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Simple Summary: The tumor suppressor gene TP53 is conserved from nematode to human. In
humans the TP53 gene is found mutated in a majority of cancers and therefore, the p53-induced cell
death pathway is dysfunctional. As such, it is of the utmost importance to determine mechanisms
and models to test for ways to induce p53-independent cancer cell death. The small, transparent,
nematode C. elegans is a whole animal with a germline stem cell tumor model that presents such an
opportunity. We used this model with a well-studied p53 mutant that increases germline tumor size to
test for ways to induce p53-independent cell death. Herein, we report that two p53-independent death
inducers, a nucleoside analogue and a PARP inhibitor, are capable of inducing C. elegans germline
tumor cell death. This suggests new targeted drugs can be tested in this model for p53-independent
cancer cell killing.

Abstract: The TP53 gene is mutated in over 50% of human cancers, and the C. elegans p53-1 (cep-1)
gene encodes the ortholog CEP-1. CEP-1 is activated by ultraviolet type C (UVC)-induced DNA
damage and activates genes that induce germline apoptosis. UVC treatment of gain-of-function
glp-1(ar202gf)/Notch tumorous animals reduces germline stem cell numbers (and overall tumor size),
while UVC treatment of double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) increases DNA damage
adducts and stem cell tumor volume. We compared UVC-induced mitotic stem cell death and
animal lifespans for the two different C. elegans tumorous strains. C. elegans stem cell compartment
death has never been observed, and we used engulfed small stem cells, notable by green fluorescent
puncta, to count cell death events. We found UVC treatment of glp-1(ar202gf) animals increased stem
cell death and increased lifespan. However, UVC treatment of double-mutant cep-1/p53(gk138);glp-
1/Notch(ar202gf) animals decreased stem cell death, increased tumor volume, and decreased animal
lifespan. There are pharmacological agents that induce p53-independent cell death of human cells in
culture; and two notable protocols are the PARP-trapping agents of temozolomide plus talazoparib
and the nucleoside analogue 8-amino-adenosine. It is important to determine ways to rapidly
test for pharmacological agents able to induce p53-independent cell death. We tested feeding cep-
1/p53(gk138);glp-1/Notch(ar202gf) nematodes with either 8-amino-adenosine or temozolomide plus
talazoparib and found both were able to decrease tumor volume. This is the first comparison
for p53-independent responses in cep-1/p53(gk138);glp-1/Notch(ar202gf) animals and showed UVC
DNA damage increased tumor volume and decreased lifespan while PARP inhibition decreased
tumor volume.
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1. Introduction

The p53 gene is conserved from Caenorhabditis elegans to humans and is known as the
guardian of the genome due to its ability to translate DNA damage signals into signals
for cell death and DNA repair even in stem cells [1–4]. Stress signals as diverse as the
activation of an oncogene, or epigenetic modifications, can lead to p53 activation, and
this translates into the activation of numerous pathways that can culminate in cell death
(apoptosis) and reduced cell proliferation [1–4]. Loss of wild-type p53 function significantly
increases the likelihood of specific types of cancers, and mutations in the TP53 gene are
associated with both sporadic cancers and the familial Li Fraumeni syndrome [1]. The
majority of p53 mutations are missense, and many of these cause not only loss of tumor
suppressor function but also gained oncogenic activity [5]. As p53 is mutated in over 50%
of all human cancers, it is crucial to identify p53-independent pathways to provoke tumor
inhibition and tumor cell death.

Similarly C. elegans p53 (CEP-1) activates germ cell apoptosis, and animals with
mutation in their cep-1/p53 are used as a model organism for examining the influence
of drugs on biological pathways in the absence of cep-1/p53-induced apoptosis [4,6,7].
C. elegans holds potential for pharmacological biomedical research [8,9]. Chemotherapeutic
studies focusing on outcomes in C. elegans have shown promise for identifying efficacy
in treating a number of diseases including cancer [10–13]. The C. elegans germline has
been used for screening environmental toxins that activate CEP-1[14]. While CEP-1/p53
promotes apoptosis, it is also required for maintaining genome integrity through normal
meiotic chromosome segregation in the germ line [15]. Importantly, the C. elegans germ cell
genome depends on a number of different DNA repair pathways during proliferation [16].
As such, combining mutations and treating with different pharmacological agents holds
promise to find synthetic lethal targets for p53-independent cell death pathways.

The paradigm in C. elegans is that CEP-1/p53 only induces germline cell death when
cells are moving from mitosis into meiosis in the transition zone. C. elegans gametogenesis
provides a model for examining stem cells before they undergo meiosis to become gametes.
The proliferating germ cells therefore can be used as a model for cancer stem cells. Germline
mitosis occurs in a somatic “niche” that begins on two opposite distal ends, with the meiotic
cells developing in the more proximal regions. This germline pattern is controlled by
specific proximal and distal somatic gonad signals in a syncytial organization with each
nucleus surrounded by a connected cytoplasm that can be disrupted in mutants [17,18]. A
schematic of such hermaphrodite gonadogenesis is beautifully represented, along with a
clear explanation of the glp-1(ar202) Pro phenotype caused by aberrant GLP-1 signaling, in
papers from the Hubbard laboratory [17,18]. The region when mitotic cells start to enter
prophase of meiosis one can be seen in DAPI-stained gonads, and this region is called the
“transition” zone. It is assumed that the germline cell death induced by CEP-1/p53 is only
apoptotic and has to be visualized as large transition cells being engulfed by the somatic
gonad. All descriptions of germ cell death have suggested that there is no cell death in
the mitotic region. As such, no studies to date have examined the influence of loss of
CEP-1/p53 function on cell death in the extended mitotic region of Pro phenotype animals
with hyper-proliferative germline. CEP-1/p53, the C. elegans ortholog to the human p53
protein, functions as a transcription factor that initiates DNA damage-dependent responses
by transactivating egl-1 and ced-13 (whose orthologs are PUMA and NOXA, respectively)
to promote apoptosis in the presence of DNA damage [6,19,20]. It is highly likely that
proliferative mitotic germ cells are capable of signaling DNA damage to CEP-1/p53, as this
signaling exists in mammalian stem cells.

The nematode germline stem cells regulate whole animal lifespan, and a proliferating
germline reduces longevity [21,22]. Germline stem cell proliferation is regulated by numer-
ous factors including nutrient sensing [23–26]. When nematodes express gain-of-function
glp-1 (Notch), this promotes germline stem cell proliferation and inhibits differentiation
(akin to a germline tumor), which then reduces nematode lifespan. Mutations that in-
crease C. elegans lifespan reduce this stem cell proliferation [23,27]. Metabolic stress in
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the presence of wild-type CEP-1/p53 can reduce nematode lifespan, and in many cases,
the loss of normal functioning CEP-1/p53 extends lifespan [28–31]. Silencing expression
of wild-type cep-1/p53 or the mutant allele cep-1/p53(gk138) extends the adult nematode
lifespan [32]. Therefore, it is possible that the reduction in lifespan seen in gain-of-function
glp-1 (Notch) animals is due both to the burden of a larger germline size and the metabolic
stress signaling to the CEP-1/p53 pathway. If so, then the mutation of cep-1 would increase
the lifespan.

Glp-1(ar202gf)/Notch animals are characterized by a proximal tumor phenotype (Pro)
that consists of a highly proliferative mitotic region without always presenting as a fully
penetrant tumorous germline [17,18]. The allele also has an increased mitotic region due
to increased proliferation. We previously reduced the size of the tumor phenotype in
glp-1(ar202gf)/Notch animals when we treated them with UVC-induced DNA damage.
This was likely due to activation of functional CEP-1/p53 because in double-mutant cep-
1/p53(gk138);glp-1/Notch(ar202gf) animals treated with UVC, there was an expanded size of
the proliferative tumorous germline [33]. UVC treatment of glp-1(ar202gf)/Notch animals
activates CEP-1 target gene pathways, but in mutant cep-1/p53(gk138);glp-1/Notch(ar202gf)
animals, these pathways are blocked [33]. As such, it was important to follow up our
studies to determine how double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) C. elegans
were influenced for lifespan and cell death in the proliferative zone. Herein, we report
that, in the double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) animals, the mutated cep-
1(gk138) extends the lifespan of proximal tumor phenotype gain-of-function glp-1(ar202gf )
nematodes. Interestingly, in cep-1(gk138);glp-1(ar202gf) double mutants, under conditions
where UVC damage increases tumor size, [33] the UVC damage reduced a previously
unseen glp-1(ar202gf) mitotic germ cell death and reduced nematode lifespan.

It is critical to identify models and mechanisms to induce p53-independent cell death.
We previously identified two pharmacological pathways that are able to induce p53-
independent cell death in human cells. These are the nucleoside analogue pathway induced
by 8-amino-adenosine and the PARP inhibitor plus DNA damage synthetic lethal pathway
induced by temozolomide plus talazoparib [34–37]. To kill cells in tumors without func-
tional p53, the induction of alternative cell death pathways are needed. PARP inhibitor
therapy can function to trap PARP on chromatin and cause synthetic lethal cell death by
increasing genomic instability in cells that lack certain DNA repair pathways [38–40]. The
pharmacological pathways able to induce p53-independent cell death in human cells were
herein studied in the context of C. elegans cep-1(gk138);glp-1(ar202gf) double mutants. This
was done to determine if the C. elegans mitotic germ cells could be induced to undergo
p53-independent cell death. To our knowledge C. elegans germ cell death has only been
documented in the transition zone and had never before been documented in the mitotic
region. The pharmacological agents tested were the PARP inhibitor talazoparib plus temo-
zolomide and the nucleoside analogue 8-amino-adenosine (previously documented to
induce p53-independent cell death in human cells) [34,35]. We observed that mitotic cell
death occurred robustly in glp-1(ar202gf ) animals and was induced pharmacologically but
not with UVC in cep-1(gk138);glp-1(ar202gf) nematodes. This suggests that cep-1(gk138);glp-
1(ar202gf) nematodes can be used to screen for compounds that induce p53-independent
cell death in a whole animal model.

2. Materials and Methods
2.1. Growth Media and C. elegans Maintenance

All strains were grown on nematode growth media (NGM) and were grown at either
15 ◦C, 20 ◦C, or 25 ◦C. Further, 1 L of NGM includes: 3 g NaCl (Fisher), 17 g agar (Fisher),
2.5 g peptone (Becton, Dickinson and Company), and 1 mL cholesterol (5 mg/mL in 95%
ethanol). We sterilized by autoclaving and added 1 mL of 1M CaCl2, 1 mL of 1M MgSO4,
and 25 mL 1M potassium phosphate, pH 6. The plates were dried, and 200 µL OP50 E. coli
in LB was pipetted onto the center of the plate for the worms to consume. M9 Buffer was
prepared using 3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, and 1 mL 1M MgSO4, followed by
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adding H2O up to 1 L. For drug treatments, concentrated (4×) heat-killed OP50 (HKOP50)
was prepared by inoculating a single OP50 colony in 200 mL LB broth and was grown
overnight in a 37 ◦C shaker. OP50 was transferred to a 65 ◦C water bath for 30 minutes,
followed by making 40 mL aliquots and centrifuging at 6000 rpm. The supernatant was
discarded, and the pellet was resuspended in 10 ml fresh LB and stored at 4 ◦C.

2.2. C. elegans Strains

The following mutant strains were used: cep-1(gk138) I bcls39[P(lim-7)ced-1::GFP +
lin-15(+)] (JBC1), cep-1(gk138) I glp-1(ar202gf) III (JBC2), I glp-1(ar202gf) III bcls39[P(lim-7)ced-
1::GFP + lin-15(+)] V (JCB6), and cep-1(gk138) I glp-1(ar202gf) III bcls39[P(lim-7)ced-1::GFP +
lin-15(+)] V (JBC7). The cep-1(gk138) I glp-1(ar202gf) III bcls39[P(lim-7)ced-1::GFP + lin-15(+)]
V (JBC7) strain was constructed by the Bargonetti Laboratory: cep-1(gk138) I bcls39[P(lim-
7)ced-1::GFP + lin-15(+)] V (JBC1) strain males were crossed with cep-1(gk138) I glp-1(ar202gf)
III (JBC2) strain hermaphrodites, yielding an F1 population. F1 progeny (F2 generation)
laid at 15 ◦C of worms were selected if F2 worms laid at 25 ◦C developed full-body
tumors, resulting in sterility. The selection process was repeated with the offspring of the
selected F2 worms at 15 ◦C, and epifluorescence microscopy was used to identify a brood
in which 100% of worms screened tested positive for germline GFP expression. The strain
bcIs39[P(lim-7)ced-1::GFP+lin-15(+)] (MD701) were also used [41].

2.3. Lifespan Assay

Adult worms were picked from the stock plate and transferred onto a freshly seeded
NGM plate to lay eggs for 2 h at either 15 ◦C or 20 ◦C (for animals to be shifted to 25 ◦C).
Worms were removed from the plate leaving only the laid eggs. The plates were then
incubated at 15 ◦C or 25 ◦C accordingly and allowed to grow until they reached L4 larval
stage. Non-L4s were removed from the plate, and the synchronized worms were grown
for an additional 24 h. Worms were then monitored and scored every other day. Worms
were transferred to newly seeded plates as necessary to avoid mixing with new progeny
and starvation via OP50 depletion. A worm pick was used to detect movement in response
to touch on its body to determine status of worms. Deaths were observed and scored as
events for each worm. Worms that died through embryonic matricide (bagging), burrowing
in the agar, or desiccation along the edge of the plate were censored.

2.4. UVC Treatments

UVC treatments were done with a Spectrolinker. Worms were picked and transferred
to NGM plates without bacteria. Worms were then exposed to 50 J/m2 UVC or left
untreated as controls. Worms were then placed back into seeded NGM plates and allowed
to recover. For lifespan experiments, UVC treatments were done 24 h after the L4 stage.
For cell death experiments, worms were placed back onto seeded NGM plates to recover
for 24 h, followed by live imaging.

2.5. Cell Death Analysis and Scoring

Analysis of germline cell death events were done using the CED-1::GFP reporter.
Worm slides were prepared 24 h after recovery from either UVC or drug treatments (and
untreated controls). Agar pads were prepared by adding 55 µL to 60 µL of molten 2%
agarose, flattening by another slide, and adding 5 µL 3 mM levamisole dissolved in M9
buffer to anesthetize the worms. Worms were picked from seeded NGM plates and placed
in the agar pad with levamisole. Normarski (DIC) and green fluorescent images were
taken using the Nikon Eclipse Ti-S Fluorescent Microscope at 20× objectives. Images were
processed, and cell death events were scored using ImageJ with Bio-Formats plug-in.
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2.6. Drug Treatment Assay
2.6.1. 8-Amino-Adenosine Treatment

Worms were grown on heat-killed OP50-seeded NGM plates at 15 ◦C following a
3-hour egg lay. Bacterial lawn solutions for the three experimental groups were prepared
using 1:3 dilutions: (1) H2O (control): 50 µL autoclaved water + 150 µL 4× concentrated
heat-killed OP50 E. coli; (2) 5 µM (experimental): 50 µL 5µM 8AA + 150 µL of 4× concen-
trated heat-killed OP50 bacteria; and (3) 50 µM (experimental): 50 µl 50 µM 8AA + 150 µL
4× concentrated heat-killed OP50 bacteria. Worms were shifted to the tumor-inducing
temperature of 25 ◦C at the L4 stage and DAPI stained 24 h later. Confocal images of each
germline bend were taken at 20× objectives of worms mounted on 3% agar pad slides.

2.6.2. Temozolomide and Talazoparib Treatment

The following solutions were prepared for the drug treatment: (1) 50 µL of 1% dimethyl
sulfoxide (DMSO, in M9) + 150 µL 4× concentrated HKOP50 (vehicle control) and (2) 50 µL
temozolomide (1 mM) and talazoparib (10 µM) + 150 µL 4× concentrated HKOP50 (both
drugs in 1% DMSO). Adult worms were transferred onto empty NGM plates to rid the live
OP50 from their bodies. Worms were transferred to plates with heat-killed OP50 containing
vehicle control or the drugs and allowed to lay eggs for 2 h, followed by removal of worms
and incubation of plates with eggs at 15 ◦C until L4 stage. Then, worms continued to grow
for 24 h at 25 ◦C to induce tumor growth. Worms were then removed from plates and
prepared for imaging.

2.7. Measuring Proliferative Capacity

Worms were collected and transferred into an Eppendorf tube with 1 mL M9 buffer.
Worms were centrifuged (1000 rpm) for 1 min, and the supernatant was discarded. The
pellet was fixed for 5 min under 1 mL 95% ethanol, followed by another centrifugation for
1 min at 1000 rpm. The supernatant was removed, and 1 drop of mounting media with
DAPI (Vectashield) was added to the pellet and wrapped in aluminum foil and stored at
4 ◦C for 30 min up to one day before imaging. Worms were imaged by adding 5 µL of
mounting media with DAPI solution containing fixed worms onto 2% agarose pads on glass
slides. Normarski (DIC) and DAPI (blue fluorescent) images were taken in multiple z-stacks
of the germline using Nikon A1 Confocal Laser Scanning Microscope at 20× objectives.
Image acquisition and analysis of the germline was performed using NIS Elements.

2.8. Statistical Analysis

GraphPad Prism was used to input and analyze all data. Strength of statistical evidence
was computed using the unpaired two-tailed Student’s t-test for cell death and proliferative
capacity data. Kaplan–Meier survival curves were generated for each pooled lifespan
experiments presented in the figures. The log-rank test was used for statistical analysis of
survival curves. The p-values are presented in the figure legends.

3. Results
3.1. The cep-1(gk138) Loss-of-Function Mutation Extends the Lifespan of Tumorous
Gain-of-Function glp-1(ar202gf)/Notch C. elegans

CEP-1 induces germ cell apoptosis and promotes DNA repair in response to stress,
including stress following UVC-induced DNA damage [4,6,7,33]. In addition, the activation
of CEP-1 reduces C. elegans lifespan [29–32]. To examine the influence of CEP-1 on the
lifespan of glp-1(ar202gf ) proliferative germline animals, we compared glp-1(ar202gf )/Notch
germline Pro tumor mutants to cep-1(gk138);glp-1(ar202gf ) double mutants. When eggs
are shifted to 25 ◦C for worm development, the germ-line tumor formation is initiated
by the gain-of-function mutant glp-1(ar202gf ) (that have a missense base-pair change
at G529E in the LIN-12 Notch repeats) [18,26,42]. The mutant GLP-1 protein assumes
an abnormal conformation at 25 ◦C, remaining constitutively active to promote mitotic
division independently of the LAG-2 ligand that is normally required for GLP-1/Notch
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activation [43]. To compare CEP-1-independent and CEP-1-dependent cell death in this
C. elegans germline mutant background, we constructed the strains cep-1(gk138); glp-1(ar202);
bcls39[P(lim-7)ced-1::GFP + lin-15(+)] and glp-1(ar202); bcls39[P(lim-7)ced-1::GFP + lin-15(+)].
These are the animals used throughout these studies.

These strains were created to establish a model in which lifespan and tumor devel-
opment could be monitored while also monitoring cell death by using the CED-1::GFP
fusion protein to mark dying cells. The CED1::GFP is a strong marker for cell death and
can be scored for cell death that is both apoptotic and necrotic [44,45]. We assumed that cell
death in the mitotic region would be hard to see, as the proliferative cells are very small.
Moreover, it was important to score for all types of cell death because previous literature
has suggested that no apoptotic cell death occurs in mitotic germ cells. Therefore, the cell
death scored by green puncta in the mitotic region could be a combination of many different
varieties of cell death. The goal of this work was to determine if cell death occurred in
the mitotic proliferative region and if DNA damage could increase the amount of such
cell deaths.

The glp-1(ar202gf) genotype causes animals maintained at 25 ◦C to have a shorter
lifespan [46]. The glp-1(ar202gf) lifespan is extended by the RNAi-mediated knockdown of
mre-11 plus gamma irradiation because inhibiting homologous recombination increases
radiation sensitivity and tumor reduction in the distal region of the worm germline [46].
We performed lifespan assays on both the glp-1(ar202gf) and the cep-1(gk138);glp-1(ar202gf)
double mutants at both 15 ◦C (without a Pro tumor germline phenotype) and at 25 ◦C (with
a Pro tumor germline phenotype). The experiments were designed to maximize the Pro
tumor phenotype [18]. This included having the animals lay eggs at 20 ◦C for the 25 ◦C shift
experiments. All animals lived longer at 15 ◦C (without a Pro tumor germline) than they
did at 25 ◦C (with a Pro tumor germline) (Figure 1). However, we observed an extension of
lifespan of the cep-1(gk138);glp-1(ar202gf) animals compared to the glp-1(ar202gf) animals
at 25 ◦C though not at 15 ◦C. (Figure 1b and 1a, respectively). At the tumor-inducing
temperature of 25 ◦C, both the glp-1(ar202gf) and the cep-1(gk138);glp-1(ar202gf) animals
had highly penetrant Pro tumor germline phenotypes.
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(wild-type) animals (p-value = 2.8 × 10−5). MD701 animals had a median lifespan of 14 days. Survival
curves represent data pooled from multiple biological replicates. The n values represent the total
number of worms in the pooled data set. p-values for comparing two groups were obtained using the
log-rank (Mantel–Cox) statistical test.

We observed that compared to the glp-1(ar202gf) at 25 ◦C, the cep-1(gk138);glp-1(ar202gf)
had an overall increased adult lifespan (Figure 1b). This was still less than the survival
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duration for the control MD701 animals without tumors (p-value = 2.8 × 10−5). At 25 ◦C,
the median survival time for the glp-1(ar202gf) animals was 7 days, and the median survival
for the cep-1(gk138);glp-1(ar202gf) animals was 10 days (while the MD701 animals had a
median of 14 days). This recapitulated data show that in the presence of metabolic stress,
the loss of normal functioning CEP-1 can extend lifespan [28–31]. Here, we posit that having
a Pro tumor phenotype causes metabolic stress. If we consider having a tumorous germline
a stress, then it appears this stress activates whole animal cep-1 to reduce lifespan. Therefore,
the cep-1(gk138);glp-1(ar202gf) animals show a rescue of the short-lived phenotype in the
glp-1(ar202gf) germline tumor animals.

3.2. UVC Treatment Reduced Survival of cep-1(gk138);glp-1(ar202gf) Animals

Proliferating germ cells reduce longevity [21,22], which suggested that cep-1(gk138);glp-
1(ar202gf) animals with a UVC-induced increase in tumor size would have a shorter lifespan.
We carried out lifespan assays for both glp-1(ar202gf) and cep-1(gk138);glp-1(ar202gf) animals
and treated these worms with 50 J/m2 UVC one day after the worms were at L4 stage.
The dosage of 50 J/m2 UVC was based on our previous publication and was used for all
experiments [33]. The lifespan of glp-1(ar202gf) animals was unchanged following UVC
treatment, while the lifespan of cep-1(gk138);glp-1(ar202gf) double-mutant animals was
reduced (Figure 2). The median survival time of the UVC-treated glp-1(ar202gf) animals
and the control untreated animals was 5 days (Figure 2a). The UVC-treated cep-1(gk138);glp-
1(ar202gf) animals’ median survival time was 9 days compared to the untreated median
survival of 10 days (p-value = 0.0018)(Figure 2b). These results showed that inducing
DNA damage decreased the lifespan of tumorous animals in the absence of functional
CEP-1/p53. These data correlated with the fact that UVC damage increases the tumor size
of cep-1(gk138);glp-1(ar202gf) double mutants [33].
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Figure 2. UVC treatment of tumorous worms affected their overall survival. Worms were treated
with 50 J/m2 UVC 1 day post L4 stage. (a) Inducing DNA damage using UVC treatment on tumorous
glp-1(ar202gf) worms led to no change in survival from the untreated counterpart (median = 5 days).
(b) UVC treatment of tumorous cep-1(gk138); glp-1(ar202gf) animals, however, led to reduced survival
overall (median = 9 days) compared to their control group (median = 10 days, p = 0.0018). Survival
curves represent data pooled from multiple biological replicates. The n values represent the total
number of worms in the data set. p-values were obtained using the log-rank test (Mantel–Cox).

3.3. UVC-Induced DNA Damage Reduced Mitotic Cell Death in cep-1(gk138);glp-1(ar202) Worms

We previously reported that UVC-induced DNA damage of the glp-1(ar202gf) animals
reduces tumor size, but in double-mutant cep-1(gk138);glp-1(ar202gf) animals, the UVC treat-
ment induces unrepaired DNA lesions, increases germline cell proliferation, and increases
tumor size [33]. We predicted that UVC was able to induce CEP-1 provoked mitotic cell
death in glp-1(ar202gf) animals but not in the cep-1(gk138);glp-1(ar202gf) counterpart. The
strains cep-1(gk138); glp-1(ar202gf); bcls39[P(lim-7)ced-1::GFP + lin-15(+)] and glp-1(ar202gf);
bcls39[P(lim-7)ced-1::GFP + lin-15(+)] were monitored for CED-1::GFP fusion-labeled protein
dying cells. Imaging for the CED-1::GFP fusion protein is a sensitive method for visualizing
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the somatic sheath cell that encircles early apoptotic corpses in the transition zone of the
germline during engulfment [47]. However, the cells in the proliferative zone are very small.
As such, we reasoned proliferative cells would be much smaller green spots and would not
appear as empty engulfed corpses. We fixed animals to make sure that the smaller green
cells/puncta in the mitotic region always overlapped with DAPI-stained DNA. Using this
method, we quantified deaths by counting GFP puncta in the hyper-proliferative germline.
We carried out live imaging on both strains 24 h after UVC treatment. By using the CED-
1::GFP reporter to score the number of cell death events, we determined the change in the
frequency of cell death events. As described in the introduction, CED1::GFP is a strong
marker for cell death and will score for cell death that is both apoptotic and necrotic [44,45].

UVC treatment increased the mitotic cell death events in glp-1(ar202gf) animals from
an average of 6.68 events to an average of 12.96 cell death events per gonad arm per
worm (p-value = 3.14 × 10−7) (Figure 3a). In contrast, UVC treatment decreased the
mitotic cell death events in cep-1(gk138); glp-1(ar202gf) animals (Figure 3b). Interestingly,
we observed a high average number of cell death events in the cep-1(gk138);glp-1(ar202gf)
animals prior to UVC treatment (12 events per gonad arm). This may be related to the
synthetic lethality posed by loss of CEP-1 function causing reduced double-strand breaks
(as needed for proper homologous recombination during mitosis) and increased genomic
instability [48,49]. Here, we show that inducing DNA damage with UVC reduces mitotic
proliferative germ cell death frequency. The average cell death events for the UVC cep-
1(gk138); glp-1(ar202gf) animals was 5.29 events compared to the untreated group that had
an average of 12.42 events per gonad arm (p = 1.12 × 10−11). This increased basal cell death
in the absence of functional CEP-1 was surprising, as CEP-1 is usually considered as an
inducer of apoptosis and cell cycle arrest [20]. However, our data after UVC treatment
suggest that the role for CEP-1 in the mitotic germ cells may be involved more directly
in the maintenance of genomic stability through promoting homologous recombination
for reproductive health [48]. It is not yet clear if the decrease in dead cells following UVC
treatment in cep-1(gk138); glp-1(ar202gf) animals helps to promote recombination and is
seen more in the mitotic region or the transition zone. This will be followed up in a future
study, as there are most likely many factors responsible for the changes we observed in
cep-1(gk138); glp-1(ar202gf) animals. Thus, future studies will focus on earlier time points
during development and analysis of images at higher magnification.

3.4. Drugs That Induce Human p53-Independent Cell Death Decreased the Number of Cells in the
cep-1(gk138);glp-1(ar202gf) Tumorous Germline

The fact the p53 is mutated in over 50% of all cancers makes using models with
loss of functional p53 a good surrogate examining p53-independent outcomes. We see
that the constructed strains of cep-1(gk138); glp-1(ar202gf); bcls39[P(lim-7)ced-1::GFP + lin-
15(+)] and glp-1(ar202gf); bcls39[P(lim-7)ced-1::GFP + lin-15(+)] allow for the comparison
of complex outcomes that influence tumor size in the presence or absence of CEP-1/p53
signaling. We reasoned that comparison of these two strains would enable the evaluation
of chemotherapeutic protocols found in preclinical trials to activate p53-independent cell
death pathways [34,35]. 8-amino-adenosine (8AA), a ribose sugar nucleoside analogue,
and the poly-ADP-ribose inhibitor (PARPi) talazoparib in combination with temozolomide
activate p53-independent cell death in triple-negative breast cancer cells [34,35]. The
mitotic proliferative zone of the C. elegans germline contains only stem cells. These stem
cells have been shown to be actively replicating and easily quantitated for analysis of the
proliferative population [50]. We used this proliferative germline assessment method as a
fine-tuned way to address the influence of chemotherapeutic drugs on proliferation in a
whole animal Pro tumor phenotype stem cell population. This method was recently used to
show that BEC-1 acts non-cell-autonomously to promote the proliferation of germline stem
cells [51]. We wanted to know if chemotherapeutic drug treatment of C. elegans could do the
opposite and reduce germline stem cell proliferation. We also wanted to determine if the
chemotherapeutic drugs would inhibit stem cell proliferation independently of p53/CEP-1.
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The two aforementioned strains were compared for treatment with 8-amino-adenosine
(8AA) and the PARPi talazoparib in combination with temozolomide (Figure 4). We
tested the outcome of treatment with 8-amino-adenosine (8AA) or the PARPi talazoparib
in combination with temozolomide on stem cell proliferation in nematodes shifted to
the GLP-1gf/Notch proliferation promoting conditions when they reached adulthood.
As such, all experiments to examine influences on the proliferative zone in the drug
treatments were carried out on animals shifted to 25 ◦C at the L4 stage. This allowed us to
examine the increased mitotic region due to increased proliferation in the absence of the
Pro tumor phenotype.
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Figure 3. UVC treatment of glp-1(ar202gf) and cep-1(gk138); glp-1(ar202gf) animals led to changes in
mitotic cell death events. Representative green fluorescent images of live worm germline shown
as maximum intensity projections (200× magnification). Cell death events were detected using the
CED-1::GFP reporter, observed as green circles/puncta (white arrows), and scored as cell death
events. (a) UVC treatment of glp-1(ar202gf) animals with wild-type cep-1 increased mitotic cell
death. The average number of these cell death events 24 hours after UVC treatment is greater
(mean = 12.96 ± 4.005) compared to the control group (mean = 6.682 ± 3.213, p = 3.14 × 10−7).
(b) UVC treatment of cep-1(gk138); glp-1(ar202gf) animals led to decreased mitotic cell death events.
The average number of cell death events is lower under UVC treatment (mean = 5.296 ± 1.772)
compared to the control group (mean = 12.42 ± 4.202, p = 1.12 × 10−11). The n values for each scatter
dot plot (in (a,b)) represent the number worms used for scoring (one gonad arm per worm). Data
shown (in (a,b)) are represented as mean ± SD. p-values were obtained using an unpaired two-tailed
Student’s t-test. The following format was used to assign significance, with “****” used for a p-value
of less than 0.0001.
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Figure 4. Treatment of tumorous worms with chemotherapeutic agents showed changes in prolifer-
ative capacity in the absence of wild-type cep-1. (a) Representative maximum intensity projection
images of the C. elegans germline for glp-1(ar202gf) (left column) and cep-1(gk138); glp-1(ar202gf)
animals (right column) treated with dimethyl sulfoxide (DMSO) or temozolomide plus talazoparib
(Temo+Tal). Distance from the distal end of the germline (yellow line) to the mitotic region/transition zone
boundary (MR/TZ) was drawn and measured using NIS Elements (red line). Nuclei were counterstained
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with DAPI. (b) Quantitative analysis for proliferative capacity of glp-1(ar202gf) and cep-1(gk138);
glp-1(ar202gf) animals under combination treatment Temo+Tal. Treatment of glp-1(ar202gf) animals
with Temo and Tal had no effect on distance between the distal end and the MR/TZ boundary: neither
average distances of 242.8 ± 85.45 µm for the control and 271.9 ± 122.1 µm for the treatment group (p
= 0.3858) nor the amount of DAPI-stained germ cell nuclei scored: 212 ± 71.31 under DMSO and 266
± 109.8 under Temo+Tal (p = 0.1122). The cep-1(gk138); glp-1(ar202gf) animals had a decrease in both
the distance (121.8 ± 34.33 µm in the control group and 71.01 ± 11.90 µm in the treatment group (p =
0.0008)) and a fair reduction in the amount of mitotic germline cells (88.7 ± 23.6) in the control group
and 66.86 ± 14.75 in the treatment group (p = 0.0474)) under Temo+Tal treatment. (c) Treatment of
cep-1(gk138); glp-1(ar202gf) double-mutant animals with 8AA led to reduction in the DTC-to-MR/TZ
distance, with a greater reduction at a concentration of 50 µM: an average of 154.6 ± 54.48 µm in the
control group to an average of 91.95 ± 29.36 µm in the treatment group (p = 0.0002). Treatment at
50 µM reduced the number of mitotic germline cells from an average of 185.3 ± 132.5 in the control
group to 110.4 ± 45.48 in the treatment group (p = 0.0292). The n values for each scatter dot plot (in b
and c) represent the number of gonad arms scored. Data shown (in b and c) are represented as mean
± SD. p-values were obtained using an unpaired two-tailed Student’s t-test. The following format
was used to assign significance, with “ns” indicating no significance, “*” indicating a p-value of less
than 0.05, and “***” indicating a p-value of less than 0.001.

We used the previously described different genotypes to investigate effects of CEP-
1/p53 on proliferative capacity and measured the length from the distal tip cell (DTC)
to the mitotic region/transition zone (MR/TZ) boundary to indicate the length of the
proliferative region and also counted DAPI-stained nuclei in these mitotic regions for
further quantification [26,51]. Proliferation of cells in the C. elegans germline progress from
the distal end bordering the distal niche containing the distal tip cell (DTC) to the transition
zone, where cells assume a crescent-shaped morphology characteristic of early meiotic
prophase [26,51]. We carried out fixation of the worms and DAPI staining of the DNA in
whole worms in order to analyze the germ cell content of the C. elegans germline under
vehicle control and treatment with talazoparib with temozolomide (Temo+Tal) (Figure 4a).
Experiments to determine the induction of cell death and the influence of these drugs on
lifespan will be important experiments to carry out in the future.

Talazoparib plus temozolomide treatment of glp-1(ar202gf) animals resulted in no
demonstrable change in either the length from the distal tip cell to the mitotic region/transition
zone (DTC-to-MR/TZ) boundary or the number of germ cell nuclei (Figure 4b, left panel).
The average distance in glp-1(ar202gf) animals for both the vehicle control and the ta-
lazoparib with temozolomide were 242.8 µm and 271.9 µm, respectively (p = 0.3858).
Importantly, there was a reduction in both the distance and the number of germ cell nuclei
in the double-mutant cep-1(gk138); glp-1(ar202gf) animals (Figure 4b, right panel). The
average distance in cep-1(gk138); glp-1(ar202gf) animals with talazoparib plus temozolomide
treatment was 71.01 µm compared to the control group, which had an average distance
of 121.8 µm (p = 0.0008). The number of germ cells was reduced from 88.7 in the control
group to 66.86 with the drug treatment.

We also treated the cep-1(gk138); glp-1(ar202gf) animals with 8-amino-adenosine to
determine if the ribose sugar nucleoside analogue was capable of reducing the proliferative
capacity of tumorous worms with cep-1(gk138) loss-of-function mutation (Figure 4c). The
8-amino-adenosine treatment reduced both the length from the distal tip cell to mitotic
region/transition zone (DTC-to-MR/TZ) and the number of germ cells in the cep-1(gk138);
glp-1(ar202gf) double-mutant animals. A concentration dependence was observed, with
the average distance reduced from 107.0 µm with the lower concentration to an average of
91.95 µm (p = 0.0002) with the higher-concentration treatment (Figure 4c, left panel). The
higher-concentration 8-amino-adenosine treatment also reduced the average number of
germ cells per gonad arm from 185 to 110 germ cells per gonad arm (p = 0.0292) (Figure 4c,
right panel).
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4. Discussion

The p53 protein is clearly a major deterrent to cancer formation in many organisms.
Studying the influence of CEP-1/p53 on tumorigenesis in the easily tractable C. elegans
requires examining the germline, as the other cells in the adult animal do not prolifer-
ate. In order to evaluate the contribution of CEP-1 function in a C. elegans tumor model,
we compared single-mutant glp-1(ar202gf);bcls39[P(lim-7)ced-1::GFP + lin-15(+)] worms to
double-mutant cep-1(gk138);glp-1(ar202gf);bcls39[P(lim-7)ced-1::GFP + lin-15(+)] worms. In-
terestingly, we observed an increased lifespan in cep-1; glp-1 double-mutant animals at 25 ◦C
but not at 15 ◦C. This follows a previous observation that metabolic stress in the presence
of wild-type CEP-1/p53 can reduce nematode lifespan, and the loss of normal functioning
CEP-1/p53 extends lifespan [28–31]. Under the germline tumor stress conditions, the loss
of normal-functioning CEP-1/p53 wins over the gain-of-function glp-1 (Notch) to result in
increased nematode lifespan [23,27]. We have reported here, for the first time, that UVC
irradiation increased cell death in single-mutant glp-1(ar202gf);bcls39[P(lim-7)ced-1::GFP
+ lin-15(+)] worms (Figures 3a and 5). In contrast, after UVC irradiation, double-mutant
cep-1(gk138);glp-1(ar202gf);bcls39[P(lim-7)ced-1::GFP + lin-15(+)] worms had reduced cell
death (Figures 3b and 5). As we hypothesized, UVC treatment increased germ cell death in
the tumorous germline of single-mutant animals (Figures 2a, 3a and 5). Interestingly, UVC
treatment decreased cell death in the double-mutant non-functional CEP-1/p53 animals,
and this correlated with a decrease in lifespan (Figures 2b, 3b and 5).
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Figure 5. Hypothetical model for cell death outcomes in any tumorous C. elegans gonad with or
without functional CEP-1 under UVC treatment and outcomes on overall worm survival. Schematic
of lateral cross-section view of adult anterior gonad arm shown on the left and a longitudinal section
view of the whole hermaphrodite on the right. The glp-1(ar202gf) mutation causes the resulting
GLP-1/Notch receptor to be constitutively active at 25 ◦C, allowing germ cells to undergo mitosis
without direct interaction of the ligand, LAG-2, where it is highly concentrated at the distal tip cell
(DTC, orange). A proximal tumor phenotype (Pro) in the somatic gonad is indicated by an increased
mitotic region (dark blue). Variability of the Pro phenotype were observed where the transition
zone and meiotic regions (shown as light blue) were variable (see Figure 4a). (a) In the presence
of wild-type cep-1 (top panel), UVC induces CEP-1/p53-dependent mitotic cell death (green dots).
(b) In a loss-of-function cep-1(gk138) mutation (bottom panel), UVC reduces the overall starting
mitotic cell death events. This allows for mitotic germline proliferation to increase and resulted in a
larger tumorous germline and reduced overall worm survival (the light-violet worm indicates less
cell death events resulting in reduced overall survival).
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CEP-1/p53 is important for meiotic fidelity. In C. elegans, different CEP-1/p53 mu-
tants that are transcriptionally inactive are characterized by a separation of function in
maintaining genomic fidelity, with cep-1/p53(gk138) remaining more viable than cep-1/
p53(lg12501) [48]. The synthetic lethality posed by mutated CEP-1/p53 loss-of-function is
due to reduced double-strand breaks [48,49]. It will be interesting in the future to determine
if the separation of function of cep-1/p53 allele lg12501 or feeding animals with cep-1 RNAi
will produce the same outcomes that we have documented here with the cep-1 allele of
cep-1/p53(gk138).

We previously documented that UVC-induced nuclear DNA damage is not effectively
repaired in cep-1(gk138) animals [33]. Thus, UVC damage cep-1(gk138); glp-1(ar202gf)
animals may result in increased DNA double-strand breaks during DNA replication, which
then promote recombination that allows for cell survival. In the absence of DNA damage,
mutation of CEP-1/p53 causes reduced double-strand breaks [48,49]. This may be why
more cell death is observed in cep-1(gk138) animals before UVC treatment. The increased
germ cell deaths would be a result of increased replication stress when there are no UVC-
induced DNA breaks. The replication stress would be reduced by the DNA breaks that
happen after UVC or chemotherapeutic treatment (Figures 3b and 5b). Interestingly, the
glp-1(ar202gf) had a longer proliferative zone than cep-1;glp-1 (248 vs. 121 µm). We propose
that this difference in length is due to the cep-1(gk138); glp-1(ar202gf) animals having
increased mitotic cell death (shown in Figure 3). This could be the result of less homologous
recombination that results in mitotic catastrophe, driving cell death.

Treatment of worms with either temozolomide plus talazoparib or 8-amino-adenosine
decreased the proliferative capacity of nuclei in the mitotic region of the germline in a
cep-1/p53-independent manner. Both these treatments significantly reduced the length of
the proliferative zone and also decreased the number of mitotic cells in the double mutant
animals. The same pattern was not noted in single-mutant animals with functional CEP-1.
We did not carry out experiments on the cep-1(gk138); glp-1(ar202gf) double-mutant animals
with DNA-damaging chemotherapeutics that induce a p53 response because we were
interested in identifying alternative mechanisms besides p53 pathways to induce cell death.
Our previous data testing a DNA damage-inducing chemotherapeutic on cep-1 mutant
animals showed that more DNA damage accumulates in the absence of functional p53, and
thus, we anticipate that standard DNA-damaging chemotherapeutics would mimic the
response seen with UVC. UVC causes the tumor size to increase [33]. However, treatment
with pharmacological p53-independent cell death inducers causes C. elegans tumorous
germlines with mutant p53 to reduce in size (Figure 6).
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the whole hermaphrodite. The increased mitotic region is shown in dark blue for the gonad arms, and
lighter blue then represents meiotic regions of the gonad arms on the bottom left. Data from Figures 3
and 4 suggest that C. elegans tumorous germlines can be compared in response to pharmacological
agents to predict which compounds are best for reducing tumor volume and inducing cell death in
mutant CEP-1/p53 backgrounds (as seen for the bottom left hermaphrodite). Treatment of C. elegans
with a PARP inhibitor protocol (using temozolomide plus talazoparib) or the p53-independent death-
inducing nucleoside analogue 8-amino-adenosine reduced germline tumor volume in animals with
mutant CEP-1/p53 (as seen for the bottom left hermaphrodite). Created with BioRender.com.

5. Conclusions

We conclude that we have constructed a cep-1(gk138); glp-1(ar202gf) double-mutant
strain (cep-1(gk138) I glp-1(ar202gf) III bcls39[P(lim-7)ced-1::GFP + lin-15(+)] V) that is useful
for detection of pharmacologically induced p53-independent cell death in mitotic germ
cells. Furthermore, this strain is useful for assessing the ability of pharmacological agents
to reduce C. elegans germline tumor size. We conclude that studying the C. elegans germline
tumor model with and without functional p53 enables the influence of whole animal
cell stress to be assessed. The reduction in lifespan seen in gain-of-function glp-1 (Notch)
animals might be due both to the burden of a large germline size as well as the metabolic
stress signaling that comes from activation of the CEP-1/p53 pathway. A recent report
delves in to the complexity of p53 and aging, showing that autophagy suppresses the p53
pathway to reduce the pace of aging [52,53]. We propose that inducing p53-independent
cell death pathways will not only be good for cancers with mutant p53 but will also
reduce the deleterious influences often seen by treating people with DNA-damaging agents
that activate the p53 pathway. Chemical inhibition of PARP in C. elegans reduces axonal
degeneration, which coordinates with the lack of a change in tumor volume in the presence
of a functional CEP-1/p53 pathway [54,55]. It remains to be determined how the PARP
inhibitor protocol resulted in decreased tumor volume in the absence of the CEP-1/p53
pathway. All this and more can be tested in the future using the amazing model system of
germline tumorous C. elegans.
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