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Abstract

Background: Current methods used for annotating metagenomics shotgun sequencing (MGS) data rely on a computationally
intensive and low-stringency approach of mapping each read to a generic database of proteins or reference microbial
genomes. Results: We developed MGS-Fast, an analysis approach for shotgun whole-genome metagenomic data utilizing
Bowtie2 DNA-DNA alignment of reads that is an alternative to using the integrated catalog of reference genes database of
well-annotated genes compiled from human microbiome data. This method is rapid and provides high-stringency matches
(>90% DNA sequence identity) of the metagenomics reads to genes with annotated functions. We demonstrate the use of
this method with data from a study of liver disease and synthetic reads, and Human Microbiome Project shotgun data, to
detect differentially abundant Kyoto Encyclopedia of Genes and Genomes gene functions in these experiments. This rapid
annotation method is freely available as a Galaxy workflow within a Docker image. Conclusions: MGS-Fast can confidently
transfer functional annotations from gene databases to metagenomic reads, with speed and accuracy.

Keywords: metagenomics; annotation; cloud computing; Docker; Galaxy

Background

The initial focus of metagenomics studies, such as the Human
Microbiome Project (HMP) [1], was to survey the microbial com-
munities present in various sites on and in the human body, but
the focus of research has now shifted to understanding the func-
tional role these microbes play in metabolic and disease pro-
cesses. Assessment of the taxonomic diversity and composition

of metagenome samples using amplicon sequencing of the 16S
ribosomal RNA marker gene is inexpensive and has been ap-
plied to map a wide variety of microbial communities, but it
is also subject to bias and lacks sensitivity below the species
level. It is known that individual bacterial isolates with identi-
cal 16S genes may differ by as much as 15–30% in their genomes
[2], which may include genes with toxin production, antimicro-
bial, or metabolic functions. Alternatively, metagenomics shot-
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gun sequencing (MGS) of all DNA present in a biological sam-
ple can be used for computational prediction of gene functions
of sequenced DNA fragments to infer differences in the bio-
logical function of microbial communities [3]. Existing bioin-
formatics tools to characterize MGS data face bottlenecks ow-
ing to the large computational task of comparing millions of
short DNA sequences (50–200 nucleotides in length) to various
databases of known proteins, conserved protein motifs, or anno-
tated genomes. The BLAST [4] method is used to compare DNA
sequences (i.e., reads) to a database, requiring hundreds of CPU
hours to analyze a typical MGS sample containing hundreds of
millions of reads.

Approaches to overcome this computational bottleneck in-
clude the reduction of read data file complexity, e.g., through
deduplication or by de novo assembly. However, these data re-
duction methods themselves require substantial computational
effort and can introduce significant bias. Furthermore, misas-
semblies can introduce significant biases because the whole-
genome sequencing (WGS) reads correspond to hundreds of bac-
terial genomes and chimeric contigs can be created [5]. This
is especially true for gut microbiomes, where closely related
species with similar genomes are present, and this could be
exacerbated in the case where significant gene transfer occurs
across species (transposase, phage, and lateral gene transfer).
The result of a misassembly is to distort abundance informa-
tion because genomic sequences could be assembled together,
resulting in losing the signal for species present in the sample.
In addition, one of the advantages of the mapping approach is
that it is possible to recover the presence of a gene even when
the coverage for that gene is not sufficient for assembling it.
Therefore, gene presence in the sample can be better identi-
fied using the raw reads and comparing them with annotation
databases, rather than assemblies that make it difficult to en-
sure that species are not artificially masked during the assembly
process.

Other methods involve the use of faster but less sensitive
sequence-matching algorithms such as BLAT [6] or RAPSearch
(MG-RAST webserver [7]), or reduced databases for functional
protein identification, thus providing a less precise assay for mi-
crobial protein function. However, with the MG-RAST webserver,
the wait queue for data processing can be up to several weeks.
Carr and Borenstein [8] compared MGS annotation using BLAST
with using BWA (a DNA sequence similarity tool very similar to
Bowtie), and they conclude that at short evolutionary distances,
BWA has a higher precision and recall than BLAST for identify-
ing Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs,
but recall and precision for BWA drops dramatically at greater
evolutionary distances.

Results
MGS-Fast algorithm and software implementation

We created a computationally efficient pipeline for MGS data
analysis called MGS-Fast, which combines several data prepro-
cessing steps (read data trimming and filtering of low-quality se-
quences, removal of human host contaminant sequences) with
taxonomic and functional profiling of metagenomic WGS data.
The pipeline leverages software broadly used in the bioinfor-
matics community for quality control, taxonomy, DNA sequence
alignment, and taxonomic profiling (details in Methods sec-
tion). The novelty of MGS-Fast lies in the use of stringent DNA-
DNA matching to annotated and high-quality bacterial DNA se-
quences from the integrated reference catalog of the human

Figure 1: Multidimensional scaling (MDS) abundance plot generated using the
R package edgeR and a mixture model with a negative binomial distribution, for

the KEGG annotations generated by MGS-Fast using as input data from gut mi-
crobiomes of healthy patients (HV) and patients with liver cirrhosis (LD).

gut microbiome (IGC) [9]. The IGC database contains 9 ,879 ,896
gut microbe genes with annotations based on the Kyoto Ency-
clopedia of Genes and Genomes (KEGG; [10, 11]). The bioinfor-
matics workflow of MGS-Fast utilizes Bowtie 2 to rapidly map
a MGS data set and assign known functions to reads originat-
ing from microbial genes, producing counts of KEGG gene or-
thologs as output. The KEGG counts are then applied to iden-
tify differentially abundant microbial gene functions in metage-
nomics data sets, and separate samples from different patient
groups (Fig. 1). The IGC database is precompiled as a Bowtie
2 index that is deployed automatically during installation of
MGS-Fast and is also available as a separate download (Availabil-
ity section). Furthermore, the MGS-Fast pipeline is packaged as
preconfigured, ready-to-execute software within a Docker con-
tainer, which is easy to deploy without bioinformatics expertise
through a single command (Supplementary Information: Soft-
ware Manual). Researchers working with nonhuman MGS gut
data can create their own custom database of microbial genes
(Methods section) for functional profiling. Once a custumized
database is prepared, MGS-Fast allows for parallel processing of
multiple WGS metagenomic samples with increased accuracy
and reduced computational time for the functional assignment
of reads.

Data analysis of liver cirrhosis metagenomic samples

In our study, the MGS-Fast pipeline was used for the analy-
sis of gut microbiome samples from 10 patients with liver cir-
rhosis and 10 control samples from an earlier study by Qin et
al. [12], obtained from the European Nucleotide Archive, acces-
sion ERP005860. Upon completion, the pipeline generated gene
function abundance counts, with a total of 3,785 KEGG IDs,
which was similar to the number (4,801) in the original study
by Qin et al. Next, following the recommendations of McMurdie
and Holmes [13], we analyzed 502 of 3,785 KEGG IDs that had
significantly different abundance scores (false discovery rate–
corrected P-value threshold 0.05; Suppl. KEGG-FDR.CSV) as a



Brown et al. 3

mixture model with a negative binomial distribution, using the
R package edgeR, version 3.7 [14]. To visualize the differences be-
tween groups of KEGG ID abundances, we also used edgeR to cre-
ate a multidimensional scaling plot (Fig. 1), in which clear sepa-
ration was observed between the healthy and cirrhosis samples.

Next, we mapped 502 false discovery rate–corrected (0.05)
KEGG IDs returned by MGS-Fast to pathways using the
KEGG website tools [15]. We were able to identify func-
tional groups and pathways modules that corresponded closely
to the ones found in the original study by Qin et al.
[12]. Specifically, the majority of the pathway modules de-
tected were for membrane transport, including oligopep-
tide transport systems, in addition to zinc, glutamine, and
energy coupling factor transport (complete list in Suppl. file
KEGG modules–502 KEGG IDs.doc). Furthermore, and as reported
in the original study, we found prevalent pathway modules for
carbohydrate, amino acid, and energy metabolism, including
the citrate, Krebs, and Calvin cycles, gluconeogenesis, and gly-
oxylate and glycolysis cycles. We also observed a set of liver
cirrhosis–associated markers similarly to Qin et al., including
assimilatory nitrate reduction, denitrification, γ -aminobutyric
acid (GABA) biosynthesis, and GABA shunt, in addition to heme
biosynthesis. The GABA neurotransmitter system is correlated
with brain disease [16] as a result of liver dysfunction, because
of increased GABA levels in the blood have the potential to pene-
trate the blood–brain barrier and cause hepatic encephalopathy.
Finally, we also detected a set of pathway modules for ammo-
nia production, which could lead to increases ammonia levels in
the blood as described by the original study (Qin et al. 2014 [12]).
In this respect, we also found the assimilatory nitrate reduction
pathway module to be present, in addition to dissimilatory ni-
trate reduction and the complete nitrification pathway (Suppl.
file KEGG modules–502 KEGG IDs.doc).

Comparative pipeline performance and processing
times

The MGS-Fast Docker container was deployed on an 8-CPU In-
tel Xeon Server supporting hyper-threading for a total of 8 par-
allel processes (”threads”), in addition to 128 GB RAM memory.
This is a high-performance computing server, commonly found
in laboratories performing genome sequencing bioinformatics.
To compare the computational performance of MGS-Fast with
that of other published pipelines for metagenomic annotation,
we measured the processing time for each tool in the different
pipelines using the patient data sets from our study. To ensure
the compatibility of the results, we applied the option ”–threads
8” or similar for all pipelines (Kraken, GOTTCHA [17, 18], and Hu-
manAn2 [19]) included in our comparison. The pipelines were
set up according to the documentation for each, using the stan-
dard full database for Kraken (kraken-build –standard –db $DB-
NAME) and the latest bacterial databases for GOTTCHA [20]. Pro-
cessing times for the MGS-Fast workflow (sample ID ERR526291,
number of reads 15,181, 542 × 2) in comparison with the other
pipelines are presented in Table 1.

Interestingly, most other pipelines besides MGS-Fast do not
perform preprocessing of data such as quality control or removal
of host WGS reads, except for GOTTCHA, which offers users the
option to trim input DNA reads. Table 1 lists the times required
by MGS-Fast for the data preprocessing steps, including read
trimming and removal of host sequences. Furthermore, Fig. 2 re-
ports processing times for all MGS-Fast pipeline steps when used
for analysis of different patient metagenomic data sets, which
ranged from 1.5 to 11 GB in size. Similarly, Fig. 3 compares to-

tal time of execution for the same data sets with Kraken, which
uses a large in-memory k-mer database, versus the compressed
Burrows-Wheeler transform (BWT)—Bowtie2 aligner used for
MGS-Fast, and DIAMOND using protein-based alignment.

Our comparison data (Table 1) showed that MGS-Fast (49
min) was ∼3 times slower than GOTTCHA (17 min), while it
was 4 and 5 times faster than HumanAn2 (162 min) and Kraken
(254 min), respectively, for processing the ERR526291 data set
(15,181, 542 × 2 paired reads). For HumanAn2, we observed that
the software generates a bowtie index for the reads in the sam-
ple provided as input under a temporary files output directory
($OUTPUT DIR/$SAMPLENAME humann2 temp/, also described
in its documentation), which might explain the additional time
required in comparison to MGS-Fast. The significantly increased
time required by Kraken to process the data set is not surpris-
ing because in the corresponding publication [17] it was reported
that Kraken can process 150,000 reads per minute. With 30 mil-
lion reads in the ERR526291 data set, it would require ≥200 min-
utes for the alignment, with additional time for the annotation,
writing the output ,and other tasks. Furthermore, the computer
server used for running all the software comparisons had ample
RAM memory (128 GB), and examination of the Kraken output
file revealed that no page faults were reported (this is a built-
in feature of the software, where number memory faults minus
disk swaps are reported), which, if present, would explain the
increased time taken by Kraken. The database constructed by
Kraken, using the ”kraken-build” command that downloads ref-
erence data from the National Center for Biotechnology Infor-
mation, was ∼164 GB in size. This is more than twice the 70 GB
reported in the original 2015 publication,[16] and also reflects the
fact that Kraken is a k-mer–based aligner and read sizes have
increased (in our data set it was 100 base pairs × 2 paired end),
resulting in more k-mers to be compared per read, necessitating
increased time to process the sample.

WGS metagenomic data sets used as controls for
MGS-Fast

We further evaluated the performance of the MGS-Fast pipeline
by using a range of metagenomic samples from mouse and hu-
man collected across different body sites (e.g., gut, mouth, skin),
in addition to environmental samples (e.g., copper mine waste),
and negative controls of simulated read data from real or syn-
thetic genomes (Table 2). The Human Oral Microbiome Database
(HOMD; [21]) was included in the analysis workflow as additional
annotation data. In more detail, Bowtie 2 alignments of human
gut (fecal) samples performed by MGS-Fast resulted in 95.62%
of all reads in the sample being successfully mapped to the
database. For human oral and skin microbiome samples 82.32%
and 33.02% of the reads, respectively (Table 2), were mapped to
the database.

Simulated FASTQ reads from the human reference genome
GRCh38 aligned at only 7.35%, which was expected because our
pipeline filters out human sequences. As a positive control, we
mapped MetaSim [22] simulated reads from the Escherichia coli
K12 reference genome (GenBank: accession U00096.3) and 98.5%
of the sample was aligned. Furthermore, as negative controls
we included the HMP mock microbial community (SRR172902;
28.82% of reads aligned to database), a synthetic metagenome
(SRR3732372) made from a mixture of DNA from laboratory
strains of bacteria (10.23% of reads aligned to database), and
a copper mine waste sample (MG-RAST accession 4664533.3;
8.69% of reads aligned to database; Table 2). Finally, false-
positive matches were evaluated by aligning a set of randomly
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Table 1: Processing times for the MGS-Fast pipeline in comparison with other workflows (Kraken, HumanAn2, GOTTCHA) used for WGS metage-
nomics analysis

Workflow
Data set ID: No. of

reads × paired

Data
quality
control

(FASTQC)
(min)

Data
prepara-

tion
(Groomer)

(min)
Trimmomatic

(min)
Human filtering
(Bowtie) (min)

Taxonomic classification
(MetaPhlAn) (min)

Annotation
(Bowtie IGC)

(min)

KEGG
count
(min)

Total
(without

filtering) (min)

MGS-Fast ERR526291:
15,181,542 × 2

2 6 2 6 23 22 4 49 (16)

Kraken N/A N/A N/A N/A 254 254
HumanAn2 N/A N/A N/A N/A 162 162
GOTTCHA N/A N/A (1∗) N/A 17 17

Time for data preprocessing steps (quality control of metagenomic data, filtering of host DNA) performed by MGS-Fast is listed in parentheses. Time is with 8× threads.
N/A: not applicable. (1∗) The only tool that has a built-in trimming option.

Figure 2: Processing times for all MGS-Fast pipeline steps when used for analysis of different patient metagenomic data sets ranging from 1.5 to 11 GB in size.

generated reads by means of the XS simulator [23]. As expected,
only 0.53% of the sample reads aligned to our database.

Methods
MGS-Fast pipeline structure and data processing

The MGS-Fast workflow begins with quality control using FastQC
(FastQC, RRID: SCR 014583) (red rectangles, Fig. 4A; [24]), which
creates as output a report on many aspects of input data qual-
ity. Next, Trimmomatic (Trimmomatic, RRID: SCR 011848; [25],
blue rectangle, Fig. 4A) is used to remove sequencing adapters,
primers, and low-quality sequence data. Human host DNA is re-
moved by alignment of reads to the human reference genome
using Bowtie 2 (Bowtie, RRID: SCR 005476; [26], left green rectan-
gle, Fig. 4A), using the human GRCh38 reference genome [27].
This filtering step retains only the ”unmatched” reads corre-

sponding to the metagenome as specified by the ”–un” (un-
aligned) option from Bowtie 2. The retained reads are then
aligned to the IGC microbiome gene catalog database with
Bowtie 2 (right green rectangle, Fig. 4A), using the ”–end-to-
end –sensitive” option, in order to assign KEGG protein func-
tion IDs to each read. The IGC database [28] contains ∼10 mil-
lion KEGG-annotated microbial genes, collected from 1,267 pub-
lic human gut microbiome samples plus an additional 922 com-
plete annotated prokaryotic genomes. The software versions in-
cluded in this workflow are the following: FASTQC 0.11.6, Trim-
momatic 0.32.1, Bowtie 2.2.6, and MetaPhlAn 2.5.0 (MetaPhlAn,
RRID: SCR 004915) [29], with a default preset of parameters (de-
tails in Supplementary Manual) that can be easily adjusted and
changed by the users through the Galaxy interface.

Next, a custom Python script integrated in the workflow (yel-
low rectangle, Fig. 4A) is used to count the number of IGC genes
and KEGG IDs generated as output of Bowtie 2 with IGC. The





6 MGS-Fast: Metagenomic shotgun data fast annotation

Figure 4: (A) MGS-Fast pipeline on the Galaxy workflow canvas, running on a Docker container. Read quality tools are outlined in red, score adjustment and trimming in
blue, Bowtie 2 alignment to the IGC/HOMD or human reference in green, the MetaPhlAn analysis in orange, and annotation parsing from the Bowtie 2 results in yellow.
(B) Interface of MGS-Fast pipeline on Galaxy web server running in the Docker container. Users can select the input data and parameters for the pipelines through
dropdown menus and input boxes (details in Suppl. Software Manual). (C) The pipeline output for the MetaPhlAn tool, visualized within the Galaxy web interface.
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MGS-Fast pipeline software distribution and data
options

The MGS-Fast pipeline was developed using the workflow can-
vas of the Galaxy bioinformatics web server (Galaxy, RRID:
SCR 006281; Fig. 4A, [31]), which was first pre-installed and con-
figured to run within a Docker virtual machine container [32].
The Galaxy web server was chosen because it provides an in-
tuitive web browser interface for nontechnical users. Users can
easily access and run the MGS-Fast pipeline via the Galaxy in-
terface, and developers can use the Galaxy workflow canvas to
build and modify the pipeline.

Our goal was to develop a complete software bundle within
a Docker container, which includes the MGS-Fast workflow and
all required bioinformatics software, in addition to all other soft-
ware dependencies. The entire pipeline is implemented in a se-
ries of steps (Fig. 4A), which are automated via Galaxy. The users
only need to select the input data sets (Fig. 4B), and the Galaxy
workflow engine will automatically execute all remaining anal-
ysis steps of the pipeline. Furthermore, the input data directory
is attached and automatically available through the Galaxy in-
terface when users set up MGS-Fast and specify the data direc-
tories (Suppl. Software Manual). Upon completion of an MGS-
Fast pipeline run, the users can download all result files or sim-
ply view the output within the Galaxy interface (Fig. 4C). Fur-
thermore, users can run MGS-Fast by reconfiguring the analysis
steps or rerunning a single tool instead of the whole pipeline.

MGS-Fast also provides 2 options for users to create custom
Bowtie 2 indexes both for filtering host genome reads and for an-
notating the metagenomic reads. Through the first option users
can specify the location of a file containing the sequence of a
host genome or metagenome, through a text-based menu dur-
ing the initial run of the MGS-Fast container (Suppl. Manual).
The scripts inside the container will automatically build an in-
dex for the provided genome and make it available for use on
the Galaxy interface without any futher effort by the user. As
a second option, we made an additional pipeline (Suppl. Mate-
rial) available, which is called ”Galaxy-Workflow-Custom MGS-
Fast.ga” and can be imported to an already installed and running
MGS-Fast workflow. The custom workflow is identical to the reg-
ular workflow used by MGS-Fast but provides users the option
to use a FASTA file containing the sequence(s) of the custom
genome as input. The Bowtie 2 index for the provided genome
is automatically built during the first run of the workflow and
is then made available for all subsequent runs. Similarly, users
can at any point add additional custom genome indexes, both
for filtering host DNA reads and for classifying metagenomes.
Users can download host genomes (e.g., mouse reference [33])
and also a range of WGS metagenomes from the Joint Genome
Institute [34].

Discussion

MGS-Fast can confidently transfer functional annotations from
annotated gene databases to sequence reads in metagenomic
data sets. For microbial read annotation and assignment of
KEGG IDs by alignment to the International Genome Consor-
tium, MGS-Fast uses the Bowtie 2 algorithm requiring by de-
fault 90% DNA sequence identity in finding matches. While the
DNA to DNA alignment performed by Bowtie 2 is less sensitive
than translated BLAST utilizing information from conservative
amino acid substitutions, at the 90% level of identity, we only
have exact matches from DNA fragments of the same species,
or orthologs between closely related species [35]. We have also

considered increasing the sensitivity of our method by chang-
ing the Bowtie 2 parameters and including the ”–very-sensitive-
local” parameter or increasing the number of allowed mis-
matches but decided against it because it would allow less
stringent DNA-DNA alignments and more false-positive results.
Nonetheless, this option is still available for users because the
Bowtie 2 parameters can be easily adjusted through the Galaxy
interface when a MGS-Fast pipeline run is initiated. However,
caution is required in interpreting the results with increased
sensitivity parameters because a high percentage of false-
positive alignments will make assignment of metabolic func-
tion to metagenomic reads less reliable. In addition to Bowtie 2
our pipeline also provides annotations through MetaPhlAn2, us-
ing a database of ∼1 million unique clade-specific marker genes
from 17,000 reference genomes. This enables MGS-Fast to iden-
tify taxa within narrow clades, even in the absence of reference
genomes for species in the gut community. MetaPhlAn2 enabled
us to identify a microbial organism at higher taxonomic levels of
genera or family, and we observed identification of 8,931 organ-
isms, of which 6,681 have been annotated by MetaPhlAn at the
order taxonomic level.

Using Docker container technology, we bundled all required
software components and the MGS-Fast pipeline as a preconfig-
ured, ready-to use bioinformatics package for performing stan-
dardized, automated metagenomics analysis on any desktop or
laptop computer running Windows, MacOS, or the Linux oper-
ating system. Both the container and source code are publicly
available for download (Availability section) and can be easily
installed by users without bioinformatics expertise with a sin-
gle command (Suppl. Software Manual). Users can then simply
access the MGS-Fast pipeline via the Galaxy interface by enter-
ing the network address of the container (made available to the
user when the installation is complete) on their web browser.
Furthermore, the Docker container can be deployed on the cloud
or institutional clusters, where users can run multiple instances
of MGS-Fast in parallel in order to process multiple NGS samples,
or within a single instance of MGS-Fast using Galaxy’s Data Col-
lections input data options.

Regarding computational performance for large-scale stud-
ies, we tested MGS-Fast with a set of Illumina HiSeq 2000 oral
microbiome data sets ranging from 1.5 to 11 GB (Fig. 2) in file
size [36]. Using a computer server with average computational
capacity (128 GB, 8-CPU core) the processing time for MGS-Fast
ranged from 20 minutes for smaller read sets to 2.5 hours for the
larger ones. The cumulative processing time to complete run-
ning MGS-Fast for all data sets included in this study was ∼15
hours (900 min). For large WGS metagenomic studies (100 sam-
ples), the complete study can be processed in the course of a
few days. While running a single data set at a time on our com-
puter server, we noticed that the hardware capacity was under-
utilized and decided to implement MGS-Fast analysis in paral-
lel, reducing the total time required to process the data sets in-
cluded here. In a production setting, where more computational
capacity might also be available, researchers could use tens of
instances at the same time and efficiently process large-scale
data sets.

We then compared the performance of the com-
pressed BWT–Bowtie 2 aligner used for MGS-Fast (Fig. 3)
with Kraken [17] and DIAMOND [37], which use, respec-
tively, a large in-memory k-mer database and protein-
based alignment. The Kraken approach is based on a
database of preclassified k-mers, and although it can clas-
sify millions of reads in just a few minutes, their memory
requirements are usually high, requiring a high-performance,
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expensive computer server to which some laboratories do not
have access in order to complete the analysis. In contrast,
MGS-Fast is similar to multiple other published tools in the
literature using the more efficient Bowtie 2 index structure,
which allows for memory efficiency in storage and increased
speed when querying the database [38], as also evidenced by
our results in the present study.

Furthermore, our results are substantiated by the subsequent
release by the authors of Kraken of a newer tool called Centrifuge
[39], which, unlike Kraken and similar to other nucleotide-based
classification tools in the literature, also uses the BWT for the
genome database. This strategy uses one-tenth the space of a
Kraken index for the same database, providing faster classifica-
tion speed and lower memory requirements, making it possible
to perform large-scale metagenomics annotation on a desktop
computer. As reported in this study [39], Centrifuge took only 47
minutes on a standard desktop computer to analyze a total of 26
GB of input sequence data, and where Kraken and MegaBLAST
required 100 and 25 GB of memory, respectively, for their in-
dexes, Centrifuge requires only 4.2 GB. Similar results have been
reported for multifold increased speed in comparison to Kraken
with BWT use in PALADIN and Kaiju [40, 41], and as reported
in these studies an important constraint for Kraken is its mem-
ory usage, where the database grows in linear proportion to the
number of distinct k-mers in the genomic library (at 12 bytes per
k-mer).

Regarding using nucleotide read alignment versus protein
translated search for metagenomic classification, the fact is that
amino acid sequences are conserved better at evolutionary dis-
tances, leading to more sensitive read classification in the case
of distant species or taxa. Both DIAMOND and Kaiju [37, 41] align
6-frame translations of reads against a protein database. Simi-
larly to what was mentioned above, Kaiju indexes the reference
protein database using BWT as does our MGS-Fast tool, allow-
ing metagenomic sequences to be searched quickly and with
low memory footprint against a large protein database. Given
a metagenomic sample and the prebuilt index, Kaiju first trans-
lates every read in all 6 reading frames, splitting the read at stop
codons. As reported in this study, by using the BWT as an index
for the reference protein database, Kaiju classifies up to millions
of reads per minute and is typically faster than k-mer–based
methods such Kraken and Clark [42].

Availability of supporting data and materials
� GitHub repository with MGS-Fast code: https://github.com/B

CIL/MGS-Fast
� Docker repository with the MGS-Fast container: https://hu

b.docker.com/r/bcil/metagenome/tags/(bcil/metagenome:
nyu 4.0)

� IGC Indexes Database:http://bioitcore.hunter.cuny.edu:9988
� Human metagenomic reads, synthetic data, and E. coli data

sets: http://bioitcore.hunter.cuny.edu:9988
� Testing data sets and precompiled genome indexes: http://bi

oitcore.hunter.cuny.edu:9988/Metagenomics Package
� Furthermore, detailed instructions on the use of the Docker

system and installation and use of the MGS-Fast image are
available in the software manual as part of this manuscript.

� All software, indexes, and containers are released under
open-source MIT license.

Snapshots of the code and sample data are also available in
the GigaScience GigaDB repository [43].

Additional files

V2 Suppl-Software-Manual.docx edger.r Suppl-KEGG-FDR.CSV
KEGG modules-502 KEGG IDs.docx Galaxy-Workflow-
Parallel MGS-Fast.ga compute times compared.xlsx
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