+1(x− xj). This implies correctness of the algorithm.

Its asymptotic computational cost is O(kn log2(n)) plus the cost of computing
agcd(p, tk) and choosing the integer k (see our next remark).

Remark 12. Compared to Algorithm 2, the latter algorithm reduces real root-
finding essentially to the computation of agcd(p, tk), but the complexity of this
computation is not easy to estimate [1]. Moreover, the following example exhibits
serious problems of numerical stability for this algorithm and for the similar
algorithms of [7] and [3]. Consider the case where r = 0. Then the polynomial
t(x) has degree at most n − 1, and its values at the n nonreal roots of the
polynomial p(x) are close to 0. This can only occur if ||tk|| ≈ 0.

Remark 13. We can concurrently perform Stages 1 of both Algorithms 2 and
3. The information about the numerical rank at Stage 3 of Algorithm 2 can
be a guiding rule for the choice of the integer parameter k and computing the
polynomials tk, gk and vk of Algorithm 3. Having the polynomial vk available,
Algorithm 3 produces the approximations to the real roots more readily than
Algorithm 2 does this at its Stage 4.

4.4 Cayley Map and Root-squaring

The following algorithm is somewhat similar to Algorithm 1, but employs re-
peated squaring of the roots instead of mapping them into their square roots.

Algorithm 4. Real root-finding by means of repeated squaring.
Assume a polynomial p(x) of (1) with p(0) 6= ±

√
−1 and proceed as follows.

1. Compute the polynomial q(x) = p(
√
−1 x+1

x−1 ) =
∑n

i=0 qix
i. (This is the

Cayley map of Theorem 4. It moves the real axis, in particular the real roots of
p(x), onto the unit circle C(0, 1).)

2. Write q0(x) = q(x)/qn, choose a sufficiently large integer k, and apply
the k squaring steps of Theorem 3, qh+1(x) = (−1)nqh(

√
x)qh(−

√
x) for h =

0, 1, . . . , k−1. (These steps keep the images of the real roots of p(x) on the circle
C(0, 1) for all k, while sending the images of every other root of p(x) toward
either the origin or the infinity.)



3. For a sufficiently large integer k, the polynomial qk(x) approximates the
polynomial xsuk(x) where the polynomial uk(x) =

∑r
i=0 uix

i has all its roots
lying on the unit circle C(0, 1). Extract the approximation to this polynomial
uk(x) from the coefficients of the polynomial qk(x).

4. Compute the polynomial wk(x) = (uk(
√
−1 x+1

x−1 ). (This Cayley map sends
the images of the real roots of the polynomial p(x) from the unit circle C(0, 1)
back to the real line.)

6. Apply one of the algorithms of [6], [4], and [8] to approximate the r real
roots z1, . . . , zr of the polynomial wk(x) (cf. Theorem 8).

7. Apply the Cayley map x
(k)
j = (zj +

√
−1)/(zj −

√
−1) for j = 1, . . . , r

to extend Stage 6 to approximating the r roots x
(k)
1 , . . . , x

(k)
r of the polynomials

uk(x) and yk(x) = xsuk(x) lying on the unit circle C(0, 1).
8. Apply the descending process (similar to the ones of [15], [18], and of our

Algorithm 1) to approximate the r roots x
(h)
1 , . . . , x

(h)
r of the polynomials qh(x)

lying on the unit circle C(0, 1) for h = k − 1, . . . , 0.
9. Approximate the r real roots xj =

√
−1(x(0)

j + 1)/(x(0)
j − 1), j = 1, . . . , r,

of the polynomials p(x).

Our analysis of Algorithm 1 (including its complexity estimates and the
comments and recipes in Remarks 2–6) can be extended to Algorithm 4. The
straightforward matrix version of this numerical algorithm, however, fails be-
cause high matrix powers have small numerical rank. Indeed their columns
lie near the invariant space associated with the absolutely largest eigenvalues,
and as a rule this space has a small dimension. The more tricky modification
Mk −M−k =

∏k−1
j=0 (M − ωj

kM−1), where ωk = exp(2π
√
−1/k) denotes a prim-

itive kth root of unity, promises to produce a working matrix iteration. Like
the Power Method and unlike the repeated squaring of Algorithm 2, it can em-
ploy just multiplication of the matrices M and M−1 by vectors rather than the
operations in the Frobenius matrix algebra.

4.5 A Tentative Approach to Real Root-finding by Means of
Root-radii Approximation

Algorithm 5. (Real Root-finding via Root Radii Approximation.)
1. Compute approximations r̃1, . . . , r̃n to the root radii of a polynomial p(x)

of (1) (see Theorem 7). (This defines 2n candidates points ±r̃1, . . . ,±r̃n for the
approximation of the r real roots x1, . . . , xr.)

2. Evaluate the polynomial at these 2n points, at a low arithmetic and Boolean
cost, to exclude a number of extraneous candidates.

3. Apply Newton’s iteration x(h+1) = x(h) − p(x(h))/p′(x(h)), h = 0, 1, . . .
concurrently at the remaining candidate points. (Its single step or a few step
should exclude the other extraneous candidates and refine the remaining approx-
imations to the real roots, as long as these roots are simple and well isolated
from the other roots.)



5 Numerical Tests

Three series of numerical tests have been performed in the Graduate Center of
the City City University of New York by Ivan Retamoso and Liang Zhao. In both
series they tested Algorithm 2, without using the techniques of Remarks 3 and
8, that is, in much weakened form. Still the test results are quite encouraging.

In the first series of tests, Algorithm 2 has been applied to one of the Mignotte
benchmark polynomials, namely to p(x) = xn + (100x − 1)3. It is known that
this polynomial has three ill conditioned roots clustered about 0.01 and has n−3
well conditioned roots. In the tests, Algorithm 2 has output the roots within the
error less than 10−6 by using 9 iterations for n = 32 and n = 64 and by using
11 iterations for n = 128 and n = 256.

In the second series of tests, polynomials p(x) of degree n = 50, 100, 150, 200,
and 250 have been generated as the products p(x) = f1(x)f2(x). Here f1(x)
was the rth degree Chebyshev polynomial (having r real roots) for r = 8, 12, 16,
and f2(x) =

∑n−r
i=0 aix

i, aj being i.i.d. standard Gaussian random variables, for
j = 0, . . . , n − r. Algorithm 2 (performed with double precision) was applied
to 100 such polynomials p(x) for each pair of n and r. Table 1 displays the
output data, namely, the average values and standard deviation of the numbers
of iterations and of the maximum difference between the output values of the
roots and their values produced by MATLAB root-finding function ”roots()”.

In the third series of tests, Algorithm 2 approximated the real eigenvalues
of a random real symmetric matrix A = UT ΣU , where U was an orthogonal
n × n standard Gaussian random matrix, Σ = diag(x1, . . . , xr, y1, . . . , yn−r),
and x1, . . . , xr (resp. y1, . . . , yn−r) were r i.i.d. standard Gaussian real (resp.
non-real) random variables. Table 2 displays the mean and standard devia-
tion of the number of iterations and the error bounds in these tests for n =
50, 100, 150, 200, 250 and r = 8, 12, 16.
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3. Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev, and Cardinal’s processes for split-
ting a polynomial into factors. J. Complexity 12, 492–511 (1996)

4. Bini, D., Pan, V.Y.: Computing matrix eigenvalues and polynomial zeros
where the output is real. SIAM J. on Computing 27(4), 1099–1115 (1998)
(Also in Proc. of SODA’1991.)

5. Bini, D.A., Robol, L.: Solving secular and polynomial equations: A multipreci-
sion algorithm. J. Computational and Applied Mathematics, in press.

6. Ben-Or, M., Tiwari, P.: Simple algorithms for approximating all roots of a
polynomial with real roots. J. Complexity 6(4), 417–442 (1990)



Table 1. Number of Iterations and Error Bounds for Root-finding Algorithm on Ran-
dom Polynomials

n r Iter-mean Iter-std Bound-mean Bound-std

50 8 7.44 1.12 4.18× 10−6 1.11× 10−5

100 8 8.76 1.30 5.90× 10−6 1.47× 10−5

150 8 9.12 0.88 2.61× 10−5 1.03× 10−4

200 8 9.64 0.86 1.48× 10−6 5.93× 10−6

250 8 9.96 0.73 1.09× 10−7 5.23× 10−5

50 12 7.16 0.85 3.45× 10−4 9.20× 10−4

100 12 8.64 1.15 1.34× 10−5 2.67× 10−5

150 12 9.12 2.39 3.38× 10−4 1.08× 10−3

200 12 9.76 2.52 6.89× 10−6 1.75× 10−5

250 12 10.04 1.17 1.89× 10−5 4.04× 10−5

50 16 7.28 5.06 3.67× 10−3 7.62× 10−3

100 16 10.20 5.82 1.44× 10−3 4.51× 10−3

150 16 15.24 6.33 1.25× 10−3 4.90× 10−3

200 16 13.36 5.38 1.07× 10−3 4.72× 10−3

250 16 13.46 6.23 1.16× 10−4 2.45× 10−4

7. Cardinal, J.P.: On two iterative methods for approximating the roots of a
polynomial. In: Lectures in Applied Mathematics, vol. 32, pp. 165–188. AMS
(1996)

8. Du, Q., Jin, M., Li, T.Y., Zeng, Z.: The quasi-Laguerre iteration. Math. Com-
put. 66(217), 345–361 (1997)

9. Golub, G.H., Van Loan, C.F.: Matrix Computations, third edition. The Johns
Hopkins University Press, Baltimore, Maryland (1996)

10. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe. Amer. Math. Monthly
66, 464–466 (1959)

11. Higham, N.J.: Functions of Matrices, SIAM, Philadelphia (2008)

12. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Review 53(2), 217–288 (2011)

13. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials,
Part 2 (XXII + 718 pages), Elsevier (2013)

14. Pan, V.Y.: Complexity of computations with matrices and polynomials. SIAM
Review 34(2), 225–262 (1992)

15. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms
for approximating complex polynomial zeros. In: Proc. 27th Ann. ACM Symp.
on Theory of Computing, pp. 741–750. ACM Press, New York (1995)

16. Pan, V.Y.: New fast algorithms for polynomial interpolation and evaluation
on the Chebyshev node set. Computers Math. Appls. 35(3), 125–129 (1998)

17. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algo-
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