City University of New York (CUNY)
CUNY Academic Works

Publications and Research New York City College of Technology

2021

An Analysis of Comparison-based Sorting Algorithms

Jacob M. Gomez
CUNY New York City College of Technology

Edgar Aponte
CUNY New York City College of Technology

Brad Isaacson
CUNY New York City College of Technology

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/ny_pubs/817

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/ny_pubs
https://academicworks.cuny.edu/ny
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/ny_pubs/817
https://academicworks.cuny.edu/ny_pubs/817
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Abstract

Sorting algorithms put elements of a list into an order (e.g., numerical,

alphabetical). Sorting is an important problem because a nontrivial percentage of all
computing resources are devoted to sorting all kinds of lists. For our project, we
implemented 24 comparison-based sorting algorithms from pseudocode and
compared them. The algorithms all have their advantages and disadvantages as
well as their unique features. We found that introspective sort (which is a modified
version of heapsort) and timsort (which is a modified version of mergesort) were the
most efficient.

Introduction

A number of different algorithms have been invented for sorting. Their relative

advantages and disadvantages have been studied extensively. Out of the 24 that we

implemented, we chose 6 to discuss in this poster: (1) bubble sort, (2) insertion sort,

(3) heapsort, (4) mergesort, (5) timsort, and (6) introspective sort. Although the latter

four sorting algorithms are the fastest by virtue of having the optimal worst-case time
complexity of O(n log(n)), bubble sort and insertion sort are straightforward
algorithms in which all Computer Science and Applied Mathematics majors should
know. For our project, we created an application which included 24 sorting
algorithms. We analyzed the running times of these sorting algorithms with various
sets of unsorted data. Through this process, we gained a better understanding of
the various sorting algorithms and their time complexities. In conclusion,
introspective sort and timsort were the fastest and most efficient sorting algorithms
we tested, with introspective sort being the very fastest.

Process

The application we used to compile the algorithms was JDoodle. This is an online
site where you can run and write out different languages of code like Java, C++,
Python and many more. The only limitation on this site is the amount of memory
you're given, so printing large arrays caused run-time errors. Nonetheless, we were
able to calculate the running time for the various sorting algorithms we implemented.
Although we tested various inputs, we preferred to use randomly generated lists of
10,000 integers. The pseudocodes for the 6 aforementioned sorting algorithms we
iImplemented can be found on the right side of this poster.

Results

We tested 6 sorting algorithms: (1) bubble sort, (2) insertion sort, (3) heapsort,
(4) mergesort, (5) timsort, and (6) introspective sort. Below are the running
times of the 6 sorting algorithms using randomly generated unsorted lists of
10,000 integers as input. Each box corresponds to the same input.

9.10285234451294 seconds (Bubble sort)
4.,201315879821777 seconds (Insertion sort)
0.05934023857116699 seconds (Heapsort)
0.05082559585571289 seconds (Mergesort)
0.048529624938964844 seconds (Tim sort)
0.0311434268951416 seconds (Introsort)

Time Shown 8.398186206817627 seconds (Bubble sort)
Time Shown 3.6595122814178467 seconds (Insertion sort)
Time Shown @,058275699615478516 seconds (Heapsort)
Time Shown 0,04720735549926758 seconds (Mergesort)
Time Shown 0,04487299919128418 seconds (Tim sort)
Time Shown 0.02377605438232422 seconds (Introsort)

Time Shown 8.60838794708252 seconds (Bubble sort)

Time Shown 3.7742903232574463 seconds (Insertion sort)
Time Shown 0,05784869194030762 seconds (Heapsort)

Time Shown 0.047156333923339844 seconds (Mergesort)
Time Shown 0.043077707290649414 seconds (Tim sort)
Time Shown 0.022817373275756836 seconds (Introsort)

Time Shown 8.795206308364868 seconds (Bubble sort)
Time Shown 3.973356008529663 seconds (Insertion sort)
Time Shown 0.057935237884521484 seconds (Heapsort)
Time Shown 0,04652881622314453 seconds (Mergesort)
Time Shown 0.04422497749328613 seconds (Tim sort)
Time Shown 0.,025289297103881836 seconds (Introsort)

Shown 12.115835666656494 seconds (Bubble sort)
Shown 5.603865385055542 seconds (Insertion sort)
Shown 0.12464165687561035 seconds (Heapsort)

8.947835206985474 seconds (Bubble sort)
3.817880153656006 seconds (Insertion sort
0.058432579040527344 seconds (Heapsort)
0.0463566780090332 seconds (Mergesort)
0.043381452560424805 seconds (Tim sort)
0.024059295654296875 seconds (Introsort)

Time Shown
Time Shown
Time Shown

Shown 0.0996091365814209 seconds (Mergesort)
Shown 0.06671452522277832 seconds (Tim sort)
Shown 0.029980182647705078 seconds (Introsort)

Time Shown
Time Shown
Time Shown

Discussion

Based on the results, we found that introspective sort and timsort were the fastest
and most efficient. We also found that bubble sort and insertion sort were the
slowest and least efficient. Interestingly, bubble sort performed much worse than
insertion sort despite them both having the same worst-case time complexity of
O(n"2). Heapsort and mergesort were average. Timsort and introspective sort were
impressive because they were much faster than heapsort and mergesort for most
inputs despite them all having worst-case time complexity of O(n log(n)). Our
findings are consistent with timsort and introspective sort being used as the industry
standard. What we found most surprising is that introspective sort was the fastest
algorithm of them all, being roughly twice as fast as timsort in all of our experiments!

Timsort is a hybrid sorting algorithm derived from mergesort and insertion sort and is
designed to perform well on many kinds of real-world data. This is the default sorting
algorithm in Python and Java.

Introspective sort is also a hybrid sorting algorithm that provides both fast average
performance and optimal worst-case performance. Our implementation essentially
calls quicksort (which is a divide-and-conquer sorting algorithm using pivot points
and partitions) until the recursion depth reaches a certain level, and then calls
heapsort. Further refinements incorporate a third sorting algorithm, insertion sort.
Introspective sort is the default sorting algorithm in C++.

"An Analysis of Comparison-based Sorting Algorithms”

By: Jacob Gomez, Edgar Aponte, Brad Isaacson

Bubble Sort Insertion Sort

procedure bubbleSort(A : list of sortable items) function insertionSortR(array A, int n)

n := length(A) 1fn>0
repeat insertionSortR(A, n-1)
swapped := false Aln]
for 1 := 1 to n-1 inclusive do o
// if this pair is out of order] « n-1

while 7 >= 0 and A[J] > X
A[J+1] « A[]]

1f A[1-1] > A[1] then
// swap them and remember something changed

swap(A[i-1], A[i]) o
swapped := true end while
end 1f '
end for A[:+1] o7

end 1f
end function

It iterates, consuming one input element each repetition
and grows a sorted output list. At each iteration, insertion
sort removes one element from the input data, finds the
location it belongs within the sorted list, and inserts it there.
It repeats until no input elements remain.

until not swapped
end procedure

It repeatedly steps through the list,
compares adjacent elements and swaps
them if they are in the wrong order. |t
repeats until the list is sorted.

Heapsort

//(Put elements of 'a' in heap order, in-place)

procedure heapify(a, count) 1is
//(start 1s assigned the index in 'a' of the last parent node)
//(the last element in a 0@-based array is at index count-1; find the parent of that element)
start « iParent(count-1)

Mergesort

while start = 0 do
//(s1ft down the node at index 'start' to the proper place such that all nodes below
//the start index are in heap order)
siftDown(a, start, count - 1)
//(go to the next parent node)
start « start - 1
//(after sifting down the root all nodes/elements are in heap order)

function merge_sort(list m) 1is

// Base case. A list of zero or one elements 1s sorted, by definition.

1f length of m £ 1 then
return m

// Recursive case. First, divide the list into equal-sized sublists
// consisting of the first half and second half of the list.

//(Repair the heap whose root element is at index 'start', assuming the heaps rooted at its children are valid) : : ;
// This assumes lists start at index 0.

procedure siftDown(a, start, end) 1is

root « start var left := empty list
var right := empty list
while ilLeftChild(root) < end do //(While the root has at least one child) 9 ‘ p.)/ i
for each x with index 1 1n m do

child « iLeftChild(root)
swap « root

//(Left child of root)

//(Keeps track of child to swap with) 1f 1 < (Length of m)/2 then

add x to left
else
add x to right

1f a[swap] < a[child] then

swap « child
//(1f there is a right child and that child is greater)
1f child+1l < end and a[swap] < a[child+1] then

swap « child + 1 // Recursively sort both sublists.

1f swap = root then 1 .
eft := merge_sort(left
//(The root holds the largest element. Since we assume the heaps rooted at the L AEE o g€ C : a
//children are valid, this means that we are done.) right := merge_sort(right)

return
else
swap(a[root], a[swap])
root < swap //(repeat to continue sifting down the child now)

// Then merge the now-sorted sublists.
return merge(left, right)

function merge(left, right) 1is
var result := empty list

procedure heapsort(a, count) 1is
1nput: an unordered array a of length count

//(Build the heap in array a so that largest value is at the root)

heapify(a, count) while left is not empty and right is not empty do

1f first(left) < first(right) then
append first(left) to result

//(The following loop maintains the invariants that a[@:end] is a heap and every element

//beyond end 1s greater than everything before it (so a[end:count] is in sorted order)) left := rest(left)

end « count - 1

while end > @ do else
//(a[@] is the root and largest value. The swap moves it in front of the sorted elements.) append first(right) to result
swap(alend], a[@]) right := rest(right)

//(the heap size 1is reduced by one)

end « end - 1

//(the swap ruined the heap property, so restore it)
siftDown(a, @, end)

// Either left or right may have elements left; consume them.
// (Only one of the following loops will actually be entered.)
while left is not empty do

append first(left) to result

left := rest(left)
while right is not empty do

append first(right) to result

right := rest(right)
return result

It divides its input into a sorted and an unsorted region and it
repetitively shrinks the unsorted region by extracting the largest
element from it and inserting it into the sorted region. Heapsort
maintains the unsorted region in a heap data structure by
calling heapify() to more quickly find the largest element in each
step. It divides the unsorted list into n sublists, each containing
one element. It repeatedly merges sublists to produce
new sorted sublists until there is only one sublist

remaining.

Timsort

// Iterative Timsort function to sort the
// array[@...n-1] (similar to merge sort)
def timSort(arr):

n = len(arr)

minRun = calcMinRun(n) _
Introspective Sort
// Sort individual subarrays of size RUN
for start in range(®, n, minRun):

end = min(start + minRun - 1, n - 1)

insertionSort(arr, start, end)

procedure sort(A : array):
let maxdepth = |log(length(A))| x 2
introsort(A, maxdepth)

procedure introsort(A, maxdepth):
n « length(A)
i i o
return // base case
else 1f maxdepth = 0:
heapsort(A)
else:

// Start merging from size RUN (or 32). It will merge
// to form size 64, then 128, 256 and so on

size = minRun

while size < n:

// Pick starting point of left sub array. We

// are going to merge arr[left..left+size-1]

// and arr[left+size, left+2*size-1]

// After every merge, we 1ncrease left by Z2*size
for left in range(@, n, 2 * size):

introsort(A[@:p-1], maxdepth - 1)
introsort(A[p+1:n], maxdepth - 1)

// Find ending point of left sub array

// mid+l 1s starting point of right sub array
mid = min(nh - 1, left + size - 1)

right = min((left + 2 * size - 1), (nh - 1))

It selects a ‘pivot’ element from the array and partitions
the other elements into two sub-arrays, according to
whether they are less than or greater than the pivot. The
sub-arrays are then sorted recursively by calling
heapsort() when the recursion depth reaches a level
based on the logarithm of the number of elements to be
sorted.

// Merge sub array arr[left..... mid] &
// arr[mid+1....right]
1f mid < right:

merge(arr, left, mid, right)

size = 2 * size
It iterates over the data collecting elements into runs
and simultaneously puts those runs in a stack.
Whenever the runs on the top of the stack match a
merge criterion, they are merged. This goes on until
all data is traversed. All runs are then merged two at a
time until one sorted run remains.

p « partition(A) // assume this function does pivot selection, p 1s the final position of the pivot

	An Analysis of Comparison-based Sorting Algorithms
	tmp.1637815786.pdf.UF1CG

