
City University of New York (CUNY) City University of New York (CUNY) 

CUNY Academic Works CUNY Academic Works 

Publications and Research Hunter College 

2018 

Poster: Towards safe refactoring for intelligent parallelization of Poster: Towards safe refactoring for intelligent parallelization of 

Java 8 streams Java 8 streams 

Yiming Tang 
CUNY Graduate Center 

Raffi T. Khatchadourian 
CUNY Hunter College 

Mehdi Bagherzadeh 
Oakland University 

Syed Ahmed 
Oakland University 

How does access to this work benefit you? Let us know! 

More information about this work at: https://academicworks.cuny.edu/hc_pubs/355 

Discover additional works at: https://academicworks.cuny.edu 

This work is made publicly available by the City University of New York (CUNY). 
Contact: AcademicWorks@cuny.edu 

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/hc_pubs
https://academicworks.cuny.edu/hc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/hc_pubs/355
https://academicworks.cuny.edu/hc_pubs/355
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu


Poster: Towards Safe Refactoring for Intelligent Parallelization
of Java 8 Streams

Yiming Tang

The Graduate Center, City University of New York (CUNY)

ytang3@gradcenter.cuny.edu

Raffi Khatchadourian

Hunter College, City University of New York (CUNY)

raffi.khatchadourian@hunter.cuny.edu

Mehdi Bagherzadeh

Oakland University

mbagherzadeh@oakland.edu

Syed Ahmed

Oakland University

sfahmed@oakland.edu

ABSTRACT
The Java 8 Stream API sets forth a promising new programming

model that incorporates functional-like, MapReduce-style features

into a mainstream programming language. However, using streams

correctly and efficiently may involve subtle considerations. In this

poster, we present our ongoing work and preliminary results to-

wards an automated refactoring approach that assists developers in

writing optimal stream code. The approach, based on ordering and

typestate analysis, determines when it is safe and advantageous to

convert streams to parallel and optimize parallel streams.

CCS CONCEPTS
• Software and its engineering → Software evolution; Auto-
matic programming; Maintaining software;

KEYWORDS
refactoring, parallelization, typestate analysis, Java 8, streams

ACM Reference Format:
Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, and Syed Ahmed.

2018. Poster: Towards Safe Refactoring for Intelligent Parallelization of Java

8 Streams. In ICSE ’18 Companion: 40th International Conference on Software
Engineering Companion, May 27-June 3, 2018, Gothenburg, Sweden. ACM,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3183440.3195098

1 INTRODUCTION
Writing parallel programs can be difficult. MapReduce [1], a pop-

ular programming paradigm for writing a certain class of parallel

programs, abstracts away much of this complexity by facilitating

multi-node processing using succinct functional-like constructs.

Recently, mainstream languages such as Java 8 have adopted

functional-style, MapReduce-inspired constructs for parallel and
sequential data structure processing. In the case of Java, this func-

tionality is embodied by the Stream API, introduced in Java 8 [4].

MapReduce, however, traditionally operates in a highly-distributed

environment with no concept of shared memory, while Java 8

Stream processing operates in a single node under multiple threads

or cores in a shared memory space. Since streams enable developers

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ICSE ’18 Companion:
40th International Conference on Software Engineering Companion, May 27-June 3, 2018,
Gothenburg, Sweden, https://doi.org/10.1145/3183440.3195098.

to pass behavioral parameters (λ-expressions) to collections for de-

ferred execution, they can be easily executed either sequential or in

parallel, making them especially attractive to those not normally fa-

miliar with functional programming. But, a burden is now placed on

developers to manually determine whether running stream code in

parallel results in an efficient yet interference-free program. Using

streams correctly and efficiently requires many subtle considera-

tions. In fact, ∼4K questions on streams have been posted on Stack

Overflow (http://stackoverflow.com/questions/tagged/java-stream),

of which ∼5% remain unanswered.

In general, these kinds of errors can lead to programs that un-

dermine concurrency, underperform, and are inefficient. Moreover,

these problems may not be immediately evident to developers and

may require complex inter-procedural analysis, a thorough under-

standing of the intricacies of a particular stream implementation,

and knowledge of situational API replacements. Manual analysis

and/or refactoring (semantics-preserving, source-to-source trans-

formation) to achieve optimal results can be overwhelming and

error- and omission-prone as necessary changes can often be wide-

spread. In this poster, we present our ongoing work and prelim-

inary results in developing a novel automated approach, based

on ordering and typestate analysis, that automatically identifies

and executes refactoring opportunities where improvements can

be made to Java 8 Stream code with the hope of this “intelligent”

parallelization resulting more efficient, semantically-equivalent

code. Although our preliminary data suggests that the approach is

promising, speedup analysis is for future work.

2 MOTIVATION AND INSIGHT
Fig. 1 uses the Java 8 Stream API to process Widget collections.

Fig. 1a is the original version, while Fig. 1b is the improved (but se-

mantically equivalent) refactored version. A Collection of Widgets

is declared (line 1) that does not maintain element ordering as

HashSet does not support it. Note that ordering is dependent on the

run time type rather than the compile-time type.

A stream, a data source view representing an element sequence

supporting MapReduce-style operations, of unorderedWidgets is

created on line 2. This stream’s operations execute sequentially.

Streams may also be associated with an encounter order (element

visitation), which can be dependent on the stream’s source. In this

case, it will be unordered since HashSets are unordered.

On line 3, the stream is sorted() by the corresponding interme-
diate operation, the result of which is a (possibly) new stream with

https://doi.org/10.1145/3183440.3195098
https://doi.org/10.1145/3183440.3195098
http://stackoverflow.com/questions/tagged/java-stream


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Tang et al.

1 Collection<Widget> unorderedWidgets = new HashSet<>();
2 List<Widget> sortedWidgets = unorderedWidgets.stream()
3 .sorted(Comparator.comparing(Widget::getWeight))
4 .collect(Collectors.toList());
5 Collection<Widget> orderedWidgets = new ArrayList<>();
6 Set<Double> distinctWeightSet = orderedWidgets.stream().parallel()
7 .map(Widget::getWeight).distinct()
8 .collect(Collectors.toCollection(TreeSet::new));

(a) Stream code snippet prior to refactoring.

1 Collection<Widget> unorderedWidgets = new HashSet<>();
2 List<Widget> sortedWidgets = unorderedWidgets.stream()parallelStream()
3 .sorted(Comparator.comparing(Widget::getWeight))
4 .collect(Collectors.toList());
5 Collection<Widget> orderedWidgets = new ArrayList<>();
6 Set<Double> distinctWeightSet = orderedWidgets.stream().parallel()
7 .map(Widget::getWeight).distinct()
8 .collect(Collectors.toCollection(TreeSet::new));

(b) Improved stream client code via refactoring.

Figure 1: Code snippet of Widget collection processing using the Java 8 Steam API.

the encounter order rearranged accordingly. Intermediate opera-

tions are deferred until a terminal operation is executed (line 4).

The execution results in a List of Widgets sorted by weight.

It may be possible to increase performance by running this

stream’s “pipeline” (operation sequence) in parallel. Fig. 1b, line 2

displays the corresponding refactoring. Note, however, that had

the stream been ordered, running the pipeline in parallel may actu-

ally result in worse performance due to the multiple passes and/or

data buffering required by an operation like sorted(). Because the

stream is unordered, the reduction can be done much more effi-

ciently by breaking the problem into sub-problems [4].

In contrast, line 5 instantiates an ArrayList, which maintains ele-

ment ordering. A Set of distinct widget weights is created beginning

on line 6. Unlike previously, this collection takes place in parallel
due to the corresponding call. Note though that there is a possible

performance degradation here as distinct may require multiple

passes, the computation takes place in parallel, and the stream is or-
dered. Keeping the parallel computation but unordering the stream

may improve performance but it is required to know whether it is

safe to do so, which can be error-prone if done manually.

Our insight is that it may be possible to determine if it is safe to

unorder a stream by analyzing the type of the resulting reduction. In

this case, it is a collection to a Set, of which subclasses that do not

preserve ordering exist. If we could determine that the resulting Set

is unordered, unordering the stream would be safe since collecting

into such a Set would not preserve ordering. The type of the re-

sulting Set returned here is determined by the passed Collector, in

this case, Collectors.toCollection(TreeSet::new). Unfortunately,

since the TreeSet will preserve the encounter order, we must keep

the stream ordered. To improve performance here, it is advanta-

geous to run this pipeline, perhaps surprisingly, sequentially. This
transformation takes place in Fig. 1b, line 6.

3 OPTIMIZATION APPROACH
We propose several new refactorings, which include Convert Se-

qential Stream to Parallel and Optimize Parallel Stream.

The first deals with determining if it is advantageous (performance-

wise) and safe (e.g., no race conditions, semantics alterations) to

transform a sequential stream to one whose pipeline runs in paral-

lel. The second deals with a stream that is already set to execute in

parallel. The question here is what steps (i.e., transformations) can

be taken to improve its performance, whether it is unordering the

stream or converting the stream to execute sequentially.

Our in-progress automated refactoring approach involves us-

ing typestate analysis [2,5] to determine stream attributes when

a terminal operation is issued. A typestate analysis variant is be-

ing developed since operations like sorted() return (possibly) new

streams derived from the receiver with their attributes altered. To

determine collection attributes, e.g., element ordering, a combina-

tion of points-to analysis and reflection is used, with the former to

interprocedurally approximate return value run time types, and the

latter to instatiated the class to obtain ordering data. This is viable

as collections do not normally alter ordering during object lifetime.

Our generalized typestate analysis works by tracking the state

of stream instances using the two labeled transition systems (LTSs),

one of which tracks execution mode and the other ordering. Stream

typestate is then merged with that of “intermediate” streams to

obtain the final typestate at the terminal operation since that is

when all of the (queued) intermediate operations will execute.

4 PRELIMINARY RESULTS
Our refactoring approach has been implemented as an Eclipse

(http://eclipse.org) plug-in and built uponWALA (http://wala.sf.net).

A preliminary experiment on 11 open source Java projects demon-

strates that our tool promisingly deems ∼33% of 128 total streams

refactorable, i.e., those passing our preconditions. Determining

whether the refactoring results in more optimal code is part of our

future work. Major reasons that streams are not refactorable include

λ-expressions side-effects (∼45%) and that the reduction ordering is

preserved by the target collection (∼22%, c.f. §2). Although speedup

analysis is for future work, it has been shown that a similar manual

refactoring can improve performance [3, Ch. 6].

5 CONCLUSION & FUTUREWORK
Wehave outlined our work-in-progress towards an automated refac-

toring approach that “intelligently” optimizes Java 8 stream code.

The approach, based on ordering and typestate analysis, automati-

cally deems when it is safe and advantageous to run stream code

either sequentially or in parallel. In the future, we will expand our

corpus and formulate a transformation algorithm.

REFERENCES
[1] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing

on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.

[2] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008.

Effective Typestate Verification in the Presence of Aliasing. ACM Transactions on
Software Engineering and Methodology 17, 2, Article 9 (2008), 34 pages.

[3] Maurice Naftalin. 2014. Mastering Lambdas: Java Programming in a Multicore
World (1

st
ed.). McGraw-Hill Education Group.

[4] Oracle Corporation. 2016. java.util.stream (Java Platform SE 8)–Classes to support

functional-style operations on streams of elements. (2016). http://bit.ly/1jqPUXi

[5] Robert E Strom and Shaula Yemini. 1986. Typestate: A programming language

concept for enhancing software reliability. IEEE TSE SE-12, 1 (Jan. 1986), 157–171.

http://eclipse.org
http://wala.sf.net
http://bit.ly/1jqPUXi

	Poster: Towards safe refactoring for intelligent parallelization of Java 8 streams
	Abstract
	1 Introduction
	2 Motivation and Insight
	3 Optimization Approach
	4 Preliminary Results
	5 Conclusion & Future Work
	References

