
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Publications and Research New York City College of Technology

2021

An Analysis of Comparison-based Sorting Algorithms An Analysis of Comparison-based Sorting Algorithms

Jacob M. Gomez
CUNY New York City College of Technology

Edgar Aponte
CUNY New York City College of Technology

Brad Isaacson
CUNY New York City College of Technology

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/ny_pubs/817

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/ny_pubs
https://academicworks.cuny.edu/ny
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/ny_pubs/817
https://academicworks.cuny.edu/ny_pubs/817
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Introduction

A number of different algorithms have been invented for sorting. Their relative
advantages and disadvantages have been studied extensively. Out of the 24 that we
implemented, we chose 6 to discuss in this poster: (1) bubble sort, (2) insertion sort,
(3) heapsort, (4) mergesort, (5) timsort, and (6) introspective sort. Although the latter
four sorting algorithms are the fastest by virtue of having the optimal worst-case time
complexity of O(n log(n)), bubble sort and insertion sort are straightforward
algorithms in which all Computer Science and Applied Mathematics majors should
know. For our project, we created an application which included 24 sorting
algorithms. We analyzed the running times of these sorting algorithms with various
sets of unsorted data. Through this process, we gained a better understanding of
the various sorting algorithms and their time complexities. In conclusion,
introspective sort and timsort were the fastest and most efficient sorting algorithms
we tested, with introspective sort being the very fastest.

Abstract

Sorting algorithms put elements of a list into an order (e.g., numerical,
alphabetical). Sorting is an important problem because a nontrivial percentage of all
computing resources are devoted to sorting all kinds of lists. For our project, we
implemented 24 comparison-based sorting algorithms from pseudocode and
compared them. The algorithms all have their advantages and disadvantages as
well as their unique features. We found that introspective sort (which is a modified
version of heapsort) and timsort (which is a modified version of mergesort) were the
most efficient.

Process
The application we used to compile the algorithms was JDoodle. This is an online
site where you can run and write out different languages of code like Java, C++,
Python and many more. The only limitation on this site is the amount of memory
you’re given, so printing large arrays caused run-time errors. Nonetheless, we were
able to calculate the running time for the various sorting algorithms we implemented.
Although we tested various inputs, we preferred to use randomly generated lists of
10,000 integers. The pseudocodes for the 6 aforementioned sorting algorithms we
implemented can be found on the right side of this poster.

Bubble Sort

Mergesort

Introspective Sort

Heapsort

Insertion Sort

It repeatedly steps through the list,
compares adjacent elements and swaps
them if they are in the wrong order. It
repeats until the list is sorted.

It divides its input into a sorted and an unsorted region and it
repetitively shrinks the unsorted region by extracting the largest
element from it and inserting it into the sorted region. Heapsort
maintains the unsorted region in a heap data structure by
calling heapify() to more quickly find the largest element in each
step.

It iterates, consuming one input element each repetition
and grows a sorted output list. At each iteration, insertion
sort removes one element from the input data, finds the
location it belongs within the sorted list, and inserts it there.
It repeats until no input elements remain.

It selects a ‘pivot’ element from the array and partitions
the other elements into two sub-arrays, according to
whether they are less than or greater than the pivot. The
sub-arrays are then sorted recursively by calling
heapsort() when the recursion depth reaches a level
based on the logarithm of the number of elements to be
sorted.

It divides the unsorted list into n sublists, each containing
one element. It repeatedly merges sublists to produce
new sorted sublists until there is only one sublist
remaining.

Results

“An Analysis of Comparison-based Sorting Algorithms”
By: Jacob Gomez , Edgar Aponte, Brad Isaacson

Timsort

Based on the results, we found that introspective sort and timsort were the fastest
and most efficient. We also found that bubble sort and insertion sort were the
slowest and least efficient. Interestingly, bubble sort performed much worse than
insertion sort despite them both having the same worst-case time complexity of
O(n^2). Heapsort and mergesort were average. Timsort and introspective sort were
impressive because they were much faster than heapsort and mergesort for most
inputs despite them all having worst-case time complexity of O(n log(n)). Our
findings are consistent with timsort and introspective sort being used as the industry
standard. What we found most surprising is that introspective sort was the fastest
algorithm of them all, being roughly twice as fast as timsort in all of our experiments!

Timsort is a hybrid sorting algorithm derived from mergesort and insertion sort and is
designed to perform well on many kinds of real-world data. This is the default sorting
algorithm in Python and Java.

Introspective sort is also a hybrid sorting algorithm that provides both fast average
performance and optimal worst-case performance. Our implementation essentially
calls quicksort (which is a divide-and-conquer sorting algorithm using pivot points
and partitions) until the recursion depth reaches a certain level, and then calls
heapsort. Further refinements incorporate a third sorting algorithm, insertion sort.
Introspective sort is the default sorting algorithm in C++.

It iterates over the data collecting elements into runs
and simultaneously puts those runs in a stack.
Whenever the runs on the top of the stack match a
merge criterion, they are merged. This goes on until
all data is traversed. All runs are then merged two at a
time until one sorted run remains.

We tested 6 sorting algorithms: (1) bubble sort, (2) insertion sort, (3) heapsort,
(4) mergesort, (5) timsort, and (6) introspective sort. Below are the running
times of the 6 sorting algorithms using randomly generated unsorted lists of
10,000 integers as input. Each box corresponds to the same input.

Discussion

	An Analysis of Comparison-based Sorting Algorithms
	tmp.1637815786.pdf.UF1CG

