
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Publications and Research Hunter College

2007

Automated Refactoring of Legacy Java Software to Enumerated Automated Refactoring of Legacy Java Software to Enumerated

Types Types

Raffi T. Khatchadourian
CUNY Hunter College

Jason Sawin
University of St. Thomas

Atanas Rountev
Ohio State University - Main Campus

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/hc_pubs/623

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/hc_pubs
https://academicworks.cuny.edu/hc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/hc_pubs/623
https://academicworks.cuny.edu/hc_pubs/623
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Automated Refactoring of Legacy Java Software to Enumerated Types∗

Raffi Khatchadourian Jason Sawin Atanas Rountev
Ohio State University

{khatchad,sawin,rountev}@cse.ohio-state.edu

Abstract

Java 1.5 introduces several new features that offer sig-
nificant improvements over older Java technology. In this
paper we consider the new enum construct, which pro-
vides language support for enumerated types. Prior to
Java 1.5, programmers needed to employ various patterns
(e.g., the weak enum pattern) to compensate for the ab-
sence of enumerated types in Java. Unfortunately, these
compensation patterns lack several highly-desirable prop-
erties of the enum construct, most notably, type safety. We
present a novel fully-automated approach for transforming
legacy Java code to use the new enumeration construct.
This semantics-preserving approach increases type safety,
produces code that is easier to comprehend, removes un-
necessary complexity, and eliminates brittleness problems
due to separate compilation. At the core of the proposed
approach is an interprocedural type inferencing algorithm
which tracks the flow of enumerated values. The algorithm
was implemented as an Eclipse plug-in and evaluated ex-
perimentally on 17 large Java benchmarks. Our results
indicate that analysis cost is practical and the algorithm
can successfully refactor a substantial number of fields to
enumerated types. This work is a significant step towards
providing automated tool support for migrating legacy Java
software to modern Java technologies.

1 Introduction

Java 1.5 introduces a rich set of new features and en-
hancements such as generics, metadata annotations, box-
ing/unboxing, and type-safe enumerations [23]. These con-
structs can ease software development and maintenance and
can result in more efficient and robust applications. Even
though Java 1.5 has backward compatibility with code from
previous releases, there are numerous advantages in migrat-
ing such legacy code to these new features.
Code migration can be a laborious and expensive task

both for code modification and for regression testing. The

∗This material is based upon work supported by the National Science
Foundation under grant CCF-0546040.

costs and dangers of migration can be reduced greatly
through the use of automated refactoring tools. This paper
presents a fully-automated semantics-preserving approach
for migrating legacy Java code to take advantage of the new
type-safe enumeration construct in Java 1.5.

An enumerated (enum) type [19] is a data type whose
legal values consist of a fixed, closely related set of items
known at compile time [2]. Typically, the exact values of
the items are not programmatically important: what is sig-
nificant is that the values are distinct from one another and
perhaps ordered in a certain way, hence the term “enumera-
tion.” Clearly this is a desirable construct, and since it was
not included in the Java language until version 1.5, develop-
ers were forced to use various compensation patterns to rep-
resent enum types. These patterns produce solutions with
varying degrees of uniformity, type safety, expressiveness,
and functionality. Of these patterns, the most popular and
proclaimed “standard way” [23] to represent an enumerated
type in legacy (≤ 1.4) Java is the weak enum pattern [2],
also known as type codes [9, 14]. This pattern uses declared
constants (“codes”) defined with relatively small, manually
enumerated values. These constants are typically declared
as static final fields. As discussed in Section 2, there
are great advantages to migrating compensation patterns in
legacy code to proper enum types.

In this paper we propose a novel semantics-preserving
approach for identifying instances of the weak enum pat-
tern in legacy code and migrating them to the new enum
construct. At the core of our approach is an interproce-
dural type inferencing algorithm which tracks the flow of
enumerated values. Given a set of static final fields, the
algorithm computes an enumerization grouping containing
fields, methods, and local variables (including formal pa-
rameters) whose types can safely be refactored to use an
enum type. The algorithm identifies the fields that are being
utilized as enumerated values and all other program entities
that are transitively dependent upon these values.

The refactoring approach has been implemented as an
Eclipse plug-in. The experimental evaluation used a set
of 17 Java programs with a total of 899 thousand lines of
code. Our study indicates that (1) the analysis cost is practi-

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

cal, with average running time of 2.48 seconds per thousand
lines of code, (2) the weak enum pattern is commonly used
in legacy Java software, and (3) the proposed algorithm suc-
cessfully refactors a large number of static final fields into
enumerated types.
This work makes the following specific contributions:

• Algorithm design.We present a novel automated refac-
toring approach for migration to Java 1.5 enum types.
The approach infers which fields are being used as enu-
merations and identifies all code changes that need to
be made in order to introduce the inferred enum types.

• Implementation and experimental evaluation. The ap-
proach was implemented as an Eclipse plug-in to en-
sure real-world applicability. A study on 17 Java pro-
grams indicates that the proposed techniques are ef-
fective and practical. These results advance the state
of the art in automated tool support for the evolution
of legacy Java code to modern Java technologies.

2 Motivation and Example

An enumerated type has values from a fixed set of con-
stants [2]. Java has historically provided no language mech-
anisms for defining enumerated types, leading to the emer-
gence of various compensation patterns. However, the com-
piler depends on the internal representation (typically int)
of the symbolically named constants, and type checking can
not distinguish between values of the enum type and those
of the type internally representing those values.
Figure 1(a) shows an example in which named constants

are used to encode values of enumerated types.1 For ex-
ample, field color declared at line 6 represents the color
which the traffic signal is currently displaying. The val-
ues of this field come from the three static final fields
RED, YELLOW, and GREEN, which map symbolic names
to their associated integer representations. The compile-
time values of these constants are manually enumerated so
that each color can be unambiguously distinguished. Of
course, the integer values have no real relationship to the
colors they represent. Similarly, field currentAction

declared at line 17 could take its values from the inte-
ger constants in static final fields IDLE, INCREASE SPEED,
DECREASE SPEED, and STOP.
Field MAX SPEED (line 15) defines the maximum speed

of the automobile. This field differs from the remaining
static final fields: unlike their integer values, which are used
only to encode enumerated values, the value of MAX SPEED

has a very significant meaning. This key distinction illus-
trates the difference between fields that are named constants
(e.g., MAX SPEED) from those participating in the int enum

1This example was inspired by one of the authors’ work at the Center
for Automotive Research at the Ohio State University.

pattern [2].2 In this paper we consider a more general ver-
sion of this pattern which applies to all primitive types3; we
will refer to it as the weak enum pattern. The term “weak”
is used to denote the lack of type safety and other features
inherent to the pattern.
Figure 1(a) illustrates the use of the weak enum pat-

tern. Clearly, the meaning of int depends on the context
of where values are used. The programmer is left with the
responsibility of manually inferring which int entities are
intended to represent traffic light colors, which are automo-
bile actions, and which are integers. In effect, the program-
mer would be required to investigate transitive relationships
of these program entities to other program entities/opera-
tions. Although the weak enum pattern provides a mech-
anism to make programmer intent more explicit, it suffers
from several significant weaknesses which have been well
documented [2, 23].
The most glaring weakness is the lack of type safety.

For example, there is no mechanism to enforce the con-
straint that color gets its values only from the three color
fields: any integer value would be acceptable at compile
time. Such problems would not be detected until run time,
when an exception would be thrown. Perhaps worse, the
execution will seem to be normal while behaving in a way
not originally intended by the programmer. Problems could
also arise from the allowed operations: for example, it
would be possible to perform arbitrary integer operations,
such as addition or multiplication, upon the color values.
The weak enum pattern creates ambiguities at various

levels. For example, there are fundamental semantic differ-
ences between the constants for automobile actions (begin-
ning on line 11) and MAX SPEED (line 15). Despite these
differences, both entities have essentially identical declara-
tions. The programmer depends on documentation and/or
extensive interprocedural usage investigation to determine
the true intent of the fields. This is also an issue formultiple
sets of enum constants. For example, methods getColor
(line 8) and react (line 21) declare the same int return
type, even though the returned entities have very different
meaning and context. In essence, the program is less self-
documented with respect to the enumerated types, which
could have negative effect on software maintenance tasks.
Verbosity and added complexity arises in several areas.

First, there is no easy way to print the enumerated values in
a meaningful way. Additional code is typically required to
produce desirable results, e.g. as in
if (this.color == RED) System.out.println("RED");

Second, there is no convenient way to iterate over all values
of the enumerated type [2], which requires the developer

2A similar pattern called Type Codes is described in [9] and [14].
3We exclude boolean from this list for several reasons: (i) The type has

only two values, true and false, thus any transformed enum type can
only have two members and (ii) our algorithm becomes simpler due to this
exclusion.

2

1 class TrafficSignal {
2 public static final int RED = 0;
3 public static final int YELLOW = 1;
4 public static final int GREEN = 2;
5 /∗ Current color of the traffic signal, initially red by default ∗/
6 private int color = RED;
7 /∗ Accessor for the light’s current color ∗/
8 public int getColor() {return this.color;}}
9

10 class Automobile {
11 private static final int IDLE = 0;
12 private static final int INCREASE_SPEED = 1;
13 private static final int DECREASE_SPEED = 2;
14 private static final int STOP = 3;
15 private static final int MAX_SPEED = 140;
16 /∗ The action this automobile is currently performing, idle by default ∗/
17 private int currentAction = IDLE;
18 /∗ The current speed of the automobile, initially 5 mph. ∗/
19 private int currentSpeed = 5;
20

21 private int react(TrafficSignal signal) {
22 switch(signal.getColor()) {
23 case TrafficSignal.RED: return STOP;
24 case TrafficSignal.YELLOW:
25 // decide whether to stop or go
26 if (this.shouldGo())
27 return INCREASE_SPEED;
28 else return STOP;
29 case TrafficSignal.GREEN: // no change
30 return this.currentAction;
31 default: throw new IllegalArgumentException
32 ("Invalid traffic color");}} // required
33

34 public void drive() {
35 TrafficSignal aSignal = ... ;
36 int reaction = this.react(aSignal);
37 if (reaction != this.currentAction &&
38 (reaction != INCREASE_SPEED ||
39 this.currentSpeed <= MAX_SPEED))
40 this.performAction(reaction);}
41

42 private void performAction(int action) {...}}

(a) Using integer constants for enumerated types.

1 class TrafficSignal {
2 public enum Color {RED,
3 YELLOW,
4 GREEN};
5 /* Current color of the traffic signal, initially red by default */
6 private Color color = Color.RED;
7 /* Accessor for the light’s current color */
8 public Color getColor() {return this.color;}}
9

10 class Automobile {
11 private enum Action {IDLE,
12 INCREASE_SPEED,
13 DECREASE_SPEED,
14 STOP};
15 private static final int MAX_SPEED = 140;
16 /* The action this automobile is currently performing, idle by default */
17 private Action currentAction = Action.IDLE;
18 /* The current speed of the automobile, initially 5 mph. */
19 private int currentSpeed = 5;
20

21 private Action react(TrafficSignal signal) {
22 switch(signal.getColor()) {
23 case TrafficSignal.RED: return Action.STOP;
24 case TrafficSignal.YELLOW:
25 // decide whether to stop or go
26 if (this.shouldGo())
27 return Action.INCREASE_SPEED;
28 else return Action.STOP;
29 case TrafficSignal.GREEN: // no change
30 return this.currentAction;
31 default: throw new IllegalArgumentException
32 ("Invalid traffic color");}} // required
33

34 public void drive() {
35 TrafficSignal aSignal = ... ;
36 Action reaction = this.react(aSignal);
37 if (reaction != this.currentAction &&
38 (reaction != Action.INCREASE_SPEED ||
39 this.currentSpeed <= MAX_SPEED))
40 this.performAction(reaction);}
41

42 private void performAction(Action action){...}}
(b) Improvements after our refactoring is applied.

Figure 1. Running example: a hypothetical drive-by-wire application.

to manually create such machinery. Third, the weak enum
pattern requires the programmer to manually enumerate the
values of the constants, which increases the likelihood of
errors. For example, different enum constants may be un-
intentionally assigned the same internal value. Finally, the
resulting types are brittle [23]: since the values are compile-
time constants, at compile time they are inlined into clients.
Therefore, if new constants are added in between exist-
ing ones, or if the internal representation of the constants
changes, clients must be recompiled.
Enumerations in Java 1.5. The new enum construct sup-

ports powerful enumerated types that are completely and
conveniently type safe, comparable, and serializable; sav-
ing the programmer from creating and maintaining verbose
custom classes. Enum types increase self-documentation
(e.g., a getColor method has a return type of Color), en-
able compile-time type checking, allow meaningful printed
values, avoid name conflicts, and support separate compila-
tion.
Figure 1(b) shows an enumerized version of the running

example, in which the static final fields have been replaced

by language enumerated types TrafficSignal.Color

and Automobile.Action. The legal values and oper-
ations of these new enumerated types are now enforced
through compile-time checking. There is a clear distinction
between the named constant MAX SPEED and the enumer-
ated values. It is also clear that the result of a call to react
is an Action, which distinguishes it from the return type of
getColor and makes the API more informative. Program-
mers are no longer required to enumerate values by hand,
or to write extra “pretty printing” code.
After enumerization, the brittleness of the overall sys-

tem is reduced. For example, suppose we wanted to make
TrafficSignal compatible with Poland’s system, where
a yellow and red combination is shown directly after red to
alert drivers that a change to green is imminent. After RED
in Figure 1(a), one could add a new field RED YELLOW with
value of 1; the remaining fields’ values would have to be in-
cremented. Even if we did not care to modify Automobile
to accommodate the new color, we would still have to re-
compile it, since upon the original compilation the constant
values for the colors where inlined. In Figure 1(b) addi-

3

tional values can be added easily, and only the enum or the
class containing the enum would require recompilation.

3 Enumerization Approach

A refactoring tool which modifies legacy Java code em-
ploying the weak enum pattern to utilize the Java 1.5 enum
construct faces two major challenges: inferring enumer-
ated types and resolving dependencies. Inferring enumer-
ated types requires distinguishing between weak enum con-
stants and named constants. Figure 1(a) illustrates this issue
through fields STOP and MAX SPEED. Although their dec-
larations are very similar, they are conceptually very dif-
ferent: while the value of named constant MAX SPEED is
meaningful in integer contexts (e.g., for the integer compar-
ison at line 39), the only requirement on the value of enu-
merated constant STOP is that it should be different from
the other integer values representing actions. In general, the
uses of the enumerated values are limited to assignments,
parameter passing, method return values, and equality com-
parisons. Named constants are used in a much wider con-
text, including mathematical calculations (e.g., dividing by
java.lang.Math.PI), various value comparisons (as in
line 39), and so on. Determining the category to which a
constant field belongs requires investigation of every con-
text in which that field’s value is used.
Constant fields are not the only program entities that

need to be refactored for enumerization. In Figure 1(a),
once it has been inferred that STOP is an enumerated con-
stant, we must identify all program entities that also require
refactoring due to transitive dependencies on STOP. We say
a entity A is type dependent on entity B if changing the
type of B requires changing the type of A. An example of
such a dependency is method react: since it returns the
integer form of STOP, in the refactored version it must re-
turn the enum type containing STOP. Furthermore, due to
the dependence on the return value of react, local integer
variable reaction in drive (line 36 in Figure 1(b)) must
also be transformed to be of type Action.
The next section describes an interprocedural refactoring

algorithm which addresses these challenges through careful
categorization of the contexts in which migration from the
weak enum pattern to the new enum construct is valid. The
algorithm identifies all type dependent entities in those con-
texts, including fields, local variables, method return types,
and formal parameters. After all affected entities are identi-
fied, they are classified into groups that must share the same
enum type. At the end, all automatically transformed code
is semantically equivalent to the original.

4 Algorithm

Assumptions. Our algorithm works on a closed-world
assumption, meaning that we assume full access to all
source code that could possibly affect or be affected by the

P original program
φ(P) {f | f is a static final field of primitive type in P}
μ(P) {m | m is a method in P}
υ(P) {l | l is a variable in P}
α variable, field, method
αctxt context in which α may occur

Figure 2. Formalism notation.
procedure Enumerize(F,P)

1: R← Enumerizable(F)
2: R← Unique(R) ∩Distinct(R) ∩ Consistent(R)
3: for all T ∈ R do
4: Transform(T)
5: end for

Figure 3. Top-level enumerization algorithm.

refactoring. We also assume that we are able to statically
identify all references to candidatefields and transitively de-
pendent program entities. This assumption could be invali-
dated through the use of reflection and custom class loaders.
We also assume that the original source code successfully
compiles under a Java 1.5 compiler.
Top-level processing. Procedure Enumerize , shown in

Figure 3, is the top-level driver of our approach. It takes
as input the source code of the original program P , as well
as a set F ⊆ φ(P) of fields (see the notation in Figure 2;
parts of this notation were inspired by [10, 16, 21]). In this
paper we consider refactoring the “standard” compensation
pattern in pre-Java 1.5 as described in [2, 9, 14, 23]. As
such, Enumerize analyzes only static final fields of prim-
itive types since they may potentially be participating in
the weak enum pattern. Function Enumerizable (called at
line 1) infers which candidate fields are being used as enu-
merated values and groups them into their corresponding in-
ferred enum types. At line 2, certain semantics-preserving
constraints are enforced (further discussed later in this sec-
tion). Finally, Transform (line 4) performs the actual code
refactoring for each inferred enum type T , thus altering
the type declarations of each corresponding program entity.
The primitive constant declarations are replaced with the
new enum type declarations and are ordered by their orig-
inal primitive values to enforce a natural ordering, thereby
preserving comparability semantics.
Type inferencing. Function Enumerizable , shown in

Figure 4, is at the heart of the proposed approach. This
type inferencing algorithm is based on a family of type in-
ferencing approaches from [18] and has two goals:
(i) infer fields that are being used as part of enumerated

types (i.e., participating in the weak enum pattern)
(ii) construct minimal sets such that members of the same

set must share the same enum type after refactoring
The output of the algorithm is a set of enumerization sets

containing fields, method declarations, and local variables
(including formal parameters) and their minimal groupings
that are enumerizable with respect to the input constants.

4

function Enumerizable(C)

1: W ← C /* seed the worklist with the input constants */
2: N ← ∅ /* the non-enumerizable set list, initially empty */
3: for all c ∈ C do
4: MakeSet(c) /* init the union-find data structure */
5: end for
6: whileW �= ∅ do
7: /* remove an element from the worklist */
8: α← e | e ∈W
9: W ←W \ {α}
10: for all αctxt ∈ Contexts(α,P) do
11: if ¬isEnumerizableContext (α, αctxt) then
12: /* add to the non-enumerizable list */
13: N ← N ∪ {α}
14: break
15: end if
16: /* extract entities to be enumerized due to α */
17: for all α̂ ∈ Extract(α, αctxt) do
18: if Find(α̂) = ∅ then
19: MakeSet(α̂)
20: W ←W ∪ {α̂}
21: end if
22: Union(Find(α),Find(α̂))
23: end for
24: end for
25: end while
26: F ← AllSets() /* the sets to be returned */
27: for all α′ ∈ N do
28: F ← F \ Find(α′) /* remove nonenum sets */
29: end for
30: return F /* all sets minus the non-enumerizable sets */

Figure 4. Building enumerization sets.

The algorithm uses a worklist W which is initialized
with all given constant fields, as well as a set N of entities
that are not amenable to enumerization. A union-find data
structure maintains sets of related entities; initially, each in-
put constant field belongs to a separate singleton set. Each
worklist elementα is a program entity whose type may have
to be changed to an enum type. A helper functionContexts
identifies all contexts (explained next) in which α and its
related entities α′ appear in P such that each context αctxt

needs to be examined later in the algorithm.
Contexts(α,P) includes all inner-most (i.e., identifier

terminals in the grammar) expressions corresponding to α4.
Furthermore, if α is a method, this set of contexts also in-
cludes Contexts(α′,P) for every method α′ which over-
rides α or is overriden by α. Similarly, if α is a formal
parameter, the set of contexts includes Contexts(α′,P) for
every corresponding formal parameterα′ in an overriding or
overriddenmethod. Entities α′ need to be considered due to
polymorphism. For example, if the return type of a method
m is changed from int to an enum type, this change must
be propagated to all methods overridingm or being overrid-

4Excludes those appearing in initializations of constant fields.

den by m. Similar propagation is necessary when m’s for-
mal parameters are changed (otherwise, method overriding
would incorrectly be transformed to method overloading).
Function isEnumerizableContext examines a context

αctxt to determine if it is amenable to enumerization with
respect to α by using two helper functions Enumeriz-
ableAscender and EnumerizableDescender. Upon appli-
cation, these helper functions examine the context sent to
isEnumerizableContext by traversing, in disparate direc-
tions, the syntax tree of the input expression. The intent of
these functions are loosely analogous to that of synthesized
and inherited attributes of attribute grammars [17], respec-
tively. Function Extract is responsible for determining fur-
ther transitive relationships due to the enumerization of α.
Extract also has two helper functions ExtractionAscender
and ExtractionDescender which are similar in flavor to the
aforementioned helper functions. For conciseness, in the
following discussion we will use the abbreviationsEC , EA,
ED , andEX to refer to these functions. EC has two param-
eters: the entity α whose enumerizability is under question
and a context αctxt which is type dependent on α. EX , on
the other hand, has one parameter αctxt whose constituent,
type dependent program entities must be examined for enu-
merizaton.
Function EC immediately calls EA passing it αctxt, the

context to be examined and α, the entity whose enumeriza-
tion is under question. Figure 5 portrays several of the rules
of EA which are inductively defined in the grammar. EA
begins at αctxt (e.g., ID) and climbs (or ascends) its way up
the grammar until it reaches a significant ancestor of α. We
say that a statement or expression is a significant ancestor of
α if the value of α can be exploited at that point. The ascent
is performed via the Parent function which returns the par-
ent expression above αctxt in the syntax tree. The function
contains helps determine which expression EA ascended
from.
On the way to the significant ancestor, EA may find ex-

pressions that are not amenable to enumerizaton. In that
case, EA will return false and EC, in turn, will return the
result of EA. Such a situation is depicted in the rule for ar-
ray access/creation in Figure 5. On the other hand, onceEA
successfully reaches the significant ancestor, it will then call
ED in order to commence a descent down the pivotal ex-
pression(s); that is, an expression that is consequently type
dependent. Several of the rules of ED are given in Figure
6. As shown, ED completes its descent at the leaf nodes of
the syntax tree, returning true for terminal IDs and false for
contexts which are not amenable to enumerizaation (e.g.,
literals). EA will then, in turn, return the result of ED.
Enumerizable contexts. EC returns false if the given

context αctxt is definitively not enumerizable with respect
to α (e.g., α being used as an array index). Otherwise, EC
returns true if αctxt is promising with respect to α — that

5

Identifiers.
function EA(α,ID)

1: return EA(α, Parent(ID))

Equality expressions
function EA(α,EXP1 == EXP2)

1: return ED(EXP1) ∧ ED(EXP2)

Array access/creation expressions
function EA(α, EXP1[EXP2])

1: if contains(EXP2, α) then
2: return false
3: else
4: return EA(α, Parent(EXP1))
5: end if

Conditional expressions
function EA(α, EXP1 ? EXP2 : EXP3)

1: if contains(EXP2, α) ∨ contains(EXP3, α) then
2: return EA(α, Parent(EXP1 ? EXP2 : EXP3))
3: else
4: return true
5: end if

Figure 5. Enumerizable ascender.
Integer literals
function ED(IL)

1: return false
Identifiers
function ED(ID)

1: return true
Parenthesized expressions
function ED((EXP))

1: return ED(EXP)

Assignment expressions
function ED(EXP1 = EXP2)

1: return ED(EXP1) ∧ ED(EXP2)

Infix addition expressions
function ED(EXP1 + EXP2)

1: return false

Figure 6. Enumerizable descender.

is, enumerizing α does not adversely affect the relation be-
tween α and the enclosing expressions of αctxt. We say that
such a situation is “promising” as opposed to “definite” be-
cause there may exist other program entities α̂ that are type
dependent on α and we cannot yet ensure that every context
α̂ctxt in which α̂ appears is enumerizable. This additional
checking for α̂ is performed byEX , which extracts the type
dependent entities that require further investigation to deter-
mine if they are enumerizable with respect to a particular α
(see [15] for further details). These extracted entities will
be put on the worklist and eventually checked by EC .
To illustrate the type checking component mechanics we

show the application of the EC function at each significant
ancestor discovered during the evaluation the assignment
color=RED from line 6 of our motivating example depicted
in Figure 1(a). The terminal expression RED within the as-

signment expression color=REDwould have been returned
by Contexts when α is RED. Applying EC for this context
we have:

EC (RED, RED) ≡
EA(RED, RED) ≡

EA(RED, color = RED) ≡
ED(color) ∧ ED(RED) ≡

true ∧ true ≡ true

As a result, this expression is considered “promising”. The
subsequent application of EX would extract the program
entity color so that all of its contexts may be checked.
Consider a hypothetical assignment color=5 when α is

color; here color is type dependent on the integer literal
5. Using the rules in Figures 5 and 6, EC (color, color)
is determined to be false. Because the type of the integer
literal cannot be altered to an enum type, color also can-
not be altered and should be included in set N (line 13 in
Figure 4).
There are other situations where type dependencies pre-

vent a program entity from being enumerized. For exam-
ple, consider the following statement where α is again RED:
if(color==arr[RED]) color=GREEN;. The derivation
using our rules would consist of the following:

EC (RED, RED) ≡
EA(RED, RED) ≡

EA(RED, arr[RED]) ≡
false

In this case, EC returns false since it would be impossible
to alter the type of RED because the index to an array access
must be an integral type [12]. Note that the then portion of
the if statement is not evaluated as it is not type dependent
on α. Although EX is not called when EC returns false,
EX would nevertheless return ∅ upon these arguments.
In general, the enumerizability of particular α may de-

pend on its occurrences within comparison expressions (see
the rules for equality/inequality expressions in Figure 5).
For comparison expressions with == and !=, as long as
both operand expressions are enumerizable both will be
included in the same inferred enum type, and the inte-
ger equality/inequality in the original code will be trans-
formed to reference equality/inequality. For <, <=, >, and
>=, the refactored code can use the methods from inter-
face java.lang.Comparable, which is implemented by
all enum types in Java 1.5, to preserve comparability se-
mantics amongst the inferred type’s members. This holds
true so as long as the inferred enum type declarations are in
the order given by their original primitive representations.
An interesting case is contexts in which polymorphic be-

havior may occur. In these cases, we need to consider entire
hierarchies of program entities. Much of the polymorphic
behavior enforcement is implemented with the help of func-
tion Contexts described earlier, however, additional checks

6

are needed within isEnumerizableContext and Extract in
order to ensure the preservation of program semantics. In
particular, the formal parameter expressions and the method
invocation expressions require additional investigation of
program entities in P . For example, in the case of formal
parametersEX must be certain to extract the program enti-
ties embedded in the corresponding actual argument expres-
sions for each method invocation in the method hierarchy.
Due to space constraints, we invite the reader to examine
our companion report [15] for further details.

Transitive dependencies. In function Enumerizable, if
either a context which is not amenable to enumerization is
encountered, or one that can not be transformed, we mark
the set containing the α in question as a “non-enumerizable”
set (line 13 in Figure 4). If this is not the case, the algorithm
proceeds to extract other program entities that are required
to undergo enumerization consideration due to the enumer-
ization of α (line 17). For each of these program entities
α̂ the following steps are taken. If α̂ is not currently con-
tained in an existing set (line 18), which implies that it has
not previously been seen, then a new singleton in the union-
find data structure is created and consequently added to the
worklist (lines 19 and 20). The two sets, the set contain-
ing α and the set containing α̂, are then merged on line
22 thereby capturing the transitive dependencies between
each program entity. Once the computation is complete,
i.e., the worklist has emptied, the sets defined implicitly by
the union-find data structure are returned minus the non-
enumerizable sets (line 30).

FunctionEnumerizable is responsible for type inferenc-
ing; that is, it ensures that the proposed transformation is
type-correct. Its result is a partitioning of program enti-
ties, limited to variables, fields, and methods, that are enu-
merizable with respect to a given set of static final fields.
This essential relationship existing between each member
of each enumerizable set is expressed by our first member
constraint, listed as constraint 1 of Figure 7. This constraint
simply expresses that all members of each set are enumer-
izable with respect to the original input constants, of whom
are also in the set. The partitioning captures the minimal
dependency relationships between these entities; if a trans-
formation of one of the elements occurs, then, in order for
preserve type correctness, a transformation of all elements
in its set must also occur. However, we must make further,
more subtle considerations as to which sets can be trans-
formed. We discuss such considerations next.

Semantics-preserving constraints. In addition to ana-
lyzing the usage of potential enumerated type constants,
in order to preserve semantics upon transformation, it is
also necessary to analyze their declarations. Returning to
the Enumerize function listed in Figure 3, the functions in-
voked on line 2 enforce program behavioral preservation
by excluding sets containing constants that do not meet the

Let Enumerizable : P [φ(P)] −→ P(2) [φ(P) ∪ μ(P) ∪ υ(P)] be
a function mapping a set of primitive static final fields to a set of minimal
program entity sets that are enumerizable in respect to those fields.

∀k ∈ K[∃X, Y | k ∈ X ∧ X ∈ Enumerizable(Y) ∧ K ⊆ Y] (1)

Let ι : φ(P) → Σ∗ be a function mapping a field to its unqualified identifier.

∀ki, kj ∈ K[i 	= j ⇒ ι(ki) 	= ι(kj)] (2)

Let P be the set of all legal primitive values.
Let σ : φ(P) → P be a function mapping a constant to its primitive value.

∀ki, kj ∈ K[i 	= j ⇒ σ(ki) 	= σ(kj)] (3)

Let V = {public, protected, private, package} be the set of legal
visibilities.

Let ϑ : φ(P) → V be a function mapping a constant to its visibility.

∀ki, kj ∈ K[ϑ(ki) = ϑ(kj)] (4)

Figure 7. Member constraints for transform-
ing a group of candidate fields K

remaining member constraints given in Figure 7. Invoca-
tion of the functionUnique corresponds to the enforcement
of constraint 2, Distinct to constraint 3, and Consistent
to constraint 4. Essentially, these constraints express that,
for each set to be transformed into a corresponding enum
type, and for semantics to be preserved, each static final
field must be uniquely named (since constants may have
originated from different classes), distinctly valued (so that
each originally assigned primitive value will correspond to
a single memory reference), and consistently visible (since
the new enum types are not allowed to have instances with
independent visibilities). The resulting intersection of the
sets abiding to each of the member constraints is then as-
signed back to R. At line 4, each set T ∈ R corresponds
to the program entities that will be transformed to the new
language enumeration type T and the transformation takes
place ∀T ∈ R.

5 Experimental Study

Implementation. We implemented our algorithm as a
plug-in in the popular Eclipse IDE. Eclipse ASTs with
source symbol bindings were used as an intermediate pro-
gram representation. The plug-in is built over an existing
refactoring framework [1] and is coupled with other refac-
toring support in Eclipse. To increase applicability to real-
world applications, we relaxed the closed-world assumption
described in Section 3. For example, if the tool encounters a
variable that is transitively dependent upon an element out-
side of the source code being considered, this variable and
all other entities dependent on it are conservatively labeled
as non-enumerizable.
Experimental evaluation. To evaluate the effectiveness

of our algorithm, we used the 17 open-source Java applica-

7

benchmark KLOC classes prim cands enum uses rtypes time (s)
ArtOfIllusion 75 378 333 77 77 111 46 207

Azureus 272 1894 1255 399 347 635 173 1269
java5 180 1586 1299 557 450 572 363 760

JavaCup 6 41 55 3 3 3 3 19
jdepend 3 28 13 1 1 1 1 1
JFlex 10 46 140 24 19 27 9 75

JFreeChart 71 420 153 36 24 43 12 128
jGap 6 137 25 4 4 5 1 7
jgraph 14 91 25 6 3 6 1 11

JHotDraw 29 496 34 11 11 24 8 14
junit 8 271 7 2 2 3 1 1
jwps 20 155 156 76 64 102 25 60

sablecc 29 237 16 8 8 10 2 9
tomcat6 153 1164 738 344 335 400 255 346
verbos 5 41 10 6 6 15 2 3
VietPad 11 84 36 17 17 22 4 8
Violet 7 73 36 14 13 20 6 9

Total: 899 7142 4331 1585 1384 1999 915 2227

Table 1. Experimental results.

tions and libraries listed in Table 1.5 The second column
in the table shows the number of non-blank, non-comment
lines of source code, which range from 3K for jdepend to
272K for Azureus. The third column shows the number
of class files after compilation. For each benchmark, the
analysis was executed five times on a 2.6 GHz Pentium4
machinewith 1 GB RAM. The average running time, in sec-
onds, is shown in column time in Table 1. On average, the
analysis time was 2.48 seconds per KLOC, which is practi-
cal even for large applications.
Column prim shows the number of static final fields of

primitive types6. We separate these fields into two cate-
gories. First, certain fields definitely cannot be refactored,
because the semantics of the program depends on the spe-
cific, actual values of these fields. These fields include those
that were either directly or transitively dependent on op-
erations that utilized their exact value or created a transi-
tive dependency on an entity which could not be refactored
(a complete list of filtered contexts is described in [15]).
We also include in this category the fields which cannot be
refactored due to lack of access to source code (e.g., a field
passed as a parameter to a method defined in a library whose
source code is not available).
We categorize the remaining fields to be candidate fields.

The number of candidate fields per benchmark is shown in
column cands. The fact that the actual values of these fields
do not directly affect the semantics of the program provides
a strong indication that they are playing the role of enumer-
ations in the weak enum pattern. The set of candidate fields
along with their corresponding, transitive entities represent
the minimal set of elements a programmer would have to
investigate for refactoring. Note that although these sets are

5java5 denotes the package java. included in the Java 1.5 JDK.
6Excludes boolean types.

minimal, for three of our benchmarks they still contain well
over 300 elements, and several others contain over 50 ele-
ments.

The number of fields that our plug-in could safely refac-
tor is shown in column enum. The results show that our
approach was able to refactor 87% of the fields that could
possibly be participating in the weak enum pattern. The
tool was unable to refactor the remaining 13% of fields be-
cause either they or an element of their dependency sets
were used in explicit cast expressions. We conservatively
choose not to refactor elements used in cast expressions
due to the existence of possible side effects on the values
of variable through narrowing conversions. For example,
consider the following code: short z = 128; byte x

= (byte)z;. This is a valid cast in Java, but this cast will
result in x having the value −128 and not 128. Clearly, not
accounting for such an occurrence prior to refactoring could
lead to significant changes in program semantics upon mi-
gration. Detecting such changes due to explicit casts is be-
yond the scope of the work being considered in this paper.

Of course, fields are not the only program entities whose
type requires alteration. Column uses shows the total num-
ber of declaration sites that must be modified to accommo-
date the enumerization. The numbers motivate the need for
automated tools such as ours. In particular, the large appli-
cations require hundreds of code modifications (e.g., over
600 for Azureus). These code modifications are spread
across many classes and packages, and occur in many dis-
tinct methods. Attempting to identify the needed modifi-
cations by hand would be a labor-intensive and error-prone
task.

Column rtypes shows the number of resulting enum
types produced by our tool. Note that the number of types
is relatively close to the number of enum fields. This indi-

8

cates that there are few actual enumeration values per enum
type, on average about 2.2 per type. This number may not
reflect the number of weak enum pattern instances intended
by the programmer. Our algorithm is conservative in its
type creation, only grouping fields that share transitive de-
pendencies. These are the only fields that must share the
same enum type upon refactoring. However, given the cur-
rent state of the program source, dependencies may not ex-
ist between all enumerations intended to be grouped as one
type. For the running example, DECREASE SPEED should
intuitively be grouped with the other vehicle actions. Un-
fortunately, since it is not currently being referenced by the
code, it does not share a dependency with any of the other
fields and as a result it is assigned a singleton set. Clearly,
in this case no algorithmic method could guarantee the ex-
act grouping intended by the programmer; however, there
are various heuristics that may be employed to better ap-
proximate the intended types (e.g., heuristics that take into
account lexical proximity of field declarations, similar to
what is described in [13]).
Summary. Overall, the experimental results indicate that

the analysis cost is practical, that the weak enum pattern is
commonly used in legacy Java software, and that the pro-
posed algorithm successfully refactors a large number of
fields (and their dependent entities) into enumerated types.

6 Related Work

Both Fowler [9] and Kerievsky [14] present the refactor-
ing entitled REPLACE TYPE CODE WITH CLASS. Both de-
tail a series of steps involved in transforming type codes (en-
tities subscribing to what we label as the weak enum pattern
in this paper) into instances of custom, type-safe classes
utilizing the Singleton pattern [11]. Bloch [2] presents a
similar solution. While the pattern describes an enum class
that seems effective in regards to the same criteria we have
presented in this paper, the refactoring process is entirely
manual and the transformation is not to language enumer-
ated types. Most importantly, the developer is required to
posses a priori knowledge of exactly which fields are po-
tentially participating in the type code pattern in order to
perform the refactoring. Our proposed approach does not
require such knowledge and is completely automated.
Tip et al. [26] propose two automated refactorings, EX-

TRACT INTERFACE and PULL UP MEMBERS, both well in-
tegrated into the Eclipse IDE. These refactorings deal with
generalizing Java software in an effort to make it more
reusable. Although this proposal shares similar challenges
with our approach in respect to precondition checking and
interprocedural dependency analysis, there are several key
differences. The generalization approach manipulates the
interfaces7 of reference types along with the means in which

7The term interface is used here in a broad sense.

objects communicate through those interfaces, as our ap-
proach entails transforming primitive type entities to refer-
ence types. Moreover, a method based on type constraints
[18] is used to resolve dependencies amongst program enti-
ties. Sutter et al. [24] also use type constraints in addition
to profile information to customize the use of Java library
classes. A type constraint approach would have also been
conceivable for our work in that similar type constraints
may have been formed for primitive types. Nonetheless, a
type constraint-based approach for primitive transformation
may have proven to be excessive since primitive types do
not share many of the same relationship as reference types
(e.g., sub-typing). Therefore, we preferred more of a type
checking approach as opposed to constraint solving.
Several other approaches [7, 10, 16, 25, 28] exist to mi-

grate legacy Java source to utilize new Java 1.5 language
features, in particular generics. Although both generics and
language enumeration types serve to improve type safety,
the two features are conceptually different and face unique
challenges in automated migration, including preserving
program erasure [3], sub-typing compatibility, and inferring
wildcard types. However, our proposal for inferring enu-
merated types, although not being required to address such
issues, requires introducing a new type in the original source
as opposed to introducing a type parameter or argument for
an existing type. When refactoring primitives one must con-
sider many additional operations that may be invoked on the
primitive entities that are not available to reference types.
Steimann et al. [21, 22] propose an approach to decouple

classes with inferred interfaces. Similar to our approach,
a new type is introduced in the source (i.e., the inferred
interface), and the compile-time types of program entities
are altered as a result of the refactoring. Additionally, both
approaches do not leverage constraint solving mechanisms,
instead, Steimann et al. utilize a static analysis based on [4].
Automated usage analysis and type inferencing tech-

niques similar to ours also exist for other languages. Ei-
dorff et al. [8] demonstrate a Year 2000 conversion tool uti-
lizing type inferencing techniques for correcting problem-
atic date variables in COBOL (aweakly-typed programming
language) systems. Ramalingam et al. [20] also exploit us-
age analysis techniques to identify implicit aggregate struc-
ture and programmer intent of COBOL program entities not
evident from their declarations.
Proposals for identifying enumerated types exist for

COBOL and C. Although our work applies to a significantly
different source language, methods for identifying enumer-
ated types in these legacy systems share similar challenges.
Deursen and Moonen [5, 6] present a general approach uti-
lizing judgements and rules for inferring type information
from COBOL programs. Our approach, however, is fo-
cused more on the migration to a specific language enumer-
ated type construct that contains corresponding, preexist-

9

ing constraints. As a result, our approach must deal with
different semantic preservation issues upon transformation.
Moreover, refactoring primitives to reference types presents
unique challenges as objects in Java cannot share the same
memory location. Gravley and Lakhotia [13] tender an ap-
proach for identifying enumerated types in C programs that
utilize a pre-compiler directive pattern via their declaration
characteristics.

7 Conclusions and Future Work

In this paper we have presented a novel, semantic pre-
serving, type inferencing algorithm which migrates legacy
Java code employing the weak enum pattern to instead uti-
lize the modern, type-safe enum language construct intro-
duced in Java 1.5. We implemented our algorithm as a plug-
in for the popular Eclipse IDE and evaluated it on 17 open
source applications. Our experiments showed that not only
did our tool scale well to large applications but was able
to refactor 87% of all fields that could possibly be partic-
ipating in the weak enum pattern. Prior to being able to
publicly distribute our plug-in, we first must address several
implementation details including developing a user-friendly
interface and exploring potentially faster intermediate rep-
resentations of code (e.g. Jimple [27]). In the future we also
plan to investigate ways of extending our tool to also refac-
tor patterns using constant values of reference types, such
as Strings and Dates, as enumeration members.

Acknowledgments

We would like to thank Dr. Frank Tip from IBM Research
for his answers to our technical questions and for referring
us to related work. We would also like to thank the anony-
mous referees for their extremely useful comments and sug-
gestions.

References
[1] D. Bäumer, E. Gamma, and A. Kiezun. Integrating refac-

toring support into a Java development tool. In OOPSLA’01
Companion, October 2001.

[2] J. Bloch. Effective Java Programming Language Guide.
Prentice Hall PTR, 2001.

[3] G. Bracha and et al. Adding generics to the Java program-
ming language: Public draft specification, version 2.0. Tech-
nical Report JSR 014, Java Community Process, June 2003.

[4] J. Dean, D. Grove, and C. Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In
ECOOP, pages 77–101, 1995.

[5] A. V. Deursen and L. Moonen. Type inference for COBOL
systems. In IEEE Working Conf. on Reverse Engineering,
page 220, 1998.

[6] A. V. Deursen and L. Moonen. Understanding COBOL sys-
tems using inferred types. In IEEE Int. Workshop on Pro-
gram Comprehension, page 74, 1999.

[7] A. Donovan, A. Kieżun, M. S. Tschantz, and M. D. Ernst.
Converting Java programs to use generic libraries. In OOP-
SLA, pages 15–34, 2004.

[8] P. H. Eidorff and et al. Annodomini: From type theory to
year 2000 conversion tool. In ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 1–
14, 1999.

[9] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

[10] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller. Effi-
ciently refactoring Java applications to use generic libraries.
In ECOOP, pages 71–96, July 27–29, 2005.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley, Boston, MA, USA, 1995.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha.
JavaTMLanguage Specification (3rd Edition). Addison-
Wesley, 2005.

[13] J. M. Gravley and A. Lakhotia. Identifying enumeration
types modeled with symbolic constants. In IEEE Working
Conf. on Reverse Engineering, page 227, 1996.

[14] J. Kerievsky. Refactoring to Patterns. Pearson Higher Edu-
cation, 2004.

[15] R. Khatchadourian and et al. Automated refactoring of
legacy Java software to enumerated types. Technical Report
OSU-CISRC-4/07-TR26, Ohio State University, Apr. 2007.

[16] A. Kieżun, M. D. Ernst, F. Tip, and R. M. Fuhrer. Refactor-
ing for parameterizing Java classes. In International Confer-
ence on Software Engineering, 2007.

[17] D. E. Knuth. Semantics of context-free languages. Theory
of Computing Systems, 2(2), 1967.

[18] J. Palsberg and M. I. Schwartzbach. Object-oriented type
systems. John Wiley and Sons Ltd., Chichester, UK, 1994.

[19] B. C. Pierce. Types and programming languages. MIT Press,
2002.

[20] G. Ramalingam, J. Field, and F. Tip. Aggregate structure
identification and its application to program analysis. In
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 119–132, 1999.

[21] F. Steimann, P. Mayer, and A. Meißner. Decoupling classes
with inferred interfaces. In ACM Symposium on Applied
Computing, pages 1404–1408, 2006.

[22] F. Steimann, W. Siberski, and T. Kühne. Towards the system-
atic use of interfaces in java programming. In PPPJ, 2003.

[23] Sun Microsystems. Java Programming Language: Enhance-
ments in JDK 5. java.sun.com/j2se/1.5.0.

[24] B. D. Sutter, F. Tip, and J. Dolby. Customization of java
library classes using type constraints and profile information.
In ECOOP, pages 585–610, 2004.

[25] F. Tip, R. Fuhrer, J. Dolby, and A. Kieżun. Refactoring tech-
niques for migrating applications to generic Java container
classes. Technical Report RC 23238, IBM T.J. Watson Re-
search Center, February 2004.

[26] F. Tip, A. Kieżun, and D. Bäumer. Refactoring for gener-
alization using type constraints. In OOPSLA, pages 13–26,
Nov 2003.

[27] R. Vallée-Rai and et al. Optimizing Java bytecode using the
Soot framework: Is it feasible? In International Conference
on Compiler Construction, LNCS 1781, pages 18–34, 2000.

[28] D. von Dincklage and A. Diwan. Converting Java classes to
use generics. In OOPSLA, pages 1–14, 2004.

10

	Automated Refactoring of Legacy Java Software to Enumerated Types

