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Cyprinid herpesvirus 3 (CyHV-3) was identified by Bretzinger, 
Fischer-Scherl, Oumouma, Hoffmann, and Truyen (1999) and Hedrick 
et al. (2000) as the aetiological agent of a viral disease termed 
KHVD, which can cause mortality as high as 80%–100% in common 
carp Cyprinus carpio (Reviewed in Gotesman, Kattlun, Bergmann, & 
El-Matbouli, 2013). CyHV-3 is a double-stranded DNA virus consist-
ing of a 295 kB genome encoding164 putative open reading frames 
(ORFs), and mass spectrometry analysis of viral particles has identi-
fied 40 proteins packaged in a mature virion including 22 structural, 
3 capsid, 2 tegument and 13 envelope proteins (Michel, Leroy, et al., 
2010). Furthermore, the immunogenic and vaccine potentials of sev-
eral epitopes of CyHV-3 have been investigated, including Orf12 
(Kattlun, Menanteau-Ledouble, & El-Matbouli, 2014) which is read-
ily recognized by the immune system of carp and Orf81 for which 
conflicting evidence exists (Kattlun et al., 2016; Zhou et al., 2014), al-
though little such research has been conducted in goldfish (Carassius 
auratus). In previous reports, our group elucidated pathogen–host 
interactions in CyHV-3-infected C. auratus through the use of mono-
clonal antibody-linked pulldown assay followed by electro-spray 
ionization mass spectrometry (ESI-MS) as described in Gotesman, 

Menanteau-Ledouble, and El-Matbouli (2016). C. auratus is a 
non-symptomatic carrier of CyHV-3, and previous studies demon-
strated that in C. auratus, several host defence proteins interact with 
CyHV-3 (Bergmann et al., 2010; Gotesman, Abd-Elfattah, Kattlun, 
Soliman, & El-Matbouli, 2014). Interestingly, several of these pro-
teins were not found to interact in the common carp, the susceptible 
carp host for CyHV-3 (Gotesman, Soliman, & El-Matbouli, 2013). A 
recent study by Torrent et al. (2016) has demonstrated that the IgMs 
of asymptotic CyHV-3 surviving carp recognize an epitope derived 
from the amino-terminal of the glycoprotein coded by the ORF149 
of CyHV-3 (Orf149). Monoclonal antibodies (mAbs) were generated 
by immunizing mice with purified CyHV-3 particles (Cabon et al., 
2017), and these mAbs were used to detect the virus in common 
carp brain cells by enzyme-linked immunosorbent assay (Bergmann 
et al., 2017).

Pulldown assays use antibodies to capture a “bait” protein in 
an affinity resin, and in the present study, we applied a pulldown 
assay to investigate the proteins interacting with the Orf149 epi-
tope: Orf149 mAbs were linked to N-hydroxysuccinimide (NHS)-
activated agarose columns (Gotesman et al., 2016) to capture and 
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identify host proteins interacting with CyHV-3. Kidney samples 
of C. auratus previously infected by intraperitoneal injection with 
200 µl of CyHV-3 virus at a concentration of 104 TCID50 (Kattlun 
et al., 2014, 2016) were lysed using a Tissue Lyser (Qiagen). The 
sample were resuspended in non-denaturing buffer (Gotesman 
et al., 2014; Gotesman, Soliman, et al., 2013) and passed through 
the columns by gravity filtration to expose the extracted host pro-
teins to the agarose-linked mAbs. The columns were rinsed 8 times 
with phosphate-buffered saline (PBS) to ensure that unbound ex-
tracts were washed away as measured by spectrophotometry280 
(OD = 0) and the bound proteins were eluted from the column using 
glycine (pH 3) into microcentrifuge tubes containing neutralizing 
Tris base (pH 8). The entire eluted fraction was analysed by liquid 
chromatography tandem mass spectrometry LC-MS/MS analysis 
(performed at the VetMedUni VetCore facilities) to elucidate host 
proteins that putatively interact with Orf149.

The majority of the proteins identified (Table 1A) were identical 
to proteins previously identified in C. carpio (Gotesman, Soliman, 
et al., 2013) as well as using a different epitope of CyHV3 species 
(Gotesman et al., 2014), including cytoskeletal, elongation fac-
tors and enzymatic proteins (Table 1A). The cytoskeletal protein 
actin (Sandquist, Kita, & Bement, 2011), which was detected in 
both CyHV-3-positive and CyHV-3-negative samples, serves as a 
track for both conventional and unconventional myosins (Moen, 
Johnsrud, Thomas, & Titus, 2011) and plays a role in intracellular 
translocation and cell remodelling (Gotesman, Hosein, & Gavin, 
2010, 2011).

Another protein identified was the eukaryotic elongation factor 
1 alpha (eEF1A) which has a diverse set of functions in the cell in-
cluding interactions with the cytoskeleton (reviewed in Sasikumar, 
Perez, & Kinzy, 2012). Interestingly, certain RNA viruses interact 
with eF1A directly to aid in viral replication (Sasikumar et al., 2012) 
and this could explain the recovery of cytoskeletal protein actin by 
the pulldown assay. Because eEF1A’s activity is hijacked for viral 
propagation, it is plausible that an antibody targeting the glyco-
protein Orf149 that interacts with the cell membrane of the host 

protein would also detect this cytoskeletal protein. This explanation 
is further supported by the fact that eEF1A was also pulled down by 
this assay.

Myeloid protein 1 is the final member of previously identified 
proteins. It is no surprise that a haemoglobin protein was recov-
ered in the CyHV-3-positive samples (Table 1A) because CyHV-3 is 
detectable in various regions of the circulatory system (Reviewed 
by Michel, Fournier, Lieffrig, Costes, & Vanderplasschen, 2010) in-
cluding the hematopoietic tissue in the spleen (Lee et al., 2016).

The results from this trial also suggested that the mAb was able 
to capture the same metalloendopeptidase (metalloendopeptidase 
042326) in both the infected and non-infected samples (Table 1B). 
More importantly, a unique, mitochondrial cytochrome c protein 
(mitochondrial cytochrome C X4Z1X5) was also detected in the 
CyHV-3-positive samples. Intriguingly, this protein had not been 
previously implicated in CyHV-3 infections (Table 1C). In our pre-
vious study, we identified interactions of CyHV-3 with mitochon-
drial enzymes involved in ATP synthesis (Gotesman et al., 2014; 
Gotesman, Soliman, et al., 2013), and in this study, another mito-
chondrial protein was shown to interact with CyHV-3. Cytochrome 
c-like metalloendopeptidase is known to coordinate with metal ions 
for correct functions and has implications in immune function and 
disease (Bond & Jiang, 1997), and it is interesting to speculate what 
role the mitochondria plays in CyHV-3 infection. Whether CyHV-3 
alters the activity of the mitochondrial machinery to produce 
higher amounts of ATP (Murata et al., 2000) or modulates apopto-
sis factors (Cotter & Blaho, 2009) to either increase viral replication 
(Aubert, Pomeranz, & Blaho, 2007; Zhou & Roizman, 2000) or the 
release of mature viruses via apoptosis (Zhang, Tang, & Xu, 2014), 
respectively, remains unclear. Interestingly, some viruses such as 
spring viremia of carp virus (SVCV) are known to modulate ROS 
(reactive oxidative species) production (Liu et al., 2017; Shao et al., 
2016). Antimycin A (a small molecule inhibitor of cellular respira-
tion) is known to inhibit the mitochondrial complex III, reducing 
ROS production in SVCV-infected cells and inhibiting the transcrip-
tion of SVCV glycoprotein and viral replication (Zhao et al., 2018). 

TA B L E  1   (A) Proteins identified that were overlapping from previous studies (Gotesman et al., 2014; Gotesman, Soliman, et al., 2013). (B) 
Proteins identified in both the positive and negative samples that were non-overlapping from previous studies. (C) Unique proteins identified 
in this study from CyHV-3-positive samples

Uniprot Ref. #  Role Coverage [%] # Peptides MW [kDa] calc. pI

(A) Overlapping from previous studies (Gotesman et al., 2014; Gotesman, Soliman, et al., 2013)

P53479 Actin, alpha skeletal muscle Cytoskeletal protein 12 4 41.9 5.39

P83750 Actin, cytoplasmic 1 Cytoskeletal protein 12 4 41.7 5.48

Q800W9 Elongation factor 1-alpha Transcription Factor 4 2 50 9.09

M9T843 Haemoglobin alpha Circulatory protein 13 3 15.6 8.85

Q9DGE4 Myeloid protein-1 Circulatory protein 19 2 17.5 9.55

(B) Non-overlapping from previous studies (Gotesman et al., 2014; Gotesman, Soliman, et al., 2013)

O42326 Metalloendopeptidase Enzymatic 7 2 31.3 9.42

(C) Unique to CyHV-3 infected samples

X4Z1X5 Mitochondrial cytochrome c Mitochondrial 28 3 11.5 9.54
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Alternatively, CyHV-3 may curtail the production or release of ROS 
by the mitochondria to reduce the cell's natural viral defence mech-
anism (Gonzalez-Dosal, Horan, & Paludan, 2012; Gonzalez-Dosal 
et al., 2011). Such viral strategies have been previously reported, 
for example, among the important viral diseases that affect domes-
ticated poultry, the fusogenically activated F and HN glycoproteins 
of Newcastle disease perturb mitochondrial fusion/fission haemo-
stasis (Ren et al., 2019). The fact that CyHV-3 can putatively in-
teract with this aforementioned enzyme and other mitochondrial 
components raises interesting questions regarding how this virus 
modulates the natural host immune response and mitochondria for 
increased viability.

Pulldown assays have demonstrated good specificity in the past, 
and, because of the extensive cleaning steps, it is unlikely that our 
assay would have detected proteins that did not interact with the 
Orf149 protein. Indeed, using a different bait protein resulted in a 
different set of purified proteins. This confirmed that interactions 
between bait and prey proteins were critical in the purification pro-
cess. In future research, it would be interesting to further investigate 
the interactions of CyHV-3 with host proteins in different species, 
for example using other immunoprecipitation methods such as 
co-immunoprecipitation.

The aquamedicine field is rapidly adapting unconventional ap-
proaches for the detection, characterization and treatment of emer-
gent threats to marine and aquaculture industries (Reviewed by 
Gotesman, Menanteau-Ledouble, Saleh, Bergmann, & El-Matbouli, 
2018). Interactions with host cells are one of the most critical as-
pects of viral infections; therefore, such studies can greatly improve 
our understanding of the disease. Moreover, such studies could po-
tentially suggest new therapeutic possibilities.
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