
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Publications and Research City College of New York

2016

Development of a Wireless Environmental Data Acquisition Development of a Wireless Environmental Data Acquisition

Prototype Adopting Agile Practices: An Experience Report Prototype Adopting Agile Practices: An Experience Report

Paul Celicourt
CUNY City College

Richard Sam
CUNY City College

Michael Piasecki
CUNY City College

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/cc_pubs/578

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/cc_pubs
https://academicworks.cuny.edu/cc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/cc_pubs/578
https://academicworks.cuny.edu/cc_pubs/578
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Journal of Software Engineering and Applications, 2016, 9, 479-490
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2016.910031 October 10, 2016

Development of a Wireless Environmental
Data Acquisition Prototype Adopting
Agile Practices: An Experience Report

Paul Celicourt1, Richard Sam2, Michael Piasecki3

1Civil Engineering Department, The City College of New York, New York, USA
2Electrical Engineering Department, The City College of New York, New York, USA
3CUNY’s Environmental CrossRoads Initiative, The City College of New York, New York, USA

Abstract

The traditional software development model commonly named “waterfall” is unable
to cope with the increasing functionality and complexity of modern embedded sys-
tems. In addition, it is unable to support the ability for businesses to quickly respond
to new market opportunities due to changing requirements. As a response, the soft-
ware development community developed the Agile Methodologies (e.g., extreme
Programming, Scrum) which were also adopted by the Embedded System commu-
nity. However, failures and bad experiences in applying Agile Methodologies to the
development of embedded systems have not been reported in the literature. There-
fore, this paper contributes a detailed account of our first-time experiences adopting
an agile approach in the prototype development of a wireless environment data ac-
quisition system in an academic environment. We successfully applied a subset of the
extreme Programming (XP) methodology to our software development using the
Python programming language, an experience that demonstrated its benefits in
shaping the design of the software and also increasing productivity. We used an in-
cremental development approach for the hardware components and adopted a “cu-
mulative testing” approach. For the overall development process management, how-
ever, we concluded that the Promise/Commitment-Based Project Management (PB-
PM/CBPM) was better suited. We discovered that software and hardware compo-
nents of embedded systems are best developed in parallel or near-parallel. We
learned that software components that pass automated tests may not survive in the
tests against the hardware. Throughout this rapid prototyping effort, factors like
team size and our availability as graduate students were major obstacles to fully apply
the XP methodology.

How to cite this paper: Celicourt, P., Sam,
R. and Piasecki, M. (2016) Development of a
Wireless Environmental Data Acquisition Pro-
totype Adopting Agile Practices: An Expe-
rience Report. Journal of Software Engineer-
ing and Applications, 9, 479-490.
http://dx.doi.org/10.4236/jsea.2016.910031

Received: August 20, 2016
Accepted: October 7, 2016
Published: October 10, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.910031
http://www.scirp.org
http://dx.doi.org/10.4236/jsea.2016.910031
http://creativecommons.org/licenses/by/4.0/

P. Celicourt et al.

480

Keywords
Data Communications Devices, Rapid Prototyping, Real-Time and Embedded
Systems, Systems and Software, Testing Strategies, Wireless Sensor Networks

1. Introduction

Despite its predominance in the last decades of the twentieth century, the single-pass
model of software development, namely the “waterfall” model, suffers from serious
shortcomings. These include its inability to cope with change when the requirements
are not well defined on the onset, the need to re-write substantial portion of code, and
the unpredictability of software quality due to late testing. Approaches of this type ex-
pose software development projects to high failure risks that may end up being can-
celled due to large lag time in product delivery. This negates or at least complicates the
need of businesses to quickly respond to new market opportunities. As a consequence,
new paradigms for software development sought to develop modern and simple me-
thods leading to: a timely development and delivery schedule, a mitigation strategy to
reduce risks early in the development process, and the ability to incorporate changing
requirements. Attention was geared towards the so-called “iterative and incremental
development” (IID), a concept introduced in the mid-1950s. Thus, IID became the
centerpiece of many software development approaches grouped under the Agile Me-
thodologies umbrella since the publication of the Agile Manifesto
(http://agilemanifesto.org/) in 2001. This latter defines a set of four core values and
twelve principles for the individual Agile Methodologies with the most popular being
Scrum [1] and XP [2]. They are sufficiently documented in the literature and for brevity
and space limitations we do not present further details. A summary of several software
development approaches including the Agile Methodologies can be found in [3].

The benefits of applying Agile Methodologies to enterprise software development
have been tangible and embedded systems developers have sought to embrace these
concepts. Embedded System is defined here as a combination of hardware, including at
least a microprocessor and software controlling the hardware as part of a system or de-
vice designed to perform a dedicated function. A number of researchers and practi-
tioners have attempted to apply Agile Methodologies to embedded systems develop-
ment. For instance, Ronkainen and Abrahamsson [4] explored the possibility of using
agile development techniques in the development of low-level telecommunications
software with stringent hardware constraints. They noted that avoidance of up-front
documentation, the negative effects of refactoring on hard real-time system timing and
the need to cope with changes in requirements during development are obvious chal-
lenges to fully-fledged use of agile principles. Similarly, Codeiro et al. [5] propose an
agile methodology namely “The next Methodology (TXM)” combining practices from
XP, Scrum and organizational patterns of agile software development for embedded
software development under stringent hardware constraints. However, with the proli-

http://agilemanifesto.org/

P. Celicourt et al.

481

feration of low-cost and high performance processors and microcontrollers, this is no
longer a critical issue.

In addition, Gary et al. [6] successfully applied Agile Methodologies to the software
development of an image-guided surgical toolkit system while Manhart et al. [7]
adopted Agile Methodologies to the software component of an automatic breaking sys-
tem at Daimler-Chrysler. These two examples defy Boehm’s [8] claim that Agile Me-
thodologies might not be suitable for life-critical embedded systems. Greene [9] uses a
combination of XP and Scrum practices in the development of firmware for the Intel
Itanium processor. Karlesky et al. [10] developed and applied the Model-Conductor-
Hardware design pattern in testing embedded software drawing from the Mod-
el-View-Presenter and Model-View-Controller design patterns. Van Schooenderwoert
and Morsicato [11] discuss a combination of five testing techniques including the
“Guru Checks Outputs” technique (manual check of results) during the production of a
mobile spectrometer designed.

It is obvious that the above authors focused primarily on the software development
aspect of their embedded systems and overlook the application of agile methodologies
to the hardware development aspect. Unfortunately, none of the above authors have
reported on their effort to make the software works with the real hardware. Further-
more, they have not illustrated how such methodologies can be applied to hardware
development. But, Chen [12] highlighted that there is no good way to adapt agile soft-
ware development techniques to hardware development. However, Drechsler and Brei-
ter [13] concluded that hardware designers can make use of many development and
management concepts of the software domain after studying the similarities between
hardware and software development. Furthermore, Conforto et al. [14] confirmed that
Agile Methodologies can be applied in industries other than software development
based on an exploratory survey of 19 small- and medium-size Brazilian companies.
Myllerup [15] asserts that it is “possible” to transfer agile methodologies into electron-
ics- and mechanics-based product development projects. But, he also confesses that the
nature of those projects (sourcing, manufacturing of prototypes) is not well aligned
with methods that use short iterations with frequent deliveries. Monte [16] laid out the
special challenges for agile adoption in hybrid software and hardware development and
suggests the use of different agile approach for each component. The author also pro-
poses the use of the CBPM/PBPM [17] to better utilize agile approach to the manage-
ment of hardware development. The core idea of CBPM/PBPM is that things get done
faster and in a more motivated way through organizations if team members voluntarily
make promises to deliver their contribution to the project by a certain date instead of
defining a sprint timetable (1 - 4 weeks) concept of Scrum. The approach would be to
think about the basic, smallest chunks of hardware functionality that can be delivered
using the most agile way.

There has been a noticeable reticence in reporting the failures and bad experiences in
the literature on the application of Agile Methodologies to embedded systems devel-
opment. For instance, Kaisti et al. [18] surveyed over 28 papers on the application of

P. Celicourt et al.

482

agile methods to embedded-systems and discovered that failures and bad experiences
have not been reported in any of the papers. Srinivasan et al. [19] concluded that the
absence of failures with respect to adoption of agile methods is the startling gap in pub-
lished literature on the subject. In this paper, we report on challenges and experiences
of our first attempt to apply agile approaches to the rapid prototyping of an end-to-end
wireless environmental data acquisition system in the context of two graduate students
from two different engineering departments carrying out collaborative research. Our
paper contributes a detailed account of our first-time experiences adopting an agile ap-
proach during the prototype development of the system in an academic environment.
While we report on our failures and bad experiences, we also demonstrate the adapta-
tion of Agile Methodologies to the development of both the hardware and software
components of the system in our case study.

Our environmental data acquisition system consists of multiple end-nodes collecting
data from sensors (such as air and water temperature, soil moisture) and transmitting
the data and metadata to a central node where the data is automatically annotated with
the metadata and stored into an instance of the Consortium of Universities for the Ad-
vancement of Hydrologic Sciences, Inc.’s Observations Data Model (CUAHSI ODM)
[20]. The central node operates in such a way that an end-node can integrate the net-
work at any time without disturbing the network. This data model is designed to store
point observations along with sufficient corresponding metadata to allow users to un-
ambiguously interpret and understand it and to provide traceable heritage from raw
measurements to useable information. In addition, the data model comprises commu-
nity defined semantics and syntaxes using controlled vocabularies needed to enable in-
teroperability of hydrologic information systems. We developed software components
to control the end-nodes and organize them as a network. In addition, software com-
ponents enable automated organization of the incoming data with metadata from the
end-nodes into the ODM. In addition, we developed hand-soldered Printable Circuit
Boards (PCB) that are attached to the Raspberry Pi microcomputer
(www.raspberrypi.org) that provides the processing power for the end-nodes. In this
paper, we simply provide a succinct description of the system without diving into the
details about its components which will be the subject of a subsequent paper.

This paper is organized as follows: we first introduce the approach and challenges we
faced during the hardware and software development. Because we adopted an agile ap-
proach in which the test-driven development principle plays a significant role, we then
present the testing approach and challenges we faced. Next, we transition to the discus-
sion section before we conclude the paper.

2. Approach and Challenges to the System Development

We started our project without a formal development process in mind. In fact, initially
we were not aware of any process or approach that could help us deliver a working sys-
tem quickly. As it was our first attempt developing such a prototype, we started off by
deploying hardware accessories and software scripts that would do as little as reading

http://www.raspberrypi.org/

P. Celicourt et al.

483

measurements from a digital temperature sensor (a DS18B20 thermometer,
https://www.adafruit.com/product/374).

Given our small team size (2 developers) and limited availability to conduct true
team work in addition to the initial strategy of trial-and-error, we concluded that the
CBPM/PBPM was a more suitable management process to continue testing and adding
new functionalities and features to the system. Features include items such as adding
logical and physical supports for analog sensors or wireless communication to the PCB
among others. For every working feature added, we made time to meet and discuss the
next step. While the CBPM/PBPM method is based on making and fulfilling commit-
ments, we realized that promises are more satisfactorily fulfilled on time when initial
works had already been started (what we called “half-baked promise”) before the
promise was made and a certain date proposed. In other words, we found that the con-
cept of “half-baked promise” is an important step to successful promise delivery. A
similar technique is used in most STEM Graduate Schools where PhD students are re-
quired to carry out initial works towards their thesis such as publishing one or two pa-
pers before they actually defend their thesis proposal before their PhD Committee.

2.1. Hardware Development

We started out using breadboard and jumper wires to connect sensors and Analog-to-
Digital Converter (ADC) to the Raspberry Pi for the hardware components. For any-
thing that did not work well initially (such as incorrect sensors wiring), we could dis-
connect, make the necessary changes and reconnect again. While this was a simple and
straightforward way “to fix things”, with rising complexity because of new jumper
cables added to the board, it became apparent that changes and fixes were much harder
to implement. As a consequence, we transitioned to the PCB (Figure 1) which also
prompted us to learn about existing processes that would allow us to continue the de-
velopment in a more systematic way.

We have been exposed to the challenging situation where individual components
that worked fine in a previous version of the PCB did not work in the next version. We
realized, in most of cases, that these were due to design schematics (made with Eagle,
http://www.cadsoftusa.com/download-eagle/) that were not always properly translated
into the physical prototype. For instance, most of the components of the second version
of the PCB were not working from the first try prompting us to unsolder a few compo-
nents and solder them back on the circuit board. If not possible, we reorganized the
wiring depending on the components being added to the PCB which served as the basis
to create a new PCB version.

Figure 1. Stages of the hardware component development.

https://www.adafruit.com/product/374
http://www.cadsoftusa.com/download-eagle/

P. Celicourt et al.

484

The creation of multiple PCB versions and activities such as using jumper wires and
breadboard, review of wiring, and adding new components incrementally seem to be
analogous to the XP incremental and Test-Driven Development (TDD) principles. We
need to mention that we did not test and add every component to the breadboard or
PCB separately and integrated the components after testing. Not only would this not
guarantee that the components would work fine when integrated, all the components
are not necessarily independent. For instance, when we want to test an analog sensor,
we could not avoid using an ADC Chip and vice-versa. Therefore, we had to make sure
that both the ADC and the sensor are properly wired.

2.2. Software Development

Our software development evolved from writing simple Python scripts to read digital
sensor measurements wired directly to General Purpose Input/Output (GPIO) ports of
the Raspberry Pi to modules/packages that perform automated network organization
and data management. On the end-nodes side of the system, the software modules read
and process measurements from multiple sensors, decode received command and en-
code response to commands and ultimately package responses and transmit them using
the ZigBee wireless communication protocol (www.zigbee.org). On the data manage-
ment side, we develop software modules that process announcement messages and re-
sponse to commands, encode commands to be sent using the ZigBee protocol, annotate
incoming end-nodes data with corresponding metadata to comply with the ODM spe-
cifications among others.

Funds to acquire the hardware components for the prototype were not yet available
from the beginning of the project. So, instead of waiting to acquire the Xbee radio
modules (www.digi.com/lp/xbee) for data transmission using the ZigBee protocol, we
started developing bits of our software component around the HTTP protocol using the
Python Web Framework named Bottle (www.bottlepy.org) to simulate data transmis-
sion between a Raspberry Pi and a laptop computer. The main reason that we chose the
HTTP protocol was mainly the affordability and ease of hardware accessories acquisi-
tion as modern hardware development kits are often provided with a WIFI dongle. The
idea was to use the framework to quickly experiment the mechanics of message encod-
ing, transmission and decoding between a data acquisition system and a computer.

We found a significant difference between our work with the HTTP protocol and the
message encoding, transmission and decoding using the ZigBee protocol and also the
library packages used. Consequentially, a substantial amount of work was necessary to
transition from one protocol or communication interface to the other. We learned that
tightly coupling the software and hardware developments is critical to avoid dramatic
impacts of either component on the other. An additional critical issue was that it can be
difficult to discern if either the software or the hardware is at fault if something mal-
functions when there is a lag between hard- and corresponding software development.
We concluded that it is much safer to develop the software along with the hardware and
not wait late for testing.

http://www.zigbee.org/
http://www.digi.com/lp/xbee
http://www.bottlepy.org/

P. Celicourt et al.

485

We also realized that we needed a better way to continue the software development
while the software components running on the laptop, which are responsible for net-
work coordination and data organization, had grown sufficiently to slow our progress.
Consequently, we started learning about agile development processes of which we
adopted the XP approach. Our first steps were a) to create a number of automated tests
using PyUnit, the Python standard unit testing framework, b) to rely heavily on refac-
toring and c) continuous update and integration. Prior, we used the “Guru Checks
Outputs” technique, an approach that proved to be insufficient, tedious, and error-
prone.

With the adoption of the TDD and incremental development principles of XP, we
improved our development process dramatically even though we had to go through a
steep learning curve. Before we embraced the XP approach in the software development
process, the software components used to be fragile in the sense that parts can break at
any time when adding new components to the existing ones. As a consequence, we
spent some times debugging the system which slows down our development effort. In
addition, we sometimes experience a cascading effect of codes breakage that con-
strained us to go back and fix several other components of the ensemble, which is time-
consuming. However, when we shifted our approach to XP, we mitigated such issues.
Consequently, this suggests that the adoption of Agile Methodologies to embedded sys-
tems development can potentially yield a more robust and reliable product. We some-
times went back and made little fixes such as change in data structure or algorithm
modification as part of our refactoring efforts. But, these changes are not appropriated
to the cascading effect of codes breakage. Thus, we concluded that such an experience
demonstrated the benefits of XP in shaping the design of the software and also increas-
ing productivity.

Furthermore, the XP approach requires the application of additional practices such
as pair programming, metaphor, 40-hour weeks, real on-site customer, planning game
among others. As graduate students, we played the role of the customer ourselves by
setting priorities on features that needed to be developed first and next. Due to our
team size and the different school-related activities we are involved as students, we
could not apply many of the XP practices. For instance, we could not work 40 hours a
week but instead we worked under an irregular schedule which fits better our availabil-
ity. In terms of metaphor, we did not use this practice as we did not have to explain the
system to any people external to our team and we did not also have external collabora-
tors on the project. We also have not developed elaborated User Stories as if we were
dealing with a real customer. Instead we discuss and/or take notes in our regular
project planner notebook instead of cards. In addition, because we played a develop-
er-customer role, we did not pay attention to technical words or jargon in our User
Stories. We need to mention that User Stories decisions were made at the system level
and we then derived what needs to be done both on the software and hardware sides.
We did not also have formal Acceptance Tests following the implementation of the Us-
er Stories at the end of each iteration, instead we performed what we would qualify as

P. Celicourt et al.

486

on-the-fly Acceptance Tests. In other words, we tested on-the-go as we were develop-
ing. As for Continuous Integration, we used the git version control system tool and
commit (no push) updates and fixes every few hours to a local repository. We have also
strived to keep the system in a working state at any time. This leads us to the pair pro-
gramming practice which we could not apply too. The reason is that we had only one
software developer and one hardware developer in addition to our research supervisor.

3. System Testing Challenges

Developing embedded software while testing the codes “live” on the corresponding
hardware is cumbersome and time consuming which slows down the software devel-
opment, a circumstance that cannot be avoided entirely however. For the end-nodes,
we used a dual-target approach where tests and application codes are first written and
run on the development machine and periodically run on the target environment.
However, for the data management and network coordination application, we adopted
a three-step testing approach in most of the cases. First, we tested application codes for
a particular module or a set of classes in an isolated mode. Then we integrated with the
existing application codes and ran the tests. The idea was to find out whether the new
module works when integrated and a call to this module from the larger system does
not break either the new codes or the previously working codes. The final step was to
test the behavior of the full system after integration of new codes and turned out to be
the most challenging in the testing phase.

A common approach to perform embedded software testing is to use virtual versions
of the hardware such as mocks [18] and simulations and emulations. However, our ex-
periments demonstrate that this is not the same as testing on the true hardware where
live conditions such as heat, movement and other environmental impacts must be tak-
en into consideration, to ensure reliability. We found that hardware specifications and
capability need to be taken into consideration as well. For instance, during our testing
against the end-nodes, we found that “communication latency” plays a significant role
in breaking the codes that passed our automated tests.

Another limitation we faced concerned the message size an Xbee radio module can
transmit. We came to understand that using mock testing might have let us pretend, for
example, that any message size can be transmitted in a single transmission. When we
encountered a limitation of this type we were prone to be side-tracked in an attempt to
immediately fix this problem which in turn set us back and derailed our development
time schedule. In fact, we spent a couple of days fixing the problem needing to develop
tests and application codes for both the node sending the message to slice it into small-
er pieces and the message receiver to re-assemble the message slices. This was not a
straightforward task as more than one node can send sliced messages asynchronously.
We tackled this issue using the three-step approach to test the codes. The lesson here
was that codes that work in an isolated fashion are prone to be broken when integrated
into a larger system or falls under the influence of communication latency of the hard-
ware system.

P. Celicourt et al.

487

As for the hardware components, we did a “cumulative testing” of the components
added to the PCB in the sense that any stage, we tested the functionality of all previous
components added to the PCB up to the most recently added one. Overall, our ap-
proach permitted that we were able to often quickly detect whether it was the software
or the hardware that is at fault when a problem surfaced. An exception to this general
behavior was one case where we first added a Real-Time Clock (RTC) to the PCB and
the RTC could not keep up the current time. After spending a considerable amount of
time trying to debug the system that saw us address power supply of the RTC which we
thought might have been defective as the RTC has worked before. We discovered that is
was actually a problem with the RTC driver that was not loaded when the Raspberry Pi
boots up.

4. Discussion

In this paper, we introduce our approach to software and hardware development of our
prototype to automatically stream and manage environmental data from sensor-to-da-
ta-management system. Despite the benefits offered by the XP approach adopted, we
could not fully apply such an approach to the software development due to the factors
mentioned above. In addition, we also found that getting suppliers actively involved is
also critical to the development of embedded systems under Agile Methodologies. For
instance, we still cannot conduct experiments with Modbus/RS485 and SDI-12 sensors
due to order not fulfilled on time which sets us back again in the time schedule.

We have learned that testing embedded software by avoiding the interaction with the
hardware is similar to duct-taping the codes. In particular, testing in an isolated fashion
simply helps the developer to be on track to have the code working both when inte-
grated to a larger application and interacting with the hardware. The codes will even-
tually break when integrated in a larger system and worse may happen when it interacts
with the software. Sometimes, major alterations are needed to get the off-hardware-
tested codes to work with the hardware. This experience prompts us to critically view
the application of the Mock Testing approach in which the mock is created with no real
functionality, but rather mimics the behavior of a module’s interface.

The application of a single agile method to the development of embedded systems is
hard to achieve. In our case, we attempted to adapt agile software development tech-
niques such as TDD and Continuous Integration to the hardware development. But,
this was not achieved purely in the same way as it is done in the software components
development. Software inherently permits a top-down and fine-grained approach in
testing the components almost at all levels. However, the hardware permits only testing
and integration of components as a black box. Hence, applying the refactoring practice
in hardware development is no different. Nevertheless, we found that these XP practic-
es and principles including the use of User Stories were more susceptible to be inte-
grated in embedded hardware development.

We have also identified a few shortcomings of the Pyunit testing framework. For in-
stance, the “dictionary” data structure (made of key-value pairs) in Python can handle

P. Celicourt et al.

488

very complex data organization consisting in almost any primitive or derived data
structures including itself either as key or value. However, the methods to compare dic-
tionary-based data organization (assert Dict Equal and assert Dict Contains Subset) in
Pyunit are not capable of handling the unlimited data arrangement possibilities of this
data structure. Consequently, a function may produce an expected result, but the cor-
responding test fails depending on the complexity of the data structure of either the key
or the value. In such case, the developer may do either or both of the following:
a) Implement tests of low granularity such as checking number of elements in the

structure.
b) Make an extra effort to write tests of high granularity that take into account the in-

tricacy of the data structure, but such tests are very likely to be non-reusable.
Finally, the data management application is developed around the Django Web

Framework (www.djangoproject.com) that offers object-relational mapping functional-
ities. The mechanics of creating tests with PyUnit is different than with Django. Thus,
the developer needs to learn testing techniques for both frameworks including their in-
herent features and/or shortcomings.

5. Conclusions

In this paper, we present our experiences adopting Agile Methodologies to both the
hardware and software development of a wireless environmental data acquisition sys-
tem. The application of Agile Methodologies to our prototype development effort has
been effective in ensuring a more reliable and robust system. In addition, the Agile
Methodologies, especially the XP methodology contributes to increasing our productiv-
ity while shaping the design of the software components of the system. Due to our
availability and team size to perform true team work, we adopted the Promise/Commit-
ment-Based Project Management which was better suited than Scrum for our develop-
ment process management.

The experiments prompted us to realize that Embedded System is a niche domain for
the application of agile development methodologies. Some principles such as TDD, re-
factoring, User Stories and Continuous Integration are more straightforward and
simpler to apply than others. These principles, especially TDD and refactoring, played a
critical role in the development of the prototype system. We have experienced the ben-
efits and we will stick to those principles in future development efforts while exploring
other XP principles and other methodologies such as Scrum.

Our future work plan will consist in exploring the implications of Agile Methodolo-
gies on the end-to-end development (from conception to release) of embedded systems
adopting a Minimum Viable Product (MVP) approach to test assumptions and incor-
porate customers’ feedbacks.

Acknowledgements

This work is supported by the Grove School of Engineering at The City College of New
York, the City University of New York’s Environmental Cross Roads Initiative and the

http://www.djangoproject.com/

P. Celicourt et al.

489

IEEE Foundation. We thank the anonymous reviewers for their insightful comments
and suggestions which contribute to the improvement of this paper.

References
[1] Schwaber, K. (2004) Agile Project Management with Scrum. Microsoft Press, Redmond.

[2] Beck, K. (2000) Extreme Programming Explained: Embrace Change. Addison-Wesley Pro-
fessional, USA.

[3] Qasaimeh, M., Mehrfard, H. and Hamou-Lhadj, A. (2008) Comparing Agile Software
Processes Based on the Software Development Project Requirements. International Confe-
rence on Computational Intelligence for Modelling Control & Automation, Vienna, 10-12
December 2008, 49-54. http://dx.doi.org/10.1109/CIMCA.2008.54

[4] Ronkainen, J. and Abrahamsson, P. (2003) Software Development under Stringent Hard-
ware Constraints: Do Agile Methods Have a Chance? In: Marchesi, M. and Succi, G., Eds.,
Extreme Programming and Agile Processes in Software Engineering, Springer, Berlin Hei-
delberg, 73-79. http://dx.doi.org/10.1007/3-540-44870-5_10

[5] Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R. and Lucena, V. (2008)
An Agile Development Methodology Applied to Embedded Control Software under Strin-
gent Hardware Constraints. ACM SIGSOFT Software Engineering Notes, 33, 5.
http://dx.doi.org/10.1145/1344452.1344459

[6] Gary, K., Enquobahrie, A., Ibanez, L., Cheng, P., Yaniv, Z., Cleary, K., et al. (2011) Agile
Methods for Open Source Safety-Critical Software. Software: Practice and Experience, 41,
945-962. http://dx.doi.org/10.1002/spe.1075

[7] Manhart, P. and Schneider, K. (2004) Breaking the Ice for Agile Development of Embedded
Software: An Industry Experience Report. Proceedings of the 26th International Conference
on Software Engineering, Edinburgh, 23-28 May 2004, 378-386.
http://dx.doi.org/10.1109/ICSE.2004.1317460

[8] Boehm, B. (2002) Get Ready for Agile Methods, with Care. Computer, 35, 64-69.
http://dx.doi.org/10.1109/2.976920

[9] Greene, B. (2004) Agile Methods Applied to Embedded Firmware Development. Agile De-
velopment Conference, Salt Lake City, UT, 22-26 June 2004, 71-77.
http://dx.doi.org/10.1109/ADEVC.2004.3

[10] Karlesky, M., Williams, G., Bereza, W. and Fletcher, M. (2007) Mocking the Embedded
World: Test-Driven Development, Continuous Integration, and Design Patterns. Proceed-
ings of the Embedded Systems Conference, San Jose, CA, 1-5 April 2007, 1518-1532.

[11] Van Schooenderwoert, N. and Morsicato, R. (2004) Taming the Embedded Tiger-Agile Test
Techniques for Embedded Software. Proceeding of the Agile Development Conference, Salt
Lake City, UT, 22-26 June 2004, 120-126. http://dx.doi.org/10.1109/ADEVC.2004.21

[12] Chen, E. (2015) Bringing a Hardware Product to Market: Navigating the Wild Ride from
Concept to Mass Production. CreateSpace Independent Publishing Platform, North Char-
leston, South Carolina, USA.

[13] Drechsler, R. and Breiter, A. (2007) Hardware Project Management: What We Can Learn
from the Software Development Process for Hardware Design? Proceedings of the 2nd In-
ternational Conference on Software and Data Technologies (ICSOFT 2007), Barcelona,
22-25 July 2007, 409-416.

[14] Conforto, E., Salum, F., Amaral, D., da Silva, S. and de Almeida, L. (2014) Can Agile Project
Management Be Adopted by Industries Other than Software Development? Project Man-

http://dx.doi.org/10.1109/CIMCA.2008.54
http://dx.doi.org/10.1007/3-540-44870-5_10
http://dx.doi.org/10.1145/1344452.1344459
http://dx.doi.org/10.1002/spe.1075
http://dx.doi.org/10.1109/ICSE.2004.1317460
http://dx.doi.org/10.1109/2.976920
http://dx.doi.org/10.1109/ADEVC.2004.3
http://dx.doi.org/10.1109/ADEVC.2004.21

P. Celicourt et al.

490

agement Journal, 45, 21-34. http://dx.doi.org/10.1002/pmj.21410

[15] Myllerup, B. (2011) Why Agile Does Matter in an Embedded Development Environment.
Scrum Alliance. Retrieved 7 May 2016.
https://www.scrumalliance.org/community/articles/2011/march/why-agile-does-matter-in-
an-embedded-development-e

[16] Monte, M. (2012) Challenges of Adopting Agile in Combined Hardware and Software En-
vironments. cPrime. Retrieved 26 April 2016.
https://www.cprime.com/2012/08/challenges-of-adopting-agile-in-combined-hardware-and
-software-environments/

[17] Sull, D.N. and Spinosa, C. (2007) Promise-Based Management: The Essence of Execution.
Harvard Business Review, April, 78-86.

[18] Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T. and Lehtonen,
T. (2013) Agile Methods for Embedded Systems Development: A Literature Review and a
Mapping Study. EURASIP Journal on Embedded Systems, 2013, 1-16.
http://dx.doi.org/10.1186/1687-3963-2013-15

[19] Srinivasan, J., Dobrin, R. and Lundqvist, K. (2009) “State of the Art” in Using Agile Me-
thods for Embedded Systems Development. 33rd Annual IEEE International Computer
Software and Applications Conference, 2, 522-527.

[20] Horsburgh, J.S., Tarboton, D.G., Maidment, D.R. and Zaslavsky, I. (2008) A Relational
Model for Environmental and Water Resources Data. Water Resources Research, 44, 1-12.
http://dx.doi.org/10.1029/2007WR006392

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

http://dx.doi.org/10.1002/pmj.21410
https://www.scrumalliance.org/community/articles/2011/march/why-agile-does-matter-in-an-embedded-development-e
https://www.scrumalliance.org/community/articles/2011/march/why-agile-does-matter-in-an-embedded-development-e
https://www.cprime.com/2012/08/challenges-of-adopting-agile-in-combined-hardware-and-software-environments/
https://www.cprime.com/2012/08/challenges-of-adopting-agile-in-combined-hardware-and-software-environments/
http://dx.doi.org/10.1186/1687-3963-2013-15
http://dx.doi.org/10.1029/2007WR006392
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Development of a Wireless Environmental Data Acquisition Prototype Adopting Agile Practices: An Experience Report
	Development of a Wireless Environmental Data Acquisition Prototype Adopting Agile Practices: An Experience Report
	Abstract
	Keywords
	1. Introduction
	2. Approach and Challenges to the System Development
	2.1. Hardware Development
	2.2. Software Development

	3. System Testing Challenges
	4. Discussion
	5. Conclusions
	Acknowledgements
	References

