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1 Introduction

In recent years, there have been intense efforts in mapping the landscape of quantum field

theories and uncovering their dynamics. As part of this enterprise, quantum field theories

in various dimensions and with diverse amounts of supersymmetry have been investigated

and connections between many of them have been explored.

This article is devoted to 2d N = (0, 2) theories, which are particularly interesting for

various reasons. Despite the reduced amount of SUSY, chirality and holomorphy provide

substantial control of their dynamics. The recent discovery of a new IR equivalence between

different theories known as triality [1] is an interesting example of this. In addition, these

theories arise on the worldsheet of heterotic strings. Another exciting development is the

geometric realization of a wide class of these theories via compactification of the 6d (2, 0)

theory on 4-manifolds [2].

It is extremely desirable to understand how to engineer 2d (0, 2) gauge theories in terms

of branes. Early steps in this direction were taken in [3–5]. This question was revived in

our previous work [6], which initiated an ambitious program aimed at understanding in

detail the infinite class of gauge theories arising on D1-branes probing arbitrary singular

toric Calabi-Yau (CY) 4-folds and developing T-dual brane setups.1

The part of the story regarding D1-branes on toric CY4 singularities was completely

developed in [6]. In particular, an algorithm for connecting gauge theories to the probed

geometry, which arises as the their classical mesonic moduli space, was developed. We

referred to it as the forward algorithm. In addition, a systematic procedure for obtaining

the gauge theory for an arbitrary toric CY4 singularity by means of partial resolution was

introduced.

In this work, we will fully develop the second part of the story: the T-dual brane setups.

These brane configurations are called brane brick models and their basic features were

already anticipated in [6]. They substantially simplify the connection between geometry

and gauge theory.

This article is organized as follows. Section 2 reviews general features of the gauge

theories on D1-branes over toric CY4 folds, their description in terms of periodic quivers

and the brane box configurations for abelian orbifolds of C4. Section 3 introduces brane

brick models and presents the dictionary connecting them to gauge theories. Section 4

introduces the fast inverse algorithm, for going from the toric diagram of a CY4 to the

corresponding brane brick model. Section 5 presents the fast forward algorithm, which

goes in the opposite direction and determines the CY4 associated to a brane brick model.

A key ingredient of this approach is a correspondence between GLSM fields and a new

class of combinatorial objects, denoted brick matchings. This combinatorial computation

of the geometry represents a tremendous simplification over the standard forward algorithm

of [6]. Section 6 discusses partial resolutions in terms of brane brick models, extending the

comprehensive study presented in [6]. Section 7 is devoted to Calabi-Yau 4-folds of the

form CY3×C. The corresponding 2d gauge theories have (2, 2) SUSY and can be obtained

from the 4d N = 1 theories associated to the CY3 by dimensional reduction. A lifting

1Other interesting approaches to the D-brane engineering of 2d (0, 2) theories can be found in [7–9].
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algorithm for generating the brane brick model for the 2d theory from the brane tiling

for the 4d one is introduced. Section 8 goes beyond orbifolds and dimensionally reduced

theories and studies the brane brick models for generic toric CY4 singularities. Section 9

presents our conclusions and some directions for future research.

2 2d (0,2) theories from D1-branes over toric CY4 cones

For a thorough discussion on the structure of general 2d (0, 2) theories, including their

supermultiplet structure and the construction of their Lagrangians in terms of (0, 2) su-

perspace, we refer to [1, 3, 7, 10]. This paper focuses on 2d theories on the worldvolume of

D1-branes probing toric Calabi-Yau (CY) 4-folds. As explained in [6], these theories have

a special structure which is the reason for their beautiful connection to toric geometry and

to certain combinatorial objects that are going to be introduced in this paper.

Symmetries and quivers. D1-branes probing a generic toric CY4 singularity preserve

(0, 2) SUSY. When the CY4 is of the form CY3 × C, CY2 × C2 and C4, there is a non-

chiral enhancement of SUSY to (2, 2), (4, 4) and (8, 8), respectively. Such theories can be

constructed by dimensional reduction from 4d N = 1, 2 and 4. Chiral SUSY enhancement

to (0, 4) occurs for CY2×CY2. Finally, enhancement to (0, 6) and (0, 8) is possible for

certain orbifolds [3].

The gauge symmetry and matter content of these theories can be encoded in terms

of generalized quiver diagrams involving two types of matter fields in bifundamental or

adjoint representations: chiral and Fermi multiplets. The gauge group for these theories is

a product of U(Ni) factors. As usual, each of these factors is represented by a node in the

quiver. The total number of gauge nodes in the quiver is given by the volume of the toric

diagram normalized with respect to a minimal tetrahedron.

All matter multiplets are in adjoint or bifundamental representation of the gauge group.

Chiral multiplets are represented by oriented arrows in the quiver diagram. We typically

label the chiral fields as Xij with i and j gauge node indices. Fermi multiplets are labeled

similarly, Λij , but they are represented by red unoriented lines in the quiver diagram. The

reason for this is that 2d (0, 2) theories are invariant under the exchange of any Λij with

its conjugate Λ̄ij , i.e. Fermi fields are intrinsically unoriented.

Anomalies. Cancellation of SU(Ni)
2 gauge anomalies imposes severe constraints on 2d

(0, 2) theories.2 Throughout this paper we will restrict to the case of N regular D1-branes,

for which all nodes are U(N). More general rank assignments are possible in the presence

of fractional D1-branes. For the case when all ranks are equal, Ni = N , cancellation of

SU(Ni)
2 anomalies at node i require

nχi − nFi = 2 , (2.1)

where nχi and nFi are the total number of chiral and Fermi fields that are attached to node

i, respectively. Adjoint chiral or Fermi fields contribute 2 to nχi or nFi , respectively.

2In theories on D1-branes at singularities, abelian gauge anomalies are cancelled by a generalized Green-

Schwarz mechanism through interactions with bulk RR fields [11].
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Toric J- and E-terms. In a general 2d (0, 2) theory, every Fermi field Λij is associated

with a pair of holomorphic functions of chiral fields: Eij(X) (with the same gauge quantum

numbers of Λij) and Jji(X) (with conjugate gauge quantum numbers) [1, 3, 7, 10]. In the

theories dual to toric Calabi-Yau 4-folds, these functions take a very special form. This

restriction was called the toric condition in [6], and implies that J- and E-terms take the

following general form

Jji = J+
ji − J−ji , Eij = E+

ij − E−ij , (2.2)

where J±ji and E±ij are holomorphic monomials in chiral fields.

CY4 geometry from gauge theory. The CY4 geometry probed by the D1-branes

is recovered as the classical mesonic moduli space of the gauge theory that lives on the

worldvolume of the D1-branes. Given that the mesonic moduli space of the worldvolume

theory of a stack of N D1-branes is the N -th symmetric product of the worldvolume theory

on a single D1-brane, we focus in this paper on the moduli space of abelian theories.

The mesonic moduli space is obtained by demanding vanishing J-, E- and D-terms.

The so-called forward algorithm for systematically computing these mesonic moduli spaces

for arbitrary toric quiver gauge theories has been developed in [6]. The algorithm solves for

vanishing J- and E-terms expressing chiral fields as products of GLSM fields. Let nχ be

the total number of chiral fields. J- and E-terms impose nF − 3 independent constraints,

with nF being the total number of Fermi fields. Demanding invariance under complexified

gauge charges gives rise to G−1 further constraints, where G is the number of gauge nodes

in the quiver.3 Finally, the sum of anomaly cancellation conditions (2.1) over all nodes

implies that nχ − nF = G. Combining all the relations, we find that the mesonic moduli

space has complex dimension nχ − (nF − 3)− (G− 1) = 4, as expected.

Arbitrary toric singularities can be obtained from abelian orbifolds by a series of par-

tial resolutions, which translate to higgsing in the gauge theory. This approach can be

exploited for deriving the gauge theories associated to generic toric singularities. A sys-

tematic implementation of this method has been developed in [6].

2.1 Unification of quiver and toric J- and E-terms: periodic quivers

2d (0, 2) theories are specified by the quiver, namely the gauge symmetry and matter

content, and the J- and E-terms for all Fermi fields. Remarkably, for theories corresponding

to toric CY4, this information can be encapsulated in a single graphical object: the periodic

quiver. Periodic quivers were originally introduced in the context of abelian orbifolds of

C4 in [3] and were later extended to generic toric singularities in [6].

A periodic quiver lives on a 3-torus T 3 and is such that the individual contributions to

J- and E-terms are encoded in terms of certain minimal plaquettes, as schematically shown

in figure 1.4 A plaquette is defined as a closed loop in the quiver consisting of an arbitrary

3Since all fields in the class of theories under study are bifundamental or adjoint, they are neutral under

the diagonal combination of all nodes.
4What we precisely mean by “minimal” will be clarified in later sections, once we consider the dual of

the periodic quiver.
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Figure 1. The four plaquettes (Λij , J
±
ji ) and (Λij , E

±
ij ) corresponding to a Fermi field Λij .

Y

Z

D

X

Figure 2. A unit cell of the periodic quiver of C4.

number of chiral fields and a single Fermi field. The chiral fields in a plaquette form an

oriented path with two endpoints connected by the Fermi field, which closes the loop.

The toric condition (2.2) implies that for every Fermi field Λij there are four plaquettes

(Λij , E
±
ij ) and (Λij , J

±
ji ), which share the undirected edge associated to Λij .

It is sometimes useful to visualize the periodic quiver as a tessellation of R3 by a unit

cell. The simplest example of a periodic quiver corresponds to D1-branes over C4, for

which the unit cell is shown in figure 2 [3]. All abelian orbifolds of C4 can be constructed

by combining copies of the C4 unit cell with periodicity conditions determined by the action

of the generators of the orbifold group [3, 6].
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1
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2

quiver periodic quiver

Figure 3. The standard and periodic quivers for C × C.

0 1 2 3 4 5 6 7 8 9

NS × × × × × × · · · ·
NS′ × × × × · · × × · ·
NS′′ × × · · × × × × · ·
D4 × × × · × · × · · ·

Table 1. Brane configuration for brane box models. The (246) directions are compactified on a T 3.

Figure 3 shows the periodic quiver for C × C, where C indicates the conifold. Several

additional examples of periodic quivers can be found in [6] and in the following sections.

2.2 Earlier constructions: brane box models for orbifolds

The construction of brane setups realizing 2d (0, 2) theories was pioneered in [3] with the

introduction of brane box models, which are reviewed in this section. Brane box models

are Type IIA configurations consisting of three types of orthogonal NS5-branes: NS, NS′

and NS′′-branes, which extend along the (012345), (012367) and (014567) directions, re-

spectively. In addition, there are D4-branes spanning (01246). The (246) directions are

compactified on a T 3. The 2d gauge theories live on the two directions (01) common to

all the branes. Each type of NS5-branes breaks SUSY by one half. The D4-branes break

SUSY by an additional half leading, generically, to 2d (0, 2). The NS5-branes divide T 3

into cubic “boxes” within each of which there is a stack of Ni D4-branes, giving rise to

a U(Ni) gauge group in the 2d theory. All branes sit at the same position in the (89)

directions. The U(1) R-symmetry is given by the rotational symmetry in the (89) plane.

Table 1 summarizes the brane configuration.

Brane box models are related to systems of D1-branes over abelian orbifolds of C4

by T-duality along (246) [3]. These configurations are natural generalizations of brane

boxes with a single type of NS5-branes (also known as elliptic models), which correspond

to the 6d theories associated to orbifolds of C2 [12], and brane boxes with two types of

NS5-branes, which describe the 4d theories for orbifolds of C3 [13, 14].

– 6 –



J
H
E
P
0
2
(
2
0
1
6
)
0
4
7

Figure 4. Brane box models. Schematic representation of the internal (2, 4, 6) directions. The

blue, red and green planes correspond to NS, NS′ and NS′′-branes that extend along (24), (26) and

(46) directions. D4-branes span the (246) directions, filling the boxes. The geometric action of the

dual abelian orbifold of C4 is translated into the periodicity conditions on T 3.

It is possible to place k NS, k′ NS′ and k′′ NS′′-branes such that they divide the

T 3 into kk′k′′ boxes. Such a configuration is T-dual to a C4/(Zk × Zk′ × Zk′′) orbifold.

The geometric action of the orbifold is encoded in how the brane boxes are periodically

identified. Figure 4 illustrates the basic features of a brane box model along the internal T 3.

There is a straightforward translation between brane box models and the corresponding

periodic quivers mentioned in section 2.1. The simplest C4 theory corresponds to k = k′ =

k′′ = 1 and hence has a single box. The theory has four chiral fields. Three of them

define unit vectors in the T 3: (1, 0, 0), (0, 1, 0), (0, 0, 1) and are hence transverse to the

NS5-branes as illustrated in figure 5. We call them X, Y , Z, respectively. The fourth

chiral field points in the (−1,−1,−1) direction. In the same basis, the three Fermi fields

lie along the (0, 1, 1), (1, 0, 1), (1, 1, 0) directions, i.e. along the diagonals of the square faces

of the box.

Brane box models have several positive features. First, they can be used to deduce the

gauge theories associated to arbitrary abelian orbifolds of C4. In addition, they introduce

the basic ingredients for brane configurations that are T-dual to D1-branes at toric singu-

larities as well as some of their key characteristics such as their compactification on T 3.

Despite all these successes, brane box models have several shortcomings. Overcoming

them is one of the main goals of this paper. First of all, they do not provide the gauge

theories for D1-branes on Calabi-Yau 4-folds beyond orbifolds. Furthermore, there is no

one-to-one map between objects in the gauge theory and elements in the brane box model.

Most notably, while X, Y and Z-type chiral fields map to box faces, this is not true for

D-type chiral fields. Similar arguments apply to the plaquettes involving these fields. In

turn, this implies that basic symmetries of the gauge theories are not manifest in brane box

models. Finally, brane box models do not relate to combinatorial objects that streamline

their connection between CY4 geometry and gauge theory.

In the next section we introduce new constructions that overcome all these limitations.

In fact, brane box models can be regarded as degenerate limits of these more general setups.

– 7 –
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D Z

XY

Figure 5. Brane box models and periodic quivers. This figure presents the brane box model for

C4, which has a single NS5-brane of each type. It also shows how the brane configuration gives

rise to the corresponding periodic quiver. Orbifold models are obtained from this configuration by

enlarging the unit cell.

3 Brane brick models

In this section, we introduce brane brick models, a novel class of brane configurations that

provide a direct connection between toric Calabi-Yau 4-folds and the corresponding 2d

(0, 2) gauge theories. Brane brick models play a role analogous to the one of brane tilings,

which correspond to 4d N = 1 gauge theories on D3-branes probing toric Calabi-Yau 3-

folds. Not surprisingly, given the peculiarities of 2d (0, 2) theories, brane brick models

exhibit several original features as explained in the following sections.

3.1 Brane brick models as type IIA brane configurations

Brane brick models are Type IIA brane configurations that share basic features with brane

box models [3]. They generalize the brane box construction to generic toric Calabi-Yau

4-folds that are not necessarily of C4.

A brane brick model consists of an NS5-brane and D4-branes. The NS5-brane extends

along the (01) directions and wraps a holomorphic surface (i.e. four real dimensions) em-

bedded into the (234567) directions. The directions (246) are periodically identified to form

a T 3. It is therefore natural to pairwise combine (23), (45) and (67) into three complex

variables x, y and z of which (246) are the arguments. The surface Σ wrapped by the

NS5-brane is the zero locus of the Newton polynomial associated to the CY4,∑
(a,b,c)∈V

c(a,b,c)x
aybzc = 0 , (3.1)

where (x, y, z) take values in (C∗)3 and V is the set of points in the toric diagram on Z3.

Stacks of D4-branes extend along (01) and are suspended within each of the voids cut

– 8 –
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Y

Z

D
X

periodic quiver

T 3

Brane Brick

T 3

Figure 6. The periodic quiver and dual brane brick model T 3 for the C4 theory.

out by the NS5-brane surface within the (246) 3-torus. Generically, the holomorphically

embedded NS5-brane breaks 1/8 of the SUSY, while the D4-branes break an additional

1/2, resulting in a 2d (0, 2) theory in the two common dimensions (01). As for brane boxes,

the NS5-brane and the D4-branes sit at the same point in the transverse (89) dimensions

and the U(1) R-symmetry of the gauge theory is geometrically realized as rotations on

this plane.

From now on, we will primarily focus on a simpler object, which is obtained by replacing

Σ by its skeleton or tropical limit. For simplicity, we will also refer to this object as the

brane brick model. In this limit, Σ is replaced by a collection of 2d faces that separate T 3

into a collection of 3d polytopes filled by D4-branes. We call the 3d polytopes bricks.

3.2 The brane brick model — gauge theory dictionary

In section 2.1, we explained how the periodic quiver combines the quiver and J- and

E-terms of a 2d (0, 2) gauge theory into a single object. In analogy to the connection

between brane tilings and periodic quivers for 4d N = 1 toric gauge theories [15], brane

brick models can be constructed from the periodic quiver by graph dualization. Both

constructions therefore contain precisely the same information. The dualization procedure

for C4 is illustrated in figure 6.

The brane brick model for C4 contains a single brick, which corresponds to the only

gauge group of the theory. This brick takes the form of a truncated octahedron consisting

of eight hexagonal and four square faces, which correspond to chiral and Fermi fields,

respectively.5 More generally, orbifolds of C4 are obtained by tessellating T 3 with additional

copies of the same type of brick. From now on, motivated by the convention for quivers,

we will use black faces to indicate chiral fields and red ones to indicate Fermi fields. For

C4, the faces of the brick are pairwise identified in T 3 resulting, as expected, in four chiral

fields and three Fermi fields in the adjoint representation of the gauge group. We can

regard brane box models as degenerate limits of brane brick models for C4 and its orbifolds

in which some faces shrink to zero size.

5Truncated octahedra have appeared in a similar context in [16].

– 9 –
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Brane Brick Model Gauge Theory

Brick Gauge group

Oriented face between bricks Chiral field in the bifundamental representation

i and j of nodes i and j (adjoint for i = j)

Unoriented square face between Fermi field in the bifundamental representation

bricks i and j of nodes i and j (adjoint for i = j)

Edge Plaquette encoding a monomial in a

J- or E-term

Table 2. Dictionary between brane brick models and gauge theories.

Plaquettes in the periodic quiver correspond to edges in a brane brick model. The toric

condition thus implies that Fermi fields correspond to squares. The converse is however

not true and certain geometries lead to brane box models with square chiral faces. The

four edges of a Fermi face split into two pairs, each of them contributing to a J- or E-

term. For the C4 orbifold examples, one Fermi and two chiral faces meet at every edge.

This arrangement captures the structure of plaquettes in these theories and gives rise to

the corresponding J- and E-terms, all of which involve a pair of quadratic terms in chiral

fields [3, 6].

The basic dictionary between brane brick models and the corresponding gauge theories

is summarized in table 2.

This article focuses only on topological properties of brane brick models. Whether

there are preferred shapes for them and their significance is an interesting question that we

postpone for further studies. A comparable example for brane tilings is given by isoradial

embeddings and, in particular, the one encoding superconformal R-charges [17]. We now

elaborate on some entries of the dictionary in further detail.

Chirality. Let us explain how brane brick models incorporate chirality, namely how to

assign orientations to their faces. As usual, the orientation of a face can be translated

into the orientation of its edges. By convention, if all edges in the perimeter of a face are

oriented clockwise/counterclockwise, as seen from the interior of a brick, we say that it cor-

responds to a chiral field in the dual periodic quiver pointing towards the exterior/interior

of the brick.

The entire brane brick model can be systematically oriented as follows. We start from

a face associated to a chiral field and assign to it the corresponding orientation. We then

continue consistently orienting adjacent faces, whenever possible, until covering all edges.

At the end of this process, some square faces will turn out not to have a definite orientation.

These unoriented faces are precisely those that correspond to Fermi fields, which lack a

notion of chirality. Figure 7 illustrates this procedure for C4. A more intrinsic algorithm

for identifying unoriented faces corresponding to Fermi fields, which does not depend on

the initial choice of a face associated to a chiral field, is presented in section 4.

Edges, plaquettes and Fermi fields. As previously mentioned, every edge in a brane

brick model corresponds to a plaquette. Since every plaquette is associated to a Fermi

– 10 –
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Figure 7. Faces in a brane brick model can be systematically oriented starting from one associated

to a chiral field. Faces corresponding to chiral fields are oriented while faces corresponding to Fermi

fields are not.

Figure 8. The four plaquettes corresponding to a Fermi field face in brane brick models for C4

and its orbifolds.

field, we conclude that every edge is the boundary of at least one Fermi face. This is

illustrated in figure 8, which shows the neighborhood of a Fermi face in the brane brick

models for C4 and its orbifolds. While the faces associated to the initial and final chiral

field in a plaquette must share the corresponding edge with the Fermi, intermediate chiral

fields may not, as we now explain.6

It is possible for more than one Fermi face to be adjacent to the same edge. This is

the case when the chiral fields in a plaquette are a subset of those in a larger plaquette.

This phenomenon occurs in Q1,1,1 for which a brane brick model will be studied in detail

6In the case of linear contributions to J- or E-terms associated to chiral-Fermi massive pairs, the initial

and final chiral field in the corresponding plaquette coincide.
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3 2

1

1

2

3 2

1

⇤4
21

⇤̄1
21 ⇤̄1

21

⇤4
21

⇤̄1
21 · X24 · D41 ⇤4

21 · X12 · X24 · D41 · D12

Figure 9. Two adjacent Fermi fields in the brane brick model for Q1,1,1 and two of the corre-

sponding plaquettes. The chiral fields in the small plaquette are contained inside the second one.

in section 8.2.2. The J- and E-terms of this theory contain the following contributions

J4−
21 = X12 ·X24 ·D41 ·D12 , E

1−
21 = X24 ·D41 . (3.2)

We see that E1−
21 ⊂ J4−

21 . The corresponding plaquettes are shown in figure 9 and are

associated to adjacent Fermi fields Λ4
21 and Λ̄1

21.

To conclude this section, let us note that there are several ways of constructing brane

brick models. First, they can be obtained by dualizing the periodic quiver, as explained in

this section. In addition, they can be systematically obtained by partial resolution/higgsing

from known ones, such as the ones for C4 orbifolds. Finally, it is possible to construct them

directly from the probed geometry by means of a procedure which we call the fast inverse

algorithm, as explained in section 4.

3.3 Mass terms and higgsing

Higgsing. When a non-zero VEV is turned on for the scalar component of a bifunda-

mental chiral field Xij , the gauge groups associated to quiver nodes i and j are higgsed

to the diagonal subgroup. From the perspective of the brane brick model, this amounts

to removing the face associated to Xij , which results in the combination of the bricks for

nodes i and j into a single one, as schematically shown in figure 10. Deleting the face for

Xij also has the desired effect of replacing it by its VEV, which without loss of generality

is taken to be equal to 1, in all the plaquettes containing it.

Massive fields. Massive fields correspond to Fermi-chiral pairs extending between the

same pair of gauge groups, such that either the J- or E-term for the Fermi field contains

a term that is linear in the chiral field. In the brane brick model, these linear terms are

represented by edges that are connected to a single Fermi face and a single chiral face. We

refer to such edges as massive edges.
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Figure 10. Giving a non-zero VEV to a chiral field maps to deleting the corresponding face, here

shown in blue, in the brane brick model. This results in the combination of two adjacent bricks

into a single one.

... ...

...
...

fik(X )
⇤ki

Xij

Xjk

Jik = XijXjk � fik(X ) Jik = Xjk � fik(X )

Xjk ! fik(X )

a b

c d

Figure 11. Generating a massive Fermi-chiral pair by higgsing and integrating it out. (a) Starting

from Jik = XijXjk − fik(X), a VEV for Xij generates a massive edge connecting Λki to Xjk, as

shown in (b). (c) The massive edge and the opposite one in the face for Λki are merged, making

the face disappear. (c) The replacement Xjk → fik(X) removes the face for Xjk and (d) glues its

edges to the one for fik(X).

Massive fields can be generated in a variety of ways. Higgsing is one of them. In this

case, a massive pair arises when an originally quadratic J- or E-term becomes linear after

turning on a VEV. In the brane brick model, such terms correspond to edges that initially

are attached to a Fermi and two chiral faces. When the face associated to the field acquiring

the non-zero VEV is deleted, a massive edge is generated, as shown in figure 11(a).

As an example, let us consider a quadratic J-term for the Fermi field Λki that becomes

linear when the chiral field Xij receives a VEV as follows7

Jik = XijXjk − fik(X) −→ Xjk − fik(X) . (3.3)

7The case of a linear E-term is identical.
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The gauge indices work properly, since nodes i and j are identified by the higgsing. Recall

that all Fermi faces are squares. In (3.3), fij(X) indicates a product of chiral fields associ-

ated with one of the edges attached to Λki. The linear term Xjk in Jik corresponds to the

opposite edge on the Λki face. This massive edge is indeed attached to the two massive

fields: Λki and Xjk.

At low energies, Λki and Xjk can be integrated out. In this process, the terms Jik and

Eki associated to Λki are removed from the Lagrangian. This is nicely captured by the

brane brick model as shown in figure 11, from steps (b) to (d). When integrating out the

massive fields, Jik is set to zero and we replace Xjk → fik(X). For clarity, it is convenient

to split this process into two stages, although no physical interpretation should be assigned

to the intermediate step (c). The first step, shown in (c), corresponds to shrinking the face

associated to Λki until the massive edge and the opposite one merge into a single one that

we associate to fik(X). When doing so, the two other edges of Λki, which represent Eki,

also disappear. Finally, in step (d), the face for Xjk is removed and the edges that formed

its perimeter, with the exception of the massive edge, are glued to the one for fik(X). This

implements the replacement Xjk → fik(X) in all J- and E-terms.

Let us conclude this section with a few additional remarks regarding the brane brick

models obtained by integrating out massive fields. The procedure summarized in figure 11

faithfully incorporates all pertinent manipulations of the gauge theory. The two chiral faces

shown in orange end up having three consecutive common edges. This might naively seem

a little odd, since it may require curved brick faces. This, on its own, is not an issue at the

level of discussion in the current paper, since we are only concerned with the combinatorial

properties of brane brick models. More importantly, this feature can be simply avoided

if the three edges are collinear or, as it occurs in several of the explicit examples we have

studied, additional fields become simultaneously massive. In the latter case, integrating

out all massive fields leads to configurations in which no pair of chiral faces is glued along

three consecutive edges.

4 Brane brick models from geometry

This section studies the geometry of the brane brick model in further detail. This analysis

will result in a new method for constructing the brane brick model directly from the

underlying Calabi-Yau 4-fold. This procedure is a natural generalization of the fast inverse

algorithm for brane tilings, which constructs the tiling from zig-zag paths [18, 19]. We refer

to the algorithm for brane brick models in the same way.

4.1 Amoebas and coamoebas

As explained in section 3.1, the NS5-brane in a brane brick model wraps a holomorphic

surface Σ defined as the zero locus of the Newton polynomial of the toric CY4 cone.

Reproducing (3.1) here for convenience, Σ is hence defined by∑
(a,b,c)∈V

c(a,b,c)x
aybzc = 0 . (4.1)

Σ is 2-complex dimensional, i.e. 4-real dimensional.
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Figure 12. The toric diagram, the amoeba, a singular “approximation” to the coamoeba deter-

mined by the zig-zag paths (shown in color) and the brane tiling for dP0.

Two natural projections help us to visualize and to study Σ. The first one, called

the amoeba [20, 21], is a projection onto (log |x|, log |y|, log |z|) ∈ R3. The amoeba is a

smooth geometric object dual to the toric diagram. The second projection, the coamoeba,

maps Σ onto (arg(x), arg(y), arg(z)) ∈ T 3. The coamoeba captures the geometry of the

NS5-brane in the internal T 3 and hence contains the non-trivial information necessary to

define the corresponding quiver gauge theory. Both the amoeba and the coamoeba are

3-real dimensional objects. Visualizing them is challenging, but it is possible to get a flavor

of their general structure by considering their analogues in the simple case of toric Calabi-

Yau 3-folds with 2d toric diagrams. Such objects have been studied in the physics context

in [19] and figure 12 presents a simple example.

We refer to the points at the corners of toric diagrams, both for Calabi-Yau 3-folds

and 4-folds, as extremal points. In order to simplify our presentation, in the rest of the

paper we assume that toric diagrams do not contain additional intermediate points on the

edges connecting pairs of extremal points. All our ideas, however, extend to the general

situation in which such points are present.

The example in figure 12 illustrates the general fact that for Calabi-Yau 3-folds the

amoeba goes to infinity along “legs” that approach a linear behavior normal to the sides

of the toric diagram. Similarly, in the Calabi-Yau 4-fold case the amoeba contains a leg

for every edge of the 3d toric diagram, along which it asymptotes to a plane normal to the

edge under consideration. More concretely, for two extremal points in the toric diagram

with coordinates (mx,my,mz) and (nx, ny, nz), the equation defining Σ simplifies to an

equation consisting of only two terms

c(mx,my ,mz)x
mxymyzmz + c(nx,ny ,nz)x

nxynyznz = 0 (4.2)
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Figure 13. Toric diagram for C4.

when (some of) (|x|, |y|, |z|) go to infinity along the corresponding leg of the amoeba. In

this limit, the amoeba projection of Σ becomes the 2d plane given by

(nx −mx, ny −my, nz −mz) · (log |x|, log |y|, log |y|) = 0 , (4.3)

up to a shift controlled by the values of the c(mx,my ,mz) and c(nx,ny ,nz) coefficients.

Similarly, the coamoeba simplifies considerably when approaching infinity along each

leg of the amoeba, also becoming a 2d-plane orthogonal to the corresponding edge of the

toric diagram, in this case living in T 3. We refer to each of these planes as a phase

boundary.8 Each phase boundary is thus controlled by a pair of extremal points in the

toric diagram and given by

(nx −mx, ny −my, nz −mz) · (arg(x), arg(y), arg(z)) = 0 . (4.4)

Once again, each plane can be shifted by tuning the coefficients in the Newton polynomial.

In other words, phase boundaries are planes in T 3 with winding numbers (nx −mx, ny −
my, nz −mz). More generally, accounting for dual gauge theories sometimes requires de-

forming phase boundaries while preserving their homology. This possibility will be explored

in a forthcoming publication [22]. Phase boundaries are the brane brick model analogues

of zig-zag paths in brane tilings.

The union of all phase boundaries contains a proxy for the boundary of the coamoeba,

which gets replaced by a collection of planar facets. It is thus possible to discuss how

phase boundaries divide T 3 into two types of regions, corresponding to the interior and the

complement of the coamoeba. In order to illustrate our previous discussion, let us consider

the C4 example, for which the toric diagram is shown in figure 13. In this particular case,

all coefficients in the Newton polynomial can be removed by rescalings and we have

1 + x+ y + z = 0 . (4.5)

Each of the six edges of the toric diagram in figure 13 gives rise to a phase boundary, as

shown in figure 14. Phase boundaries are presented in the same colors of the corresponding

edges in the toric diagram.

8Here we use a nomenclature that is closer to the standard one in the mathematical literature. In a

previous work [6], we referred to these objects as coamoeba boundaries or coamoeba planes.
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T 3 T 3 T 3

T 3 T 3 T 3

Figure 14. The six phase boundaries in T 3 corresponding to the six edges of the toric diagram of

C4. We use the same colors for the planes and their normal edges in figure 13.

The six phase boundaries divide T 3 into various regions, which correspond to either

the interior or the complement of the coamoeba. In the example at hand, they carve out

a single rhombic dodecahedron (RD)9 in the complement, as shown in figure 15.10

4.2 Periodic quivers from coamoebas

The periodic quiver, or equivalently the brane brick model, can be constructed from the

phase boundaries of the corresponding Calabi-Yau 4-fold. In short, there is a node in the

quiver for every component into which the phase boundaries split the complement of the

coamoeba and chiral and Fermi fields arise at every point intersection of three or more

phase boundaries.11 We refer to this procedure as the fast inverse algorithm for brane

brick models. In the remainder of this section, we elaborate its detailed implementation.

Consider the C4 example as an illustration. The RD is identified with the single gauge

group of the corresponding gauge theory, as shown in figure 15. We see that every point

intersection of phase boundaries corresponds to a field in the periodic quiver. Equivalently,

such intersections map to faces in the brane brick model, as illustrated in figure 16.

Let us now study how the orientability of phase boundary intersections allows us to

distinguish between chiral and Fermi fields. We will illustrate the ideas in the context of

the C4 example, but they straightforwardly generalize to more complicated Calabi-Yau 4-

folds. In order to study the orientation of phase boundaries, which are objects living in 3d,

it is useful to dissect the problem into a collection of 2d projections. To do so, we consider

9Coamoeba and their phase boundaries on T 3 have been studied in the mathematical literature [23].
10Stating that the RD is in the complement of the coamoeba requires a criterion for, starting from

knowledge of the phase boundaries, identifying the complement of the coamoeba from its interior. In

this simple example, we can take a shortcut by exploiting our knowledge of the periodic quiver, since by

definition its nodes live in the complement of the coamoeba. Below we will introduce an algorithm for

making this identification in generic theories.
11As for zig-zags in the case of brane tilings, phase boundaries need to be shifted in T 3 until reaching a

configuration that can be interpreted as consistent gauge theory.
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Y

Z

D

X

Figure 15. C4 has six phase boundaries that cut out a RD in T 3, which gives rise to the single

gauge group of the corresponding gauge theory. The RD has eight 3-valent vertices and six 4-valent

vertices that in this case are periodically identified in pairs and correspond to the four chiral and

three Fermi fields of the C4 theory, respectively.

brane brick

T 3

coamoeba boundaries

T 3

Figure 16. Complement of the coamoeba cut out in T 3 for C4 by the phase boundaries and the

corresponding brane brick model. For convenience, the unit cell has been rotated with respect to

the one used in figure 15.

each of the faces of the toric diagram and assign an outward pointing normal vector to

each of its edges, as shown in figures 17 and 18.12

Every edge in the toric diagram is contained in a pair of faces and hence the previous

prescription assigns to it a pair of vectors. By construction both vectors live on the plane

orthogonal to the edge, i.e. on the corresponding phase boundary. We would now like to

combine these vectors into a single one determining the orientation of the phase boundary.

For our purposes it is sufficient to take the sum of them.13 The resulting vector points

towards the exterior of the toric diagram. Notice that this is an orientation on the phase

boundary plane and not one orthogonal to it. There is no natural orientation normal to

phase boundaries, since this would correspond to an inexistent orientation of edges in the

toric diagram.

Phase boundaries divide the neighborhood of any point intersection into a collection

of polyhedral cones. Depending on the behavior of the orientations of phase boundaries in

these cones, we can distinguish two types of intersections, which we now explain.

12This is precisely the procedure for determining zig-zag paths associated to the external edges of 2d toric

diagrams in the case of Calabi-Yau 3-folds.
13Any linear combination of the two vectors with non-zero positive coefficients would also do the job.
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Figure 17. An oriented intersection between the three phase boundaries associated to the green,

yellow and purple edges in the toric diagram of C4. The pair of 2d faces in the toric diagram that

share a given edge determine the orientation of the corresponding phase boundary. Each projection

gives rise to a collection of oriented lines on T 2 that correspond to the intersection between the

phase boundaries and a plane passing through the intersection. The chiral field extends along the

oriented cones, connecting two gauge groups that live in the complement of the coamoeba.

Oriented intersections: chiral fields. We define an oriented intersection as one con-

taining two opposite oriented cones. An oriented cone is one for which all phase boundaries

are oriented towards the point intersection or away from it. Notice that the number of

phase boundaries participating in the oriented cones might be lower than the total number

of phase boundaries in the intersection. Every oriented intersection gives rise to a chiral

field, whose orientation is determined by the oriented cones.

Since matter fields in the quiver stretch between gauge groups, which in turn map

to components in the complement of the coamoeba, the previous prescription also serves

for distinguishing the interior from the complement of the coamoeba. From all the cones

meeting an oriented intersection, only the oriented ones correspond to corners of regions in

the complement of the coamoeba. Figure 17 illustrates the previous ideas for an oriented

intersection in C4.14

14All examples considered in this section are such that for every pair of intersecting phase boundaries,

the projections of their orientations onto their line intersection are parallel. This property is not generic.

Our general discussion applies even when this is not the case.
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Figure 18. An alternating intersection between the four phase boundaries associated to the yellow,

red, green and blue edges in the toric diagram of C4. The orientation of each phase boundary is

established by considering the pair of 2d faces in the toric diagram associated to it. The Fermi field

extends along the two cones with alternating orientations, connecting two gauge groups that live

in the complement of the coamoeba.

Alternating intersections: Fermi fields. Every alternating intersection contains a

pair of special alternating cones. Alternating cones are such that the orientations of the

line intersections between consecutive pairs of phase boundaries alternate between going

into and away from the intersection. This implies that a necessary condition for a cone to

be alternating is to involve an even number of phase boundaries. It is natural to conjecture

that alternating cones always comprise four phase boundaries, an observation supported

by all the explicit examples we have considered.

Every alternating intersection gives rise to a Fermi field, which extends along the

two alternating cones. Similarly to the oriented intersection case, the corresponding pair

of nodes in the quiver lay within the alternating cones, which can thus also be used to

identify the complement of the coamoeba. Figure 18 shows an alternating intersection for

C4 and the steps involved in determining the corresponding Fermi field.

To conclude this section, it is important to emphasize that the distinction between

intersections leading to chiral and Fermi fields depends on their orientation or lack thereof

and not on the number of intersecting phase boundaries. It is possible for a point intersec-

tion of phase boundaries to be neither oriented nor alternating. When this occurs, it does

not correspond to any field in the gauge theory.

– 20 –



J
H
E
P
0
2
(
2
0
1
6
)
0
4
7

1 2 1 2

C C ⇥ C

Figure 19. Quiver diagrams for the 4d C theory and for the 2d C × C theory obtained from it by

dimensional reduction.

5 Geometry from brane brick models

Brane brick models greatly simplify the determination of the probed toric Calabi-Yau 4-fold

starting from the corresponding 2d (0, 2) quiver gauge theories, providing an alternative

to the forward algorithm studied in [6]. A similar feat is achieved by brane tilings, which

connect 4d N = 1 gauge theories to Calabi-Yau 3-folds, and it is at the heart of some of

their most important applications. This combinatorial approach is often referred to as the

fast forward algorithm, and we will employ the same name for its 2d analogue. A crucial

point for achieving this, which will be elaborated in this section, is a correspondence be-

tween GLSM fields and certain objects in the brane brick model with simple combinatorial

properties that we call brick matchings. They play a role analogous to perfect matchings

for brane tilings.

In order to get some useful intuition for identifying what brick matchings are, it is

convenient to review perfect matchings first. A perfect matching is a collection of edges

in a brane tiling such that every node in the tiling is the endpoint of exactly one edge in

the perfect matching. Every node in the tiling corresponds to a superpotential term in the

4d gauge theory or, equivalently, to a plaquette in the dual periodic quiver. We can thus

alternatively define a perfect matching as a collection of chiral fields that contains exactly

one field for every plaquette in the periodic quiver. An important property that follows

from their definition is that all perfect matchings for a given brane tiling contain the same

number of edges, which is equal to half the number of superpotential terms in the theory.15

Let us now move to the 2d case and try to find a combinatorial interpretation for

GLSM fields. A natural starting point is the P -matrix, which relates chiral fields to GLSM

fields. Several explicit examples can be found in [6].

For concreteness, let us consider the C × C theory [6]. Its quiver diagram is shown in

figure 19. The J- and E-terms are

J E

Λ1
12 : X21 ·X12 · Y21 − Y21 ·X12 ·X21 = 0 Φ11 · Y12 − Y12 · Φ22 = 0

Λ2
12 : Y21 · Y12 ·X21 −X21 · Y12 · Y21 = 0 Φ11 ·X12 −X12 · Φ22 = 0

Λ1
21 : X12 · Y21 · Y12 − Y12 · Y21 ·X12 = 0 Φ22 ·X21 −X21 · Φ11 = 0

Λ2
21 : Y12 ·X21 ·X12 −X12 ·X21 · Y12 = 0 Φ22 · Y21 − Y21 · Φ11 = 0

(5.1)

15This is not the case, however, for almost perfect matchings, which generalize perfect matchings to

bipartite graphs with boundaries [24].

– 21 –



J
H
E
P
0
2
(
2
0
1
6
)
0
4
7

The corresponding P -matrix is

P =



p1 p2 p3 p4 s

X21 1 0 0 0 0

X12 0 1 0 0 0

Y21 0 0 1 0 0

Y12 0 0 0 1 0

Φ11 0 0 0 0 1

Φ22 0 0 0 0 1


. (5.2)

This simple example already exhibits a crucial difference between brick matchings and

perfect matchings: brick matchings may involve different numbers of chiral fields. Here,

every pi contains a single chiral field, while s contains two chiral fields.

5.1 Phase boundaries and brick matchings

As already discussed in section 4, phase boundaries are analogous to zig-zag paths in brane

tilings. In this section, we will generalize the well-known connection between perfect match-

ings and zig-zag paths to a new relation between brick matchings and phase boundaries.

This will finally allow us to define brick matchings.

Perfect matchings are in one-to-one correspondence with GLSM fields for the 4d quiver

theories associated to brane tilings and hence map to points in the 2d toric diagrams of

the corresponding Calabi-Yau 3-folds [15, 25]. We refer to the perfect matchings located at

extremal points of the toric diagram as extremal perfect matchings. Perfect matchings can

be endowed with an orientation, e.g. by orienting all edges from white to black nodes. The

zig-zag path associated to an external edge in the toric diagram corresponds to the differ-

ence between the two extremal perfect matchings connected by the edge [26]. Figure 20

illustrates the construction of zig-zag paths from extremal perfect matchings for the dP0

example.

We can think about phase boundaries as collections of faces on the brane brick model,

as shown in figure 21 for C4. It is useful to introduce the phase boundary matrix H to

encode this information. Columns in this matrix correspond to phase boundaries ηα and

rows correspond to chiral and Fermi fields, i.e. to faces in the brane brick model. An entry

in Hiα is equal to ±1 if the face associated to the row i is contained in the boundary

represented by the column α (with the sign controlled by the relative orientation) and 0
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p1

p2

p1

p2

Figure 20. The toric diagram and brane tiling for dP0. The figure illustrates the construction of

a zig-zag path (orange) as the difference of the two extremal perfect matchings p1 and p2.

otherwise. For C × C, we have

H =



η12 η23 η34 η41 η1s η2s η3s η4s

X12 1 −1 0 0 0 −1 0 0

X21 −1 0 0 1 −1 0 0 0

Y12 0 0 1 −1 0 0 0 −1

Y21 0 1 −1 0 0 0 −1 0

Φ11 0 0 0 0 1 1 1 1

Φ22 0 0 0 0 1 1 1 1

Λ1
12 0 0 1 −1 1 1 1 0

Λ2
12 1 −1 0 0 1 0 1 1

Λ1
21 −1 0 0 1 0 1 1 1

Λ2
21 0 1 −1 0 1 1 0 1



. (5.3)

We can also regard H as summarizing the net intersection numbers, counted with orienta-

tion, between the phase boundaries and the fields in the periodic quiver within a unit cell.

Our goal is to establish a one-to-one correspondence between brick matchings and

GLSM fields. This, in turn, will determine that brick matchings are mapped to points in

the 3d toric diagram of the underlying Calabi-Yau 4-fold. We expect brick matchings to

correspond to collections of fields in the quiver and hence to collections of faces in the brane

brick model. In analogy with the brane tiling case, it is natural to envisage that the phase

boundary associated to an edge in the toric diagram is given by the difference between the

two extremal brick matchings connected by the edge, i.e. ηµν = pµ − pν . It then becomes

clear that if brick matchings consisted only of chiral fields, then the resulting surfaces

would have holes corresponding to the Fermi fields. We conclude that brick matching must

contain both chiral and Fermi fields.

Based on this reasoning, let us generalize the P -matrix to include Fermi fields. Allowing

only for 1 and 0 entries depending on whether a brick matching contains a field or not, (5.3)
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Figure 21. The brane brick model for C4 with a collection of highlighted chiral and Fermi faces

that form one of its phase boundaries.

uniquely determines

PΛ =



p1 p2 p3 p4 s

X12 0 1 0 0 0

X21 1 0 0 0 0

Y12 0 0 0 1 0

Y21 0 0 1 0 0

Φ11 0 0 0 0 1

Φ22 0 0 0 0 1

Λ1
12 0 0 0 1 1

Λ2
12 0 1 0 0 1

Λ1
21 1 0 0 0 1

Λ2
21 0 0 1 0 1



. (5.4)

The columns in PΛ do not correspond to the brick matchings we are after, yet.

Physically, Fermi fields Λa and their conjugate Λ̄a are on an equal footing. It is hence

reasonable to consider a definition of brick matchings that treats them symmetrically. We

thus also include rows for Λ̄a in a new P -matrix, to which we refer as PΛΛ̄. This new matrix

contains exactly the same information as PΛ. The entries for the Λ̄a rows are determined

such that they obey

PΛΛ̄,Λaµ + PΛΛ̄,Λ̄aµ = 1 . (5.5)

It will soon become clear that this choice also leads to brick matchings with nice combina-

torial properties. It is important to emphasize, though, that Λa and Λ̄a do not correspond

to independent degrees of freedom.
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Starting from (5.4) we obtain the following matrix for the C × C theory

PΛΛ̄ =



p1 p2 p3 p4 s

X12 0 1 0 0 0

X21 1 0 0 0 0

Y12 0 0 0 1 0

Y21 0 0 1 0 0

Φ11 0 0 0 0 1

Φ22 0 0 0 0 1

Λ1
12 0 0 0 1 1

Λ̄1
12 1 1 1 0 0

Λ2
12 0 1 0 0 1

Λ̄2
12 1 0 1 1 0

Λ1
21 1 0 0 0 1

Λ̄1
21 0 1 1 1 0

Λ2
21 0 0 1 0 1

Λ̄2
21 1 1 0 1 0



. (5.6)

The subtraction of brick matchings that leads to the H-matrix is defined in terms of

the corresponding columns of PΛΛ̄ as follows

HXiηµν = PΛΛ̄,Xiµ
− PΛΛ̄,Xiν

HΛaηµν = 1
2

[(
PΛΛ̄,Λaµ − PΛΛ̄,Λ̄aµ

)
−
(
PΛΛ̄,Λaν − PΛΛ̄,Λ̄aν

)] (5.7)

for all chiral fields Xi and Fermi fields Λa.

We are now ready to define a brick matching as the collection of fields in the quiver

determined by the corresponding column in the PΛΛ̄-matrix. Strictly speaking, our previous

discussion only allows the determination of extremal brick matchings. The following section

introduces a combinatorial definition of general brick matchings.

5.2 A combinatorial definition of brick matchings

In is possible to provide a combinatorial definition of brick matchings that is highly reminis-

cent to the one of perfect matchings for 4d theories. To do so, it is convenient to complete

Ja- and Ea-terms into pairs of plaquettes, by multiplying them by the corresponding Λa or

Λ̄a. A brick matching is then defined as a collection of chiral, Fermi and conjugate Fermi

fields contributing to every plaquette in the theory exactly once as follows:

1. For every Fermi field pair (Λa, Λ̄a), the chiral fields in the brick matching cover

either each of the two Ja-term plaquettes or each of the two Ea-term plaquettes

exactly once.

2. If the chiral fields in the brick matching cover the plaquettes associated to the Ja-

term, then Λ̄a is included in the brick matching. As a result, each of the two pla-

quettes associated to the Ea-term is covered exactly once. Λa is not included in the

brick matching, since it would produce an additional contribution to the plaquettes

associated to Ja.
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3. If the chiral fields in the brick matching cover the plaquettes associated to the Ea-

term, then Λa is included in the brick matching. As a result, each of the two pla-

quettes associated to the Ja-term is covered exactly once. Λ̄a is not included in the

brick matching, since it would produce an additional contribution to the plaquettes

associated to Ea.

The set of all brick matchings correspond to all collections of fields satisfying these

three properties. Determining them is a non-trivial combinatorial problem, but can be

efficiently implemented in a computer. It would certainly be desirable to find an analytic

method for finding brick matchings, analogous to the one based on the Kasteleyn matrix

for perfect matchings [15].

Following the definition, the total number of Fermi plus conjugate Fermi fields in all

brick matchings is the same and it is equal to the number of Fermi fields in the theory.

The number of chiral fields in brick matchings, as noted earlier, might vary.

For illustration, let us explicitly verify how some of the brick matchings encoded

by (5.6) satisfy the definition above. To do so, we first complete the J- and E-terms

presented in (5.1) into plaquettes by multiplying them by the corresponding Fermi fields.

Let us consider p1 = {X21, Λ̄
1
12, Λ̄

2
12,Λ

1
21, Λ̄

2
21}. The contributions to the plaquettes are

J E

Λ1
12 ·X21 ·X12 · Y21 − Λ1

12 · Y21 ·X12 ·X21 Λ̄1
12 · Φ11 · Y12 − Λ̄1

12 · Y12 · Φ22

Λ2
12 · Y21 · Y12 ·X21 − Λ2

12 ·X21 · Y12 · Y21 Λ̄2
12 · Φ11 ·X12 − Λ̄2

12 ·X12 · Φ22

Λ1
21 ·X12 · Y21 · Y12 − Λ1

21 · Y12 · Y21 ·X12 Λ̄1
21 · Φ22 ·X21 − Λ̄1

21 ·X21 · Φ11

Λ2
21 · Y12 ·X21 ·X12 − Λ2

21 ·X12 ·X21 · Y12 Λ̄2
21 · Φ22 · Y21 − Λ̄2

21 · Y21 · Φ11

(5.8)

where we indicate chiral and Fermi fields in blue and green, respectively. Similarly, for

s = {Φ11,Φ22,Λ
1
12,Λ

2
12,Λ

1
21,Λ

2
21}, we have

J E

Λ1
12 ·X21 ·X12 · Y21 − Λ1

12 · Y21 ·X12 ·X21 Λ̄1
12 · Φ11 · Y12 − Λ̄1

12 · Y12 · Φ22

Λ2
12 · Y21 · Y12 ·X21 − Λ2

12 ·X21 · Y12 · Y21 Λ̄2
12 · Φ11 ·X12 − Λ̄2

12 ·X12 · Φ22

Λ1
21 ·X12 · Y21 · Y12 − Λ1

21 · Y12 · Y21 ·X12 Λ̄1
21 · Φ22 ·X21 − Λ̄1

21 ·X21 · Φ11

Λ2
21 · Y12 ·X21 ·X12 − Λ2

21 ·X12 ·X21 · Y12 Λ̄2
21 · Φ22 · Y21 − Λ̄2

21 · Y21 · Φ11

(5.9)

The chiral field content of the PΛΛ̄-matrix precisely agrees with the P -matrix of the

forward algorithm [6].16 The forward algorithm is insensitive to the Fermi fields in brick

matchings since they do not contain scalar components and hence do not participate in the

classical mesonic moduli space. Our discussion above emphasizes, however, that incorpo-

rating Fermi fields into brick matchings is crucial for connecting them to phase boundaries

and for their combinatorial interpretation.

Extra GLSM fields. In [6], it was observed that the forward algorithm sometimes makes

use of additional GLSM fields. Mesonic gauge invariant operators parameterize the mesonic

moduli space and can be expressed in terms chiral fields or GLSM fields. When extra GLSM

16This agreement holds modulo extra GLSM fields, which are discussed below.
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fields are present, they can be neglected when studying the geometry of the moduli space

because they do not affect the spectrum of gauge invariant operators but rather correspond

to an over-parameterization of it. In other words, the generators and relations amongst

generators of the mesonic moduli space are unaffected by the presence of extra GLSM

fields. In appendix B, we explicitly study the algebraic structure of the mesonic moduli

spaces of certain brane brick models by computing their Hilbert series [27]. By doing so,

we illustrate the over-parameterization by extra GLSM fields. Additional examples can be

found in [6].

Various criteria for recognizing extra GLSM fields were provided in [6]. Remarkably,

they can be identified combinatorially: our study of numerous explicit examples suggests

that extra GLSM fields are combinations of fields in the quiver that do not satisfy the

brick matching definition. It is sufficient to restrict our attention to ordinary GLSM fields

corresponding to brick matchings, since they are sufficient for fully parameterizing the

mesonic moduli space.

5.3 A correspondence between GSLM fields and brick matchings

We claim that there is a one-to-one correspondence between the brick matchings we have

combinatorially defined in the previous section and the GLSM fields describing the classical

mesonic moduli space of the gauge theory. Here we will provide strong evidence supporting

this claim, by showing the brick matchings automatically satisfy vanishing J- and E-terms.

The proof is similar to the one that shows that perfect matchings satisfy F -terms of 4d

toric theories.

To do so, we introduce the following map between chiral fields and brick matchings

Xi =
∏
µ

p
PΛΛ̄,iµ
µ . (5.10)

This is precisely the map between chiral fields and GLSM fields provided, as mentioned

earlier, the chiral field part of PΛΛ̄ is interpreted as the P -matrix of the forward algo-

rithm. We are not interested in Fermi fields at this point, since they do not contain scalars

contributing to the mesonic moduli space.

Let us consider the J- and E-terms associated to a Fermi field Λa and express them

in terms of brick matchings using (5.10). We obtain

Ja = 0 ⇔
∏

Xi∈Ja,1

∏
µ

p
PΛΛ̄,iµ
µ =

∏
Xi∈Ja,2

∏
µ

p
PΛΛ̄,iµ
µ

Ea = 0 ⇔
∏

Xi∈Ea,1

∏
µ

p
PΛΛ̄,iµ
µ =

∏
Xi∈Ea,2

∏
µ

p
PΛΛ̄,iµ
µ

(5.11)

where Ja,n and Ea,n, n = 1, 2, indicate each of the two terms in Ja and Ea, respectively.

Each of these terms is a monomial in chiral fields and can be completed to form a plaquette

by multiplying it by Λa or Λ̄a. Ja and Ea vanish if every brick matching appearing in Ja,1
also appears in Ja,2, and every brick matching appearing in Ea,1 also appears in Ea,2.

Let us consider an arbitrary brick matching pµ. From the definition of a brick matching,

we know it contains either Λa or Λ̄a. Let us assume it contains Λa. Point 3 in section 5.2
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combined with (5.10) implies that pµ appears in exactly one chiral field in Ea,1 and one

chiral field in Ea,2. Point 3 also implies that pµ does not contain any chiral field in either

Ja,1 or Ja,2. If the brick matching contains Λ̄a instead of Λa, the same proof holds upon

exchanging Ja ↔ Ea. Our arguments apply to all brick matchings and all Fermi fields,

so we conclude that the map in (5.10) in conjunction with the combinatorial properties of

brick matchings automatically satisfy all vanishing J- and E-terms.

5.4 The fast forward algorithm for brane brick models

The variables provided by brick matchings not only bypass the need to solve for vanishing

J- and E-terms by automatically satisfying them, but are also ideally suited for the toric

description of the Calabi-Yau 4-fold. Achieving the latter is usually the most computation-

ally demanding part of the standard forward algorithm, since it involves the calculation of

dual cones. The combinatorial interpretation of GLSM fields in terms of brick matchings

hence leads to a substantial simplification and speed up of the computation of the mesonic

moduli space. We refer to the resulting approach, which we finalize developing in this

section, as the fast forward algorithm.17 In order to identify the geometry of the moduli

space, the remaining task after finding the brick matchings is to assign coordinates in Z3

to them, such that they generate the toric diagram. Below we present two methods for

doing so. Appendix A explains in detail how the two procedures are implemented in an

explicit illustrative example.

Toric diagram from face intersections. Let us call γx, γy and γz the edges of the

unit cell along its three fundamental directions.18 The position of the brick matching in

the toric diagram is a vector (nx, ny, nz) ∈ Z3 that is fully determined by the chiral field

faces in the brick matching intersecting γx, γy and γz as follows

na =
∑
〈Xij , γa〉 , a = x, y, z , (5.12)

where angle brackets indicate the usual intersection number between an oriented surface

and an oriented line. The coordinate na is thus a sum of ±1 contributions, where the sign

depends on the relative orientation between the field in the periodic quiver and γa. As

usual, multiple brick matchings might correspond to the same point in the toric diagram.

We have tested this proposal in numerous examples. In particular, we have checked

that it works for general abelian orbifolds of C4. By this we not only mean that the correct

toric diagram is reproduced, but also that the position of every brick matching agrees with

the one of the corresponding GLSM field resulting from the standard forward algorithm.

Any toric CY4 singularity, and the corresponding brane brick model, can be obtained from

an appropriate abelian orbifold of C4 by partial resolution [6]. Partial resolution only

removes some of the brick matchings, without altering the positions of the remaining ones

17For the 4d analog of the fast forward algorithm connecting brane tilings to toric CY3 singularities by

means of perfect matchings, we refer the reader to [15, 25].
18In fact, in analogy to the discussion of flux lines in brane tilings [28, 29], it is not necessary to consider

unit cells whose boundaries are planes or whose edges are straight lines. Our discussion applies to these

general situations without changes.
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in the toric diagram. The surviving brick matchings are those that do not contain the chiral

field getting a non-zero VEV. We thus conclude that the positions of the brick matchings

are correctly established by our prescription or, equivalently, that it works for arbitrary

brane brick models.

Toric diagram from the height functions. An alternative, and admittedly more

formal, way of determining the position of a brick matching in a toric diagram is as follows.

Given a brick matching pµ, it is possible to define an integer-valued height function hµ over

the brane brick model. To do so, we pick a reference brick matching p0 and a brick b0. In

analogy to the discussion in section 5.1, the difference pµ−p0 defines a set of closed oriented

surfaces on the brane brick model. The height function jumps by ±1 when traversing these

surfaces, with the sign determined by the orientation of the crossing. The height for the

reference brick b0 is set to zero. This definition is the natural generalization to brane

brick models of the height function for brane tilings [28, 29]. Interestingly, the difference

between the height functions for two brick matchings is well defined and independent of p0

and b0. The position of the point in the toric diagram associated to a brick matching pµ
is given by the slope of its height function. It is defined as a vector in Z3 made out of the

variations of the height function (∆xhµ,∆yhµ,∆zhµ) between adjacent unit cells along the

three fundamental directions of T 3. The net effect of changing p0 is simply an overall shift

of the slopes of all brick matchings and hence does not modify the resulting geometry.

6 Partial resolution

Different toric CY4 can be connected by partial resolution, which corresponds to eliminating

points in the toric diagram. From the perspective of the gauge theory, partial resolution

translates into higgsing. In [6], a systematic procedure for identifying the chiral fields that

acquire non-zero VEVs in order to achieve a desired partial resolution was introduced. It

relies on the map between chiral and GLSM fields encoded by the P -matrix. We refer the

reader to [6] for a thorough presentation of these ideas. In addition, in the previous section

we saw that the P -matrix admits a combinatorial interpretation by identifying GLSM fields

with brick matchings. The purpose of this section is to develop a complementary viewpoint

on partial resolution: its implementation in terms of phase boundaries.

6.1 CY3 partial resolution and zig-zag paths

Before studying partial resolutions of Calabi-Yau 4-folds from the viewpoint of phase

boundaries, it is instructive to review partial resolutions of toric Calabi-Yau 3-folds in

terms of zig-zag paths of the corresponding brane tilings. A generic partial resolution can

be understood as a sequence of removals of single extremal points in the toric diagram. It

is then sufficient to focus on the case in which a single extremal point in the toric diagram

is eliminated. When this occurs, the two edges of the toric diagram that terminate on

the deleted point disappear and are replaced by a new edge. As explained in section 4,

external edges in the toric diagram are in one-to-one correspondence with zig-zag paths

in the brane tiling. Partial resolution thus corresponds to a recombination of two zig-zag

paths into a new one.
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Figure 22. Partial resolution from the conifold to C3. a) Toric diagrams. b) Brane tilings showing

the recombination of zig-zag paths. The edge associated to the bifundamental field getting a non-

zero VEV, shown as a dotted line, sits at the intersection of the zig-zags that are recombined.

The slope of every edge in the toric diagram is determined by the winding numbers along the two

fundamental directions of the unit cell of the corresponding zig-zag path.

To illustrate these ideas, let us consider the example of the partial resolution from

the conifold to C3. As shown in figure 22, when the top left corner of the conifold toric

diagram is deleted, the two edges terminating on it are substituted by a new one. In the

gauge theory, this partial resolution corresponds to turning on a non-zero VEV for a chiral

field, which is located at an intersection between the two removed zig-zag paths. Giving a

VEV to this field translates into deleting the corresponding edge in the brane tiling, which

in turn results in a modification of the zig-zag paths. As shown in figure 22, the two zig-zag

paths under consideration are recombined into one with winding numbers being given by

the sum of the original ones. This is in agreement with the slope of the new edge in the

toric diagram.

The number of gauge groups in the 4d gauge theory is equal to 2×A, with A the area

of the toric diagram (see e.g. [30]). In our example this area decreases by 1/2 and hence the

quiver loses a single node. This is in agreement with the higgsing by a single bifundamental

VEV. More generally, removing an extremal point in the toric diagram can lead to a larger

decrease in the area. When this occurs, more VEVs need to be simultaneously turned on

in order to appropriately account for the reduction in the gauge symmetry.

6.2 CY4 partial resolution and phase boundaries

Let us now study the partial resolution of toric Calabi-Yau 4-folds in terms of phase bound-

aries. Once again, it is sufficient to consider the case in which a single extremal point in
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p0

⌘01

⌘03
⌘02

p3

p2

p1

p3

p2

p1

⌘31

⌘23

⌘12

Figure 23. Partial resolution by removing a single extremal point in the toric diagram of a Calabi-

Yau 4-fold. The edges connected to the removed point disappear and give rise to new edges, which

correspond to their pairwise recombination.

the toric diagram is eliminated. General partial resolutions can be achieved by iterating

this process.

Removing an extremal point in the toric diagram affects all external edges connected

to it and generates new ones. Partial resolution leads to a pairwise recombination of phase

boundaries that are in one-to-one correspondence with the affected edges. This can be

understood in full generality as follows. Consider a general partial resolution that removes

a point p0, as shown in figure 23. Let us further assume that p0 is the endpoint of three

external edges in the toric diagram, which connect it to the points p1, p2 and p3. The

general case in which the removed point has a higher valence will be discussed at the end

of this section. When p0 is eliminated, the edges η01, η02 and η03 disappear, while η12, η23

and η31 emerge. Here we label edges according to their corresponding phase boundaries

ηij = pi−pj . Given this expression, it is straightforward to see that every new edge is given

by the recombination of a pair of adjacent removed ones, i.e. ηab = ηa0 − ηb0 = ηa0 + η0b,

for a, b = 1, 2, 3.

For concreteness, let us consider the partial resolution of C × C to C4. The corre-

sponding toric diagrams are shown in figure 24. In general, the chiral field acquiring a

VEV during a partial resolution sits precisely at the intersection of the phase boundaries

associated to the edges connected to the removed point. The two toric diagrams in fig-

ure 24 are related by the removal of p1. The affected edges are hence those related to the

phase boundaries η12, η14 and η1s. Following the general discussion in [6] and using the

P -matrix (5.2), we conclude that eliminating p1 corresponds to giving a VEV to the chiral

field X21. As anticipated, this chiral field indeed lives at the intersection of η12, η14 and η1s.

Let us now investigate in detail the fate of the phase boundaries, which are shown in

figure 25 for C × C. When X21 is removed, η12, η14 and η1s are pairwise recombined into

η24, η4s and ηs2 as shown in figure 26. The process parallels the transformation of edges in

the toric diagram. This example shows that it is possible for some of the recombined phase

boundaries to coincide with preexisting ones. In this case, η4s and ηs2 were present in the

original theory and only η24 gives rise to a new edge in the toric diagram. Note that, at the

level of the brane brick model, the recombination of the phase boundaries is forced by the

elimination of the face associated to X21. Figure 27 shows the full set of phase boundaries
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Figure 24. Toric diagrams for the partial resolution from C × C to C4.
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Figure 25. Phase boundaries for C × C.

for the final C4 theory.

The number of gauge groups in a general 2d (2, 0) toric gauge theory is equal to 6×V ,

with V the volume of the toric diagram [6]. When the removed point is connected to three

edges, as in the previous example, a single tetrahedron is eliminated from the toric diagram.

This corresponds to a reduction in the number of gauge groups by one and agrees with

the higgsing by a single bifundamental VEV. More generally, when the removed extremal

point in the toric diagram has a higher valence, more tetrahedra disappear. This implies

that more than one node in the quiver is eliminated and hence the corresponding partial

resolution involves turning on VEVs for more than one bifundamental field.
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Figure 26. The three phase boundaries intersecting at the chiral field X21 of C×C combine pairwise

into a new phase boundary and two existing phase boundaries when X21 gets a non-zero VEV.

7 Brane brick models for CY3 × C theories

In this section, we consider theories on D1-branes probing toric Calabi-Yau 4-folds of the

form CY3 × C. The resulting 2d theories generically have (2, 2) SUSY (although further

SUSY enhancement is possible in special cases) and can be derived by dimensional reduction

of the 4d N = 1 theories on D3-branes over the corresponding toric CY3.

7.1 Dimensional reduction

It is useful to very briefly review the basics of dimensional reduction of general 4d N = 1

to 2d (2, 2). Similar discussions can be found in [3, 6]. Let us denote by Vi and Xij the

vector and chiral multiplets of the 4d theory, respectively. Under dimensional reduction,

they turn into 2d (2, 2) vector and chiral multiplets. In terms of 2d (0, 2) multiplets, we

thus have:

• 4d N = 1 vector Vi → 2d (0, 2) vector Vi + 2d (0, 2) adjoint chiral Φii
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Figure 27. The phase boundaries of the C4 brane brick model obtained by higgsing C × C in

figure 25.

• 4d N = 1 chiral Xij → 2d (0, 2) chiral Xij + 2d (0, 2) Fermi Λij

All J-terms in 2d descend from 4d F -terms

Jji =
∂W

∂Xij
, (7.1)

where W is the 4d superpotential. Here we understand the J-terms and W as functions of

the 2d (0, 2) chiral multiplets coming from the 4d chiral multiplets.

Finally, the E-terms arise from the gauge interactions of the 4d theory and take

the form

Eij = ΦiiXij −XijΦjj . (7.2)

Even though there is no invariant distinction between J- and E-terms, the dimensional

reduction prescription outlined above naturally distinguishes between them according to

their 4d origin.

7.2 Brane brick models from brane tilings

The 4d theories on D3-branes over toric Calabi-Yau 3-folds are fully captured by brane

tilings on T 2 [15]. Here we introduce a lifting algorithm that, starting from brane tilings,

constructs the brane brick models on T 3 for the dimensional reduced theories associated

to CY4 = CY3 × C. A closely related prescription, phrased in terms of the dual periodic

quivers, was introduced in [6]. The algorithm is introduced below, by explaining how the

basic elements of brane tilings are transformed. It automatically implements all aspects of

the dimensional reduction.
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x-y -plane on T 3

(T 2 in T 3)

brane tiling faces (gauge group)

brane brick faces (chiral adjoint)
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brane brick (gauge group)

x-y -plane on T 3

(T 2 in T 3)

T 2

quiver

�ii

�ii

Figure 28. A brane tiling face is lifted to a brane brick and a face in the brane brick model.

This process implements the dimensional reduction of a 4d vector multiplet into a 2d (0, 2) vector

multiplet and a 2d (0, 2) adjoint chiral multiplet.

Brane tiling faces. A 4d vector multiplet Vi maps to a 2d (0, 2) vector multiplet Vi and

a 2d (0, 2) adjoint chiral multiplet Φii under dimensional reduction. Faces in the brane

tiling correspond to unitary gauge groups in the 4d theory. When lifting to the brane brick

model, each of them therefore gives rise to a brick and a face, which correspond to a gauge

group and a chiral adjoint Φii in the 2d theory, respectively.

Every brane tiling face directly becomes the brane brick face for Φii. This face lies on

a T 2 within the T 3 of the brane brick model, which for convenience we call the x-y-plane,

as illustrated in figure 28. The face for Φii separates two copies of the same brane brick

along the third cycle of T 3, the z-direction, as shown in figure 28. Since the brane brick

corresponds to a gauge group in the 2d theory, Φii transforms in the adjoint representation,

as wanted.

Brane tiling edges. Every edge in the brane tiling, which represents a 4d N = 1 chiral

multiplet Xij , gets mapped to a pair of faces in the brane brick model, associated to the

corresponding 2d (0, 2) chiral Xij and Fermi Λij multiplets. Both faces sit between the

bricks associated to nodes i and j.

The precise map is further constrained in order to generate the desired structure for E-

terms. Due to the periodicity of T 3, the faces for Xij and Λij stretch along the z direction

between the same pair of edges. At each of these edges, they intersect with the horizontal

faces associated to the adjoint chiral fields Φii and Φjj , which come from dimensional

reduction of 4d N = 1 vector multiplets. The two edges thus give rise to E+
ij = Φii · Xij

and Eij− = Xij · Φjj , which together produce Eij = E+
ij − E−ij . The lift of a brane tiling
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⇤̄ij

brane tiling edges (chiral field)

2 brane brick faces
(chiral and Fermi field)

brane brick faces
suspended along the z-direction

between x-y -planes

quiver

Xij

Xij

�ii

Xij

�jj

Figure 29. A brane tiling edge is lifted to two faces in the brane brick model, which correspond to

a chiral multiplet Xij and a Fermi multiplet Λij in 2d (0, 2) language. Xij and Λij extend vertically

between the same pair of edges, which intersect the horizontal faces for the adjoint fields Φii and

Φjj , giving rise to the two terms in Eij = Φii ·Xij −Xij · Φjj .

edge is illustrated in figure 29.

Brane tiling nodes. As explained earlier, the J-terms of the 2d theory are in one-to-one

correspondence with F -terms in 4d. The 4d superpotential W is understood as a function

of 2d (0, 2) chiral multiples Xji under dimensional reduction. The J-terms take the form

Jji = ∂W
∂Xji

= J+
ji −J−ji , since for toric 4d theories every Xij appears in the superpotential in

two terms with opposite signs. These two superpotential terms are encoded by the white

and black nodes at the endpoints of the associated edge of the brane tiling. For every

Xij , each of these two nodes gives rise to an edge in the brane brick model, generating the

two contributions J+
ji and J−ji . As a result, every node in the brane tilings gives rise to a

collection of edges in the brane brick model, one per each chiral field participating in the

corresponding superpotential term. All these brane brick edges extend in the z direction

between two copies of the same node. A 4d chiral field Xji contains a Fermi field Λij in

its dimensional reduction. The brane brick face associated to Λij must terminate on the

edge for J±ji .

This structure of J-terms can be automatically incorporated in the brane brick model

by the following construction. The faces associated to the Fermi fields are organized into

helices emanating from each brane tiling node, with an orientation on the x-y-plane given

by the one of the brane tiling edges for Xij . By convention, we consider helices that go

clockwise/counterclockwise as we move to lower z for white/black brane tiling nodes. The

Fermi fields in the helices are glued to the vertical edges generated by the corresponding

node. Along the z-direction, the gaps between consecutive faces for Λij are filled by the

faces for the 2d chiral field Xij , which also follow from dimensional reduction of the brane

tiling edge for Xij . This guarantees that the vertical edges give rise to all the J-term

– 36 –



J
H
E
P
0
2
(
2
0
1
6
)
0
4
7

n-valent white or black
brane tiling node

quiver

n brane brick edges
corresponding to J+ or J� plaquettes

Figure 30. A white or black brane tiling node is lifted to a vertical collection of edges corresponding

to J+ or J− plaquettes, respectively. Every edge of the brane tiling terminating on the node

corresponds to a 4d chiral field Xij and gives rise to a pair of faces associated to a chiral multiplet

Xij and a Fermi multiplet Λij in 2d (0, 2) language. The faces associated to the Fermi fields are

attached to the vertical edges and form a helix whose orientation depends on the color of the parent

node in the brane tiling.

plaquettes. Figure 30 illustrates the lift of nodes in the brane tiling.

The lifting algorithm that we introduced uniquely determines the dimensional reduc-

tion. Every brane tiling can be dimensionally reduced to a brane brick model using this

procedure. Figure 31 illustrates the dimensional reduction of the C3 brane tiling to the

brane brick model for C4. It is clear that the resulting brane brick model can be deformed

into the one presented earlier in figure 6, which consists of a single truncated octahe-

dron brick.

7.3 Examples

Here we present further explicit examples of dimensionally reduced theories. We use the

lifting algorithm to produce their brane brick models and collect additional useful infor-

mation for the theories, including their brick matchings and field content of the phase

boundaries.

7.3.1 C × C

The brane brick model for C × C can be obtained by dimensionally reducing the 4d coni-

fold C theory [31]. The quiver for this theory is given on the left of figure 32 and its

superpotential is

W = X12 · Y21 · Y12 ·X21 −X12 ·X21 · Y12 · Y21 . (7.3)
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Figure 31. Dimensional reduction of the C3 brane tiling to the C4 brane brick model, which

consists of a single truncated octahedron brick.

1 2 1 2

C C ⇥ C

Figure 32. Dimensional reduction of the quiver for the conifold C to the one for C × C.
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p1

p3

p4

p2

s

Figure 33. Toric diagram for C ×C, obtained as the classical mesonic moduli space of the dimen-

sionally reduced conifold gauge theory.

The quiver for the dimensionally reduced C × C theory is shown on the right of figure 32.

The J- and E-terms are determined by the general expressions (7.1) and (7.2), and become

J E

Λ1
12 : X21 ·X12 · Y21 − Y21 ·X12 ·X21 = 0 Φ11 · Y12 − Y12 · Φ22 = 0

Λ1
21 : X12 · Y21 · Y12 − Y12 · Y21 ·X12 = 0 Φ22 ·X21 −X21 · Φ11 = 0

Λ2
12 : Y21 · Y12 ·X21 −X21 · Y12 · Y21 = 0 Φ11 ·X12 −X12 · Φ22 = 0

Λ2
21 : Y12 ·X21 ·X12 −X12 ·X21 · Y12 = 0 Φ22 · Y21 − Y21 · Φ11 = 0

(7.4)

The brick matchings can be determined from these J- and E-terms and are summarized
by the matrix

PΛ =



p1 p2 p3 p4 s

X21 1 0 0 0 0

X12 0 1 0 0 0

Y21 0 0 1 0 0

Y12 0 0 0 1 0

Φ11 0 0 0 0 1

Φ22 0 0 0 0 1

Λ1
12 0 0 0 1 1

Λ1
21 1 0 0 0 1

Λ2
12 0 1 0 0 1

Λ2
21 0 0 1 0 1



. (7.5)

Using either the standard forward algorithm of [6] or the fast forward algorithm of

section 5.4 based on the brick matchings, it is straightforward to verify that the classical

mesonic moduli space of this theory is indeed C × C, as shown in figure 33.

The phase boundaries can be determined from the brick matchings and are encoded
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brick 1

brick 2

Figure 34. Dimensional reduction of the conifold brane tiling to the C × C brane brick model.

by the following matrix

H =



η12 η34 η14 η23 ηs1 ηs2 ηs3 ηs4

X21 1 0 1 0 −1 0 0 0

X12 −1 0 0 1 0 −1 0 0

Y21 0 1 0 −1 0 0 −1 0

Y12 0 −1 −1 0 0 0 0 −1

Φ11 0 0 0 0 1 1 1 1

Φ22 0 0 0 0 1 1 1 1

Λ1
12 0 −1 −1 0 1 1 1 0

Λ1
21 1 0 1 0 0 1 1 1

Λ2
12 −1 0 0 1 1 0 1 1

Λ2
21 0 1 0 −1 1 1 0 1



. (7.6)

Applying the lifting algorithm to the brane tiling of the conifold theory, we obtain the brane

brick model for C×C shown in figure 34. It consists of two copies of the same type of brick,

which are rotated by 90◦ with respect to each other, representing the two gauge groups of

the theory. Each of the bricks contains four 8-sided faces representing bifundamental chiral

fields, two 4-sided faces representing adjoint chiral fields and four 4-sided faces representing

Fermi fields. Every edge in the brane brick model is adjacent to a single Fermi field and

all the J- and E-terms in (7.4) are nicely generated. The brane brick model is in precise

agreement with the dual periodic quiver constructed in [6].
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1

23

1

23

SPP SPP⇥ C

Figure 35. Dimensional reduction of the quiver for SPP to the one for SPP × C.

7.3.2 SPP× C

By dimensionally reducing the suspended pinch point (SPP) theory [32], whose brane tiling

was originally introduced in [15], it is possible to obtain the brane brick model for SPP×C.

The quivers for the parent 4d theory and its dimensional reduction are shown in figure 35.

The 4d superpotential is

W = X13 ·X31 ·X11 +X12 ·X23 ·X32 ·X21 −X12 ·X21 ·X11 −X13 ·X32 ·X23 ·X31 . (7.7)

The J- and E-terms of the 2d theory take the form

J E

Λ11 : X13 ·X31 −X12 ·X21 = 0 Φ11 ·X11 −X11 · Φ11 = 0

Λ21 : X12 ·X23 ·X32 −X11 ·X12 = 0 Φ22 ·X21 −X21 · Φ11 = 0

Λ12 : X21 ·X11 −X23 ·X32 ·X21 = 0 Φ11 ·X12 −X12 · Φ22 = 0

Λ31 : X13 ·X32 ·X23 −X11 ·X13 = 0 Φ33 ·X31 −X31 · Φ11 = 0

Λ13 : X31 ·X11 −X32 ·X23 ·X31 = 0 Φ11 ·X13 −X13 · Φ33 = 0

Λ32 : X21 ·X12 ·X23 −X23 ·X31 ·X13 = 0 Φ33 ·X32 −X32 · Φ22 = 0

Λ23 : X32 ·X21 ·X12 −X31 ·X13 ·X32 = 0 Φ22 ·X23 −X23 · Φ33 = 0

(7.8)
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Figure 50. The unit cell of the brane brick model and the periodic quiver for C4/Z2 × Z2 × Z2.

The faces associated to chiral fields that intersect the edges of the unit cell are shown in grey.

Figure 51. The intersection between the brane brick model for C4/Z2 × Z2 × Z2 and one of the

faces of its unit cell boundary.

matrix

G =


p1 p2 p3 p4 s11 s12 s21 s22 s31 s32 s41 s42 s51 s52 s61 s62

0 0 2 0 1 1 1 1 0 0 0 0 1 1 0 0

2 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1

0 2 2 0 1 1 2 2 0 0 1 1 1 1 1 1

 . (A.4)

Up to an SL(3,Z) transformation, this matrix is in precise agreement with the toric diagram

in figure 49.

Toric diagram from the height function. In order to visualize the height function, it

is useful to consider its values over the boundaries of the unit cell of the brane brick model.

In addition, these projections contain sufficient information for computing the slope of the

height function. Figure 51 shows the intersection between the brane brick model and the

boundary of the unit cell. Similar intersections for brick matchings are shown in figure 52.

Let us take the reference brick matching to be p1. For every brick matching pµ, we

consider the intersection between the closed surfaces corresponding to pµ−p1 and the faces
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p1 p2 p3 p4

s11 s21

�x

�y

�z

Figure 52. Intersections of some of the brick matchings of the C4/Z2×Z2×Z2 brane brick model

with the faces of the unit cell. The intersections of faces contained in the brick matchings are

represented by thickened lines.

in the unit cell boundary. This is shown in figure 53. It is straightforward to use these

projections to determine the slope of the height function ∆~h = (∆xhµ,∆yhµ,∆zhµ), which

contains the variations in the height function when moving by a period along the three

fundamental directions of T 3. As we explained, the slope ∆~h(pµ) is precisely the coordinate

of the point in the toric diagram associated to pµ. For the example at hand, the slopes are

summarized in the following matrix

G =


p1 p2 p3 p4 s11 s12 s21 s22 s31 s32 s41 s42 s51 s52 s61 s62

0 0 2 0 1 1 1 1 0 0 0 0 1 1 0 0

0 2 0 0 0 0 1 1 0 0 1 1 0 0 1 1

0 2 2 2 1 1 2 2 1 1 2 2 2 2 1 1

 . (A.5)

This is identical to (A.4) up to an SL(3,Z) transformation and corresponds to the toric

diagram in figure 49. It is interesting to remark that the slope of the height function can

be computed without determining the height function in the bulk of the unit cell.

B Hilbert series and plethystics

The Hilbert series [27] is a generating function that counts chiral gauge invariant operators

of a supersymmetric gauge theory. It fully characterizes the algebraic structure of the

moduli space of the theory, which can be identified using plethystics [27, 34]. Hilbert series

have been used extensively in a wide variety of contexts, such as for understanding the

algebraic structure of various 4d N = 1 theories associated to brane tilings [45, 46].

For the 2d wordvolume theories on D1-branes, the classical mesonic moduli space of

the abelian theory corresponds to the Calabi-Yau 4-fold probed by the branes. The mesonic
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Figure 53. Projections of the height function on the faces of the unit cell for some of the brick

matchings of C4/Z2 × Z2 × Z2.

moduli space, as an affine algebraic variety, takes the form

M = F [//U(1)G , (B.1)

where the generalized master space [47] is

F [ = CE [X1, . . . XE ]/〈Jij , Eij〉 . (B.2)

Above, G indicates the number of U(1) gauge groups and E the number of chiral fields

Xij . The quotienting ideal arises from the J- and E-terms. The mesonic moduli space can

also be expressed as

M = (C[p1, . . . , pc]//QEJ)//QD , (B.3)

where pi are the GLSM fields of the theory, and QEJ and QD are matrices of complexified

U(1) charges arising from the J-, E- and D-terms. In [6], the forward algorithm was

developed for obtaining QEJ and QD and determining the toric diagram of the Calabi-Yau

4-fold, Gt = ker(QEJ , QD).

Using Hilbert series, we count gauge invariant operators in terms of GLSM fields which

are invariant under the complexified U(1), whose charges are given by QEJ and QD [6].

The Hilbert series can be computed using the Molien integral as follows

g(tα;M) =

c−4∏
i=1

∮
|zi|=1

dzi
2πizi

c∏
α=1

1

1− tα
∏c−4
j=1 z

(Qt)jα
j

, (B.4)
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where α = 1, . . . , c labels GLSM fields, tα is the fugacity associated to the GLSM field pα,

and zi are the fugacities corresponding to the c− 4 complexified U(1) charges arising from

QEJ and QD. Qt = (QEJ , QD) is the concatenated matrix of QEJ and QD.

The generators and relations of the mesonic moduli space can be identified from the

Hilbert series using plethystics. The plethystic logarithm of the Hilbert series [27, 34] is

defined as

PL [g(tα;M)] =
∞∑
k=1

µ(k)

k
log
[
g(tkα;M)

]
=
∑
i

niMi(tα) , (B.5)

where µ is the Möbius function, Mi(tα) are monomials made of fugacities tα, and ni are

integer coefficients. When the plethystic logarithm of the Hilbert series contains a finite

number of terms, the mesonic moduli space is identified as a complete intersection. It is

parameterized by the generators corresponding to the monomials {Mi(tα);ni > 0} satisfy-

ing a finite number of relations associated to the monomials {Mi(tα);ni < 0}. When the

expansion of the plethystic logarithm is not finite, the mesonic moduli space is identified

as a non-complete intersection.

B.1 Hilbert series for the D3 theory

Using the forward algorithm for the theory defined by the quiver in figure 38 and the J-

and E-terms in (8.1), we obtain the following charge matrices for GLSM fields

QEJ = 0 , QD =

 p1 p2 p3 p4 p5 p6

1 0 −1 −1 0 1

−1 −1 0 1 1 0

 . (B.6)

They give rise to the toric diagram

G =


p1 p2 p3 p4 p5 p6

1 1 1 1 1 1

0 0 0 1 −1 1

0 1 0 0 1 0

0 0 1 0 0 1

 , (B.7)

which is also shown in figure 38.

The symmetries of the gauge theory imply that all bifundamental chiral fields carry

the same U(1)R charge, which we denote r1. Similarly, all adjoint chiral fields carry the

same U(1)R-charge r2. Table 3 summarizes the charges of the chiral fields under the full

U(1)3 ×U(1)R symmetry.

Assigning fugacities tα for the GLSM fields pα, the Hilbert series for the D3 theory is

computed to be

g(ti;D3) =
1− t1t2t3t4t5t6

(1− t1t4)(1− t2t5)(1− t3t6)(1− t1t3t5)(1− t2t4t6)
. (B.8)

Its plethystic logarithm is

PL [g(ti;D3)] = t1t4 + t2t5 + t3t6 + t1t3t5 + t2t4t6 − t1t2t3t4t5t6 . (B.9)
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field U(1)x U(1)y U(1)z U(1)R

Y12 +1/3 +1/2 0 r1

D23 +1/3 −1/2 +1/2 r1

X31 +1/3 0 −1/2 r1

X13 −1/3 0 −1/2 r1

Z32 −1/3 −1/2 +1/2 r1

Z21 −1/3 +1/2 0 r1

D11 0 −1 +1 r2

X22 0 0 −1 r2

Y33 0 +1 0 r2

Table 3. Global charges of chiral fields in the D3 theory.

Introducing fugacities x, y, z for the global U(1)x, U(1)y and U(1)z respectively, and

fugacities t̄i counting the number of fields with U(1)R charge ri, the above plethystic

logarithm can be rewritten as follows,

PL [g(t, x, y, z;D3)] = y−1zt̄21t̄
2
2 + z−1t̄21t̄

2
2 + yt̄21t̄

2
2 + xt̄31t̄

3
2 + x−1t̄31t̄

3
2 − t̄61t̄62 , (B.10)

where the fugacity map is

t1 = y−1zt̄1t̄2 , t2 = t̄1t̄2 , t3 = xyt̄1t̄2 , t4 = t̄1t̄2 , t5 = z−1t̄1t̄2 , t6 = x−1t̄1t̄2 . (B.11)

The above charge assignment agrees with the charges of chiral fields in table 3.

The generators of the mesonic moduli space are

Generator Generator U(1)3 ×U(1)R

PL term Generator in GLSM fields in chiral fields charges

+t1t4 A1 p1p4 D11 = D23Z32 y−1zt̄21t̄
2
2

+t2t5 A2 p2p5 X22 = X13X31 z−1t̄21t̄
2
2

+t3t6 A3 p3p6 Y33 = Y12Z21 yt̄21t̄
2
2

+t1t3t5 B1 p1p3p5 D23X31Y12 xt̄31t̄
3
2

+t2t4t6 B2 p2p4p6 Z21X13Z32 x−1t̄31t̄
3
2

The mesonic moduli space can then be expressed as an algebraic variety as follows

MD3 = C[A1, A2, A3, B1, B2]/〈A1A2A3 = B1B2〉 . (B.12)

The generators of the mesonic moduli space map to closed non-trivial cycles on the T 3

on which the periodic quiver lives. By identifying the U(1)x, U(1)y and U(1)z charges of

these generators with the winding numbers on T 3 of the corresponding cycles, it is possible

to construct the periodic quiver without ambiguity. The periodic quiver for the D3 theory

is presented in figure 39.
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B.2 Hilbert series for the Q1,1,1 theory

The quiver in figure 43 and the J- and E-terms in (8.4) give rise to the following charge

matrices for GLSM fields

QEJ =

(
p1 p2 p3 p4 p5 p6 q1 q2

0 0 −1 −1 −1 −1 1 1

)
, QD =


p1 p2 p3 p4 p5 p6 q1 q2

−1 −1 0 0 0 0 0 1

0 0 1 1 0 0 0 −1

0 0 0 0 1 1 0 −1

 .

(B.13)

The corresponding toric diagram matrix is

G =


p1 p2 p3 p4 p5 p6 q1 q2

1 1 1 1 1 1 2 2

0 1 1 0 0 1 1 1

0 1 0 1 1 0 1 1

0 0 0 0 1 −1 0 0

 , (B.14)

where we note that q1 and q2 are extra GLSM fields. Given the total charge matrix

Qt =

(
QEJ
QD

)
=


p1 p2 p3 p4 p5 p6 q1 q2

0 0 0 0 0 0 1 −1

1 1 0 0 0 0 0 −1

0 0 1 1 0 0 0 −1

0 0 0 0 1 1 0 −1

 , (B.15)

it can be noted that GLSM fields {p1, p2}, {p3, p4} and {p5, p6} form doublets with the same

Qt charges. This indicates an enhancement of the global symmetry from U(1)3×U(1)R to

SU(2)3 × U(1)R, as expected from the isometries of Q1,1,1. Exploiting the symmetries of

the gauge theory and the toric diagram, the U(1)R charges of chiral fields can be assigned

as in table 4.

We choose fugacities ti for the GLSM fields pi and fugacities si for the extra GLSM

fields qi. The Hilbert series takes the form

g(ti, si;Q
1,1,1) = (1− s2t1t2t3t4t

2
5 − s2t1t2t

2
3t5t6 − s2t21t3t4t5t6 − 3s2t1t2t3t4t5t6

−s2t22t3t4t5t6 − s2t1t2t
2
4t5t6 + 2s3t21t2t

2
3t4t

2
5t6 + 2s3t1t

2
2t

2
3t4t

2
5t6 + 2s3t21t2t3t

2
4t

2
5t6

+2s3t1t
2
2t3t

2
4t

2
5t6 − s4t21t

2
2t

2
3t

2
4t

3
5t6 − s2t1t2t3t4t

2
6 + 2s3t21t2t

2
3t4t5t

2
6 + 2s3t1t

2
2t

2
3t4t5t

2
6

+2s3t21t2t3t
2
4t5t

2
6 + 2s3t1t

2
2t3t

2
4t5t

2
6 − s4t21t

2
2t

3
3t4t

2
5t

2
6 − s14s24t31t2t

2
3t

2
4t

2
5t

2
6

−3s4t21t
2
2t

2
3t

2
4t

2
5t

2
6 − s4t1t

3
2t

2
3t

2
4t

2
5t

2
6 − s4t21t

2
2t3t

3
4t

2
5t

2
6 − s4t21t

2
2t

2
3t

2
4t5t

3
6 + s6t31t

3
2t

3
3t

3
4t

3
5t

3
6)

×PE
[
st1t3t5 + st2t3t5 + st1t4t5 + st2t4t5 + st1t3t6 + st2t3t6 + st1t4t6 + st2t4t6

]
,

(B.16)

where s = s1s2. The plethystic logarithm is

PL
[
g(ti, si;Q

1,1,1)
]

= st1t3t5 + st2t3t5 + st1t4t5 + st2t4t5 + st1t3t6 + st2t3t6

+st1t4t6 + st2t4t6 − s2t1t2t3t4t
2
5 − s2t1t2t

2
3t5t6 − s2t21t3t4t5t6 − 3s2t1t2t3t4t5t6

−s2t22t3t4t5t6 − s2t1t2t
2
4t5t6 − s2t1t2t3t4t

2
6 + . . . . (B.17)
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field SU(2)x SU(2)y SU(2)z U(1)R
D12 +1 0 0 r1

X12 −1 0 0 r1

Y31 0 +1 0 r2

D31 0 −1 0 r2

X24 0 +1 0 r2

Z24 0 −1 0 r2

X23 0 0 +1 r3

Z23 0 0 −1 r3

D41 0 0 +1 r3

Y41 0 0 −1 r3

Table 4. Global charges of chiral fields in the Q1,1,1 theory.

It is important to note that the extra GLSM fields do not play any role in determining the

algebraic structure of the mesonic moduli space. This can be seen by setting s = s1s2 = 1,

which does not affect the information of the algebraic variety captured by the Hilbert series.

Using the fugacity map

t1 = xt̄1 , t2 = x−1t̄1 ,

t3 = yt̄2 , t4 = y−1t̄2 ,

t5 = zt̄3 , t6 = z−1t̄3 ,

s1 = s2 = 1 , (B.18)

which is in accordance with the SU(2)3 × U(1)R global charges carried by chiral fields in

table 4, the Hilbert series in (B.16) can be written as

g(t, x, y, z;Q1,1,1) =
∞∑
n=0

[n]SU(2)x [n]SU(2)y [n]SU(2)z t̄
n
1 t̄
n
2 t̄
n
3 , (B.19)

where x, y and z are the fugacities for SU(2)x × SU(2)y × SU(2)z charges and the t̄i
fugacities count the fields with U(1)R charge ri. [n]SU(2)i is the character of the irreducible

representation of SU(2)i with highest weight n. The plethystic logarithm is

PL
[
g(t, x, y, z;Q1,1,1)

]
= [1]SU(2)x [1]SU(2)y [1]SU(2)z t̄1t̄2t̄3 (B.20)

−[2]SU(2)x t̄
2
1t̄

2
2t̄

2
3 − [2]SU(2)y t̄

2
1t̄

2
2t̄

2
3 − [2]SU(2)z t̄

2
1t̄

2
2t̄

2
3 + . . . .

The generators of the Calabi-Yau moduli space are summarized below.
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Generator Generator U(1)3 ×U(1)R

PL term Generator in GLSM fields in chiral fields charges

+st1t3t5 A111 p1p3p5q1q2 D41D12X24 = D12X23Y31 xyzt̄1t̄2t̄3

+st2t3t5 A211 p2p3p5q1q2 D41X12X24 = X12X23Y31 x−1yzt̄1t̄2t̄3

+st1t4t5 A121 p1p4p5q1q2 D31D12X23 = D41D12Z24 xy−1zt̄1t̄2t̄3

+st2t4t5 A221 p2p4p5q1q2 D31X12X23 = D41X12Z24 x−1y−1zt̄1t̄2t̄3

+st1t3t6 A112 p1p3p6q1q2 D12X24Y41 = Y31D12Z23 xyz−1t̄1t̄2t̄3

+st2t3t6 A212 p2p3p6q1q2 X12X24Y41 = Y31X12Z23 x−1yz−1t̄1t̄2t̄3

+st1t4t6 A122 p1p4p6q1q2 D31D12Z23 = Y41D12Z24 xy−1z−1t̄1t̄2t̄3

+st2t4t6 A222 p2p4p6q1q2 D31X12Z23 = Y41X12Z24 x−1y−1z−1t̄1t̄2t̄3

The mesonic moduli space can then be expressed as

MQ1,1,1 = C[Aijk]/I , (B.21)

where the ideal is given by

I = 〈A122A212 −A112A222 , A122A221 −A121A222 , A122A211 −A111A222 ,

A212A221 −A211A222 , A121A212 −A111A222 , A112A221 −A111A222 ,

A112A121 −A111A122 , A112A211 −A111A212 , A121A211 −A111A221〉 .
(B.22)
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