


analyses except the amino acid ASTRAL-II analyses
(A8), which resulted in low nodal support (ASTRAL-
Boot = 51, DT369; ASTRALBoot = 45, DT393). All but
one eudamine genus (Lobocla) is found in the Neotrop-
ics, and the two early lineages Coeliadinae (from Africa

to Oceania) and Euschemoninae (Australia) are distrib-
uted in the Old World, a result with important biogeo-
graphical implications. An Old World tropical origin of
skippers is suggested by the current distribution of
Coeliadinae and Euschemoninae.

(See figure on previous page.)
Fig. 2 Phylogenomic skipper tree of life inferred using maximum likelihood. Maximum likelihood phylogeny inferred in IQ-TREE based on the nucleotide
DT393 dataset with partitioning scheme selected in PartitionFinder and models of nucleotide substitution selected in IQ-TREE (Analysis A3). Nodal support
values for numbered nodes on this tree (as well as alternative analyses) are presented in Fig. 3. Subfamilies and tribes recognized by Warren et al. [23] are
indicated, and the color of species names indicates their subfamily. Images of skippers on the right illustrate morphological diversity within the family:
a Choaspes benjaminii (credit: Sharleen Chao); b Euschemon rafflesia (credit: Todd Burrows); c Astraptes talus (credit: Les Catchick); d Pyrgus carthami (credit:
Alan Cooper); e Heteropterus morpheus (credit: Hudák Tamás); f Trapezites symmomus (credit: John Tann); g Aeromachus inachus (credit: Tetsuya Shimizu);
h Megathymus yuccae (credit: Jim & Lynne Weber); i Hesperia comma (credit: Pedro Candela)

Fig. 3 Nodal support along the backbone of the skipper tree of life. Summary of nodal support values for the deep divergences along the backbone
of the skipper ToL inferred with IQ-TREE, ASTRAL-II and TNT phylogenetic analyses. Nodes N1 to N14 are indicated in Fig. 2. Alternative analyses A1 to
A10 for both datasets (DT369 and DT393) are indicated in the embedded caption
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Our prediction of the Old World tropical origin of
Hesperiidae is supported to some extent by the fossil
record. The oldest known butterfly fossil is in the
Coeliadinae and was discovered on the island of Fur
in Denmark, embedded in marine deposits dating
back to the Eocene (ca. 55 Ma), thereby substantiating the
existence of skippers in the Old-World during that period
[60], and supporting the colonization of the New World
from the Old World. Multiple origins of New World and
Old World skipper lineages are evident across our tree, in-
dicating a dynamic biogeographical history over time.
However, the true number of colonization events, mecha-
nisms involved (dispersal, regional extinction, vicariance),
and the biogeographic history of skippers will require
additional research with greater taxon sampling.
Within Pyrginae, we recovered relationships different

from those of prior phylogenetic studies. Celaenorrhinini
(Clade I) and Tagiadini (Clade II) are sister groups, as in
Warren et al. [23, 41], Sahoo et al. [32, 42] and Espeland
et al. [21]. However, the placement of the Neotropical
firetips, Pyrrhopygini (Clade III), remains unclear. Most
analyses recovered the tribe as sister to all Pyrginae
except Celaenorrhinini and Tagiadini (Fig. 2), but with
little support as in [19]. The ASTRAL-II nucleotide
analyses recovered an alternative topology for the
placement of Pyrrhopygini, as the sister group to
Celaenorrhinini and Tagiadini with moderate support
(ASTRALBoot = 73, DT369; ASTRALBoot = 85, DT393).
This latter topological arrangement is consistent with re-
sults from previous studies [23, 32, 41, 42]. A greater and
more diverse taxon sample could clarify the placement of
firetips within Pyrginae. As in [19], we recovered Achlyo-
dini (Clade IV) as sister to Carcharodini (Clade V), and
Erynnini (Clade VI) as sister to Pyrgini (Clade VII), but
with better support than in the previous study. These re-
sults are inconsistent with other previous studies that
found alternative placements for these tribes within Pyrgi-
nae [23, 32, 42].
Our results also point to Heteropterinae as the

sister-group to Trapezitinae + Hesperiinae, a relation-
ship that is robust and congruent with previous work
[21, 23, 32, 41–43]. The Australasian subfamily Trape-
zitinae, represented here by a single species of Trape-
zites, is recovered as sister to the grass skippers,
Hesperiinae (Figs. 1, 3). This sister-group relationship
is robust across analyses and congruent with prior
studies [21, 23, 32, 41, 42]. Within Hesperiinae, rela-
tionships among tribes and clades are not fully re-
solved. We find Aeromachini (Clade VIII) as sister to
the rest of Hesperiinae with strong nodal support. Fi-
nally, the giant skippers (Agathymus and Megathymus
spp., Clade XVI) were recovered as monophyletic with
strong nodal support in all analyses (Figs. 2 and 3).
Most inferences (IQ-TREE and ASTRAL-II) based on

nucleotide datasets placed them as sister to the Neo-
tropical genus Perichares, although amino acid datasets
placed them as an isolated clade within Hesperiinae. Based
on morphology and the species’ known geographic distri-
butions, the relationship of giant skippers with Perichares
may be an artifact due to insufficient taxon sampling in
this part of the tree and we do not consider this result to
be robust. Several clades that remained unnamed by War-
ren et al. [23, 41] were also recovered in our analyses. We
defer the proposal of new tribal names to a subsequent
study with denser taxon sampling.

Conclusions
The current study provides a robust evolutionary frame-
work that was largely lacking for one of the most
species-rich butterfly families. Nearly all relationships in
our tree are strongly supported, regardless of the data-
set type (amino acids or nucleotides), optimality criter-
ion (likelihood, parsimony, coalescence), or partitioning
scheme. Our study demonstrates that AHE is a robust
method for inferring phylogenies over a range of taxo-
nomic levels using different optimality criteria. The un-
precedented amount of data generated from this study
will permit reconstruction of intricate evolutionary pat-
terns across the skipper tree of life, and shed light on
new ones.
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