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Fig. 2 Receiver operating characteristic curves under Gaussian copula model with dimensionality varying from 50 to 120. The red line represents the
proposed RDN method, the black dotted represents the benchmark method ZP-DDN, the blue dotted line represents DDN method. a Scenario 3,
p = 50. b Scenario 3, p = 80. c Scenario 3, p= 100. d Scenario 3, p = 120

slightly better results than the L∞ loss function. Besides,
we can see that the elementwise L∞ norm estimation
accuracy are comparable. This is also true for Scenario 1
and Scenario 2.

Theoretical results
The estimators �̂, �̂B and �̂

M, after an additional thresh-
old step, are shown to be able to recover not only the

support of the true �0 but also the signs of its nonzero
entries as long as those entries are sufficiently large.
Besides, under mild conditions, the estimation errors
bounds in terms of matrix Frobenius norm and ele-
mentwise �∞ norm both achieve the parametric rate√
log p/min(nX , nY ), see details in Additional file 1. It

indicates that the extramodeling flexibility and robustness
come at almost no cost of statistical efficiency and it seems

Table 1 Average true discovery rates (%) and average estimation errors over 100 simulations

ZP-DDN RDN DDN

p L∞ LF L∞ LF L∞ LF

Average true discovery rates

50 74.0 (13.6) 83.2 (10.9) 75.6 (14.0) 89.1 (11.3) 45.9 (24.7) 27.8 (17.3)

80 91.4 (16.4) 99.6 (4.3) 95.2 (14.2) 100.0 (0.0) 44.9 (34.6) 51.0 (42.8)

100 96.3 (14.1) 100.0(0.0) 99.5 (5.2) 100.0 (0.0) 39.3 (40.3) 50.0 (49.1)

120 78.8 (16.8) 100.0(0.0) 79.0 (18.2) 100.0 (0.0) 23.4 (41.3) 30.0 (46.3)

Average estimation errors in the elementwise L∞ norm

50 3.26 (0.41) 2.91 (0.33) 3.08 (0.32) 2.59 (0.35) 2.27 (0.12) 2.41 (0.21)

80 2.06 (0.28) 1.92 (0.06) 1.98 (0.21) 1.91 (0.00) 1.97 (0.09) 1.94 (0.08)

100 1.86 (0.15) 1.82 (0.00) 1.82 (0.04) 1.82 (0.00) 1.87 (0.10) 1.83 (0.04)

120 1.12 (0.17) 0.87 (0.00) 1.12 (0.18) 0.87 (0.00) 0.89 (0.07) 0.87 (0.00)
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Fig. 3 Receiver operating characteristic curves for Scenario 1 and Scenario 2 under latent Gaussian copula model, with dimensionality varying from
50 to 120. a Scenario 1. b Scenario 2

as if the latent variable can be observed. Thus these new
estimators can be used as a safe replacement of Gaussian
estimators even when the data are truly Gaussian. Com-
pared to the separate and joint approaches to estimating
differential networks (e.g. [22, 23],) which require sparsity
on each �−1, the proposed direction estimation methods
for different types of data only require the sparsity of the
difference matrix �0. The detailed theorems and proofs
are in the Additional file 1 available online.

Results of application
In the real application part, we compare three estima-
tion methods. The first method is the Gaussian copula
RDN method, which we denote as C-RDN. The sec-
ond method is the latent Gaussian copula RDN method,
which we denote as B-RDN. In specific, we first apply
the adaptive dichotomization method implemented by
the ArrayBin package in R to remove the batch effect in

Table 2 Simulation results over 100 replications for Scenario 1
and Scenario 2

Scenario 1 Scenario 2

p L∞ LF L∞ LF

Average true discovery rates(%)

50 78.8 (15.2) 98.4 (5.9) 79.6 (13.8) 40.8 (25.6)

80 76.4 (23.1) 100.0(0.0) 83.4 (17.0) 88.2 (17.6)

100 89.5 (22.1) 100.0(0.0) 84.8 (20.0) 99.3 (3.9)

120 76.5 (31.0) 94.0(24.0) 82.4 (15.2) 100.0 (0.0)

Average estimation errors in the elementwise L∞ norm

50 2.66 (0.26) 2.21 (0.15) 3.23 (0.40) 3.85 (0.55)

80 2.10 (0.20) 1.91 (0.00) 2.29 (0.35) 2.14 (0.32)

100 1.88 (0.13) 1.82 (0.00) 2.03 (0.28) 1.83 (0.08)

120 1.00 (0.16) 0.87 (0.00) 1.17 (0.16) 0.88 (0.07)

the gene expression data. The adaptive dichotomization
method transforms the numerical gene expression data
into 0/1 binary data. The genes with high expression level
are encoded as 1 and the genes with lower expression
level are encoded as 0. Then we apply the B-RDN to the
0/1 binary data. The third method is the direct differ-
ential network estimation method proposed by [7] with
Gaussian assumption, which we denote as DDN.
We conduct Shapiro-Wilk test on the gene data set and

63% of the genes reject the normality null hypothesis.
Therefore, the Gaussian assumption of DDN method is
violated in this real data example. Thus we expect that
C-RDN which relaxes the Gaussian assumption may pro-
vide a more reliable result. The deficiency of the C-RDN
method lies in that it does not take the batch effect of the
genes expression data from different platforms into con-
sideration. For the B-RDN method, it removes the batch
effect.
Figure 5 depicts the differential network estimated by

the three methods. Table 4 gives the hub genes selected
out by different estimation methods. For method C-RDN,
the tuning parameter λ is selected by the AIC criterion
with the elementwise �1 norm loss function. To ensure
a fair comparison, the tuning parameter λ for method
B-RDN and DDN are selected such that the number of
edges in the estimated differential graphs by all three
methods are almost the same. The number of edges
selected by the three methods are 56, 59 and 52, respec-
tively. From Fig. 5, we can see that B-RDN identifies an
obvious hub gene WIF1 that is an extracellular antago-
nist of WNT. WIF1 is a frequent target for epigenetic
silencing in various human cancers [30]. WIF1 promoter
is frequently methylated in non-small cell lung cancer
(NSCLC) cells to down-regulate its mRNA expression
[33]. Both C-RDN and B-RDN select out a common hub
gene APC. APC expression in lung cancer are associated
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Fig. 4 Receiver operating characteristic curves for Scenario 3 under latent Gaussian copula model, with dimensionality varying from 50 to 120. The
red line represents the proposed RDN method, the black dotted represents the benchmark method ZP-DDN, the blue dotted line represents DDN
method. a Scenario 3, p = 50. b Scenario 3, p = 80. c Scenario 3, p= 100. d Scenario 3, p = 120

with survival time and is also related to cancer metas-
tasis [34]. Both C-RDN and DDN select out a com-
mon hub gene, MAPK8, which plays a significant role
in the promotion of lung inflammation and tumorige-
nesis subsequent to tobacco smoke exposure [35]. The

expression level of DVL2 was reported significantly higher
in lung adenocarcinomas than in squamous carcinomas,
and was associated with poor tumor differentiation [36].
Winn et al. [37] reported that the restoration of FZD9
signaling inhibited both cell proliferation and anchorage-

Table 3 Simulation results over 100 replications for Scenario 3

ZP-DDN RDN ZR-RDN

p L∞ LF L∞ LF L∞ LF

Average true discovery rates(%)

50 39.8 (39.5) 46.1 (47.3) 87.6 (14.7) 97.3 (7.4) 88.0 (11.0) 90.0 (12.4)

80 32.4 (41.9) 35.5 (47.9) 80.7 (14.8) 99.8 (2.5) 89.5 (8.7) 95.4 (7.2)

100 23.5 (40.2) 31.7 (46.9) 75.6 (20.3) 100.0(0.0) 84.0 (12.0) 99.1 (4.2)

120 16.0 (37.0) 16.0 (37.0) 52.9 (44.6) 68.0(47.1) 70.4 (26.8) 93.0 (24.8)

Average estimation errors in the elementwise L∞ norm

50 2.15 (0.03) 2.16 (0.01) 2.05 (0.15) 2.12 (0.08) 2.05 (0.17) 2.02 (0.15)

80 1.91 (0.02) 1.91 (0.01) 1.91 (0.12) 1.92 (0.04) 1.92 (0.12) 1.91 (0.08)

100 1.82 (0.02) 1.82 (0.00) 1.88 (0.12) 1.82 (0.00) 1.90 (0.12) 1.83 (0.04)

120 0.87 (0.00) 0.87 (0.00) 0.91 (0.09) 0.87 (0.00) 0.97 (0.11) 0.88 (0.05)
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Fig. 5 Differential network estimated by different methods. Orange edges show an increase in conditional dependency from control group to lung
cancer patient group; grey edges show a decrease. Red points stand for hub genes which have edges with more than 3 other genes. a C-RDN.
b B-RDN. c DDN

independent growth, promoted cellular differentiation,
and reversed the transformed phenotype in NSCLC. The
overexpression of MMP7 was associated with tumor pro-
liferation, and a poor prognosis in NSCLC [38]. RAC1
generally plays an important role in cancer progression
and metastasis [39].
By comparing (a) and (b) in Fig. 5, we can see that

the estimated differential network can be very different
with/without considering the batch effect. Although it is
inevitable to result in information loss in the discretiza-
tion procedure for method B-RDN, [40] argued that this
procedure can potentially improve the accuracy of the sta-
tistical analysis. In real data example, we recommend to
use the B-RDNmethod to remove the batch effect despite
the little information loss. At last we argue that statistical
comparison of group difference in this biological network
or pathway can provide new insight into the underlying
lung cancer mechanism, which may further offer more
effective targets for drug development.
To further interpret the underlying biological implica-

tions of the identified hub genes, we conducted Gene
Ontology (GO) enrichment analysis. Table 5 shows the
common GO terms enriched by C-RDN, B-RDN and
DDN. The GO enrichment analysis is performed using
R package “clusterProfiler” with the P-value adjusted by

Table 4 Hub genes selected by different methods

DDN PRKACA MAPK8 CACYBP CAMK2B SFRP1 CSNK2A2 TCF7

BTRC RUVBL1

C-RDN PLCB2 DVL2 MAPK8 PLCB1 APC WNT2 FZD9

WNT11 DKK1 SFRP4

B-RDN WIF1 MMP7 RAC1 LEF1 APC PRKACA WNT8B

BAMBI

Benjamini-Hochberg method. It shows that our meth-
ods (C-RDN, B-RDN) have smaller P-value than DDN.
The common molecular function and cellular component
suggest that the change of frizzled binding, Wnt-protein
binding and beta-catenin destruction complex are impor-
tant in the etiology of lung cancer. These predictions are
supported by the literatures [41–43] , which indicates
that the proposed differential network model can provide
biological meaningful underlying signals.

Discussion
A complex disease phenotype (e.g. diabetes, cancer) often
reflects various pathobiological processes that interact
in a network rather than the abnormality of a single
gene. Such interactions are not static processes, instead
they are dynamic in response to changing genetic, epi-
genetic and environmental factors, which further entails
the analysis of differential network. In this paper, we
propose adaptive estimation approaches for latent vari-
able differential network model with the assumption
that the true differential network is sparse, which do
not require precision matrices to be sparse. The latent
variable differential network model is fundamentally dif-
ferent from the existing ones in the literature in the
sense that the differential structure in the unobserved
latent variables are of primary interest. Theoretical anal-
ysis shows that the proposed methods achieve the same
parametric convergence rate for both the difference of
the precision matrices estimation and differential struc-
ture recovery, which means that the extra modelling
flexibility comes at almost no cost of statistical effi-
ciency. The unified latent variable differential network
model provides deeper understanding of the unknown
genomic mechanism than that among the observed
variables.
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Table 5 Gene Ontology (GO) enrichment analysis result

ID Functional term Ontology
Adjust P-value

C-RDN B-RDN DDN

GO:0016055 Wnt signaling pathway BP 1.69 × 10−11 2.96 × 10−6 0.0022

GO:0198738 cell-cell signaling by wnt BP 1.69 × 10−11 2.96 × 10−6 0.0022

GO:0060828 regulation of canonical Wnt signaling pathway BP 1.49 × 10−9 0.0012 0.0027

GO:0060070 canonical Wnt signaling pathway BP 4.78 × 10−9 0.0012 0.0027

GO:0030111 regulation of Wnt signaling pathway BP 6.67 × 10−9 0.0058 0.0091

GO:0005109 frizzled binding MF 5.28 × 10−5 0.0058 0.0091

GO:0007369 gastrulation BP 0.0024 0.0058 0.0276

GO:0017147 Wnt-protein binding MF 0.0025 0.0073 0.0286

GO:0060562 epithelial tube morphogenesis BP 0.0068 0.0073 0.0290

GO:0003002 regionalization BP 0.0074 0.0080 0.0331

GO:0035239 tube morphogenesis BP 0.0082 0.0090 0.0332

GO:0001503 ossification BP 0.0093 0.0131 0.0341

GO:0007389 pattern specification process BP 0.0113 0.0131 0.0357

GO:0043393 regulation of protein binding BP 0.0202 0.0175 0.0377

GO:0034329 cell junction assembly BP 0.0205 0.0178 0.0382

GO:0030877 beta-catenin destruction complex CC 0.0223 0.0377 0.0382

GO:0045216 cell-cell junction organization BP 0.0229 0.0409 0.0402

GO:0034330 cell junction organization BP 0.0259 0.0411 0.0408

GO:0071496 cellular response to external stimulus BP 0.0281 0.0411 0.0418

GO:0071214 cellular response to abiotic stimulus BP 0.0290 0.0421 0.0448

GO:0104004 cellular response to environmental stimulus BP 0.0290 0.0450 0.0453

GO:0051098 regulation of binding BP 0.0330 0.0474 0.0478

GO:0045992 negative regulation of embryonic development BP 0.0341 0.0479 0.0495

GO:1903829 positive regulation of cellular protein localization BP 0.0397 0.0489 0.0495

GO:1901990 regulation of mitotic cell cycle phase transition BP 0.0409 0.0489 0.0498

BP: biological process; MF: molecular function; CC: cellular component

The current work could be extended in the following
two aspects. First, in this paper, we consider the following
optimization problem to directly estimate the difference
matrix �:

arg min|�|1, subject to
∣∣∣Ŝ

X
�ŜY − ŜX + ŜY

∣∣∣∞ ≤ λn,

where ŜX and ŜY denote the rank-based estimators of the
covariance matrices. The D-trace loss function [15, 44]
can also be applied to to directly estimate the precision
matrix difference. Thus, we may also consider the D-trace
loss function to estimate the Gaussian copula and latent
Gaussian copula differential graphical models. In specific,
the difference matrix � could be eatimated by:

arg min�

1
2
Tr

(
�ŜX�ŜY

)
−Tr

(
�

(
ŜX − ŜY

))
+Gλ(�),

where λ > 0 is a regularization parameter and Gλ is a
decomposable non-convex penalty function which has the
form Gλ = ∑

j,k gλ
(
�jk

)
, such as smoothly clipped abso-

lute deviation (SCAD) penalty [45]. The theoretical guar-
antees are still needed to be investigated, but we expect
that the empirical performance could be comparable.
Second, for the latent Gaussian copula differential

graphical model, we focus on the binary data. In fact, the
methods can be extended to the discrete data with more
than two categories. The properties of this procedure are
left for future investigation as there are a lot of work still
needed to be done.

Conclusions
The proposed latent variable differential network models
are very flexible and provide deeper understanding of the
unknown biological mechanism. It is demonstrated latent
differential network models enjoy great advantages over
existing models and thus are highly recommended in real
application.
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Additional file 1: Contains the theoretical guarantee of of the proposed
methods and proofs. (PDF 284 kb)
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