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As the increase of water resources management and exploitation goals, it is gaining increasing 
weights for reservoir operation to seek optimal options for the balance between multiple and 
contradictory water resources use objectives. This study develops a trade-offs model to quantify 
the benefits of reservoir operation rules on the downstream water supply yield. Uncertainties of 
different water use benefits are considered by using the Monte Carlo method as error 
propagation for the model. The case study is analyzed to evaluate its performance in terms of 
water use benefits of agriculture, hydropower, flood control and environmental flows 
requirement in the Yellow River, China. Trade-offs results are obtained among the multiple 
water resources under reservoir operation. Results indicate that there are magnificent trade-offs 
between ecological benefits and social economical one under different management policies 
and scenarios. This study proposes a simple but robust trade-offs model for quantifying the 
consequence of hydropower management options. The results could also be used by authorities 
and policy makes as reference of compromised solutions to the ecological and human 
negotiations in water resources management.  
 
INTRODUCTION  
 
As the increasing of hazard augmentation and river flow depletion, conflicts for water recourses 
supplies have been more concerned than ever [1]. Conflicts and contradictions over water 
utilization for human activities and ecosystems have received negligible attentions worldwide 
[2-5]. In this circumstance, an emerging challenge is to utilize water resources to provide 
sustainable social benefits while minimizing adverse impacts on natural ecosystem [6]. Based 
on this assumption, operating schemes for hydropower dams are built to maximize economic 
and social gains while meeting minimal environmental flows requirements [7]. Extensive 
efforts have been made towards balancing both the human and ecological requirements for 
water based on the current reservoir operation rules [8-13].  

There is growing evidence that water resources management experiments may result in 
complicated trade-offs among variety objectives [14-17]. Recent research has further 
emphasized the attempts towards trade-offs analysis between ecological and human 
requirements for water by negotiating between these two classes of users [18-19]. Rheinheimer 
applied the bootstrap sampling method with replication to detect the change point for the 
population quantity of the triangle smelt [20]. Based on the Bayesian analysis method, Beckage 



[21] and Thomson [22] built the Bayesian hierarchy model for the change point analysis of the 
population quantity for multiple species.  

Instead of developing a computation method to maximize the outcomes of different water 
uses considers environmental flows as restrictive conditions. We proposed a scenario-driven 
approach for environmental flows assessment based on an integrative trade-offs model. Trade-
offs between water users of the society and the environment were analyzed under alternative 
scenarios of multi-objective water resources management. Effects of the temporal variations of 
river flows and water requirements were identified in the assessment. 
 
METHODS 

Reservoir operation simulation model 

The reservoir simulation model was established to understand the effects of reservoir operations 
on river flow alternation based on a simplified Saint-Venant equation to determine the stage-
storage and stage-discharge relationships in the reservoir.  
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where V(Z) represents the reservoir storage with a variation in water level Z and time t; Q(t)j is 
the river discharge from the above tributary into the reservoir; n is the number of tributaries; 
q(Z) is the river release from the reservoir with a variation in water level Z and volume V. A 
fourth-order Runge-Kutta solution technique can be used to solve the simplified Saint-Venant 
equation. Based on the reservoir simulation model, river regime conditions and operation rules 
are integrated and reservoir release amount of downstream hydrological conditions are under 
control.  

Trade-offs evaluation model 

Benefits for multiple management objectives downstream from the reservoirs are evaluated 
including not only the environmental flows, but also society water use benefits such as 
agriculture, flood control, navigation and hydropower generation downstream from the dams. 
Benefits of water uses for irrigation, hydropower production, flood control, and navigation are 
calculated as percentage by using the ratio of water usages compared to the annual or daily 
average level of use amount respectively. Here we apply the rule of taking the mean of multiple 
water use benefits as the integrated social results, which is one of the advantages by using 
percentage benefit definitions. Ecological benefits of environmental flows are represented as 
environmental water supply reliability which is expressed as the ratio of the monthly flow 
alteration to the monthly average altered flow.  

After evaluation of multi-objective benefits, trade-offs curves between social and 
ecological benefits can be obtained by non-linear curve fitting and then abrupt change points on 
the curve will be recognized as the optimal location for the trade-offs results where benefits of 
water resources allocation on social economic development could be maximized, with the 
security for environmental flows lest influenced at the same time. Basic Newton’s method [23-
24] is applied in this procedure to solve the one-dimensional unconstrained optimization 
problems.  



Uncertainty analysis  

The ISO Guide to the Expression of Uncertainty in Measurement (GUM) (International 
Organization for Standardization, 1995; JCGM 100, 2008) provides a conceptual framework for 
evaluating and expressing uncertainty, deals with the propagation of distributions, and 
emphasizes the use of Monte-Carlo Simulation (MCS) for estimating the uncertainty of 
measurements. Following the ISO Guide, ROV Risk Simulator (Real Options Valuation Inc., 
2013) is software very suitable to be used to perform the uncertainty analysis of any 
measurement, test or analysis, including calibrations (Jalukse et al., 2003; Losinger, 2004).   

By applying error propagation analysis of the reservoir operation model, average altered 
flow was discovered to show a normal distribution with a mean of 1320.9368 m3/s and standard 
deviation of 169.1288 under 2,000 trials (Figure 1).  Under the confidence interval of 95%, the 
error precision propagated from input river discharge into the reservoir was calculated to be 
0.0056.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Error propagation analysis of the reservoir operation model 
 
RESULTS AND DISCUSSION 

 
 
 
 
 
 
 
 
 
 
 
                                       (a)                                                                                         (b) 

Figure 2. Inflow (QIT) and outflow (QR) amount of dry year 2007(a) and wet year 1963 (b) 
 

The model was applied and calibrated in Yellow River Basin, China, by using the dataset 
of daily hydrological records covers from 1950 to 2007 which locates above and below the 
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Xiaolangdi Reservoir. Hydrologic outputs of reservoir release are simulated dynamically 
through the reservoir operation rules under control (Figure 2).  Trade-offs distribution between 
social and ecological benefits of water is given under certain operation rules (Figure 3). We 
could see that the environmental flows benefits and social and economic water use benefits are 
in reciprocal relationship with social and economic benefits stayed above 0.5 and environmental 
flows benefits began to rise in the late 1980s.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Contour map of the social and environmental water use benefits under the WST 
operation rule from 1950 to 2007. 

 
Table 1. Trade-offs results of environmental flows and social benefits both optimized 

 
Annualized 

Returns 
Volatility 

Risk 
Benefits 

Allocation 

Agriculture  10.54%  12.36%  30.01% 

Hydropower  11.25%  16.23%  18.58% 

flood control  11.84%  15.64%  21.06% 

Environmental flows  10.64%  12.35%  30.35% 

Social benefits Total        23.22% 

Trade-offs results 1.5881 

 

Table 2. Trade-offs results of optimized social benefits without considering environmental 
flows                                

 
Annualized 

Returns 
Volatility 

Risk 
Benefits 

Allocation 

Agriculture  10.54%  12.36%  100% 

Hydropower  11.25%  16.23%  0% 

flood control  11.84%  15.64%  0% 

Environmental flows  10.64% 12.35% 0%

Social benefits Total        100% 

Trade-offs results 1.0 
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By integrating the risk indicator of different water use benefits, optimization results was 
obtained to be social benefits of 0.2322 and environmental one to be 0.3035 (Table 1).  
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