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Automated Refactoring of L egacy Java Softwareto Enumerated Types

Raffi Khatchadourian Jason Sawin Atanas Rountev
Ohio State University
{khatchad,sawin,rountev }@cse.ohio-state.edu
Abstract

Java 1.5 introduces several new features that offer sigmfionprovements over older Java technology. In this
paper we consider the nesmum construct, which provides language support for enumeratpds. Prior to Java
1.5, programmers needed to employ various patterns (bgweak enum pattern) to compensate for the absence
of enumerated types in Java. Unfortunately, these comfiengaatterns lack several highly-desirable properties
of theenum construct, most notably, type safety. We present a novgldutomated approach for transforming
legacy Java code to use the new enumeration construct. @imargics-preserving approach increases type safety,
produces code that is easier to comprehend, removes ursaggapmplexity, and eliminates brittleness problems
due to separate compilation. Atthe core of the proposedaaayr is an interprocedural type inferencing algorithm
which tracks the flow of enumerated values. The algorithmimatemented as an Eclipse plug-in and evaluated
experimentally on7 large Java benchmarks. Our results indicate that analyss s practical and the algorithm
can successfully refactor a substantial number of fieldsitomeerated types. This work is a significant step towards
providing automated tool support for migrating legacy Jaedtware to modern Java technologies.

1. Introduction

Java 1.5 introduces a rich set of new features and enhantesweh as generics, metadata annotations, box-
ing/unboxing, and type-safe enumerations [22]. Thesetaats can ease software development and maintenance
and can result in more efficient and robust applications.nEkieugh Java 1.5 has backward compatibility with
code from previous releases, there are numerous advantagégrating such legacy code to these new features.

Code migration can be a laborious and expensive task botbofie modification and for regression testing.
The costs and dangers of migration can be reduced greatlyghrthe use of automated refactoring tools. This
paper presents a fully-automated semantics-preservipigpagh for migrating legacy Java code to take advantage
of the new type-safe enumeration construct in Java 1.5.

An enumerated (enum) typ&8] is a data type whose legal values consist of a fixed, bloséated set of items
known at compile time [2]. Typically, the exact values of ft@ms are not programmatically important: what is
significant is that the values are distinct from one anotimer @erhaps ordered in a certain way, hence the term
“enumeration.” Clearly this is a desirable construct, andesit was not included in the Java language until version
1.5, developers were forced to use varioampensation patterrte represent enum types. These patterns produce
solutions with varying degrees of uniformity, type safetypressiveness, and functionality. Of these patterns, the
most popular and proclaimed “standard way” [22] to represenenumerated type in legacy {.4) Java is the
weak enum patterf2], also known asype codeg$9, 14]. This pattern uses declared constants (“codes”heefi
with relatively small, manually enumerated values. Themestants are typically declared sistic final

*This material is based upon work supported by the Nationigirf8e Foundation under grant CCF-0546040.



fields. As discussed in Section 2, there are great advantageigrating compensation patterns in legacy code to
proper enum types.

In this paper we propose a novel semantics-preserving apprior identifying instances of the weak enum
pattern in legacy code and migrating them to the new enumtreans At the core of our approach is an interpro-
cedural type inferencing algorithm which tracks the flowmiimerated values. Given a set of static final fields, the
algorithm computes aeanumerization groupingontaining fields, methods, and local variables (includormgnal
parameters) whose types can safely be refactored to useuam type. The algorithm identifies the fields that
are being utilized as enumerated values and all other progrdities that are transitively dependent upon these
values.

The refactoring approach has been implemented as an Eplipgén. The experimental evaluation used a set
of 17 Java programs with a total 809 thousand lines of code. Our study indicates that (1) theyaizatost is
practical, with average running time @f48 seconds per thousand lines of code, (2) the weak enum padtern
commonly used in legacy Java software, and (3) the propdgedtam successfully refactors a large number of
static final fields into enumerated types.

This work makes the following specific contributions:

e Algorithm designWe present a novel automated refactoring approach for trogreo Java 1.5 enum types.
The approach infers which fields are being used as enummasadiad identifies all code changes that need
to be made in order to introduce the inferred enum types.

e Implementation and experimental evaluatiomhe approach was implemented as an Eclipse plug-in to
ensure real-world applicability. A study on 17 Java progsdandicates that the proposed techniques are
effective and practical. These results advance the stdteeart in automated tool support for the evolution
of legacy Java code to modern Java technologies.

2. Motivation and Example

An enumerated typhas values from a fixed set of constants [2]. Java has hiatiyriorovided no language
mechanisms for defining enumerated types, leading to thegemee of various compensation patterns. However,
the compiler depends on the internal representation @gimt ) of the symbolically named constants, and type
checking can not distinguish between values of the enumadppehose of the type internally representing those
values.

2.1. Example

Figure 1(a) shows an example in which named constants adetaismcode values of enumerated type=or
example, fielccolor declared at line 6 represents the color which the trafficadigncurrently displaying. The
values of this field come from the three static final figkizh YELLOWandGREENwhich map symbolic names to
their associated integer representations. The compile vatues of these constants are manually enumerated so
that each color can be unambiguously distinguished. Ofssguhe integer values have no real relationship to the
colors they represent. Similarly, fietdirrentAction declared at line 17 could take its values from the integer
constants in static final fieldBLE , INCREASESPEED DECREASESPEED andSTOR

Field MAXSPEED(line 15) defines the maximum speed of the automobile. TH diéfers from the remaining
static final fields: unlike their integer values, which aredi®nly to encode enumerated values, the value of
MAXSPEEDhas a very significant meaning. This key distinction illatts the difference between fields that are
named constani®.g.,MAXSPEEL from those participating in that enum patterrj2].2 In this paper we consider
a more general version of this pattern which applies to athipive types’; we will refer to it as theveak enum
pattern The term “weak” is used to denote the lack of type safety ahdrdeatures inherent to the pattern.

1This example was inspired by one of the authors’ work at that€@dor Automotive Research at the Ohio State University.

2A similar pattern calledype Codess described in [9, 14].

*We exclude boolean from this list for several reasons: (& Type has only two valuegtue andfalse , thus any transformed
enum type can only have two members and (ii) our algorithnoimes simpler due to this exclusion.
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class TrafficSignal {
public static final int RED = O;
public static final int YELLOW = 1,
public static final int GREEN = 2;
/% Current color of the traffic signal, initially red by defauit
private int color = RED;
/% Accessor for the light’s current coled
public int getColor() {return this.color;}}

class Automobile {
private static final
private static final
private static final
private static final int STOP = 3;
private static final int MAX_SPEED = 140;
/% The action this automobile is currently performing, idledsfault:/
private int currentAction = IDLE;
/% The current speed of the automobile, initially 5 mph.
private int currentSpeed = 5;

int IDLE = 0;
int INCREASE_SPEED = 1;
int DECREASE_SPEED = 2;

private int react(TrafficSignal signal) {
switch(signal.getColor()) {
case TrafficSignal.RED: return STOP;
case TrafficSignal. YELLOW:
/I decide whether to stop or go
if (this.shouldGo())
return INCREASE_SPEED;
else return STOP;
case TrafficSignal. GREEN:
return this.currentAction;
default: throw new lllegalArgumentException
("Invalid traffic color");}} /l required

/I no change

public void drive() {
TrafficSignal aSignal = ... ;
int reaction = this.react(aSignal);
if (reaction != this.currentAction &&
(reaction != INCREASE_SPEED ||
this.currentSpeed <= MAX_SPEED))
this.performAction(reaction);}

private void performAction(int action) {...}}

(a) Using integer constants for enumerated types.

Figure 1. Running example: a hypothetical drive-by-wire ap

Figure 1(a) illustrates the use of the weak enum patternar{ylehe meaning oint
of where values are used. The programmer is left with theoresipility of manuallyinferring whichint
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class TrafficSignal {
public enum Color {RED,

YELLOW,

GREEN},
/* Current color of the traffic signal, initially red by defad/
private Color color = Color .RED;

/* Accessor for the light’s current color */
public Color getColor() {return this.color;}}

class Automobile {
private enum Action {IDLE,
INCREASE_SPEED,
DECREASE_SPEED,
STOP}
private static final int MAX_SPEED = 140;
/* The action this automobile is currently performing, idie default */
private Action currentAction = Action .IDLE;
/* The current speed of the automobile, initially 5 mph. */
private int currentSpeed = 5;

private Action react(TrafficSignal signal) {
switch(signal.getColor()) {
case TraffieSigral-RED: return Action
case TrafficSignal-YELLOW:

I/l decide whether to stop or go
if (this.shouldGo())
return Action .INCREASE_SPEED;

else return Action .STOP;
case TrafficSignal-GREEN:

return this.currentAction;
default: throw new lllegalArgumentException

("Invalid traffic color");}} I required

.STOP;

/I no change

public void drive() {
TrafficSignal aSignal = ... ;
Action  reaction = this.react(aSignal);
if (reaction != this.currentAction &&
(reaction != Action .INCREASE_SPEED ||
this.currentSpeed <= MAX_SPEED))
this.performAction(reaction);}

private void performAction(Action action){...}}
(b) Improvements after our refactoring is applied.

plication.

depends on the context
entities

are intended to represent traffic light colors, which ar@m@uatbile actions, and which are integers. In effect, the
programmer would be required to investigate transitivati@hships of these program entities to other program
entities/operations. Although the weak enum pattern pes/ia mechanism to make programmer intent more
explicit, it suffers from several significant weaknessescinave been well documented [2, 22].

211 Type Safety

The most glaring weakness is the lack of type safety. For pl@rthere is no mechanism to enforce the constraint
thatcolor gets its values only from the three color fields: any integdue would be acceptable at compile time.
Such problems would not be detected until run time, when aeption would be thrown. Perhaps worse, the
execution will seem to be normal while behaving in a way nadinally intended by the programmer. Problems
could also arise from the allowed operations: for exampgleyduld be possible to perform arbitrary integer



operations, such as addition or multiplication, upon thercealues.

2.1.2 Program Comprehension

The weak enum pattern creates ambiguities at various leffgisexample, there are fundamental semantic dif-
ferences between the constants for automobile actiongnfieg on line 11) andMAXSPEED(line 15). Despite
these differences, both entities have essentially idaintieclarations. The programmer depends on documenta-
tion and/or extensive interprocedural usage investigatiodetermine the true intent of the fields. This is also an
issue formultiple sets of enum constants. For example, methygdSolor  (line 8) andreact (line 21) declare

the sameént return type, even though the returned entities have vefgrdifit meaning and context. In essence,
the program is less self-documented with respect to the erated types, which could have negative effect on
software maintenance tasks.

2.1.3 Verbosity

Verbosity and added complexity arises in several areast, Birere is no easy way to print the enumerated values
in a meaningful way. Additional code is typically requireddroduce desirable results, e.g. as in

if (this.color == RED) System.out.printin("RED")

Second, there is no convenient way to iterate over all vabfehe enumerated type [2], which requires the
developer to manually create such machinery. Third, thekweeam pattern requires the programmer to manually
enumerate the values of the constants, which increaseskiifndod of errors. For example, different enum

constants may be unintentionally assigned the same ihteatuee.

2.1.4 Name spacing

Constant names from different enum types may collide, eslhedn distributed development environments, as
they are not contained in their own namespace. For exanfe;dnstanREDmay belong to two enum types
defined in the same class. Such a collision would need to beveskby prefixing the constants with an appropriate
identifier (e.g.COLOR_RED

2.1.5 Separate compilation

Finally, the weak enum pattern produces types whose vahegebr#tle [22]. Since the values are compile time
constants, at compile time they are inlined into clientser&fore, if new constants are added in between existing
ones, or if the internal representation of the constantagdneclients must be recompiled. Otherwise, the behavior
of clients upon referencing the values of the enum type i®fined. Such results are devastating for successful
separate compilation.

2.2. Enumerations in Java 1.5

The newenum construct supports powerful enumerated types that are let@hypand conveniently type safe,
comparable, and serializable; saving the programmer freating and maintaining verbose custom classes. Enum
types increase self-documentation (e.ggegColor method has a return type Gbolor ), enable compile-time
type checking, allow meaningful printed values, avoid naamlicts, and support separate compilation.

Figure 1(b) shows aenumerizedrersion of the running example, in which the static final Seldave been
replaced by language enumerated typesficSignal.Color and Automobile.Action . The legal values
and operations of these new enumerated types are now eafilmoeigh compile-time checking. There is a clear
distinction between the named conste#XSPEEDand the enumerated values. It is also clear that the resalt of



call toreact is anAction , which distinguishes it from the return type gétColor and makes the APl more
informative. Programmers are no longer required to enummerdues by hand, or to write extra “pretty printing”
code.

After enumerization, the brittleness of the overall systemeduced. For example, suppose we wanted to make
TrafficSignal compatible with Poland’s system, where a yellow and red doation is shown directly after
red to alert drivers that a change to green is imminent. AREDIn Figure 1(a), one could add a new field
REDYELLOWwith value of 1; the remaining fields’ values would have toheemented. Even if we did not care
to modify Automobile to accommodate the new color, we would still have to recosrifikince upon the original
compilation the constant values for the colors where inlila Figure 1(b) additional values can be added easily,
and only the enum or the class containing the enum would regecompilation.

3. Enumerization Approach

A refactoring tool which modifies legacy Java code employtimg weak enum pattern to utilize the Java 1.5
enum construct faces two major challengasferring enumerated typesndresolving dependenciednferring
enumerated types requires distinguishing between wealn ernstants and named constants. Figure 1(a) il-
lustrates this issue through fiel@§OPand MAXSPEED Although their declarations are very similar, they are
conceptually very different: while the value of named cansAXSPEEDis meaningful in integer contexts (e.g.,
for the integer comparison at line 39), the only requiren@nthe value of enumerated const&TOPiIs that it
should be different from the other integer values représgmatctions. In general, the uses of the enumerated values
are limited to assignments, parameter passing, methoahredlues, and equality comparisons. Named constants
are used in a much wider context, including mathematicalutations (e.g., dividing bjava.lang.Math.PI ),
various value comparisons (as in line 39), and so on. Deténgnithe category to which a constant field belongs
requires investigation of every context in which that fisldalue is used.

Constant fields are not the only program entities that nedwt teefactored for enumerization. In Figure 1(a),
once it has been inferred th&TOPis an enumerated constant, we must identify all prograntiestihat also
require refactoring due to transitive dependencieSoOR We say a entity4 is type dependern entity B if
changing the type oB requires changing the type &f. An example of such a dependency is metheatt :
since it returns the integer form STOR in the refactored version it must return the enum type Géoimg STOR
Furthermore, due to the dependence on the return valwactf , local integer variablesaction indrive (line
36 in Figure 1(b)) must also be transformed to be of #pton

The next section describes an interprocedural refactaiggrithm which addresses these challenges through
careful categorization of the contexts in which migratioonfi the weak enum pattern to the new enum construct
is valid. The algorithm identifies all type dependent eetitin those contexts, including fields, local variables,
method return types, and formal parameters. After all &fentities are identified, they are classified into groups
that must share the same enum type. At the end, all autoriaticansformed code is semantically equivalent to
the original.

4. Algorithm

4.1. Assumptions

Our algorithm works on alosed-world assumptigmeaning that we assume full access to all source code that
could possibly affect or be affected by the refactoring. \lg® assume that we are able to statically identify all
references to candidate fields and transitively dependegram entities. This assumption could be invalidated
through the use of reflection and custom classloaders.

We also assume that the original source code successfulipitas under a Java 1.5 compiler, thus guaranteeing
the following properties:



P original program

o(P)  {f| fis astatic final field of primitive type i}

w(P)  {m | mis amethod irP}

v(P)  {l|lisavariable irfP}

e variable, field, method

Qetrt contextin which o may occur

P(ID) the program entity corresponding to the terminal identfgoression’D

Figure 2. Formalism notation.

1. There are no uses of the identif@@rum throughout the program sourte.
2. The source is type correct.
3. Allimplicit primitive value conversions are lossless.

Under the Java 1.5 compiler, tie@um identifier is now a reserved keyword and one that would be used
declarations of language enumerated types only. Therefeseimption (1) allows us to use teum keyword for
such purposes only. Assumption (2) is essential as ourittigors thoroughly dependent on the type relationships
of each program entity in the original source. Consequegtitb/result of our algorithm on typecorrect source
is undefined.

Assumption (3) is also key. Although primitive types do nbarge many of the same properties as reference
types, such as subtype relationships, etc., there exigteriant relationships between these types that an infer-
encing algorithm must account for. In fact, this is part&lyl important to semantic preservation during any
transformation of primitive value types to reference typ8amilar to the< relationship exploited for class type
inferencing algorithms in [17], primitive types defigenversionrelationships between them [12]. Primitives do
not enjoy the same polymorphic capabilities that the subtygdationship provides reference types. However,
primitives are allowed to be implicitly assigned to valuésiifferentprimitive types much in the same way sub-
type instances can be assigned to variables of their camel§py supertypes. Such a conversion, in the context of
primitives, is called ammplicit widening conversiol2].

Widening conversions, which does not require explicit gaatlows primitive type values to be used inter-
changeably (through assignment and comparison). Thugbles of typedouble are allowed to be assigned
values of typent ,int variables are allowed to be assigned values of gy , and so on. This relationship can
be described ashar <int < double . The implicit conversion is legal so long as the value transf lossless,
that is, no precision of the value is lost by the conversioanv@rsions in which precision can be potentially lost
are callecharrowing conversionand must be made explicit through casts. There are, howex@ptions to this
rule. For example, a narrowing conversion is allowed to iaihy (i.e., cast-less) take place so as long as the value
of the large? type can be resolved to a value that requires less than ot tqtlee amount of storage allocated
for values of smaller typeat compile-time For example, although the conversion relationship betvisgte
andint is byte <int ,theint constant literaR, whose value can be vacuously resolved at compile-time,
can be stored in a variable of tyjsyte without a risk of loss in precision (i.e., lossless). Since algorithm
infers enumerated types by analyzing constants, such areeés potentially common and the algorithm must
account for this possibility. Seeing that our algorithmuasss that the original program is type-correct, it is safe
to further assume thatll primitive, implicit conversions, widening and narrowiniike, are lossless. Henceforth,
transitivity may exist between entities differentdeclared types. Our algorithm does not singleiotdr-primitive

“4Although the focus of our tool is to refacttegacyJava software to utilize the neenum construct, we do not discriminate against
current Java software (e.g., those written in Javal.5). In this case, uses of thenum identifier for the purpose of declaring language
enumerated types is acceptable.

SLarger in terms of the maximum capacity held by values of timitive type in bytes.



procedure Enumerize(F,P)

1 R — Enumerizable(F')

2 R« Unique(R) N Distinct(R) N Consistent(R)
s forall T € Rdo

s Transform(T)

5. end for

Figure 3. Top-level enumerization algorithm.

typetransitivity among program entities. As such, this assimnps necessary to ensure that adequate precision
exists in order to preserve semantics.

4.2. Top-level Processing

ProcedureEnumerize, shown in Figure 3, is the top-level driver of our approadttakes as input the source
code of the original prograr®, as well as a sef” C ¢(P) of fields (see the notation in Figure 2; parts of this
notation were inspired by [10, 15, 20]). In this paper we @asrefactoring the “standard” compensation pattern
in pre-Java 1.5 as described in [2, 9, 14, 22]. As sughymerize analyzes only static final fields of primitive
types since they may potentially be participating in the kveaum pattern. Functionumerizable (called at
line 1) infers which candidate fields are being used as ematedralues and groups them into their corresponding
inferred enum types. At line 2, certain semantics-presgreonstraints are enforced (further discussed in section
4.6). Finally, Transform (line 4) performs the actual code refactoring for each negenum typd”, thus altering
the type declarations of each corresponding program erifitye primitive constants are replaced with the new
enumtype declarations. The nesmum constants are ordered by their original primitive valuesriforce a natural
ordering, thereby preserving comparability semantics.

4.3. Type Inferencing

Function Enumerizable, shown in Figure 4, is at the heart of the proposed approadiis type inferencing
algorithm is based on a family of type inferencing approadhem [17], and has two goals:

() infer fields that are being used as part of enumeratedst{ipe, participating in the weak enum pattern)

(ii) construct minimal sets such that members of the sammast share the same enum type after refactoring

The output of the algorithm is a set ehumerization setsontaining fields, method declarations, and local
variables (including formal parameters) and their minimadupings that are enumerizable with respect to the
input constants.

The algorithm uses a workli$¥” which is initialized with all given constant fields, as wedl asetV of entities
that are not amenable to enumerization. A union-find dat&tire maintains sets of related entities; initially,
each input constant field belongs to a separate singletoreaeh worklist element is a program entity whose
type may have to be changed to an enum type. A helper functiortezts identifies all contexts (explained next)
in which o and its related entitiea’ appear inP such that each context,.,,; needs to be examined later in the
algorithm.

Contezts(a, P), depicted in Figure 5, includes afiner-most(i.e., identifier terminals in the grammar) expres-
sions corresponding ta (excluding those appearing in initializations of constields). Furthermore, it is a
method, this set of contexts also includésntezts(o’, P) for every methody’ which overridesy or is overriden
by «. Similarly, if « is a formal parameter, the set of contexts includestexts(a’, P) for every corresponding
formal parameteti’ in an overriding or overridden method. Entiti€sneed to be considered due to polymorphism.
For example, if the return type of a methadis changed fronint to an enum type, this change must be propa-
gated to all methods overriding or being overridden byn. Similar propagation is necessary whers formal
parameters are changed (otherwise, method overridingdancbrrectly be transformed to method overloading).
We denote these sets of dependent entitieaethod hierarchieandparameter hierarchiesespectively.
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function Enumerizable(C)

1 W «— C [* seed the worklist with the input constants */
2. N « () /* the non-enumerizable set list, initially empty */
s forall c € C do

2 MakeSet(c) * init the union-find data structure */

s end for

s While W # () do

7 [* remove an element from the worklist */

s a—eleeW

o W —W\{a}

w0 for al acyy € Contexts(a, P) do

1. if misEnumerizable Context(a, aueryy ) then

12 /* add to the non-enumerizable list */

13: N — NU {a}

14: break

15: end if

16 [* extract entities to be enumerized duectd/

172 for all & € Extract(o, aeyy) dO

18: if Find(&) = 0 then

19 MakeSet(&)

20: W — Wu{a}

21: end if

22: Union(Find(a), Find(&))
23 end for

2. end for

25: end while

26. ' — AllSets() I* the sets to be returned */

27 for all o/ € N do

26 F «— F\ Find(a/) I* remove nonenum sets */

20: end for

30: return F'/* all sets minus the non-enumerizable sets */

Figure 4. Building enumerization sets.

FunctionisEnumerizableContextxamines a context..,; to determine if it is amenable to enumerization with
respect tax by using two helper functionSnumerizableAscendandEnumerizableDescendedpon application,
these helper functions examine the context semsEnumerizableConteXiy traversing, in disparate directions,
the syntax tree of the input expression. The intent of thesetions are loosely analogous to that of synthesized
and inherited attributes of attribute grammars [16], resipely. FunctionExzxtract is responsible for determin-
ing further transitive relationships due to the enumeigrabdf o. Extractalso has two helper functiorisxtrac-
tionAscendetand ExtractionDescendewhich are similar in flavor to the aforementioned helper fiors. For
conciseness, in the following discussion we will use theeyibtionsEC, EA, ED, EX, XA, andXD to refer to
these functions. EssentialigEnumerizableContexnd Eztract serve as canonical names for their intended pur-
pose.EC has two parameters: the entitywhose enumerizability is under question and a contexf; which is
type dependent on. £X, on the other hand, has one parametgy; whose constituent, type dependent program
entities must be examined for enumerizaton.

Function EC, portrayed in Figure 6(a), immediately callsA passing ita..,¢, the context to be examined
and«, the entity whose enumerization is under question. Figuperitays many of the rules df' A which are



Contexts(a, P) = all inner-mostexpressions containing U
0 if o is a local variable or a field
Uarenir (o) Contexts(a/, P)  if o is a method
Uarepi(a) Conteats(a/, P)  if ais a formal parameter

Figure 5. Contexts for a program entity  «; MH/PH is the method/parameter hierarchy.

inductively defined in the grammak: A begins atv.;,: (€.9.,/ D) andclimbs(or ascends) its way up the grammar
until it reaches aignificant ancestoof «. We say that a statement or expression is a significant amoafst if
the value ofa can be exploited at that point. The ascent is performed @atrent function which returns the
parent expression above.,; in the syntax tree. The functiotvntains helps determine which expressi@nd
ascended from.

On the way to the significant ancestérA may find expressions that are not amenable to enumerizatahat
case,ll A will return falseand EC, in turn, will return the result of#A. Such a situation is depicted in the rule
for array access/creation in Figure 7. On the other handg éht successfully reaches the significant ancestor,
it will then call ED in order to commence a descent down finotal expression(s); that is, an expression that
is consequently type dependent. Much of the rule& éf are given in Figure 8. As showtly; D completes its
descent at the leaf nodes of the syntax tree, returtiingjfor terminal IDs andalsefor contexts which are not
amenable to enumerizaation (e.g., literal8¥ will then, in turn, return the result o’ D.

4.4. Enumerizable Contexts

EC returnsfalseif the given contexty,,,, is definitively not enumerizable with respectdde.g.,« being used
as an array index). Otherwisé&(C returnstrue if o, is promisingwith respect toon — that is, enumerizing
« does not adversely affect the relation betweeand the enclosing expressions @f.;. We say that such a
situation is “promising” as opposed to “definite” becauser¢hmay exist other program entitiésthat are type
dependent oy and we cannot yet ensure that every cont&éxt; in which & appears is enumerizable. This
additional checking fo# is performed byEX, which extracts the type dependent entities that requirtnédu
investigation to determine if they are enumerizable wigpeet to a particular. The EX function is depicted in
Figure 6(b) and its helper function¥A and XD, are depicted in Figures 9 and 10, respectively. Thesea&tia
entities will be put on the worklist and eventually checkgdr('.

To illustrate the type checking component mechanics we shewapplication of theZC' function at each
significant ancestor discovered during the evaluation #sigamentcolor=RED from line 6 of our motivating
example depicted in Figure 1(a). The terminal expressigDwithin the assignment expressianlor=RED
would have been returned Wyontezts whena is RED Applying EC for this context we have:

EC (RED, RED) =
EA(RED, RED) =
FEA(RED, color = RED) =
ED(color) A ED(RED) =

true A true = true

As a result, this expression is considered “promising”. Bhbsequent application dfX would extract the

function EC (o, aveypt) function EX (cvctyt)
ureturn FA(o, acizt) v return XA(oe)
end function _ ) end function ) )
(a) isEnumerizableContext predicate. (b) Extraction function.

Figure 6. Top-level inferencing algorithms.
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Identifiers
function EA(e,ID)

1 return EA(a, Parent(ID))

Parenthesized expressions
function EA(a,(ID))

1 return EA(o, Parent(ID))
Cast expressions
function EA(c, (TYPE)EXP)

1 return false

Field access expressions
function EA(a, EXP.ID)

1 return EA(ca, Parent(EXpP))
Assignment expressions
function EA(a,ExPy = EXP2)

1: return ED(Expi) A ED(ExP2)
Subtract assignment expressions
function EA(a,ExPy -= EXP2)

1 return false
Divide assignment expressions
function FA(a,ExPy /= EXP2)

1 return false
Infix addition expressions
function EA(«,ExPy + EXP2)

1 return false
Infix multiplication expressions
function FA(a,ExPy * EXP2)

1: return false
Prefix unary minus expressions
function FA(a,-EXP)

1: return false
Postfix increment expressions
function EA(a,Exp++)

1: return false
Equality expressions
function FA(a,ExPy == ExP2)

1 return ED(EXP;1) A ED(EXP2)
Inequality expressions
function EA(a,ExPy 1= EXP2)

1 return ED(EXP;1) A ED(EXP2)
Switch statements
function EA(c, switch(EXP))

. let se= ED(EXP)

. let ce=true

. for all case &P, € cases(switch(ExpP)) do
ce«— ceA\ ED(ExP,.)

. end for

6: return seA ce

Switch case statements
function FA(«,case EP)

1 return EA(a, switchStmt(case KP))

a A W N P

Conditional expressions
function EA(a, EXP1 7 EXP2 : EXP3)
1. if contains(EXP2, a) V contains(EXPs, o) then
2. return EA(a, Parent(ExpP1 7 EXP2 : EXP3))
3. else
4 return true
5. end if
Array access/creation expressions
function FA(«, EXP1[EXP2])
1. if contains(ExP2, a) then
2. return false
3. else
4 return EA(a, Parent(Expy))
5. end if
Array initialization expressions
function FA(«, {EXP1,...,EXP,})
1. letie=true
2: for ExpP;, 1 < <ndo
3 ie—ieA ED(EXPZ')
4: end for
5 return ie
Return statements
function EA(a,return ExpP)
1 return true

Method declaration statements
function EA(a,ID(P4,...,Ps))
. let re=true

: for all return Bxp,. € returnStmts(ID(Py,..., P,)) do

1
2
3 re—reA ED(ExpP,)
4: end for

5. return re
Formal parameters
function EA(«,P;)

1. let ae=true

2. [*check the ith argument of each invocation of the declaring

method*/
3. let & = MethodDecl(P;)
4 for all &eor € Invocations(é&, P) do
5. ae«— aeA ED(Arg(&ctat, 1))
6. end for
7. return ae

Method invocation expressions
function EA(a,ID(EXP4, ..., EXPy))

1. for Exp;,1 <i<ndo

2. if contains(EXpP;, ) then

3 return true

4 endif

5. end for

6: return EA(«, Parent(ID(EXP1,...,EXP,)))

General statements

function XA («,SMT)
1. let se=true
2. for EXP € Children(SMT) do
3 se«— seVED(EXxpP)
4: end for
5. return se

Figure 7. Enumerizable ascender.
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Integer literals Infix r_nultiplication expressions
function ED(IL) function ED(ExP1 * EXPs)

1. return false 1: return false
Identifiers Prefix unary minus expressions

function ED(ID) function ED(-EXP)
1 return false

Postfix increment expressions

1 return true
Parenthesized expressions

function ED((EXP)) function ED(Exp++)

1 return ED(EXP) 1 return false
Cast expressions Cond_itional expressions
function ED((TYPE)EXP) function ED(EXP; ? EXPs : EXP3)

1 return false 1 return ED(EXP2) A ED(EXP3)

Field access expressions Array access expressions

function ED(Exp.ID) function ED(EXP1[EXP2])
1 return ED(ID) 1 return ED(EXpP1)

Assignment expressions Array creation expressions

function ED(EXP; = EXPz) function ED(TYPE[EXP|{EXP1,...,EXP,})
1 return ED(ExP;) A ED(ExPy) L return ED({EXPy, ..., EXPn})

Subtract assignment expressions Array initialization expressions
function ED(Exp; -= ExPy) function ED({EXP1,...,EXP,})

1 return false . letie=true

1
. . . 2. for ExpP;,1 <i<ndo
Divide assignment expressions 5 ie ien ED(Exp:)
function ED(EXP; /= EXP2) . !
5

. end for
1. return false - return ie
Infix gddition expressions Method invocation expressions
function ED(ExP; + EXP2) function ED(ID(EXPy, ..., EXP,))
1 return false 1: return true

Figure 8. Enumerizable descender.
program entitycolor so that all of its contexts may be checked. Demonstratirgdérivation using the rules in
Figures 9 and 10, we have:
EX (RED,RED) =
XA(RED,RED) =
XA(RED, color = RED) =
XD(color) U XD(RED) =
{P(color)} U{P(RED)} =
{P(color), P(RED)}
where P(color) denotes the program entity corresponding the the termdeatitifier expressiorolor (see
Figure 2); in this case the fielsblor of classTrafficSignal . Consequently, this field will make its way to the
Contexts function via the worklist and the entire process repeatshiisrentity.

Consider a hypothetical assignmentor=5 whenc is color ; herecolor is type dependent on the integer
literal 5. Using the rules in Figures 7 and 8, we have the followingvadion:

EC(color,color) =
EA(color,color) =
FEA(color,color =5) =
ED(color) A ED(5) =
true A false = false
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dentifiers Array access/creation expressions
function XA(a,1D) function XA(a, ExP1[EXP2])

L return XA(a, Parent(ID)) 1 if contains(ExP2, a) then
Parenthesized expressions 2. return 0
function XA(«,(ID)) 3 else

1 return XA(a, Parent(ID)) 4 return XA(a, Parent(EXPr))
Cast expressions 5 end if
function XA(«, (TYPE)EXP) Array initialization expressions

1 return 0 function XA(«, {EXPy,...,EXP,})

R0
2. for ExpP;,1 <i<ndo
3 R« RUXD(Exp;)
4: end for

5 return R
Return statements
function XA(«,return Exp)

1 return XD(MethodDecl(return Exp))

Method declaration statements
function XA(«a,ID(Ps,...,Py,))

Field access expressions
function XA(«, EXP.ID)

1 return XA(a, Parent(EXP))

Assignment expressions
function XA(a,EXP1 = EXP2)

1 return XD(ExP1) U XD(ExpPy)
Subtract assignment expressions
function XA(a,Exp1 -= ExP2)

1 return
Divide assignment expressions

- — 1. R+~ @
function XA(a,ExP: /= ExPs) 2 for all return Exp,. € returnStmts(ID(Py,. .., Py)) do
L return s R+« RUXD(EXp,)
Infix addition expressions 4 end for
function XA(a,Exp1 + EXP2) 5 return R
1 return 0 Formal parameters
Infix multiplication expressions function XA(a,P;)
function XA(a,ExP; * EXP2) 1 R—10
1 return 0 2: [*extract the ith argument of each invocation of the decigri
Prefix unary minus expressions me'Ehod*/
function XA(a,-ExP) 3 let & = MethodDecl(P;)
+ return @ 4: for al Getar € Invocations(éa, P) do
o . 5. R+— RUXD(Arg(GQctzt, 1))
Postfix increment expressions o end for
function XA(«a,Exp++) - return R
v re.turn 0 ) Method invocation expressions
Equality expressions function XA(a,ID(EXPy, ..., EXP,))
function XA(«,ExP1 == EXP3)
1. R+~ @
1 return XD(ExpPz) U XD(EXP;1) 2 for Exp;,1 < i < ndo
Inequality expressions 3. if contains(EXpP;, ) then
function XA(«,Expy 1= EXP2) 4 R+« RUXD(Expy)
1 return XD(EXP1) U XD (EXPz) 5. endif
Switch statements s: end for
function XA(a, switch(ExP)) 7. if R # ( then
1 R — XD(ExP) 8: elreturn R
2. for all case EP. € cases(switch(ExP)) do o ase
s R XD(EXP.) 10: return XA(o, Parent(ID(EXP,...,EXPy)))
+ end for ‘ 1: end if
5 return R General statements
Switch case statements function XA(a,SMT)
R+ @

function XA(«a,case KP)
1 return XA(a, switchStmt(case KP))
Conditional expressions
function XA(a, EXP1 7 EXP2 : EXP3)
if contains(EXPz, ) V contains(EXPs, «) then
return XA(a, Parent(Exp; 7 EXP2 : EXP3))
. else
return @
. end if 12

1
2. for EXP € Children(SMT) do
3 R+« RUXD(EXP)

4: end for
5 return R

a A e N R

Figure 9. Extraction ascender.



Infix multiplication expressions
function XD (ExpP; * ExP2)

1 return 0

Prefix unary minus expressions
function XD (-ExP)

1 return 0

Postfix increment expressions
function XD (Exp++)
1 return
Conditional expressions
function XD (EXP;1 7 EXPs : EXP3)
1 return XD(EXP2) U XD(EXP3)

Array access expressions
function XD (EXP1[EXP2))

1 return XD(EXP;)

Array creation expressions
function XD (TYPE[EXP|{EXP1,...,EXPy,})

1 return XD({EXP,...,EXP,})

Array initialization expressions
function XD ({EXP4,...,EXP,})

Integer literals
function XD(IL)

1 return

Identifiers
function XD(ID)

1 return P(ID)
Parenthesized expressions
function XD ((ExP))

1 return XD(EXP)

Cast expressions
function XD ((TYPE)EXP)

1. return

Field access expressions
function XD (ExP.ID)

1 return XD(ID)
Assignment expressions
function XD (ExpP: = Exp2)

1 return XD (ExpP1) U XD(EXP2)
Subtract assignment expressions
function XD (EXP; -= Exp2)

1: —
.1:.return.® . 2: f(%)r E)?Pi,lgigndo
D|V|d¢ assignment expressions s R« RUXD(EXp;)
function XD (EXP; /= EXP2) 4 end for
1 return @ 5 return R
Infix addition expressions Method invocation expressions
function XD (ExpP: + ExpP2) function XD(ID (ExPy, ..., EXP,))
1 return 0 1 return XD(ID)

Figure 10. Extraction descender.

Thus, EC(color, color) is determined to béalse . Because the type of the integer literal cannot be altered to
an enum typegolor also cannot be altered and should be included idVséine 13 in Figure 4).

There are other situations where type dependencies pravprigram entity from being enumerized. For
example, consider the following statement wherés againRED if(color==arr[RED]) color=GREEN;
The derivation using our rules would consist of the follogiin

EC (RED, RED) =
EA(RED, RED) =
FEA(RED, arr[RED]) =
false

In this case FC returnsfalse since it would be impossible to alter the typeREDbecause the index to an array
access must be an integral type [12]. Note thatlte@portion of the if statement is not evaluated as it is not type
dependent om. Although £X is not called wherEC returnsfalse £X would nevertheless retufhupon these
arguments.

As another example, consider conditional expressidys . Here, we must be careful to distinguish between
each expression in whiclamay (or may not) appear in. & only appears in Epr;, we should not check &5 and
ExPs. However, ifa appears in either ¥, or ExpPs, then both of these expressions must be enumerizable. That
is, the entire expression must evaluate to that oéraunm type in either case (i.e., thHhenor elsecase). Consider
the following conditional expression whetels DECREASESPEED
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action = color == GREEN ? INCREASE _SPEED : DECREASEPEED

We have the following derivation:

EC (DECREASE_SPEED, DECREASE_SPEED) =
EA(DECREASE_SPEED, DECREASE_SPEED) =
EA(DECREASE_SPEED, color == GREEN ? INCREASE_SPEED : DECREASE_SPEED) =
EA(DECREASE_SPEED, action = color == GREEN ? INCREASE_SPEED : DECREASE_SPEED) =
ED(action) A ED(color == GREEN ? INCREASE_SPEED : DECREASE_SPEED) =
true A ED(INCREASE_SPEED) A ED(DECREASE_SPEED) =

true N true N\ true = true
The extracted set of type dependent entities would be asifsil

EX (DECREASE_SPEED, DECREASE_SPEED) =
X A(DECREASE_SPEED, DECREASE_SPEED) =
X A(DECREASE_SPEED, color == GREEN ? INCREASE_SPEED : DECREASE_SPEED) =
X A(DECREASE_SPEED, action = color == GREEN ? INCREASE_SPEED : DECREASE_SPEED) =
XD(action) U XD (color == GREEN ? INCREASE_SPEED : DECREASE_SPEED) =
{P(action)} U XD(INCREASE_SPEED) U XD (DECREASE_SPEED) =
{P(action)} U {PP(INCREASE_SPEED)} U {P(DECREASE_SPEED)} =
{P(action), P(INCREASE_SPEED), P(DECREASE_SPEED)}

In general, the enumerizability of particularmay depend on its occurrences within comparison expression
(see the rules for equality/inequality expressions in Feagl). For comparison expressions withand!=, as long
as both operand expressions are enumerizable both wilthedied in the same inferred enum type, and the integer
equality/inequality in the original code will be transfoethto reference equality/inequality. Far<=, >, and>=,
the refactored code can use the methods from inteffaeeang.Comparable , Which is implemented by all
enum types in Java 1.5, to preserve comparability semaarticsgst the inferred type’s members. This holds true
so long as the inferred enum type declarations are in the giden by their original primitive representations.

An interesting case is contexts in which polymorphic bebtiawmay occur. In these cases, we need to consider
entire hierarchies of program entities. Much of the polypiic behavior enforcement is implemented with the
help of functionContextglescribed earlier, however, additional checks are needbihvis Enumerizable Context
and Extract in order to ensure the preservation of program semantigsaricular, the formal parameter expres-
sions and the method invocation expressions require addltinvestigation of program entities# For example,
in the case of formal parametefsX must be certain to extract the program entities embedddtkindrrespond-
ing actual argument expressions for each method invocatitimee method hierarchy. These rules are depicted in
Figures 9 and 10.

4.5. Transitive Dependencies

In function Enumerizableif either a context which is not amenable to enumerizat®prricountered, or one
that can not be transformed, we mark the set containingrthrequestion as a “non-enumerizable” set (line 13
in Figure 4). If this is not the case, the algorithm proceedextract other program entities that are required to
undergo enumerization consideration due to the enumignizaf « (line 17). For each of these program entities
& the following steps are taken. dfis not currently contained in an existing set (line 18), wahimplies that it has
not previously been seen, then a new singleton in the uni@hefata structure is created and consequently added
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Let Enumerizable : 2 [p(P)] — 2@ [¢(P) U u(P) Uwv(P)] be a function mapping a set of primitive,
static, final fields to a set ahinimalprogram entity sets that are enumerizable in respect te thelsls.

Vk e K[3X,Y | k€ X N X € Enumerizable(Y)NK CY] (1)

Let.: ¢(P) — ¥* be a function mapping a field to its unqualified identifier.
Vki, ki € Kli # j = u(ki) # o(k;)] )

Let P be the set of all legal primitive values.
Leto : ¢(P) — P be a function mapping a constant to its primitive value.

ki, k; € Kli # 5 = o(k;) # o(k;)] 3)

LetV = {public, protected, private, package} be the set of legal visibilities.
Letd : ¢(P) — V be a function mapping a constant to its visibility.

Vki, kj € K[9(ki) = 9(k;)] (4)

Figure 11. Member constraints for transforming a group of ca ndidate fields K

to the worklist (lines 19 and 20). The two sets, the set cairtgia and the set containing, are then merged
on line 22 thereby capturing the transitive dependenciésdmn each program entity. Once the computation is
complete, i.e., the worklist has emptied, the sets defingddigitly by the union-find data structure are returned
minus the non-enumerizable sets (line 30).

Function Enumerizable is responsible type inferencing; that is, it ensures thatptoposed transformation
is type-correct. Its result is a partitioning of programited, limited to variables, fields, and methods, that are
enumerizable with respect to a given set of static final fielfisis essential relationship existing between each
member of each enumerizable set is expressed by ounfastber constraintisted as constraint 1 of Figure 11.
This constraint simply expresses that all members of edcarseenumerizable with respect to the original input
constants, of whom are also in the set. That is, for all eleasmernf an enumerizable sdt’, there exists two
setsX andY such that the elemeritis a member of the seX, X is a valid partition of the program elements
enumerizable in respect to a set of constantsand K is a subset of”. This last clause gives us the flexibility
to enumerize only a portion of the original constants if wedesire. The partitioning captures thanimal
dependency relationships between these entities; if afvamation of one of the elements occurs, then, in order
for preserve type correctness, a transformatioalloélements in its set must also occur. However, we must make
further, more subtle considerations as to which sets carabhsformed. We discuss such considerations next.

4.6. Semantics-preserving Constraints

In additional to analyzing thesageof potential enumerated type constants, in order to pressmnantics upon
transformation, it is also necessary to analyze ttetlarations Returning to theEnumerizefunction listed in
Figure 3, the functions invoked on line 2 enforce programab@ral preservation by excluding sets containing
constants that do not meet the remaining member constrgivés in Figure 11. Invocation of the function
Unique corresponds to the enforcement of constrainD2stinct to constraint 3, and’onsistent to constraint
4. Essentially, these constraints express that, for eddio & transformed into a corresponding enum type and
for semantics to be preserved, each static final field mushiggiely named (since constants may have originated
from different classes), distinctly valued (so that eacigionally assigned primitive value will correspond to a
single memory reference), and consistently visible (siheenew enum types are not allowed to have instances
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with independent visibilities). The resulting intersectiof the sets abiding to each of the member constraints is
then assigned back . At line 4, each sef” € R corresponds to the program entities that will be transfartoe
the new language enumeration typend the transformation takes plac€ < R.

4.7. Application

We now briefly demonstrate how our algorithm would apply ®éiample code snippet given earlier in Figure
1. A schematic depicting the results of tBeaumerizabldunction application appear in Figures 12 and 13. The
figures informally represent “snapshots” of the state ofuhien-find disjoint data structure at the beginning and
the end of the algorithm, respectively. Union-find datacitites may be internally represented as trees and the
schematic reflects this notion. There are two different$ygfanodes, valued and unvalued. Valued nodes represent
an element (i.e., a field, method, or variable) and are uspbotucing the output of the algorithm. Unvalued nodes
consist of<UNION>nodes which serve as logical placeholders marking pointghich the sets were merged.
Edges connect nodes belonging to the same set. Edge diedépict the order in which nodes were discovered
during execution of the algorithm. Edge directions do natessarily denote transitivity in a particular direction;
transitive relationships in respect to enumerization atedrtional.

In Figure 12, the initial input elements are used to seedribeneration sets and the applicationfofumerizable
grows the sets as seen in Figure 13. During growth, the seysbmacombined due to transitivity of equal-
ity/inequality comparisons on both left- and right-handesi and/or assignments on the right-hand side. The
resulting sets depicted in Figure 13 shows thaf the original8 sets have been merged. Sets containing shaded
elements designanumerizablesets, that is, sets that contain all elements whose usagasw@nable to enumer-
ization. Sets not shaded signify sets that contain at lgasttement not amenable to enumerization, such as the
set containing the elemeMAXSPEED

Note that these sets portray timnimal dependency information among their elements, therefbey, thay be
further merged but not split. Also notice that the resultsdoiced by our algorithm as applied to the drive-by-
wire example are ot entirely desirable. Specifically, thivaobile actionDECREASEPEEDIs contained in a
different set than that of the other automobile actions duhe current transitive nature of the elements. Surely,
when performing the language enumeration type transféomatve desire that all automobile action be grouped
together in the same language enumeration type. We leavei@rg how a result can be automatically suggested
by our refactoring for future work, possibly leveraging histic techniques from [13].

5. Experimental Study
5.1. Implementation

We implemented our algorithm as a plug-in in the popular @gsdiIDE. Eclipse ASTs with source symbol
bindings were used as an intermediate program represantafhe plug-in is built over an existing refactoring
framework [1] and is coupled with other refactoring supporEclipse. To increase applicability to real-world
applications, we relaxed the closed-world assumptionritest in Section 3. For example, if the tool encounters
a variable that is transitively dependent upon an elemedstdriof the source code being considered, this variable
and all other entities dependent on it are conservativélglél as non-enumerizable.

5.2. Experimental Evaluation

To evaluate the effectiveness of our algorithm, we used Tr@pen-source Java applications and libraries listed
in Table 1 The second column in the table shows the number of non-blakcomment lines of source code,

Sjava5 denotes the packagaeva. included in the Java 1.5 JDK.

DECREASE_SPEED INCREASE_SPEED

Figure 12. Initial enumeration sets.
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Figure 13. Enumeration sets produced by our algorithm.

benchmark || KLOC | classes | prim | cands | enum | uses | rtypes | time(s)
ArtOflllusion 75 378 | 333 77 77| 111 46 207
Azureus 272 1894 | 1255 399 347 | 635 173 1269
javab 180 1586 | 1299 557 450 | 572 363 760
JavaCup 6 41 55 3 3 3 3 19
jdepend 3 28 13 1 1 1 1 1
JFlex 10 46 | 140 24 19 27 9 75
JFreeChart 71 420 | 153 36 24 43 12 128
iGap 6 137 25 4 4 5 1 7

jgraph 14 91 25 6 3 6 1 11
JHotDraw 29 496 34 11 11 24 8 14
junit 8 271 7 2 2 3 1 1

jwps 20 155 | 156 76 64 | 102 25 60
sablecc 29 237 16 8 8 10 2 9
tomcat6 153 1164 | 738 344 335| 400 255 346
verbos 5 41 10 6 6 15 2 3
VietPad 11 84 36 17 17 22 4 8
Violet 7 73 36 14 13 20 6 9
| Total: | 899 | 7142] 4331] 1585] 1384] 1999| 915] 2227|

Table 1. Experimental results.
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which range from 3K fojdepend to 272K forAzureus . The third column shows the number of class files after
compilation. For each benchmark, the analysis was exedivietimes on a 2.6 GHz Pentium4 machine with 1
GB RAM. The average running time, in seconds, is shown inroaltime in Table 1. On average, the analysis
time was2.48 seconds per KLOC, which is practical even for large appticet

Column prim shows the number of static final fields of primitive typedVe separate these fields into two
categories. First, certain fieldtefinitely cannot be refactored, because the semantics of the proggpends
on the specific, actual values of these fields. These fieldsdachose that were either directly or transitively
dependent on operations that utilized their exact valueeated a transitive dependency on an entity which could
not be refactored. A complete list of filtered contexts isvited in Table 2. The first columikiltered contexts
displays the contexts which were filtered. The secdhxdmple Opsprovides a subset of operations which fall
into each context, and colunttxample Useprovides an example of each context — note thatthvariables in
the examples represent constant primitive fields. Sinceviiek enum pattern only allows the use of literals in
the declarations of enumeration fields, other contexts hiiitize them were filtered as shown in ro@baracter
literal andNumber literal Since the semantics of an array access relies on the parti@lue of the indice any
field used as such cannot be refactored. Similarly, fieldsseh@lues are utlized in the creation of a new array
cannot be refactored (rowsrray accessandArray creatior). There are a multitude of mathematical operations
which, of course, rely on the values of the variables beingimdated. These operations are shown in rawix
expressionPostfix expressigrandPrefix expressionSome of these operations may be valid for certain exteasion
to weak enum compensation pattern, such as those that empibyectoring over their enumeration values. We
also include in this category the fields which cannot be tefad due to lack of access to source code (e.qg., a field
passed as a parameter to a method defined in a library whosmsmde is not available).

Filtered Context Example Ops Example Uses
Character literal ==, =>,l=< > <= =='Cc
Number literal ==,=> =< > <= v 1= 28
Array accessg [] X[v]

Array creation new int[ |,new double[ | | int X [] = new int[v]

Infix expression| +, —, /, x|, &, <<, >>,+ = X =V +s

Postfix expressior ++,—— v++
Prefix expressiory Tt ==L+, = -V

Table 2. Filtered contexts.

We categorize the remaining fields to bandidate fields The number of candidate fields per benchmark is
shown in columrcands The fact that the actual values of these fields do not dyredtect the semantics of the
program provides a strong indication that they are playliregrole of enumerations in the weak enum pattern. The
set of candidate fields along with their corresponding, ditase entities represent thainimal set of elements a
programmer would have to investigate for refactoring. Nb& although these sets are minimal, for three of our
benchmarks they still contain well ov800 elements, and several others contain dieelements.

The number of fields that our plug-in could safely refactatiswn in columrenum The results show that our
approach was able to refact®f% of the fields that could possibly be participating in the weakm pattern. The
tool was unable to refactor the remainiigf of fields because either they or an element of their depeydsais
were used in explicit cast expressions. We conservativebpse not to refactor elements used in cast expressions
due to the existance of possible side effects on the valugariables though narrowing conversions. For example
consider the following codeshort z = 128; byte x = (byte)z; . This is a valid cast in Java, but this
cast will result inx having the value-128 andnot 128. Clearly, not accounting for such an occurrence prior to

"Excludeshoolean types.

18



refactoring could lead to significant changes in programas#its upon migration. Detecting such changes due to
explicit casts is beyond the scope of the work being consitiar this paper.

Of course, fields are not the only program entities whose tgpaires alteration. Colummsesshows the total
number of declaration sites that must be modified to accoratedthie enumerization. The numbers motivate the
need for automated tools such as ours. In particular, tige applications require hundreds of code modifications
(e.g., over600 for Azureus ). These code modifications are spread across many classgsekages, and occur
in many distinct methods. Attempting to identify the needsatiifications by hand would be a labor-intensive and
error-prone task.

Columnrtypesshows the number of resulting enum types produced by our kuik that the number of types
is relatively close to the number of enum fields. This indésathat there are few actual enumeration values per
enum type, on average abAuR per type. This number may not reflect the number of weak enuterpanstances
intended by the programmer. Our algorithm is conservativiesi type creation, only grouping fields that share
transitive dependencies. These are the only fieldathustshare the same enum type upon refactoring. However,
given the current state of the program source, dependenm@agaot exist between all enumerations intended to
be grouped as one type. For the running exanpie; REASESPEEDshould intuitively be grouped with the other
vehicle actions. Unfortunately, since it is not currentiyriy referenced by the code, it does not share a dependency
with any of the other fields and as a result it is assigned detimg set (as shown in Figure 13). Clearly, in this
case no algorithmic method could guarantee the exact grgupiended by the programmer; however, there are
various heuristics that may be employed to better appraeirtiee intended types (e.g., heuristics that take into
account lexical proximity of field declarations, similantthat is described in [13]).

5.3. Summary

Overall, the experimental results indicate that the amglgsst is practical, that the weak enum pattern is
commonly used in legacy Java software, and that the propalgedthm successfully refactors a large number of
fields (and their dependent entities) into enumerated types

6. Related Work

Both Fowler [9] and Kerievsky [14] present the refactoringitled REPLACE TYPE CODE WITH CLASS.
Both detail a series of steps involved in transformiyyge codegentities subscribing to what we label as theak
enum patterrin this paper) into instances of custom, type-safe clastiigng the Singleton pattern [11]. Bloch
[2] presents a similar solution. While the pattern desaribie enum class that seems effective in regards to the
same criteria we have presented in this paper, the refagtprocess is entirely manual and the transformation is
not to language enumerated types. Most importantly, theldper is required to possespriori knowledge of
exactly which fields are potentially participating in th@déycode pattern in order to perform the refactoring. Our
proposed approach does not require such knowledge and @etety automated. That is, our approasfersin
an automated fashion such fields. Furthermore, the developeesented with the type-dependent groups of the
fields which may span multiple classes.

Tip et al. [25] propose two automated refactoringXTERACT INTERFACE and RiLL Up MEMBERS, both
well integrated into the Eclipse IDE. These refactoringal egth generalizingJava software in an effort to make
it more reusable. Although this proposal shares similatiehges with our approach in respect to precondition
checking and interprocedural dependency analysis, tmergezeral key differences. The generalization approach
manipulates the interfacesf reference types along with the means in which objects conicate through those
interfaces, as our approach entails transforming primitipe entitiego reference types. Moreover, a method
based ortype constraint$17] is used to resolve dependencies amongst programesntutter et al. [23] also use
type constraints in addition to profile information to cumtpe the use of Java library classes. A type constraint

8The terminterfaceis used here not to solely denote that of Java interfacesnstead to denote the broader notion of interfaces which,
in Java, would also include class declarations.
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approach would have also been conceivable for our work irsih@lar type constraints may have been formed for
primitive types. Nonetheless, a type constraint-basedoagp for primitive transformation may have proven to be
excessive since primitive types do not share many of the salagonships as reference types (e.g., sub-typing).
Therefore, we preferred more of a type checking approacippssed to constraint solving.

Several other approaches [7, 10, 24, 15, 27] exist to midegtey Java source to utilize new Java 1.5 language
features, in particular generics. Although both generitd language enumeration types serve to improve type
safety, the two features are conceptually different and tagque challenges in automated migration. Hstan-
tiation problem [10] entails inferring generic type arguments fengyic class instances. Tparameterization
problem [15] necessitates inferring generic type pararadte non-generic class declarations. Various challenges
include preserving program erasure [3], sub-typing coibpiy, inferring wildcard types, etc. However, our pro-
posal for inferringenumerated typeslthough not being required to address such issues, musides other such
situations. First, enumerization requires introducingeavtype in the original source as opposed to introducing
a type parameter or argument for existingtype. Second, when refactoring primitives one must comsitgny
additional operations that may be invoked on the primitiuBties that are not available to reference types. Fur-
thermore, the dependenflipw must also be taken in account across these operations. &npéx in our proposal
type dependence not only flows from assignments but also ¢mmparisons.

Steimann et al. [20, 21] propose an approach to decouplsedasith inferred interfaces. Similar to our
approach, a new type is introduced in the source (i.e., feered interface), and the compile-time types of program
entities are altered as a result of the refactoring. Adudiitily, both approaches do not leverage constraint solving
mechanisms, instead, Steimann et al. utilize a static aisdhased on [4]. Unlike this proposed approach, however,
our approach must consider more than the transitive closiessignments beginning on the right-hand side.
Again, enumerization entails bidirectional dependennisonly over assignments but also over comparisons.

Automated usage analysis and type inferencing technigomisusto ours also exist for other languages. Eidorff
et al. [8] demonstrate a Ye@000 conversion tool utilizing type inferencing techniques ¢orrecting problematic
date variables in COBOL (aeakly-typedorogramming language) systems. Ramalingam et al. [19]exptoit
usage analysis techniques to identify implicit aggregatectire and programmer intent of COBOL program
entities not evident from their declarations.

In fact, proposals for identifying enumerated types exastGOBOL and C. Although our work applies to a
significantly different source language, methods for idging enumerated types in these legacy systems share
similar challenges. Deursen and Moonen [5] present a geappaoach utilizing judgements and rules for infer-
ring type information from COBOL programs. An in-depth engal analysis is presented in [6]. Both COBOL
and Java< 1.4 do not provide language facilities for enumerated typed fanth approaches use a flow-insensitive,
interprocedurdl data flow analysis to discover program entities intendeépoesent enumerated types. However,
our approach is focused more on tigyration of these entities to apecificlanguage enumerated type construct
that contains corresponding, preexisting constraintsa Aesult, our approach must deal with different semantic
preservation issues upon transformation, insuring thastgution by the new construct will produce a program
with identical behavior upon execution. Moreover, refacig primitives to reference types presents unique chal-
lenges as objects in Jagannotshare the same memory location; thus, grouping progrartiesnitnteracting with
values from similar literals into corresponding types vebnbt produce an applicable solution. Likewise, our ap-
proach must consider modern features such as polymorphmdrfuaction overloading during its source analysis
and semantic preservation efforts.

Gravley and Lakhotia [13] tender an approach for identflyenumerated types in C programs that utilize a
pre-compiler directive pattern similar to the weak enuntgratthat we have described. We see this approach as
orthogonal to ours since only the declarations of the comstare analyzed. Furthermore, as mentioned earlier,
this approach may be appropriately adapted to enhance shésr@f our algorithm by leveraging declaration

%inter-programor inter-modulein the case of COBOL.
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characteristics during grouping.
7. Conclusions and Future Work

In this paper we have presented a novel, semantic presetypwinferencing algorithm which migrates legacy
Java code employing the weak enum pattern to instead utiigenodern, type-safenumlanguage construct
introduced in Java 1.5. We implemented our algorithm asg-pidor the popular Eclipse IDE and evaluated it on
17 open source applications. Our experiments showed thatnipta our tool scale well to large applications but
was able to refactas7% of all fields that could possibly be participating in the westum pattern. Prior to being
able to publicly distribute our plug-in, we first must addresveral implementation details including developing a
user-friendly interface and exploring potentially fastegermediate representations of code (e.g. Jimple [26]). |
the future we also plan to investigate ways of extending ool tb also refactor patterns using constant values of
reference types, such as Strings and Dates, as enumeraiobers.
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