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Automated Refactoring of Legacy Java Software to Enumerated Types∗

Raffi Khatchadourian Jason Sawin Atanas Rountev
Ohio State University

{khatchad,sawin,rountev }@cse.ohio-state.edu

Abstract

Java 1.5 introduces several new features that offer significant improvements over older Java technology. In this
paper we consider the newenum construct, which provides language support for enumeratedtypes. Prior to Java
1.5, programmers needed to employ various patterns (e.g., the weak enum pattern) to compensate for the absence
of enumerated types in Java. Unfortunately, these compensation patterns lack several highly-desirable properties
of theenum construct, most notably, type safety. We present a novel fully-automated approach for transforming
legacy Java code to use the new enumeration construct. This semantics-preserving approach increases type safety,
produces code that is easier to comprehend, removes unnecessary complexity, and eliminates brittleness problems
due to separate compilation. At the core of the proposed approach is an interprocedural type inferencing algorithm
which tracks the flow of enumerated values. The algorithm wasimplemented as an Eclipse plug-in and evaluated
experimentally on17 large Java benchmarks. Our results indicate that analysis cost is practical and the algorithm
can successfully refactor a substantial number of fields to enumerated types. This work is a significant step towards
providing automated tool support for migrating legacy Javasoftware to modern Java technologies.

1. Introduction

Java 1.5 introduces a rich set of new features and enhancements such as generics, metadata annotations, box-
ing/unboxing, and type-safe enumerations [22]. These constructs can ease software development and maintenance
and can result in more efficient and robust applications. Even though Java 1.5 has backward compatibility with
code from previous releases, there are numerous advantagesin migrating such legacy code to these new features.

Code migration can be a laborious and expensive task both forcode modification and for regression testing.
The costs and dangers of migration can be reduced greatly through the use of automated refactoring tools. This
paper presents a fully-automated semantics-preserving approach for migrating legacy Java code to take advantage
of the new type-safe enumeration construct in Java 1.5.

An enumerated (enum) type[18] is a data type whose legal values consist of a fixed, closely related set of items
known at compile time [2]. Typically, the exact values of theitems are not programmatically important: what is
significant is that the values are distinct from one another and perhaps ordered in a certain way, hence the term
“enumeration.” Clearly this is a desirable construct, and since it was not included in the Java language until version
1.5, developers were forced to use variouscompensation patternsto represent enum types. These patterns produce
solutions with varying degrees of uniformity, type safety,expressiveness, and functionality. Of these patterns, the
most popular and proclaimed “standard way” [22] to represent an enumerated type in legacy (≤1.4) Java is the
weak enum pattern[2], also known astype codes[9, 14]. This pattern uses declared constants (“codes”) defined
with relatively small, manually enumerated values. These constants are typically declared asstatic final
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fields. As discussed in Section 2, there are great advantagesto migrating compensation patterns in legacy code to
proper enum types.

In this paper we propose a novel semantics-preserving approach for identifying instances of the weak enum
pattern in legacy code and migrating them to the new enum construct. At the core of our approach is an interpro-
cedural type inferencing algorithm which tracks the flow of enumerated values. Given a set of static final fields, the
algorithm computes anenumerization groupingcontaining fields, methods, and local variables (includingformal
parameters) whose types can safely be refactored to use an enum type. The algorithm identifies the fields that
are being utilized as enumerated values and all other program entities that are transitively dependent upon these
values.

The refactoring approach has been implemented as an Eclipseplug-in. The experimental evaluation used a set
of 17 Java programs with a total of899 thousand lines of code. Our study indicates that (1) the analysis cost is
practical, with average running time of2.48 seconds per thousand lines of code, (2) the weak enum patternis
commonly used in legacy Java software, and (3) the proposed algorithm successfully refactors a large number of
static final fields into enumerated types.

This work makes the following specific contributions:
• Algorithm design.We present a novel automated refactoring approach for migration to Java 1.5 enum types.

The approach infers which fields are being used as enumerations and identifies all code changes that need
to be made in order to introduce the inferred enum types.

• Implementation and experimental evaluation.The approach was implemented as an Eclipse plug-in to
ensure real-world applicability. A study on 17 Java programs indicates that the proposed techniques are
effective and practical. These results advance the state ofthe art in automated tool support for the evolution
of legacy Java code to modern Java technologies.

2. Motivation and Example

An enumerated typehas values from a fixed set of constants [2]. Java has historically provided no language
mechanisms for defining enumerated types, leading to the emergence of various compensation patterns. However,
the compiler depends on the internal representation (typically int ) of the symbolically named constants, and type
checking can not distinguish between values of the enum typeand those of the type internally representing those
values.

2.1. Example

Figure 1(a) shows an example in which named constants are used to encode values of enumerated types.1 For
example, fieldcolor declared at line 6 represents the color which the traffic signal is currently displaying. The
values of this field come from the three static final fieldsRED, YELLOW, andGREEN, which map symbolic names to
their associated integer representations. The compile time values of these constants are manually enumerated so
that each color can be unambiguously distinguished. Of course, the integer values have no real relationship to the
colors they represent. Similarly, fieldcurrentAction declared at line 17 could take its values from the integer
constants in static final fieldsIDLE , INCREASESPEED, DECREASESPEED, andSTOP.

FieldMAXSPEED(line 15) defines the maximum speed of the automobile. This field differs from the remaining
static final fields: unlike their integer values, which are used only to encode enumerated values, the value of
MAXSPEEDhas a very significant meaning. This key distinction illustrates the difference between fields that are
named constants(e.g.,MAXSPEED) from those participating in theint enum pattern[2].2 In this paper we consider
a more general version of this pattern which applies to all primitive types3; we will refer to it as theweak enum
pattern. The term “weak” is used to denote the lack of type safety and other features inherent to the pattern.

1This example was inspired by one of the authors’ work at the Center for Automotive Research at the Ohio State University.
2A similar pattern calledType Codesis described in [9, 14].
3We exclude boolean from this list for several reasons: (i) The type has only two values,true and false , thus any transformed

enum type can only have two members and (ii) our algorithm becomes simpler due to this exclusion.
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1 class TrafficSignal {
2 public static final int RED = 0;
3 public static final int YELLOW = 1;
4 public static final int GREEN = 2;
5 /∗ Current color of the traffic signal, initially red by default∗/
6 private int color = RED;
7 /∗ Accessor for the light’s current color∗/
8 public int getColor() {return this.color;}}
9

10 class Automobile {
11 private static final int IDLE = 0;
12 private static final int INCREASE_SPEED = 1;
13 private static final int DECREASE_SPEED = 2;
14 private static final int STOP = 3;
15 private static final int MAX_SPEED = 140;
16 /∗ The action this automobile is currently performing, idle bydefault∗/
17 private int currentAction = IDLE;
18 /∗ The current speed of the automobile, initially 5 mph.∗/
19 private int currentSpeed = 5;
20

21 private int react(TrafficSignal signal) {
22 switch(signal.getColor()) {
23 case TrafficSignal.RED: return STOP;
24 case TrafficSignal.YELLOW:
25 // decide whether to stop or go
26 if (this.shouldGo())
27 return INCREASE_SPEED;
28 else return STOP;
29 case TrafficSignal.GREEN: // no change
30 return this.currentAction;
31 default: throw new IllegalArgumentException
32 ("Invalid traffic color");}} // required
33

34 public void drive() {
35 TrafficSignal aSignal = ... ;
36 int reaction = this.react(aSignal);
37 if (reaction != this.currentAction &&
38 (reaction != INCREASE_SPEED ||
39 this.currentSpeed <= MAX_SPEED))
40 this.performAction(reaction);}
41

42 private void performAction(int action) {...}}

(a) Using integer constants for enumerated types.

1 class TrafficSignal {
2 public enum Color {RED,
3 YELLOW,
4 GREEN};
5 /* Current color of the traffic signal, initially red by default */
6 private Color color = Color .RED;
7 /* Accessor for the light’s current color */
8 public Color getColor() {return this.color;}}
9

10 class Automobile {
11 private enum Action {IDLE,
12 INCREASE_SPEED,
13 DECREASE_SPEED,
14 STOP};
15 private static final int MAX_SPEED = 140;
16 /* The action this automobile is currently performing, idleby default */
17 private Action currentAction = Action .IDLE;
18 /* The current speed of the automobile, initially 5 mph. */
19 private int currentSpeed = 5;
20

21 private Action react(TrafficSignal signal) {
22 switch(signal.getColor()) {
23 case TrafficSignal.RED: return Action .STOP;
24 case TrafficSignal.YELLOW:
25 // decide whether to stop or go
26 if (this.shouldGo())
27 return Action .INCREASE_SPEED;
28 else return Action .STOP;
29 case TrafficSignal.GREEN: // no change
30 return this.currentAction;
31 default: throw new IllegalArgumentException
32 ("Invalid traffic color");}} // required
33

34 public void drive() {
35 TrafficSignal aSignal = ... ;
36 Action reaction = this.react(aSignal);
37 if (reaction != this.currentAction &&
38 (reaction != Action .INCREASE_SPEED ||
39 this.currentSpeed <= MAX_SPEED))
40 this.performAction(reaction);}
41

42 private void performAction(Action action){...}}
(b) Improvements after our refactoring is applied.

Figure 1. Running example: a hypothetical drive-by-wire ap plication.

Figure 1(a) illustrates the use of the weak enum pattern. Clearly, the meaning ofint depends on the context
of where values are used. The programmer is left with the responsibility of manuallyinferring whichint entities
are intended to represent traffic light colors, which are automobile actions, and which are integers. In effect, the
programmer would be required to investigate transitive relationships of these program entities to other program
entities/operations. Although the weak enum pattern provides a mechanism to make programmer intent more
explicit, it suffers from several significant weaknesses which have been well documented [2, 22].

2.1.1 Type Safety

The most glaring weakness is the lack of type safety. For example, there is no mechanism to enforce the constraint
thatcolor gets its values only from the three color fields: any integer value would be acceptable at compile time.
Such problems would not be detected until run time, when an exception would be thrown. Perhaps worse, the
execution will seem to be normal while behaving in a way not originally intended by the programmer. Problems
could also arise from the allowed operations: for example, it would be possible to perform arbitrary integer
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operations, such as addition or multiplication, upon the color values.

2.1.2 Program Comprehension

The weak enum pattern creates ambiguities at various levels. For example, there are fundamental semantic dif-
ferences between the constants for automobile actions (beginning on line 11) andMAXSPEED(line 15). Despite
these differences, both entities have essentially identical declarations. The programmer depends on documenta-
tion and/or extensive interprocedural usage investigation to determine the true intent of the fields. This is also an
issue formultiplesets of enum constants. For example, methodsgetColor (line 8) andreact (line 21) declare
the sameint return type, even though the returned entities have very different meaning and context. In essence,
the program is less self-documented with respect to the enumerated types, which could have negative effect on
software maintenance tasks.

2.1.3 Verbosity

Verbosity and added complexity arises in several areas. First, there is no easy way to print the enumerated values
in a meaningful way. Additional code is typically required to produce desirable results, e.g. as in

if (this.color == RED) System.out.println("RED")

Second, there is no convenient way to iterate over all valuesof the enumerated type [2], which requires the
developer to manually create such machinery. Third, the weak enum pattern requires the programmer to manually
enumerate the values of the constants, which increases the likelihood of errors. For example, different enum
constants may be unintentionally assigned the same internal value.

2.1.4 Name spacing

Constant names from different enum types may collide, especially in distributed development environments, as
they are not contained in their own namespace. For example, the constantREDmay belong to two enum types
defined in the same class. Such a collision would need to be resolved by prefixing the constants with an appropriate
identifier (e.g.,COLOR_RED).

2.1.5 Separate compilation

Finally, the weak enum pattern produces types whose values are brittle [22]. Since the values are compile time
constants, at compile time they are inlined into clients. Therefore, if new constants are added in between existing
ones, or if the internal representation of the constants change, clients must be recompiled. Otherwise, the behavior
of clients upon referencing the values of the enum type is undefined. Such results are devastating for successful
separate compilation.

2.2. Enumerations in Java 1.5

The newenum construct supports powerful enumerated types that are completely and conveniently type safe,
comparable, and serializable; saving the programmer from creating and maintaining verbose custom classes. Enum
types increase self-documentation (e.g., agetColor method has a return type ofColor ), enable compile-time
type checking, allow meaningful printed values, avoid nameconflicts, and support separate compilation.

Figure 1(b) shows anenumerizedversion of the running example, in which the static final fields have been
replaced by language enumerated typesTrafficSignal.Color andAutomobile.Action . The legal values
and operations of these new enumerated types are now enforced through compile-time checking. There is a clear
distinction between the named constantMAXSPEEDand the enumerated values. It is also clear that the result ofa
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call to react is anAction , which distinguishes it from the return type ofgetColor and makes the API more
informative. Programmers are no longer required to enumerate values by hand, or to write extra “pretty printing”
code.

After enumerization, the brittleness of the overall systemis reduced. For example, suppose we wanted to make
TrafficSignal compatible with Poland’s system, where a yellow and red combination is shown directly after
red to alert drivers that a change to green is imminent. AfterRED in Figure 1(a), one could add a new field
REDYELLOWwith value of 1; the remaining fields’ values would have to be incremented. Even if we did not care
to modifyAutomobile to accommodate the new color, we would still have to recompile it, since upon the original
compilation the constant values for the colors where inlined. In Figure 1(b) additional values can be added easily,
and only the enum or the class containing the enum would require recompilation.

3. Enumerization Approach

A refactoring tool which modifies legacy Java code employingthe weak enum pattern to utilize the Java 1.5
enum construct faces two major challenges:inferring enumerated typesand resolving dependencies. Inferring
enumerated types requires distinguishing between weak enum constants and named constants. Figure 1(a) il-
lustrates this issue through fieldsSTOPand MAXSPEED. Although their declarations are very similar, they are
conceptually very different: while the value of named constantMAXSPEEDis meaningful in integer contexts (e.g.,
for the integer comparison at line 39), the only requirementon the value of enumerated constantSTOPis that it
should be different from the other integer values representing actions. In general, the uses of the enumerated values
are limited to assignments, parameter passing, method return values, and equality comparisons. Named constants
are used in a much wider context, including mathematical calculations (e.g., dividing byjava.lang.Math.PI ),
various value comparisons (as in line 39), and so on. Determining the category to which a constant field belongs
requires investigation of every context in which that field’s value is used.

Constant fields are not the only program entities that need tobe refactored for enumerization. In Figure 1(a),
once it has been inferred thatSTOPis an enumerated constant, we must identify all program entities that also
require refactoring due to transitive dependencies onSTOP. We say a entityA is type dependenton entityB if
changing the type ofB requires changing the type ofA. An example of such a dependency is methodreact :
since it returns the integer form ofSTOP, in the refactored version it must return the enum type containing STOP.
Furthermore, due to the dependence on the return value ofreact , local integer variablereaction in drive (line
36 in Figure 1(b)) must also be transformed to be of typeAction .

The next section describes an interprocedural refactoringalgorithm which addresses these challenges through
careful categorization of the contexts in which migration from the weak enum pattern to the new enum construct
is valid. The algorithm identifies all type dependent entities in those contexts, including fields, local variables,
method return types, and formal parameters. After all affected entities are identified, they are classified into groups
that must share the same enum type. At the end, all automatically transformed code is semantically equivalent to
the original.

4. Algorithm

4.1. Assumptions

Our algorithm works on aclosed-world assumption, meaning that we assume full access to all source code that
could possibly affect or be affected by the refactoring. We also assume that we are able to statically identify all
references to candidate fields and transitively dependent program entities. This assumption could be invalidated
through the use of reflection and custom classloaders.

We also assume that the original source code successfully compiles under a Java 1.5 compiler, thus guaranteeing
the following properties:
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P original program
φ(P) {f | f is a static final field of primitive type inP}
µ(P) {m | m is a method inP}
υ(P) {l | l is a variable inP}
α variable, field, method
αctxt contextin whichα may occur
P(ID) the program entity corresponding to the terminal identiferexpressionID

Figure 2. Formalism notation.

1. There are no uses of the identifierenum throughout the program source.4

2. The source is type correct.

3. All implicit primitive value conversions are lossless.

Under the Java 1.5 compiler, theenum identifier is now a reserved keyword and one that would be usedin
declarations of language enumerated types only. Therefore, assumption (1) allows us to use theenumkeyword for
such purposes only. Assumption (2) is essential as our algorithm is thoroughly dependent on the type relationships
of each program entity in the original source. Consequently, the result of our algorithm on type-incorrect source
is undefined.

Assumption (3) is also key. Although primitive types do not share many of the same properties as reference
types, such as subtype relationships, etc., there exists important relationships between these types that an infer-
encing algorithm must account for. In fact, this is particularly important to semantic preservation during any
transformation of primitive value types to reference types. Similar to the≤ relationship exploited for class type
inferencing algorithms in [17], primitive types defineconversionrelationships between them [12]. Primitives do
not enjoy the same polymorphic capabilities that the subtype relationship provides reference types. However,
primitives are allowed to be implicitly assigned to values of differentprimitive types much in the same way sub-
type instances can be assigned to variables of their corresponding supertypes. Such a conversion, in the context of
primitives, is called animplicit widening conversion[12].

Widening conversions, which does not require explicit casts, allows primitive type values to be used inter-
changeably (through assignment and comparison). Thus, variables of typedouble are allowed to be assigned
values of typeint , int variables are allowed to be assigned values of typechar , and so on. This relationship can
be described aschar ≤ int ≤ double . The implicit conversion is legal so long as the value transfer is lossless,
that is, no precision of the value is lost by the conversion. Conversions in which precision can be potentially lost
are callednarrowing conversionsand must be made explicit through casts. There are, however,exceptions to this
rule. For example, a narrowing conversion is allowed to implicitly (i.e., cast-less) take place so as long as the value
of the larger5 type can be resolved to a value that requires less than or equal to the amount of storage allocated
for values of smaller typesat compile-time. For example, although the conversion relationship between byte
and int is byte ≤ int , the int constant literal2, whose value can be vacuously resolved at compile-time,
can be stored in a variable of typebyte without a risk of loss in precision (i.e., lossless). Since our algorithm
infers enumerated types by analyzing constants, such a scenario is potentially common and the algorithm must
account for this possibility. Seeing that our algorithm assumes that the original program is type-correct, it is safe
to further assume thatall primitive, implicit conversions, widening and narrowing alike, are lossless. Henceforth,
transitivity may exist between entities ofdifferentdeclared types. Our algorithm does not single outinter-primitive

4Although the focus of our tool is to refactorlegacyJava software to utilize the newenum construct, we do not discriminate against
current Java software (e.g., those written in Java≥ 1.5). In this case, uses of theenum identifier for the purpose of declaring language
enumerated types is acceptable.

5Larger in terms of the maximum capacity held by values of the primitive type in bytes.

6



procedure Enumerize(F,P)

1: R← Enumerizable(F )
2: R← Unique(R) ∩Distinct(R) ∩ Consistent(R)
3: for all T ∈ R do
4: Transform(T )
5: end for

Figure 3. Top-level enumerization algorithm.

typetransitivity among program entities. As such, this assumption is necessary to ensure that adequate precision
exists in order to preserve semantics.

4.2. Top-level Processing

ProcedureEnumerize, shown in Figure 3, is the top-level driver of our approach. It takes as input the source
code of the original programP, as well as a setF ⊆ φ(P) of fields (see the notation in Figure 2; parts of this
notation were inspired by [10, 15, 20]). In this paper we consider refactoring the “standard” compensation pattern
in pre-Java 1.5 as described in [2, 9, 14, 22]. As such,Enumerize analyzes only static final fields of primitive
types since they may potentially be participating in the weak enum pattern. FunctionEnumerizable (called at
line 1) infers which candidate fields are being used as enumerated values and groups them into their corresponding
inferred enum types. At line 2, certain semantics-preserving constraints are enforced (further discussed in section
4.6). Finally,Transform (line 4) performs the actual code refactoring for each inferred enum typeT , thus altering
the type declarations of each corresponding program entity. The primitive constants are replaced with the new
enum type declarations. The newenumconstants are ordered by their original primitive values toenforce a natural
ordering, thereby preserving comparability semantics.

4.3. Type Inferencing

FunctionEnumerizable , shown in Figure 4, is at the heart of the proposed approach. This type inferencing
algorithm is based on a family of type inferencing approaches from [17], and has two goals:

(i) infer fields that are being used as part of enumerated types (i.e., participating in the weak enum pattern)
(ii) construct minimal sets such that members of the same setmust share the same enum type after refactoring

The output of the algorithm is a set ofenumerization setscontaining fields, method declarations, and local
variables (including formal parameters) and their minimalgroupings that are enumerizable with respect to the
input constants.

The algorithm uses a worklistW which is initialized with all given constant fields, as well as a setN of entities
that are not amenable to enumerization. A union-find data structure maintains sets of related entities; initially,
each input constant field belongs to a separate singleton set. Each worklist elementα is a program entity whose
type may have to be changed to an enum type. A helper functionContexts identifies all contexts (explained next)
in which α and its related entitiesα′ appear inP such that each contextαctxt needs to be examined later in the
algorithm.

Contexts(α,P), depicted in Figure 5, includes allinner-most(i.e., identifier terminals in the grammar) expres-
sions corresponding toα (excluding those appearing in initializations of constantfields). Furthermore, ifα is a
method, this set of contexts also includesContexts(α′,P) for every methodα′ which overridesα or is overriden
by α. Similarly, if α is a formal parameter, the set of contexts includesContexts(α′,P) for every corresponding
formal parameterα′ in an overriding or overridden method. Entitiesα′ need to be considered due to polymorphism.
For example, if the return type of a methodm is changed fromint to an enum type, this change must be propa-
gated to all methods overridingm or being overridden bym. Similar propagation is necessary whenm’s formal
parameters are changed (otherwise, method overriding would incorrectly be transformed to method overloading).
We denote these sets of dependent entities asmethod hierarchiesandparameter hierarchies, respectively.
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function Enumerizable(C)

1: W ← C /* seed the worklist with the input constants */
2: N ← ∅ /* the non-enumerizable set list, initially empty */
3: for all c ∈ C do
4: MakeSet(c) /* init the union-find data structure */
5: end for
6: while W 6= ∅ do
7: /* remove an element from the worklist */
8: α← e | e ∈W
9: W ←W \ {α}

10: for all αctxt ∈ Contexts(α,P) do
11: if ¬isEnumerizableContext(α,αctxt ) then
12: /* add to the non-enumerizable list */
13: N ← N ∪ {α}
14: break
15: end if
16: /* extract entities to be enumerized due toα */
17: for all α̂ ∈ Extract(α,αctxt ) do
18: if Find(α̂) = ∅ then
19: MakeSet(α̂)
20: W ←W ∪ {α̂}
21: end if
22: Union(Find(α),Find (α̂))
23: end for
24: end for
25: end while
26: F ← AllSets() /* the sets to be returned */
27: for all α′ ∈ N do
28: F ← F \ Find(α′) /* remove nonenum sets */
29: end for
30: return F /* all sets minus the non-enumerizable sets */

Figure 4. Building enumerization sets.

FunctionisEnumerizableContextexamines a contextαctxt to determine if it is amenable to enumerization with
respect toα by using two helper functionsEnumerizableAscenderandEnumerizableDescender. Upon application,
these helper functions examine the context sent toisEnumerizableContextby traversing, in disparate directions,
the syntax tree of the input expression. The intent of these functions are loosely analogous to that of synthesized
and inherited attributes of attribute grammars [16], respectively. FunctionExtract is responsible for determin-
ing further transitive relationships due to the enumerization of α. Extract also has two helper functionsExtrac-
tionAscenderandExtractionDescenderwhich are similar in flavor to the aforementioned helper functions. For
conciseness, in the following discussion we will use the abbreviationsEC , EA, ED, EX , XA, andXD to refer to
these functions. Essentially,isEnumerizableContextandExtract serve as canonical names for their intended pur-
pose.EC has two parameters: the entityα whose enumerizability is under question and a contextαctxt which is
type dependent onα. EX , on the other hand, has one parameterαctxt whose constituent, type dependent program
entities must be examined for enumerizaton.

FunctionEC , portrayed in Figure 6(a), immediately callsEA passing itαctxt, the context to be examined
andα, the entity whose enumerization is under question. Figure 7portrays many of the rules ofEA which are
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Contexts(α,P) = all inner-mostexpressions containingα ∪






∅ if α is a local variable or a field
⋃

α′∈MH (α)Contexts(α′,P) if α is a method
⋃

α′∈PH (α)Contexts(α′,P) if α is a formal parameter

Figure 5. Contexts for a program entity α; MH /PH is the method/parameter hierarchy.

inductively defined in the grammar.EA begins atαctxt (e.g.,ID) andclimbs(or ascends) its way up the grammar
until it reaches asignificant ancestorof α. We say that a statement or expression is a significant ancestor of α if
the value ofα can be exploited at that point. The ascent is performed via the Parent function which returns the
parent expression aboveαctxt in the syntax tree. The functioncontains helps determine which expressionEA
ascended from.

On the way to the significant ancestor,EA may find expressions that are not amenable to enumerizaton. In that
case,EA will return falseandEC, in turn, will return the result ofEA. Such a situation is depicted in the rule
for array access/creation in Figure 7. On the other hand, once EA successfully reaches the significant ancestor,
it will then call ED in order to commence a descent down thepivotal expression(s); that is, an expression that
is consequently type dependent. Much of the rules ofED are given in Figure 8. As shown,ED completes its
descent at the leaf nodes of the syntax tree, returningtrue for terminal IDs andfalse for contexts which are not
amenable to enumerizaation (e.g., literals).EA will then, in turn, return the result ofED.

4.4. Enumerizable Contexts

EC returnsfalseif the given contextαctxt is definitively not enumerizable with respect toα (e.g.,α being used
as an array index). Otherwise,EC returnstrue if αctxt is promisingwith respect toα — that is, enumerizing
α does not adversely affect the relation betweenα and the enclosing expressions ofαctxt. We say that such a
situation is “promising” as opposed to “definite” because there may exist other program entitiesα̂ that are type
dependent onα and we cannot yet ensure that every contextα̂ctxt in which α̂ appears is enumerizable. This
additional checking for̂α is performed byEX , which extracts the type dependent entities that require further
investigation to determine if they are enumerizable with respect to a particularα. TheEX function is depicted in
Figure 6(b) and its helper functions,XA andXD , are depicted in Figures 9 and 10, respectively. These extracted
entities will be put on the worklist and eventually checked by EC .

To illustrate the type checking component mechanics we showthe application of theEC function at each
significant ancestor discovered during the evaluation the assignmentcolor=RED from line 6 of our motivating
example depicted in Figure 1(a). The terminal expressionREDwithin the assignment expressioncolor=RED

would have been returned byContexts whenα is RED. Applying EC for this context we have:

EC (RED, RED) ≡

EA(RED, RED) ≡

EA(RED, color = RED) ≡

ED(color) ∧ ED(RED) ≡

true ∧ true ≡ true

As a result, this expression is considered “promising”. Thesubsequent application ofEX would extract the

function EC (α,αctxt )

1: return EA(α,αctxt )

end function
(a) isEnumerizableContext predicate.

function EX (αctxt)

1: return XA(αctxt)

end function
(b) Extraction function.

Figure 6. Top-level inferencing algorithms.
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Identifiers
function EA(α,ID)

1: return EA(α, Parent(ID))

Parenthesized expressions
function EA(α,(ID))

1: return EA(α, Parent(ID))

Cast expressions
function EA(α, (TYPE)EXP)

1: return false
Field access expressions
function EA(α, EXP.ID)

1: return EA(α, Parent(EXP))

Assignment expressions
function EA(α,EXP1 = EXP2)

1: return ED(EXP1) ∧ ED(EXP2)

Subtract assignment expressions
function EA(α,EXP1 -= EXP2)

1: return false
Divide assignment expressions
function EA(α,EXP1 /= EXP2)

1: return false
Infix addition expressions
function EA(α,EXP1 + EXP2)

1: return false
Infix multiplication expressions
function EA(α,EXP1 * EXP2)

1: return false
Prefix unary minus expressions
function EA(α,-EXP)

1: return false
Postfix increment expressions
function EA(α,EXP++)

1: return false
Equality expressions
function EA(α,EXP1 == EXP2)

1: return ED(EXP1) ∧ ED(EXP2)

Inequality expressions
function EA(α,EXP1 != EXP2)

1: return ED(EXP1) ∧ ED(EXP2)

Switch statements
function EA(α, switch(EXP))

1: let se= ED(EXP)
2: let ce= true
3: for all case EXPc ∈ cases(switch(EXP)) do
4: ce← ce∧ ED(EXPc)
5: end for
6: return se∧ ce

Switch case statements
function EA(α,case EXP)

1: return EA(α, switchStmt(case EXP))

Conditional expressions
function EA(α, EXP1 ? EXP2 : EXP3)

1: if contains(EXP2, α) ∨ contains(EXP3, α) then
2: return EA(α, Parent(EXP1 ? EXP2 : EXP3))
3: else
4: return true
5: end if

Array access/creation expressions
function EA(α, EXP1[EXP2])

1: if contains(EXP2, α) then
2: return false
3: else
4: return EA(α, Parent(EXP1))
5: end if

Array initialization expressions
function EA(α, {EXP1, . . . , EXPn})

1: let ie = true
2: for EXPi, 1 ≤ i ≤ n do
3: ie← ie∧ ED(EXPi)
4: end for
5: return ie

Return statements
function EA(α,return EXP)

1: return true
Method declaration statements
function EA(α,ID(P1, . . . ,Pn))

1: let re= true
2: for all return EXPr ∈ returnStmts(ID(P1, . . . , Pn)) do
3: re← re∧ ED(EXPr)
4: end for
5: return re

Formal parameters
function EA(α,Pi)

1: let ae= true
2: /*check the ith argument of each invocation of the declaring

method*/
3: let α̂ = MethodDecl(Pi)
4: for all α̂ctxt ∈ Invocations(α̂,P) do
5: ae← ae∧ ED(Arg(α̂ctxt, i))
6: end for
7: return ae

Method invocation expressions
function EA(α,ID(EXP1, . . . , EXPn))

1: for EXPi, 1 ≤ i ≤ n do
2: if contains(EXPi, α) then
3: return true
4: end if
5: end for
6: return EA(α, Parent(ID(EXP1, . . . , EXPn)))

General statements
function XA(α,SMT)

1: let se= true
2: for EXP ∈ Children(SMT) do
3: se← se∨ED(EXP)
4: end for
5: return se

Figure 7. Enumerizable ascender.
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Integer literals
function ED(IL )

1: return false
Identifiers
function ED(ID)

1: return true
Parenthesized expressions
function ED((EXP))

1: return ED(EXP)

Cast expressions
function ED((TYPE)EXP)

1: return false
Field access expressions
function ED(EXP.ID)

1: return ED(ID)

Assignment expressions
function ED(EXP1 = EXP2)

1: return ED(EXP1) ∧ ED(EXP2)

Subtract assignment expressions
function ED(EXP1 -= EXP2)

1: return false
Divide assignment expressions
function ED(EXP1 /= EXP2)

1: return false
Infix addition expressions
function ED(EXP1 + EXP2)

1: return false

Infix multiplication expressions
function ED(EXP1 * EXP2)

1: return false
Prefix unary minus expressions
function ED(-EXP)

1: return false
Postfix increment expressions
function ED(EXP++)

1: return false
Conditional expressions
function ED(EXP1 ? EXP2 : EXP3)

1: return ED(EXP2) ∧ ED(EXP3)

Array access expressions
function ED(EXP1[EXP2])

1: return ED(EXP1)

Array creation expressions
function ED(TYPE[EXP]{EXP1, . . . , EXPn})

1: return ED({EXP1, . . . , EXPn})

Array initialization expressions
function ED({EXP1, . . . , EXPn})

1: let ie≡ true
2: for EXPi, 1 ≤ i ≤ n do
3: ie← ie∧ ED(EXPi)
4: end for
5: return ie

Method invocation expressions
function ED(ID(EXP1, . . . , EXPn))

1: return true

Figure 8. Enumerizable descender.

program entitycolor so that all of its contexts may be checked. Demonstrating this derivation using the rules in
Figures 9 and 10, we have:

EX (RED, RED) =

XA(RED, RED) =

XA(RED, color = RED) =

XD(color) ∪ XD(RED) =

{P(color)} ∪ {P(RED)} =

{P(color),P(RED)}

whereP(color) denotes the program entity corresponding the the terminal identifier expressioncolor (see
Figure 2); in this case the fieldcolor of classTrafficSignal . Consequently, this field will make its way to the
Contexts function via the worklist and the entire process repeats forthis entity.

Consider a hypothetical assignmentcolor=5 whenα is color ; herecolor is type dependent on the integer
literal 5. Using the rules in Figures 7 and 8, we have the following derivation:

EC (color, color) ≡

EA(color, color) ≡

EA(color, color = 5) ≡

ED(color) ∧ ED(5) ≡

true ∧ false ≡ false
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Identifiers
function XA(α,ID)

1: return XA(α, Parent(ID))

Parenthesized expressions
function XA(α,(ID))

1: return XA(α, Parent(ID))

Cast expressions
function XA(α, (TYPE)EXP)

1: return ∅
Field access expressions
function XA(α, EXP.ID)

1: return XA(α, Parent(EXP))

Assignment expressions
function XA(α,EXP1 = EXP2)

1: return XD(EXP1) ∪XD(EXP2)

Subtract assignment expressions
function XA(α,EXP1 -= EXP2)

1: return ∅
Divide assignment expressions
function XA(α,EXP1 /= EXP2)

1: return ∅
Infix addition expressions
function XA(α,EXP1 + EXP2)

1: return ∅
Infix multiplication expressions
function XA(α,EXP1 * EXP2)

1: return ∅
Prefix unary minus expressions
function XA(α,-EXP)

1: return ∅
Postfix increment expressions
function XA(α,EXP++)

1: return ∅
Equality expressions
function XA(α,EXP1 == EXP2)

1: return XD(EXP2) ∪XD(EXP1)

Inequality expressions
function XA(α,EXP1 != EXP2)

1: return XD(EXP1) ∪XD(EXP2)

Switch statements
function XA(α, switch(EXP))

1: R← XD(EXP)
2: for all case EXPc ∈ cases(switch(EXP)) do
3: R← XD(EXPc)
4: end for
5: return R

Switch case statements
function XA(α,case EXP)

1: return XA(α, switchStmt(case EXP))

Conditional expressions
function XA(α, EXP1 ? EXP2 : EXP3)

1: if contains(EXP2, α) ∨ contains(EXP3, α) then
2: return XA(α, Parent(EXP1 ? EXP2 : EXP3))
3: else
4: return ∅
5: end if

Array access/creation expressions
function XA(α, EXP1[EXP2])

1: if contains(EXP2, α) then
2: return ∅
3: else
4: return XA(α, Parent(EXP1))
5: end if

Array initialization expressions
function XA(α, {EXP1, . . . , EXPn})

1: R← ∅
2: for EXPi, 1 ≤ i ≤ n do
3: R← R ∪XD(EXPi)
4: end for
5: return R

Return statements
function XA(α,return EXP)

1: return XD(MethodDecl(return EXP))

Method declaration statements
function XA(α,ID(P1, . . . ,Pn))

1: R← ∅
2: for all return EXPr ∈ returnStmts(ID(P1, . . . , Pn)) do
3: R← R ∪XD(EXPr)
4: end for
5: return R

Formal parameters
function XA(α,Pi)

1: R← ∅
2: /*extract the ith argument of each invocation of the declaring

method*/
3: let α̂ = MethodDecl(Pi)
4: for all α̂ctxt ∈ Invocations(α̂,P) do
5: R← R ∪XD(Arg(α̂ctxt, i))
6: end for
7: return R

Method invocation expressions
function XA(α,ID(EXP1, . . . , EXPn))

1: R← ∅
2: for EXPi, 1 ≤ i ≤ n do
3: if contains(EXPi, α) then
4: R← R ∪XD(EXP1)
5: end if
6: end for
7: if R 6= ∅ then
8: return R

9: else
10: return XA(α, Parent(ID(EXP1, . . . , EXPn)))
11: end if

General statements
function XA(α,SMT)

1: R← ∅
2: for EXP ∈ Children(SMT) do
3: R← R ∪XD(EXP)
4: end for
5: return R

Figure 9. Extraction ascender.
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Integer literals
function XD(IL )

1: return ∅
Identifiers
function XD(ID)

1: return P(ID)

Parenthesized expressions
function XD((EXP))

1: return XD(EXP)

Cast expressions
function XD((TYPE)EXP)

1: return ∅
Field access expressions
function XD(EXP.ID)

1: return XD(ID)

Assignment expressions
function XD(EXP1 = EXP2)

1: return XD(EXP1) ∪XD(EXP2)

Subtract assignment expressions
function XD(EXP1 -= EXP2)

1: return ∅
Divide assignment expressions
function XD(EXP1 /= EXP2)

1: return ∅
Infix addition expressions
function XD(EXP1 + EXP2)

1: return ∅

Infix multiplication expressions
function XD(EXP1 * EXP2)

1: return ∅
Prefix unary minus expressions
function XD(-EXP)

1: return ∅
Postfix increment expressions
function XD(EXP++)

1: return ∅
Conditional expressions
function XD(EXP1 ? EXP2 : EXP3)

1: return XD(EXP2) ∪XD(EXP3)

Array access expressions
function XD(EXP1[EXP2])

1: return XD(EXP1)

Array creation expressions
function XD(TYPE[EXP]{EXP1, . . . , EXPn})

1: return XD({EXP1, . . . , EXPn})

Array initialization expressions
function XD({EXP1, . . . , EXPn})

1: R← ∅
2: for EXPi, 1 ≤ i ≤ n do
3: R← R ∪XD(EXPi)
4: end for
5: return R

Method invocation expressions
function XD(ID(EXP1, . . . , EXPn))

1: return XD(ID)

Figure 10. Extraction descender.

Thus,EC (color, color) is determined to befalse . Because the type of the integer literal cannot be altered to
an enum type,color also cannot be altered and should be included in setN (line 13 in Figure 4).

There are other situations where type dependencies preventa program entity from being enumerized. For
example, consider the following statement whereα is againRED: if(color==arr[RED]) color=GREEN; .
The derivation using our rules would consist of the following:

EC (RED, RED) ≡

EA(RED, RED) ≡

EA(RED, arr[RED]) ≡

false

In this case,EC returnsfalse since it would be impossible to alter the type ofREDbecause the index to an array
access must be an integral type [12]. Note that thethenportion of the if statement is not evaluated as it is not type
dependent onα. AlthoughEX is not called whenEC returnsfalse, EX would nevertheless return∅ upon these
arguments.

As another example, consider conditional expressionsx?y:z . Here, we must be careful to distinguish between
each expression in whichα may (or may not) appear in. Ifα only appears in EXP1, we should not check EXP2 and
EXP3. However, ifα appears in either EXP2 or EXP3, then both of these expressions must be enumerizable. That
is, the entire expression must evaluate to that of anenum type in either case (i.e., thethenor elsecase). Consider
the following conditional expression whereα is DECREASESPEED:
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action = color == GREEN ? INCREASE SPEED : DECREASESPEED

We have the following derivation:

EC (DECREASE SPEED, DECREASE SPEED) ≡

EA(DECREASE SPEED, DECREASE SPEED) ≡

EA(DECREASE SPEED, color == GREEN ? INCREASE SPEED : DECREASE SPEED) ≡

EA(DECREASE SPEED, action = color == GREEN ? INCREASE SPEED : DECREASE SPEED) ≡

ED(action) ∧ ED(color == GREEN ? INCREASE SPEED : DECREASE SPEED) ≡

true ∧ ED(INCREASE SPEED) ∧ ED(DECREASE SPEED) ≡

true ∧ true ∧ true ≡ true

The extracted set of type dependent entities would be as follows:

EX (DECREASE SPEED, DECREASE SPEED) =

XA(DECREASE SPEED, DECREASE SPEED) =

XA(DECREASE SPEED, color == GREEN ? INCREASE SPEED : DECREASE SPEED) =

XA(DECREASE SPEED, action = color == GREEN ? INCREASE SPEED : DECREASE SPEED) =

XD(action) ∪XD(color == GREEN ? INCREASE SPEED : DECREASE SPEED) =

{P(action)} ∪ XD(INCREASE SPEED) ∪ XD(DECREASE SPEED) =

{P(action)} ∪ {P(INCREASE SPEED)} ∪ {P(DECREASE SPEED)} =

{P(action),P(INCREASE SPEED),P(DECREASE SPEED)}

In general, the enumerizability of particularα may depend on its occurrences within comparison expressions
(see the rules for equality/inequality expressions in Figure 7). For comparison expressions with== and!= , as long
as both operand expressions are enumerizable both will be included in the same inferred enum type, and the integer
equality/inequality in the original code will be transformed to reference equality/inequality. For<, <=, >, and>=,
the refactored code can use the methods from interfacejava.lang.Comparable , which is implemented by all
enum types in Java 1.5, to preserve comparability semanticsamongst the inferred type’s members. This holds true
so long as the inferred enum type declarations are in the order given by their original primitive representations.

An interesting case is contexts in which polymorphic behavior may occur. In these cases, we need to consider
entire hierarchies of program entities. Much of the polymorphic behavior enforcement is implemented with the
help of functionContextsdescribed earlier, however, additional checks are needed within isEnumerizableContext

andExtract in order to ensure the preservation of program semantics. Inparticular, the formal parameter expres-
sions and the method invocation expressions require additional investigation of program entities inP. For example,
in the case of formal parametersEX must be certain to extract the program entities embedded in the correspond-
ing actual argument expressions for each method invocationin the method hierarchy. These rules are depicted in
Figures 9 and 10.

4.5. Transitive Dependencies

In function Enumerizable, if either a context which is not amenable to enumerization is encountered, or one
that can not be transformed, we mark the set containing theα in question as a “non-enumerizable” set (line 13
in Figure 4). If this is not the case, the algorithm proceeds to extract other program entities that are required to
undergo enumerization consideration due to the enumerization of α (line 17). For each of these program entities
α̂ the following steps are taken. If̂α is not currently contained in an existing set (line 18), which implies that it has
not previously been seen, then a new singleton in the union-find data structure is created and consequently added
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Let Enumerizable : P [φ(P)] −→P(2) [φ(P) ∪ µ(P) ∪ υ(P)] be a function mapping a set of primitive,
static, final fields to a set ofminimalprogram entity sets that are enumerizable in respect to those fields.

∀k ∈ K[∃X,Y | k ∈ X ∧X ∈ Enumerizable(Y ) ∧K ⊆ Y ] (1)

Let ι : φ(P)→ Σ∗ be a function mapping a field to its unqualified identifier.

∀ki, kj ∈ K[i 6= j ⇒ ι(ki) 6= ι(kj)] (2)

Let P be the set of all legal primitive values.
Let σ : φ(P)→ P be a function mapping a constant to its primitive value.

∀ki, kj ∈ K[i 6= j ⇒ σ(ki) 6= σ(kj)] (3)

Let V = {public, protected, private, package} be the set of legal visibilities.
Let ϑ : φ(P)→ V be a function mapping a constant to its visibility.

∀ki, kj ∈ K[ϑ(ki) = ϑ(kj)] (4)

Figure 11. Member constraints for transforming a group of ca ndidate fields K

to the worklist (lines 19 and 20). The two sets, the set containing α and the set containinĝα, are then merged
on line 22 thereby capturing the transitive dependencies between each program entity. Once the computation is
complete, i.e., the worklist has emptied, the sets defined implicitly by the union-find data structure are returned
minus the non-enumerizable sets (line 30).

FunctionEnumerizable is responsible type inferencing; that is, it ensures that the proposed transformation
is type-correct. Its result is a partitioning of program entities, limited to variables, fields, and methods, that are
enumerizable with respect to a given set of static final fields. This essential relationship existing between each
member of each enumerizable set is expressed by our firstmember constraint, listed as constraint 1 of Figure 11.
This constraint simply expresses that all members of each set are enumerizable with respect to the original input
constants, of whom are also in the set. That is, for all elements k of an enumerizable setK, there exists two
setsX andY such that the elementk is a member of the setX, X is a valid partition of the program elements
enumerizable in respect to a set of constantsY , andK is a subset ofY . This last clause gives us the flexibility
to enumerize only a portion of the original constants if we sodesire. The partitioning captures theminimal
dependency relationships between these entities; if a transformation of one of the elements occurs, then, in order
for preserve type correctness, a transformation ofall elements in its set must also occur. However, we must make
further, more subtle considerations as to which sets can be transformed. We discuss such considerations next.

4.6. Semantics-preserving Constraints

In additional to analyzing theusageof potential enumerated type constants, in order to preserve semantics upon
transformation, it is also necessary to analyze theirdeclarations. Returning to theEnumerizefunction listed in
Figure 3, the functions invoked on line 2 enforce program behavioral preservation by excluding sets containing
constants that do not meet the remaining member constraintsgiven in Figure 11. Invocation of the function
Unique corresponds to the enforcement of constraint 2,Distinct to constraint 3, andConsistent to constraint
4. Essentially, these constraints express that, for each set to be transformed into a corresponding enum type and
for semantics to be preserved, each static final field must be uniquely named (since constants may have originated
from different classes), distinctly valued (so that each originally assigned primitive value will correspond to a
single memory reference), and consistently visible (sincethe new enum types are not allowed to have instances
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with independent visibilities). The resulting intersection of the sets abiding to each of the member constraints is
then assigned back toR. At line 4, each setT ∈ R corresponds to the program entities that will be transformed to
the new language enumeration typeT and the transformation takes place∀T ∈ R.

4.7. Application

We now briefly demonstrate how our algorithm would apply to the example code snippet given earlier in Figure
1. A schematic depicting the results of theEnumerizablefunction application appear in Figures 12 and 13. The
figures informally represent “snapshots” of the state of theunion-find disjoint data structure at the beginning and
the end of the algorithm, respectively. Union-find data structures may be internally represented as trees and the
schematic reflects this notion. There are two different types of nodes, valued and unvalued. Valued nodes represent
an element (i.e., a field, method, or variable) and are used inproducing the output of the algorithm. Unvalued nodes
consist of<UNION>nodes which serve as logical placeholders marking points inwhich the sets were merged.
Edges connect nodes belonging to the same set. Edge directions depict the order in which nodes were discovered
during execution of the algorithm. Edge directions do not necessarily denote transitivity in a particular direction;
transitive relationships in respect to enumerization are bidirectional.

In Figure 12, the initial input elements are used to seed the enumeration sets and the application ofEnumerizable
grows the sets as seen in Figure 13. During growth, the sets may be combined due to transitivity of equal-
ity/inequality comparisons on both left- and right-hand sides and/or assignments on the right-hand side. The
resulting sets depicted in Figure 13 shows that4 of the original8 sets have been merged. Sets containing shaded
elements designateenumerizablesets, that is, sets that contain all elements whose usages are amenable to enumer-
ization. Sets not shaded signify sets that contain at least one element not amenable to enumerization, such as the
set containing the elementMAXSPEED.

Note that these sets portray theminimaldependency information among their elements, therefore, they may be
further merged but not split. Also notice that the results produced by our algorithm as applied to the drive-by-
wire example are ot entirely desirable. Specifically, the automobile actionDECREASESPEEDis contained in a
different set than that of the other automobile actions due to the current transitive nature of the elements. Surely,
when performing the language enumeration type transformation, we desire that all automobile action be grouped
together in the same language enumeration type. We leave examining how a result can be automatically suggested
by our refactoring for future work, possibly leveraging heuristic techniques from [13].

5. Experimental Study

5.1. Implementation

We implemented our algorithm as a plug-in in the popular Eclipse IDE. Eclipse ASTs with source symbol
bindings were used as an intermediate program representation. The plug-in is built over an existing refactoring
framework [1] and is coupled with other refactoring supportin Eclipse. To increase applicability to real-world
applications, we relaxed the closed-world assumption described in Section 3. For example, if the tool encounters
a variable that is transitively dependent upon an element outside of the source code being considered, this variable
and all other entities dependent on it are conservatively labeled as non-enumerizable.

5.2. Experimental Evaluation

To evaluate the effectiveness of our algorithm, we used the17 open-source Java applications and libraries listed
in Table 1.6 The second column in the table shows the number of non-blank,non-comment lines of source code,

6java5 denotes the packagejava. included in the Java 1.5 JDK.

DECREASE_SPEED MAX_SPEED GREEN YELLOW RED INCREASE_SPEED STOP IDLE

Figure 12. Initial enumeration sets.
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DECREASE_SPEED MAX_SPEED <UNION>

GREEN <UNION>

YELLOW RED

getColor color

<UNION>

<UNION> IDLE

INCREASE_SPEED STOP

react reaction

action

currentAction

Figure 13. Enumeration sets produced by our algorithm.

benchmark KLOC classes prim cands enum uses rtypes time (s)
ArtOfIllusion 75 378 333 77 77 111 46 207

Azureus 272 1894 1255 399 347 635 173 1269
java5 180 1586 1299 557 450 572 363 760

JavaCup 6 41 55 3 3 3 3 19
jdepend 3 28 13 1 1 1 1 1

JFlex 10 46 140 24 19 27 9 75
JFreeChart 71 420 153 36 24 43 12 128

jGap 6 137 25 4 4 5 1 7
jgraph 14 91 25 6 3 6 1 11

JHotDraw 29 496 34 11 11 24 8 14
junit 8 271 7 2 2 3 1 1
jwps 20 155 156 76 64 102 25 60

sablecc 29 237 16 8 8 10 2 9
tomcat6 153 1164 738 344 335 400 255 346

verbos 5 41 10 6 6 15 2 3
VietPad 11 84 36 17 17 22 4 8

Violet 7 73 36 14 13 20 6 9

Total: 899 7142 4331 1585 1384 1999 915 2227

Table 1. Experimental results.
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which range from 3K forjdepend to 272K forAzureus . The third column shows the number of class files after
compilation. For each benchmark, the analysis was executedfive times on a 2.6 GHz Pentium4 machine with 1
GB RAM. The average running time, in seconds, is shown in column time in Table 1. On average, the analysis
time was2.48 seconds per KLOC, which is practical even for large applications.

Column prim shows the number of static final fields of primitive types7. We separate these fields into two
categories. First, certain fieldsdefinitelycannot be refactored, because the semantics of the program depends
on the specific, actual values of these fields. These fields include those that were either directly or transitively
dependent on operations that utilized their exact value or created a transitive dependency on an entity which could
not be refactored. A complete list of filtered contexts is provided in Table 2. The first column,Filtered contexts,
displays the contexts which were filtered. The second,Example Ops, provides a subset of operations which fall
into each context, and columnExample Usesprovides an example of each context — note that thev variables in
the examples represent constant primitive fields. Since theweak enum pattern only allows the use of literals in
the declarations of enumeration fields, other contexts which utilize them were filtered as shown in rowsCharacter
literal andNumber literal. Since the semantics of an array access relies on the particular value of the indice any
field used as such cannot be refactored. Similarly, fields whose values are utlized in the creation of a new array
cannot be refactored (rowsArray accessandArray creation). There are a multitude of mathematical operations
which, of course, rely on the values of the variables being manipulated. These operations are shown in rowsInfix
expression, Postfix expression, andPrefix expression. Some of these operations may be valid for certain extensions
to weak enum compensation pattern, such as those that employa bitvectoring over their enumeration values. We
also include in this category the fields which cannot be refactored due to lack of access to source code (e.g., a field
passed as a parameter to a method defined in a library whose source code is not available).

Filtered Context Example Ops Example Uses
Character literal ==,=>, ! =, <,>,<= v == ’c’

Number literal ==,=>, ! =, <,>,<= v != 28
Array access [ ] x[v]

Array creation new int[ ], new double[ ] int x [] = new int[v]
Infix expression +,−, /, ∗, |,&, <<,>>,+ = x = v + s

Postfix expression ++,−− v++
Prefix expression ˜ ,++,−−, !,+,− --v

Table 2. Filtered contexts.
We categorize the remaining fields to becandidate fields. The number of candidate fields per benchmark is

shown in columncands. The fact that the actual values of these fields do not directly affect the semantics of the
program provides a strong indication that they are playing the role of enumerations in the weak enum pattern. The
set of candidate fields along with their corresponding, transitive entities represent theminimal set of elements a
programmer would have to investigate for refactoring. Notethat although these sets are minimal, for three of our
benchmarks they still contain well over300 elements, and several others contain over50 elements.

The number of fields that our plug-in could safely refactor isshown in columnenum. The results show that our
approach was able to refactor87% of the fields that could possibly be participating in the weakenum pattern. The
tool was unable to refactor the remaining13% of fields because either they or an element of their dependency sets
were used in explicit cast expressions. We conservatively choose not to refactor elements used in cast expressions
due to the existance of possible side effects on the values ofvariables though narrowing conversions. For example
consider the following code:short z = 128; byte x = (byte)z; . This is a valid cast in Java, but this
cast will result inx having the value−128 andnot 128. Clearly, not accounting for such an occurrence prior to

7Excludesboolean types.
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refactoring could lead to significant changes in program semantics upon migration. Detecting such changes due to
explicit casts is beyond the scope of the work being considered in this paper.

Of course, fields are not the only program entities whose typerequires alteration. Columnusesshows the total
number of declaration sites that must be modified to accommodate the enumerization. The numbers motivate the
need for automated tools such as ours. In particular, the large applications require hundreds of code modifications
(e.g., over600 for Azureus ). These code modifications are spread across many classes and packages, and occur
in many distinct methods. Attempting to identify the neededmodifications by hand would be a labor-intensive and
error-prone task.

Columnrtypesshows the number of resulting enum types produced by our tool. Note that the number of types
is relatively close to the number of enum fields. This indicates that there are few actual enumeration values per
enum type, on average about2.2 per type. This number may not reflect the number of weak enum pattern instances
intended by the programmer. Our algorithm is conservative in its type creation, only grouping fields that share
transitive dependencies. These are the only fields thatmustshare the same enum type upon refactoring. However,
given the current state of the program source, dependenciesmay not exist between all enumerations intended to
be grouped as one type. For the running example,DECREASESPEEDshould intuitively be grouped with the other
vehicle actions. Unfortunately, since it is not currently being referenced by the code, it does not share a dependency
with any of the other fields and as a result it is assigned a singleton set (as shown in Figure 13). Clearly, in this
case no algorithmic method could guarantee the exact grouping intended by the programmer; however, there are
various heuristics that may be employed to better approximate the intended types (e.g., heuristics that take into
account lexical proximity of field declarations, similar towhat is described in [13]).

5.3. Summary

Overall, the experimental results indicate that the analysis cost is practical, that the weak enum pattern is
commonly used in legacy Java software, and that the proposedalgorithm successfully refactors a large number of
fields (and their dependent entities) into enumerated types.

6. Related Work

Both Fowler [9] and Kerievsky [14] present the refactoring entitled REPLACE TYPE CODE WITH CLASS.
Both detail a series of steps involved in transformingtype codes(entities subscribing to what we label as theweak
enum patternin this paper) into instances of custom, type-safe classes utilizing the Singleton pattern [11]. Bloch
[2] presents a similar solution. While the pattern describes an enum class that seems effective in regards to the
same criteria we have presented in this paper, the refactoring process is entirely manual and the transformation is
not to language enumerated types. Most importantly, the developer is required to possesa priori knowledge of
exactly which fields are potentially participating in the type code pattern in order to perform the refactoring. Our
proposed approach does not require such knowledge and is completely automated. That is, our approachinfers in
an automated fashion such fields. Furthermore, the developer is presented with the type-dependent groups of the
fields which may span multiple classes.

Tip et al. [25] propose two automated refactorings, EXTRACT INTERFACE and PULL UP MEMBERS, both
well integrated into the Eclipse IDE. These refactorings deal with generalizingJava software in an effort to make
it more reusable. Although this proposal shares similar challenges with our approach in respect to precondition
checking and interprocedural dependency analysis, there are several key differences. The generalization approach
manipulates the interfaces8 of reference types along with the means in which objects communicate through those
interfaces, as our approach entails transforming primitive type entitiesto reference types. Moreover, a method
based ontype constraints[17] is used to resolve dependencies amongst program entities. Sutter et al. [23] also use
type constraints in addition to profile information to customize the use of Java library classes. A type constraint

8The terminterfaceis used here not to solely denote that of Java interfaces, butinstead to denote the broader notion of interfaces which,
in Java, would also include class declarations.
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approach would have also been conceivable for our work in that similar type constraints may have been formed for
primitive types. Nonetheless, a type constraint-based approach for primitive transformation may have proven to be
excessive since primitive types do not share many of the samerelationships as reference types (e.g., sub-typing).
Therefore, we preferred more of a type checking approach as opposed to constraint solving.

Several other approaches [7, 10, 24, 15, 27] exist to migratelegacy Java source to utilize new Java 1.5 language
features, in particular generics. Although both generics and language enumeration types serve to improve type
safety, the two features are conceptually different and face unique challenges in automated migration. Theinstan-
tiation problem [10] entails inferring generic type arguments for generic class instances. Theparameterization
problem [15] necessitates inferring generic type parameters for non-generic class declarations. Various challenges
include preserving program erasure [3], sub-typing compatibility, inferring wildcard types, etc. However, our pro-
posal for inferringenumerated types, although not being required to address such issues, must consider other such
situations. First, enumerization requires introducing anewtype in the original source as opposed to introducing
a type parameter or argument for anexistingtype. Second, when refactoring primitives one must consider many
additional operations that may be invoked on the primitive entities that are not available to reference types. Fur-
thermore, the dependencyflowmust also be taken in account across these operations. For example, in our proposal
type dependence not only flows from assignments but also fromcomparisons.

Steimann et al. [20, 21] propose an approach to decouple classes with inferred interfaces. Similar to our
approach, a new type is introduced in the source (i.e., the inferred interface), and the compile-time types of program
entities are altered as a result of the refactoring. Additionally, both approaches do not leverage constraint solving
mechanisms, instead, Steimann et al. utilize a static analysis based on [4]. Unlike this proposed approach, however,
our approach must consider more than the transitive closureof assignments beginning on the right-hand side.
Again, enumerization entails bidirectional dependenciesnot only over assignments but also over comparisons.

Automated usage analysis and type inferencing techniques similar to ours also exist for other languages. Eidorff
et al. [8] demonstrate a Year2000 conversion tool utilizing type inferencing techniques forcorrecting problematic
date variables in COBOL (aweakly-typedprogramming language) systems. Ramalingam et al. [19] alsoexploit
usage analysis techniques to identify implicit aggregate structure and programmer intent of COBOL program
entities not evident from their declarations.

In fact, proposals for identifying enumerated types exist for COBOL and C. Although our work applies to a
significantly different source language, methods for identifying enumerated types in these legacy systems share
similar challenges. Deursen and Moonen [5] present a general approach utilizing judgements and rules for infer-
ring type information from COBOL programs. An in-depth empirical analysis is presented in [6]. Both COBOL
and Java≤ 1.4 do not provide language facilities for enumerated types, and both approaches use a flow-insensitive,
interprocedural9 data flow analysis to discover program entities intended to represent enumerated types. However,
our approach is focused more on themigrationof these entities to aspecificlanguage enumerated type construct
that contains corresponding, preexisting constraints. Asa result, our approach must deal with different semantic
preservation issues upon transformation, insuring that substitution by the new construct will produce a program
with identical behavior upon execution. Moreover, refactoring primitives to reference types presents unique chal-
lenges as objects in Javacannotshare the same memory location; thus, grouping program entities interacting with
values from similar literals into corresponding types would not produce an applicable solution. Likewise, our ap-
proach must consider modern features such as polymorphism and function overloading during its source analysis
and semantic preservation efforts.

Gravley and Lakhotia [13] tender an approach for identifying enumerated types in C programs that utilize a
pre-compiler directive pattern similar to the weak enum pattern that we have described. We see this approach as
orthogonal to ours since only the declarations of the constants are analyzed. Furthermore, as mentioned earlier,
this approach may be appropriately adapted to enhance the results of our algorithm by leveraging declaration

9inter-programor inter-modulein the case of COBOL.
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characteristics during grouping.

7. Conclusions and Future Work

In this paper we have presented a novel, semantic preserving, type inferencing algorithm which migrates legacy
Java code employing the weak enum pattern to instead utilizethe modern, type-safeenumlanguage construct
introduced in Java 1.5. We implemented our algorithm as a plug-in for the popular Eclipse IDE and evaluated it on
17 open source applications. Our experiments showed that not only did our tool scale well to large applications but
was able to refactor87% of all fields that could possibly be participating in the weakenum pattern. Prior to being
able to publicly distribute our plug-in, we first must address several implementation details including developing a
user-friendly interface and exploring potentially fasterintermediate representations of code (e.g. Jimple [26]). In
the future we also plan to investigate ways of extending our tool to also refactor patterns using constant values of
reference types, such as Strings and Dates, as enumeration members.

Acknowledgments

We would like to thank Dr. Frank Tip from IBM Research for his answers to our technical questions and for
referring us to related work. We would also like to thank the anonymous referees of the International Conference
on Software Maintenance (ICSM ’07) for their extremely useful comments and suggestions.

References
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