2014

Total Voice Leading

Joseph N. Straus
CUNY Graduate Center

How does access to this work benefit you? Let us know!
Follow this and additional works at: https://academicworks.cuny.edu/gc_pubs
Part of the Music Commons

Recommended Citation
https://academicworks.cuny.edu/gc_pubs/413

This Article is brought to you by CUNY Academic Works. It has been accepted for inclusion in Publications and Research by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@gc.cuny.edu.
People usually think about voice leading as in Example 1, with each note in Chord X moving to a destination in Chord Y. I propose to think of it instead as in Example 2, taking into account all the possible destinations in Chord Y of each note in Chord X. A bit more formally, I define the total voice leading between sets X and Y as the complete collection of ordered pc intervals formed between the pcs in X and the pcs in Y, and they always have the property of transpositional combination. In some cases, the same total voice leading may be produced by different pairs of X and Y (Cohn 1988 refers to this as “multiple parentage”). In such cases, the total voice leading may remain the same even though the generating chords differ.

Among the intervals formed between two sets in any particular context, some will be more marked for attention than others, but all are at least potentially in play. The less marked ones create a nimbus within which the more marked ones are heard. Taken together, they create a total sonic package in which all intervals play a role. Taken together, they create a total sonic package in which all intervals play a role. It is the same as in hearing the sonic identity of a single chord—one may be more aware of some intervals than others, but it is the total package of intervals that characterizes the chord. Indeed, the interval content of Chord X is equivalent to the total voice leading from Chord X to itself. In that sense, the interval content of a harmony is a special case of total voice leading X→Y, where X=Y. Total voice leadings are thus roughly equivalent to the interval content of a single chord, generalized and horizontalized, with some of the same conceptual and perceptual advantages and challenges.

If x is the cardinality of X and y is the cardinality of Y, the number of intervals in the total voice leading between X and Y will be xy. In Example 2, for instance, there are nine arrows connecting the three pcs in X with the three pcs in Y. Similarly, the total voice leading between two tetrachords would be 4 x 4 = 16. If the perceptual task is understood to be the direct perception of all sixteen intervals simultaneously, this might seem a daunting proposition. But, at least in principle, the task is no different from recognizing the identity of a particular hexachord, and it’s not all that different in quantity either. A
As \(i \) ranges over the twelve possible ordered pc intervals (0 through 11), we can gather the values into a twelve-place words, reversing the order of the generating pcsets has the effect of inverting the imultiset formed between them. Voice leading \(Y \rightarrow X \) instead of \(X \rightarrow Y \), each interval in the imultiset will be replaced with its complement mod 12. In other words, reversing the order of the generating pcsets has the effect of inverting the imultiset formed between them.\(^5\) Two imultisets related by inversion will be said to be \(I \)-equivalent members of a shared imultiset-class. Imultiset prime forms will be the member of the imultiset class with the lowest numerical value (see Example 6).\(^6\) The idea that the total voice leading from \(X \) to \(Y \) and the total voice leading from \(Y \) to \(X \) could be understood as equivalent, in within inversion, does seem to me to pose any particular conceptual or perceptual problem. Each interval in one total voice leading is simply replaced by its complement mod 12 (i.e., its inversion) in the other. What went up now goes down, and vice versa.

Equivalence relations (imultiset and imultiset-class)

Order permutation and imultiset inversion. If the order of \(X \) and \(Y \) is reversed (that is, if we are concerned with the voice leading \(Y \rightarrow X \) instead of \(X \rightarrow Y \)), each interval in the imultiset will be replaced with its complement mod 12. In other words, reversing the order of the generating pcsets has the effect of inverting the imultiset formed between them.\(^5\) Two imultisets related by inversion will be said to be \(I \)-equivalent members of a shared imultiset-class (see Example 6).\(^6\) I will designate the inversion of an imultiset as \(<I>\), to be read as “hyper-\(I \)” (see Example 7). The idea that the total voice leading from \(X \) to \(Y \) and the total voice leading from \(Y \) to \(X \) could be understood as equivalent, in within inversion, does seem to me to pose any particular conceptual or perceptual problem. Each interval in one total voice leading is simply replaced by its complement mod 12 (i.e., its inversion) in the other. What went up now goes down, and vice versa.

Transposition. When Set \(Y \) is transposed by \(T_0 \) with respect to Set \(X \), the imultiset is also transposed at \(T_0 \).\(^7\) Two imultisets related by transposition, will be said to be \(T \)-equivalent members of a shared imultiset-class (see Example 6).\(^6\) I will designate the inversion of an imultiset as \(<T_0>\), to be read as “hyper-\(T_0 \)” (see Example 7). The idea that the total voice leading from \(X \) to \(Y \) and the total voice leading from \(Y \) to \(X \) could be understood as equivalent, in within inversion, does seem to me to pose any particular conceptual or perceptual problem. Each interval in one total voice leading is simply replaced by its complement mod 12 (i.e., its inversion) in the other. What went up now goes down, and vice versa.

In Example 8, each interval in the second imultiset is 3 semitones larger than the corresponding interval in the first imultiset (interval 4 becomes interval 7, interval 10 becomes interval 1, and so on). The two imultisets are thus related at \(<T3>\). We could also talk in the same way about hyper-hyper-\(T \) \(<<Tn>\)—that would be the interval between the intervals between intervals.

Compared to inversion, the transposition of an imultiset poses serious conceptual and perceptual issues. It requires one to attend to the shape of the total voice leading rather than to the qualities of the intervals. For example, if the total voice leading from \(X \) to \(Y \) has three 5s and zero 6s, the total voice leading from \(X \) to \(T_1(Y) \) will have three 6s and zero 7s: everything has shifted one place over. The intervallic profile (the intervals among the intervals) will stay the same, but the intervals themselves will change. With reference to Example 7, one might listen for \(<T_1>\) by attending to the repeated intervals in the first voice leading: two 6s (\(G^\sharp-D \) and \(A^\sharp-E \)) and two 8s (\(G^\sharp-E \) and \(B-G \)), differing in size by 2. In the second voice leading, we find two 9s (\(A^\sharp-G \) and \(G^\sharp-F \)) and two 11s (\(G^\sharp-G \) and \(B-A^\sharp \)), again differing in size by 2. The actual interval sizes have changed, but a distinctive feature of the total voice leading—repeated intervals that differ in size by 2—remains recognizable the same. The optimal ear-training strategy would thus involve attending to the distinctive features of the imultiset that mark its contour or shape.\(^8\)

Inversion. The inversion of pcset \(Y \) with respect to \(X \) has no consistent effect on \(\text{IFUNC}(X, Y) \), or on the total voice leading (imultiset) between \(X \) and \(Y \).\(^9\) However, inverting both \(X \) and \(Y \) about the same axis does have a predictable effect, and it is the same effect as reversing the order of \(X \) and \(Y \), namely inverting the imultiset at \(<I>\) (see Example 9).

I will designate the inversion of an imultiset as \(<I>\), to be read as “hyper-\(I \)” (see Example 7). Is a way of thinking about the axis of inversion around which two intervals might be heard to balance. Interval 3 and interval 7, for example, could be thought...
of as lying equidistant on either side of interval 5, which lies halfway between them. In that sense, interval 3 and interval 7 are related at \(<I_{10}>\), and their axis of inversion is 10/2 = 5. In comparing two imultisets, if each interval in one imultiset is as far below some midpoint as each corresponding interval in the other imultiset is above it, then the two imultisets are related at \(<I_{n}>\) (see Example 10). We could talk in the same way about hyper-hyper \(1<<In>>\)—that would indicate the point of inversional balance between two points of inversional balance.(11)

[14] **Imultiset-class and prime form.** If two imultisets are related by either transposition or inversion, they may be considered members of the same imultiset-class. All the members of an imultiset-class, like all the members of a pcs-class, have the same total interval content. However, when speaking of imultiset-class, we are now talking about the invariance of the *interval between intervals*. An imultiset-class contains total voice leadings that are related by transposition or inversion and that thus share a particular shape or arrangement or dispersion of intervals. As noted above, imultiset-classes can be identified with a representative (prime) form.

Inversional Symmetry (IS)

[15] **X and Y are pc identical.** When X and Y are pc identical (i.e., related at T\(_0\)), the imultiset that results from the total voice leading between them will correspond to the traditional twelve-place interval vector for scX (and scY) (what I referred to above as an IFUNC-vector): the number of 0's in the vector will correspond to the cardinality of the set, and each non-zero interval will be balanced by its complement mod 12. The voice-leading imultiset is thus inversionally symmetrical (see Example 11). In an inversionally symmetrical imultiset, the intervals balance above and below a central pair (inversional axis) of tritone-related intervals. When pcset X and pcset Y are identical, the intervals in the imultiset are distributed equally around intervals 0 and 6 (for every interval n, there is another interval 0-n). The imultiset is thus I-symmetrical at \(<I_0>\).

[16] **X and Y are related by transposition.** If X and Y are members of the same T\(_n\)-type (i.e., related by T\(_n\)), the imultiset that results from the voice leading between them will be inversionally symmetrical at \(<I_{2n}>\) (see Example 12). When the pcsets are related at T\(_0\), the imultiset is self-inversional at \(<I_0>\), as just noted. When the pcsets are related at T\(_2\) (as in the left side of Example 12), the imultiset is self-inversional at \(<I_{2+2}> = <I_4>\). In such an imultiset, the intervals are distributed equally around intervals 2 and 8 (for every interval n, there is another interval 4-n).

[17] If we reverse the order of X and Y, the imultisets of X→Y and Y→X will be related by inversion at \(<I_{0}>\), as noted above. But because X and Y in this case are related by transposition, and their imultiset is thus self-inversional, the imultisets of X→Y and Y→X will also be related by transposition.

[18] **X and Y are related by inversion.** If X and Y are related by inversion, however, the voice-leading imultiset is generally not inversionally symmetrical (see Example 13).

[19] **X and Y are both inversionally symmetrical.** If both X and Y are inversionally symmetrical pcssets, then the imultiset that results from the total voice leading between them will also be inversionally symmetrical (see Example 14). In that sense, there is something in common between two sets related by transposition and two sets that are pc-symmetrical: both produce total voice leadings that are inversionally symmetrical.(12)

Transpositional Combination (TC)

[20] All imultisets produced as the total voice leading between two pcsets will have the TC-property. According to Cohn, “Any pitch- or pc-set has the TC-property if it may be disunited into two or more transpositionally related subsets” (1988, 23). A set (or set class) with the TC-property may be understood as generated by the transposition of one of its operands to the transpositional levels of the other: “TC is a binary operation which takes as its operands two set-classes, and adds the value of each element in the prime form of the first operand to that of each element in the prime form of the second operand. The result is a larger set which bears the TC-property” (27–28).(13)

[21] In the case of the imultisets under discussion here, the operands are the generating pcssets, X and Y. But because of the difference between TC (with X transposed to the level of the pcs in Y) and total voice leading (where the notes in X move to the notes in Y), the imultiset will be equivalent to I(X)*Y rather than X*Y. Nonetheless, because I(X) has the same interval content as X, it is still true to say that the total voice leading from X to Y bears the imprint of the generating sets, and that X and Y are always embedded in the total voice leading they jointly generate.

[22] When X and Y are trichords, for example, the nine-element imultiset will embed three I(X)-type trichords (related by transposition by the intervals in Y) and three Y-type trichords (related by transposition by the intervals in I(X)) (see Example 15). The TC property can be easier to visualize if the imultiset is written as a matrix. The columns are all the T\(_i\)-type of Y and the rows are all the T\(_n\)-type of I(X). For the first pair of pcs sets in Example 15 ([G\(_4\), A\(_4\), B] → [D, E, G]), the columns of the matrix contain forms of (025) related at T\(_0\), T\(_1\), and T\(_2\) while the rows of the matrix contain forms of (013) related at T\(_0\), T\(_2\), and T\(_3\).(15) I will use this matrix notation occasionally, when the TC property of an imultiset is at issue.

[23] The I(X)-type trichords are the subsets of the total voice leading that have arrows from all three of the pcs of X to the
same single pc of Y (these are found in the rows of the array). The Y-type trichords are the subsets of the total voice leading that have arrows from one single pc of X to all three of the pcs of Y (these are found in the columns of the array). **Example 16** demonstrates with reference to the first pair of pcsets in Example 15.

[24] If both X and Y are inversionally symmetrical, as in the third pair of chords in Example 15 (024 and 027), I(X)*Y and X*Y are equivalent. **Example 17** examines the effect of TC on the voice-leading imultiset between two pairs of inversionally symmetrical pcsets. If X is a member of sc(03) and Y is a member of sc(04), the total voice leading between them will be the imultiset-class i(0347), which is equivalent to (03)*(04). If X is a member of sc(05) and Y is a member of sc(024), the total voice leading between them will be the imultiset-class i(024579), which is equivalent to (05)*(024).

[25] **Multiple parentage.** Just as pcsets and pcse may have the TC-property in more than one way, imultisets can be produced by different pairs of generating sets. Interestingly, the multiple parentage of imultiset i(02468t) plays a central role in Lewin's ([Lewin 1987]) description of IFUNC. **Example 18** offers a reconfiguration of Lewin's Figure 5.1, with some additional information added.

[26] As Lewin shows, there are three different ways to produce the same total voice leading. He doesn't explore this aspect of the situation, but I think the clear implication is that the larger gesture here is substantially and audibly the same in all three cases, despite the differences in the generating sets. This is the place where the present concept of total voice leading can make a particularly valuable contribution: showing that disparate scs may be connected by effectively the same voice leading.

\[\text{X and Y are both dyads (2x2)} \]

[27] When X and Y are both dyads, their total voice leading can be represented by a four-element imultiset. Because dyads are inversionally symmetrical, the voice-leading imultiset between any pair of dyads will always be I-symmetrical. All of the imultisets have the TC property X*Y, where X and Y are the generating dyads. The chart in **Example 19** identifies the imultiset-classes resulting from the total voice leading between any two two-element pcset-classes.

[28] Among the four-element imultisets produced by the voice leading from a dyad to another dyad (2 x 2), two have multiple parentage (see **Example 20**). **Example 21** provides a simple schematic realization of these two multiply parented total voice leadings.

Musical examples with dyads

[29] We look now at three short passages to get a sense of how total voice leading (including imultisets, hyper-T, and multiple parentage) might play out in a musical context. In **Example 22a**, the opening measures of “Diminished Fifth,” from Bartók’s Mikrokosmos, the multiple parentage of i(0167) is at issue. Five simultaneities are identified in Example 22a (the fourth of these is a theoretical reconstruction—\(\lambda \) has moved on by the time \(\lambda \) arrives). Because there is an alternation of (06) and (01), the total voice leading in every case is i(0167), represented by either [i56e0] or [i0167].

[30] In **Example 22b**, the harmonic tritones are heard in relation to the melodic perfect fourths. Once again, the total voice leading is i(0167) represented by [i56e0] and i(0167). To put it in a slightly different way, the melodic fourths bear the same relation to the harmonic tritones that the harmonic semitones do. The hyper-transpositions of the imultisets reflect the principal transpositions (i.e., intervals) among the pcs, namely 1 and 5. That is, the voice-leading intervals (mostly 1s and 5s) are recursively recalled in the shift of the total voice leading (hyper-T) by 1 or 5. In this case, \(<T_1>\) is equivalent to \(<T_2>\) (or \(<T_3>\)). The choice of label is intended to emphasize the recursive relationship between the intervals and the intervals-between-the-intervals.

[31] There are obviously significant perceptual issues in hearing total voice leading, including multiple parentage and especially recursion. Let us begin to address these issues by focusing on the first progression in **Example 22a** (E♭-A to E♭-D) in comparison with the first progression in **Example 22b** (E♭-A to A-D). In both cases, the total voice leading is [i56e0], but produced in different ways. In the first progression, the move from A to D (5) is extremely prominent, filled in with passing tones, and it is equally easy to hear the E♭ as sustained (0). Hearing E♭ as going to D (11) is also not much of a challenge: the lowest note is drawn upward to the highest note. The connection between A and E♭ (6) is also perfectly audible, although in this case one hears more an association of two tones than any sense of directed motion from one to the other: it is more a case of “hearing with” than of “going to.” Thus all the intervals in this particular total voice leading are fully present to any willing listener, although the intensity of the presence, and the nature of the association, necessarily varies.

[32] In the first progression of **Example 22b**, it is easy to hear E♭ going to \(\lambda \) (6) and \(\lambda \) going to D as in **Example 22a** (5). E♭ goes to D, the lowest note drawn up to the highest, as in **Example 22a** (11). Hearing the \(\lambda \) as retained (0) is perhaps a bit more of a stretch, but its recurrence on the second beat of the following measure reinforces any attempt to do so. As in the first progression of **Example 22a**, the four intervals that comprise the total voice leading are all fully accessible to any willing listener, but the intensity of their presence varies: some are experienced as simple, directed motions; others are experienced more as associations that provide a context for these simpler motions. A bit of extra effort is required to bring all four intervals to consciousness, but the effort is rewarded by the ability to hear one total voice leading, [i56e0] in this case,
produced by different dyads. Such multiple parentage becomes a distinct and unifying feature of the passage.

[33] Stravinsky's *Epitaphium* begins with a duet for flute and clarinet (Example 23). The harmonic dyads are all members of ic1, ic2, and ic3, and I wish to make three observations about their succession from the point of view of their total voice leading. First, the progression from $\mathbf{\Phi}$ to $\mathbf{\Phi}$ (C-F to C-C) and the progression from $\mathbf{\Phi}$ to $\mathbf{\Phi}$ (E-F to E-D) have the same total voice leading, shown in the example as $<T>$. Second, the relationship that $\mathbf{\Phi}$ bears to $\mathbf{\Phi}$ is the same as the relationship that $\mathbf{\Phi}$ bears to $\mathbf{\Phi}$, namely $<T>$. In both cases, the intervalle profile of the total voice leading has shifted over to the same degree: each interval in the second imultiset is 7 semitones larger than in the first imultiset. Third, the relationship that $\mathbf{\Phi}$ bears to $\mathbf{\Phi}$ is the same as the relationship that $\mathbf{\Phi}$ bears to $\mathbf{\Phi}$, namely $<T>$. This is true even though the sizes of the dyads are different in the two cases. Hyper-relations thus permit comparison of progressions among pc sets of different types.

[34] The perceptual challenges involved with hearing recursive relationships are worth exploring in a bit more detail. We focus on a specific instance, namely the $<T>$ produced by the comparison between the progressions of $\mathbf{\Phi}$ and $\mathbf{\Phi}$. In the first of those progressions (C-F to C-C), the total voice leading is $\mathbf{\Phi}$. C is retained as a common tone (0) while C moves to B (10). (C is followed by C in attack order (11) and C is then followed by B (11). We can think of the total voice leading as involving two intervals of the same size (11), produced by attack order, flanked by one slightly smaller interval (10) and one slightly “larger” interval (0). In the following progression (B-C to E-F), the total voice leading has the same contour: two intervals of the same size (6), produced by the motion within each instrumental part (C-F and B-E), flanked by one slightly smaller interval (5 and 7, both produced by attack order).

[35] To hear both of these total voice leadings, and to hear that they share the same distribution of intervals, strikes me as a perfectly attainable goal of focused attention. Recognizing that this distribution has been shifted up seven semitones is obviously a bit harder to produce as an immediate feature of aural experience. Even more problematic is the notion that the 7 in $<T>$, which measures the interval between the intervals, is in some sense the same as the 7 in, for example, T, that associates B with F. I think it is possible to make this connection, both conceptually and experientially (I base this assertion on quiet, sustained introspection), and that effort is worth it, because the recursive relationship adds an enriching and unifying dimension to my hearing of the passage. But deciding whether the rewards are worth the effort takes us into the realm of personal preferences, which may vary a great deal.

[36] In the opening of Varèse's *Density* 21.5 (Example 24), the first phrase (measures 1–2) approaches its concluding tritone (C-G) from a perfect fourth (C-F), via the total voice leading $<T>$. In the second phrase (measures 3–5), the same tritone is approached from a minor second (F-G), via the same total voice leading, $<T>$. To put it in a slightly different way, approaching or leaving a tritone from a perfect fourth or semitone with which it shares a tone will produce the same total voice leading. In the music that follows, the same total voice leading binds together all of the melodic dyads.

[37] As noted earlier, the extent to which the four intervals of these total voice leadings are directly experienced aurally necessarily varies. In the first progression (C-F to C-G), F-G (1) and C-C (0) are the registral lines, while C-F (7) and C-G (6) are produced by the attack order. One might imagine that 1 and 0 are something akin to a more traditional idea of voice leading while 6 and 7 provide a contextual scaffolding for them. The intervals are not all equally vivid or functionally the same, but they all participate in creating the color of the progression. In the second progression (B-C to E-F), the situation is slightly different: now 0 and 7 comprise the registral lines (G-G and F-G) while 1 and 6 result from attack order (G-C and F-G). But that the same total voice leading is involved in both cases, namely $<T>$, and that it results from two different types of dyad pairs, namely (05;06) and (01;06), strike me as an experientially immediate and enriching way of hearing the passage.

[38] When X is a dyad and Y is a trichord (or vice versa), their total voice leading can be represented as a six-element imultiset (see Example 25). Among these six-element imultisets, seven have multiple parentage, and the number of different generating pairs ranges from two to four (see Example 26).

[39] Example 27 contains a chord progression that exploits the multiple parentage of i(013679), which results from the combination of a tritone (06) with one of four possible trichords: (013), (014), (025), (037). Despite the variety of the chords, each adjacent pair of chords expresses the same total voice leading. There are also interesting patterns of recurrence among the hyper-T and hyper-I relations.

Musical examples with dyads and trichords

[40] The total voice leading explored abstractly in Example 27, involving the multiple parentage of i(013679), is realized throughout the opening measures of Crawford's Diaphonic Suite No. 1, second movement (see Example 28). The melodic line is frequently punctuated with tritones, and these are typically followed by or overlapped with (013), (014), or (037) to produce a consistent total voice leading amid the harmonic diversity. If we look more closely at the first phrase of the melody (delimited by the double bar at the end of the fourth measure), we can hear it as two related gestures in which a single tritone (E-A or A-E) is followed by two different trichords (C-E and E-G). Within these two pairs of chords, the second
total voice leading is related to the first at \(<T_{-1}> \). In other words, all of the intervals in the first total voice leading have shrunk by a semitone. That larger gesture is reflected at the melodic surface by the descending semitone, G–F, which concludes the phrase. Something similar happens in the varied repeat of the opening music, beginning in measure 8. There, the two voice leading gestures are related at \(<T_{+1}> \), which is reflected in the ascending minor thirds that conclude each of the constituent trichords.

[41] Something similar happens in the first two phrases of the first movement of the same work (see Example 29). In the first phrase, combinations of (012) and (03) produce a total voice leading represented by \(i(012345) \). In the second phrase, combinations of a different pair of scs, (01) and (024), produce the same total voice leading. As before, the analysis offers a way of hearing a single class of total voice leading, \(i(012345) \), as remaining the same even as the harmonies that produce it vary. The intervals involved are not all experienced with the same degree of immediacy—some are registral lines, some are produced by successive attacks, and some are more associations than directed motions, providing a context or atmosphere for the others. But taken together, these intervals comprise a single voice-leading gesture that unifies and enriches a hearing of the passage.

\[
\text{X and Y are both trichords (3x3)}
\]

[42] When X and Y are both trichords, their total voice leading can be represented as a nine-element imultiset (see Example 30). Five of these imultisets have multiple parentage (see Example 31).

Musical examples with trichords

[43] In three passages of music by Schoenberg, from the Book of the Hanging Gardens and Pierrot Lunaire, the augmented triad plays a prominent role within a prevailing trichordal texture (see Examples 32, 33, and 34). Approaching and leaving an augmented triad from these particular trichords involves the same total voice leading. It might be possible to make a recursive argument about these passages—that the hyper-T involved reflect aspects of the intervallic surface of the music—but they would seem a bit forced to me. I would prefer to conclude with the observation that the augmented triad in these passages functions as something like a universal solvent—it can be approached from different places and left in different directions, but the total voice leading remains the same, imparting a sense of gestural uniformity amid the harmonic diversity.

Joseph N. Straus
Graduate Center, City University of New York
365 Fifth Avenue
New York, NY 10016
jstraus@gc.cuny.edu

Works Cited

———. 1990. “Klumpenhouwer Networks and Some Isographies That Involve Them.” Music Theory Spectrum 12, no. 1:

Footnotes

1. There has been an upsurge of scholarly interest in atonal voice leading in recent years, including Roeder 1985; Klumpenhouwer 1991; Roeder 1994; Straus 1997; Lewin 1998; Morris 1998; Straus 2003; Straus 2005; Callender, Quinn, and Tymoczko, 2008; and Tymoczko 2011. All of these sources, in one way or another, take the view of voice leading enshrined in Example 1. I am grateful to Julian Hook, Philip Lambert, Drew Nobile, Richard Cohn, and two anonymous reviewers for this journal for valuable comments on earlier drafts of this article. Some of the initial impetus for this study, and all of the extensive computational work associated with it are attributable to Will Orzo.

2. I take the phrase and the concept of “total voice leading” from a brief discussion in Morris 1998: “Given two pesets A and B, the total voice-leading from A to B includes any and all moves from any pcs of A to any pcs of B—that is, all the ways one can associate the pcs of A with those of B in as many voices as necessary or desired” (178). Morris is primarily interested in restricting the total voice leading by parsing it into the more usual sorts of voices (as in Example 1). The present study, in contrast, focuses on the total package of intervals formed between pesets A and B, without restrictions and without traditional parsing.

3. Lewin 1959 introduces the concept of “interval function” and Lewin 1977a explores it in considerable detail. In a particularly revealing passage, and one that directly engages the topic of the current study, Lewin calls attention to the “contrapuntal” nature of his conception—he is concerned about the intervals formed between two harmonies rather than those formed within a single harmony: “Forte's interval vector is a rigorously harmonic concept. My interval function, from which I derive my “interval content” is as rigorously contrapuntal in conception. Given pesets X and Y, and an interval i, INTF(X, Y, i) is the number of distinct ways in which the interval i can be spanned from a member of X to a member of Y; that is, the number of distinct pairs of pcs (x, y) such that x is a member of X, y is a member of Y, and the interval from x to y is i. The concept is a useful model for the following situation. Imagine yourself improvising at the keyboard, using only notes of X in your left hand and only notes of Y in your right hand. How many different ways can an interval of i occur in the resulting counterpoint? In this connection, one needs all the intervals from 0 through 11, since X and Y may have common notes, the number of possible contrapuntal 7’s may be different from the number of contrapuntal 5’s, etc.” (1977a, 201–2). Similarly, Lewin 1977a refers to the potential for IFUNC to reflect the “total potential counterpoint” between two harmonies: “The interval function is a useful tool for conceptualizing such musical phenomena as the ‘total potential counterpoint’ between a hexachord X and its complement X’” (203). In the same spirit, Lewin 1977b speaks of the way in which his interval function can reflect the “‘overall sound’ of the counterpoint” between two pitch-class sets (40).

4. Lundberg 2012 and Wilson 2012 independently develop the concept of what they both call a “voice-leading set” or vlset. This is a set of intervals formed between two pesets and, like pesets, a vlset may be understood as part of a larger class of
sets related by transposition or inversion. For both Lundberg and Wilson, voice leading is understood in the traditional manner of my Example 1, not in terms of the total voice leadings discussed here.

5. Compare Lewin’s (1987) Theorem 5.1.4, which asserts: IFUNC(Y, X)(i) = IFUNC(X, Y)(i^{-1}). In other words, however many occurrences of some interval i there are in the first IFUNC-vector, there will be exactly that number of occurrences of the complement of i in the second IFUNC. In this sense, IFUNC(Y, X) and IFUNC(X, Y) are inversions of each other.

6. This differs from the procedure in Robinson 2009: eliminate doublings; put the set in prime form following the standard algorithm; replace the doublings.

7. Compare Lewin’s (1987) Theorem 5.1.6A and 5.1.6B which assert: IFUNC(T_n(X), Y)(i) = IFUNC(X, Y)(ni) and IFUNC(X, T_n(Y))(i) = IFUNC(X, Y)(m^{n-1}). In other words, when X is transposed by n semitones with respect to Y (or vice versa), the IFUNC-vector will rotate clockwise or counterclockwise by n places.

8. My concept of hyper-T and hyper-I (to be discussed below) are obviously derived from and related to the use of these terms and concepts in relation to Klumpenhouwer networks—see Klumpenhouwer 1991 and Lewin 1990. In both cases, we are talking about the transposition of transpositions (intervals) or the inversion of inversional axes (sums). For more recent assessments of hyper-T and hyper-I in the context of Klumpenhouwer networks, see Buchler 2007 and the numerous responses in Music Theory Online 13/3 (2007), especially Klumpenhouwer 2007.

10. As Lewin (1987) observes, “There is not much to be said in general about the effect of applying an inversion operation to X, Y, or both, so far as IFUNC is concerned” (101). The last part of Lewin’s assertion (“or both”) appears to be incorrect.

11. As with hyper-T, the perceptual issues associated with hyper-I are discussed in the K-net literature cited above.

12. What I am calling the inversional symmetry of the imultiset (representing the total voice leading between two sets), Lewin (1977a) thinks of as enabling a kind of “invertible counterpoint,” i.e., a counterpoint whose intervals are not changed by reversing the order of the two sets: “We can conceptualize the counterpoint as being ‘invertible,’ in this context, if an exchange of pcsets between left and right hand does not affect the total distribution of intervallic possibilities. Formally, we can call the interval function from X to Y ‘invertible’ if, for every interval i, INTF(Y, X, i) = INTF(X, Y, i) (202). Lewin goes on to say, “It would be interesting to find what general relations between X and Y would be necessary and sufficient for their interval function to be invertible. Such general relations have as yet not been found.” I believe that the preceding section of the present study does identify these general relations. In my terms, the imultisetclass that represents the total voice leading between pcsetX and pcsetY will remain the same when X and Y are reordered if X and Y are identical, or if X and Y are related by transposition, or if X and Y are both inversionally symmetrical.

13. See also Cohn 1986, which includes a list of the 137 set classes that bear the TC-property, along with the operands that generate them.

14. Cohn 1988 uses matrices for precisely this purpose. Morris 1998 describes the use of “t-matrices” in describing total voice leading: “The t-matrix constructed from two pcsets A and B lists all the intervals from A to B . . . Since it contains all of the possible intervals from A to B, it registers the total voice-leading from A to B” (203). Morris is primarily interested in subsets of the contents of these matrices.

15. The matrix notation also makes it easy to grasp the traditional (one-to-one) voice leadings embedded within the total voice leading. If one extracts from one of these matrices a group of intervals such that no two occupy the same row or column, the result will be one of the ways of mapping the three pcs of X onto the three pcs of Y. In the first of the matrices in Example 15, there are six ways of extracting three numbers such that no two are in the same row or the same column: 3-6-e; 3-8-9; 4-5-e; 4-8-9; 6-6-8; and 6-5-9. These are the six traditional, one-to-one ways of voice leading from Set X to Set Y (Morris 1998).
16. “Multiple parentage” is a coinage of Cohn 1988: “Most of the 137 TC-set-classes are the product of several or even many different operations” (28).

17. Cohn 1988 Example 9, presents the same information in staff notation, including the multiple parentage of (0167) and (0268), but excluding the multisets with pc duplication.

18. Cohn 1991 explains why the transpositional combination of these four trichord-types under tritone transposition produces the imultiset 013679. See Cohn's Table 3 (p. 11) and surrounding discussion.