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Abstract
We prove three conjectures of Tsukano about exponential sums stated in his Master’s thesis
written at Osaka University. These conjectures are variations of earlier conjectures made by
Lee and Weintraub which were first proved by Ibukiyama and Saito.

1. Introduction

This paper is a continuation of a previous paper [6] on exponential sums originally intro-
duced by Lee-Weintraub. The present paper is dedicated to the proof of conjectures stated
by Tsukano, a student of Ibukiyama who came up with these conjectures in his Master’s
thesis [8] written at Osaka University.

a

Fix an odd prime p and let ¢ denote the Legendre symbol mod p: ¥(a) = ( ;). We put

{ = exp(2ri/p). Let T(¥) denote the Gaussian sum 7(y) = ZZ ;11 w(n)l". Let P(x), Q(x), R(x)
be polynomials with integer coefficients. Following Lee-Weintraub[7], we define the Lee-
Weintraub sum S [P, O, R] by

(k)
(PO — 1)K — 1)(FFRG) — 1)’

SIP,O.RI ==Y
k.j(p)
where the summation is over a complete residue system modulo p, and the prime on the sum-
mation sign means that the meaningless terms are to be excluded. We note that S [cP, cQ, cR]
= y(c)S [P, O, R] for any integer c. As discussed in [6], these exotic sums are related to spe-
cial values of L-functions which are related to the theory of modular forms.
Let i be an integer prime to p. We put

S,={abc)eZ 1 <a,b,c < p-1,ab+ bc + hca = 0(p)}.

Following Tsukano[8], we define I(h, p) and J(h, p) as follows.

_ Y(abe)
= (a,g;sh (=1 =1 =)’

Jhp)= > ylabc)abe.

(a,b,c)ES ),

The sums I(h, p) and J(h, p) are closely related to the Lee-Weintraub sums S[—x, x +
1, hx(x+ 1)] and S[1, hx?, h(x + 1)?], respectively. Indeed, we have S[—x, x+ 1, hx(x + 1)] =
W(—=h)I(h, p), and by Proposition 4.2, we have
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S[1,hx*, h(x + 1)?]

(=D -1 (h(p—1) (W(p-1)
- ) (—‘”pz sp)+ 2o, - K= g, - ¢+Bz,w),
where
p-1
Dy = aby(a + hb).
a,b=1

Remark. The sums Dy, are easily expressible by generalized Bernoulli numbers from the
work in [5].

In [8], Tsukano made five conjectures (modulo equivalence) expressing the character
sums I(h, p) and J(h, p) as linear combinations of generalized Bernoulli numbers. They are
the following.

Theorem 5.4 (Tsukano Conjectures [8]). When p = 3(4), we have

_d+y@)p+ D, YD) +4

W 1)/ = 2 - S B,
() 107 pyepy = LE2TYROP D | 1),
Gii) I, p)/p* = LB~ By,

i) Jo. p)/p2 _ 4p+ 1+ ),ﬁ(22)(4p + 7)31,(& B #B&W
gyt = 2O D, | PR,

where 27" is regarded as an element of (Z] pZ)*, and the generalized Bernoulli numbers By
are given by (2.2).

The statement (i) was also conjectured by Lee-Weintraub[7] and (iii) by Ibukiyama-
Kanekol[2]; both are established in [6]. (Note that I(2, p) = ¢(=1)S[—x, x + 2, x(x + 2)].) In
this paper, we prove the three remaining Tsukano Conjectures.

By virtue of the relationship between the sums I(h, p), J(h, p) and S [—x, x + 1, hx(x + 1)],
S[1,hx?, h(x + 1)?], respectively, noting that S[—x, x + 1, A~ x(x + 1)] = @(h)S [~hx, h(x +
D), x(x+1D]and S[1, 77" x%, i~ (x+1)?] = Y(h)S [h, x*, (x+1)?], the following three theorems
imply the Tsukano Conjectures (ii), (iv), and (v), respectively.

Theorem 5.1. For any odd prime number p, we have
ST-2x,2(x+ 1), x(x + 1)]

—-p+2+y2)Sp+2) 1+ 6y(2) 1+ 16y(2)
= T(l//)( P ﬁ4 P By + %Bz,w + 77;//33#/)-

Theorem 5.2. For any odd prime number p, we have
S[1,2x%,2(x + 1)%]

-2 7—-uv(2)(8p —19 2 1 4y (2 1
:T(lﬂ)( Pt lq(z)(p )Bw+lﬁ()+ Bz,w—%&,w)-
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Theorem 5.3. For any odd prime number p, we have

2p+5—u)(p —4) 1 1
S22, (x+ 1] = T(l//)( P = P VB, + 5Bay - EBM).

The proofs of the above theorems are given roughly as follows. We first rewrite the
exponential sum as a sum of triple products of P; (defined in (2.1)) evaluated on various
parameters. By the work in [4], several such sums are known to be a linear combination
of generalized Bernoulli numbers (Theorem 3.1), but our present sums are not the same as
those. So we rewrite the sums in question, up to sums of some products of P; and P;, to a
linear combination of several standard sums of triple products. Since both parts are known,
we are done.

2. Preliminaries

In this section, we discuss all relevant background information needed to evaluate the
Lee-Weintraub sums given in the introduction. We omit the proofs which can be found in
the literature.

We fix the notation. Let p be an odd prime. We denote by ¢ the Legendre symbol mod p:
Y(a) = (%) We put £ = exp(2ri/p). Let (i) denote the Gaussian sum 7(i) = 25 ;11 w(n)".
Let 6, , be the Kronecker delta symbol (6,, = 1if x = y, and 0 otherwise). We define the
kth Bernoulli polynomial B(x) by the generating function

te'” — t

= B.(x)—

o1 kz_(; 0
and the kth periodic Bernoulli function Py(x) by

0, ifk=1,x€eZ,
(2.1) Pi(x) =

Bi({x}), otherwise,

where {x} denotes the fractional part of x. We note that Py(—x) = (—1)*P;(x), based on
Bi(1—x) = (=1)*By(x). We henceforth will apply this parity condition without mention. We
denote by By the kth generalized Bernoulli number attached to :

(22) By =p"" ) P (%) W(a),

a(p)

where the summation is over a complete residue system modulo p.
We state the well-known multiplication formula for the periodic Bernoulli functions.

Lemma 2.1. ForanykeZ, k>0, n e N, x € R, we have

1 a
—P = E P( +—),
prn i (nx) X+

a(n)

where the summation is over a complete residue system modulo n.

We next give an addition formula for the periodic Bernoulli functions.
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Lemma 2.2. Let x,y € R. Then, we have
P1(x)P1(y) — P1(0)P1(x +y) — P1(y)P1(x + y)

1 1
- —E(Pz(x) + Py(y) + Py(x + y)) + 700x.y),

where

1, ifx,y € Z,
o(x,y) =

0, otherwise.

Proof. The lemma can be checked by elementary algebra, assuming that x,y € [0, 1) and
distinguishing the cases where none, one, or both of x, y are equal to 0. |

Most of the sums we encounter will contain periodic Bernoulli functions whose argu-
ments are homogeneous polynomials of degree 2. Thus we introduce the following lemma.

Lemma 2.3. Letn € N, {kj};f:1 be a set of positive integers with Z?:l kj € 2Z + 1, and
{q,(k, t)}’]?:1 be homogeneous polynomials of degree 2. Then for any a € Z, we have

> []‘[ P (ag;(k r)/p)] =v@ ). [l_[ P a5tk t)/p>] -

k,(p) \ j=1 ki(p) \ j=1

Proof. In the case p = 1(4), there exists a ¢ such that ¢> = —1(p). Replacing (k, ) by
(ck, ct), both sides of the lemma vanish for parity reasons. In the case p = 3(4), there exists
a ¢ such that ¢> = y(a)a~'(p). Replacing (k, 1) by (ck, ct), we obtain the assertion of the
lemma. m]

3. Review of Arakawa Sums and Arakawa Identities

In this section, we state the relevant Arakawa sums and Arakawa Identities obtained in
[4]. They play a vital role in evaluating Lee-Weintraub sums.

Fix an odd prime p. We keep the notation used previously. The Arakawa sums
Ai(ky, ko, k3) (1 < i< 6) are defined by

K — 2kt 2kt .y
Ak, ky, kz) = Pkl( )sz( )Pkg( ),
ki (p) p
K — 2kt kt
Ar(ky, ko, k3) = Pkl( )Pk2 (_)Pk3( )
k() p P
k2 — 2kt — k2
As(ky, ky, k3) = Pkl Pk2 Pk3 ,
k.t(p)
(3.1)
2(k* — 2kt 2kt .y
A4(k17k29k3)_ Pk]( ( ))P]Q( )Pk3( )’
k1(p) p
2(k2 2kt) kt 2(t2 k%)
As(ky, ko, k3) = Pk] P, | — | Pr, ,
k) p
2(k* — 2kt kt -
Ag(ky, ky, k3) = Pk] ( ( ))sz (;)Pk; ( )

k,t(p)
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For convenience, we write

A =A(1,1,1) (1<i<6),

(3.2)
a=4A(1,0,2).

The following are the Arakawa Identities pertinent to the evaluation of Lee-Weintraub

sums.

Theorem 3.1 (Theorem 3.3 in [4]). We have

W A= ga= L g b,

() Ay éa _ 4p+1 - 3;#4(;) 2p6p3 Biy+ 7121 By,

iy ay-Fa= OV O Ay )

) A2t U 2D IS O Sty )

Remark. The assertion (i) in Theorem 3.1 was established by Ibukiyama-Saito[3] from
the work of Arakawa[1]. The remaining assertions are new.

The question arises whether a direct and elementary proof of these identities is possible.
This seems to be a very difficult problem.

4. Auxiliary Sums

In this section, we obtain formulas for all of the auxiliary sums needed in Section 5. We
omit the proofs which can be found in the literature. To fix our standpoint, we are satisfied
if an exponential sum or a character sum can be expressed in terms of generalized Bernoulli
numbers.

Fix an odd prime p. We keep the notation used previously. Let 4 be an integer prime to
p. We put

S, ={(a,b,c) eZ3:1 <a,b,c<p-1,ab+ bc+ hca = 0(p)},
Ty ={(a,b,c)eZ>:1<a,b,c<p-1,(—a+b+hc)* —4hbc = 0(p)},
and

J(h,p) = Z abc y(abc),

(a,b,c)eS ),
K(h,p)= ) abcy(c).
(a,b,c)eTy,
We also define the following character sums.

p—1
= aby(a + hb),
a,b=1
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hk 1
Bi= Y P (;t)Pl (%)Wa,

k,K(p)

(kz) (htz) (h(k+ t)2)
K, = Pi|—|Pi|— | P ,
ki) P P P

2 2
J, = Z P, (%)Pl (h(k p+ kt))P1 (t +kt).

ki(p) p

We note that in the sums Kj, Jj, it doesn’t matter which P; factors contain the parameter
h. Indeed, replacing (k, t) by (¢, k) and (—k, t + k) in the sums K, J;,, we get

hic? 2 h(k + 1)
o= 2 )n (G (57)

kt(p)

W2\ h? (k + 1)?
- S5 ) ()
p p p

k,1(p)

2 2
=SB e (20

kt(p)

2 2
_ ZPI(@)PI(k +kt)Pl(t +kt)'
P p P

kt(p)

We prepare a lemma to be used in Proposition 4.2 and Proposition 4.3.

Lemma 4.1. For any odd prime number p, we get

2

g

i Di= ) abyla+b)=-5QBiy+Boy).
a,b=1
2 2
) P (E)Pl (h’“ )Pl (’“"(” D )slf(k) - Ki,
ki) p p p
K\, (ke K\ (kG +1)?
iy > P (—)P1 (—’)wk) - Yy (—)P1 (&)wm) -0,
ki P p ) p
hkt® hk(t + 1) h
Y Pl( t )Pl( D )wac) - W,
fip) p p V4
NI (E)Pl (hk(” ”)Pl ("“” ”)wo = Jh
i) V4 V4 p
(vi) Py (ﬁ)P] (kt(t - 1))%0(]0 = %Bz,lp,
ki P p

(i) Z P, (hk(t+ 1))P1 (kt(t+ 1)){//(k) __p,
kt(p) p p

Proof. The assertion (i) was proved in (iv) of Proposition 4.7 in [6], so we omit the proof.

LetS = Zk,t(p) P (%) P (h’;—tz) P (hk(tp—mz) (k). Since the sum S without the character van-

ishes for parity reasons, we have
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2 2
s=> P (S)Pl(hk’ )P1 (hk(t; D )<w(k>+ 1)

k) p
K2 hi2s2 RI(t + 1)
- Z PP, P, .
& \p p p

Replacing (k, 1) by (k,k™'f) whenever k # O(p), we see that S = K. Thus the asser-
tion (ii) is established. The assertion (iii) follows from } Pi(hkt*/p) = Y(hk)B , and

Sip P1(k/p) = 0. Let S = Sy Pr (B5) Py (W;—+1>2)¢(k). Replacing (k, 1) by (h™'ki2,t7")
in the sum S whenever ¢ £ 0(p), we get

k ki 1)? k
S=u Y Py (;)Pl( — )mk)—w(h)ZP%(;)w(k).

k.t(p) k(p)

The first sum vanishes by (iii) and the second sum is simply B, ,/p. Thus we get the asser-
tion (iv). The assertion (v) can be proved in a manner similar to (ii), so we omit the proof.
The assertion (vi) was proved in (xi) of Proposition 4.8 in [6], so we omit the proof. Let
S = Tkap Pr (PE2) Py (ME2) (k). Replacing (k,7) by (h~'k(hk™'t + 17!, hk~'1) in the
sum S, we get

S=uh) Y Py (E)Pl (é)(p(m + ).

k,t(p)
On the other hand, replacing (h~'k + ¢, —(h~'k + £)~'¢) in the sum S, we have
t k
Bn = —y(h) Z Py (—)P1 (—)Ll’(k + h).
ki) p

Thus § = -, and the assertion (vii) is established. ]
The next two propositions allow us to express the Lee-Weintraub sums S [—x, x+ 1, hx(x +
D1, S[1, hx?, h(x + 1)*] by a sum of triple products of P; functions.

Proposition 4.2. For any odd prime number p, we get

2
1)  S[-x,x+ Lhx(x+ 1] =1W) (—%K(h,p) + (=D er w(h))Bw,),

() S[1,hx% h(x+ 1)*]

1) 1 - 1) hp-1)
= ) (—‘”pZ 1.p)+ 2o, - K= Dp,, - w+32,¢)-

Proof. We first prove the assertion (i). Let S denote the sum S[—x, x+ 1, ~x(x+ 1)]. Then,
we have

_ v
$ =), T @ DTy
1 1

Since 1= 25;11 al® for any n with (n, p) = 1, we get
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p—1
cj>+(-a he) j
S = _F Z abe Z Z {k[h]+( +b+ )]+b}w(k)

a,b,c=1 Jj(p) k(p)
J£0,—1(p) k£0(p)

__T¥ Z bc{ (Z W(hej* + (—=a+ b+ he)j + b)] —y(b) - lﬁ(a)}

LA et )

- 1% h h
(p )(4+¢( ))Bl,w w( )K(h ))

=T(¢)(

We next prove the assertion (ii). Let S denote the sum S[1, hx?, h(x + 1)?]. Proceeding as
before, with the help of (i) in Lemma 4.1, we have

-1
1 % N 0 oy
_ {(hb+hc) j~+2hc j+(a+hc)}
et S T S ot
ab,c=1 J(p) k(p)

J£0.=1(p) k=0(p)

= T(‘”) Z abc{ [Z W((hb + he) j* + 2hej + a + hc)] Y(a+he) = yla+ hb)}

=1 J(p)

-1 (W(p-1) (W(p-1) (h)
=7(Y) [pp2 Dy, - id 5 By - id f By - ,"//—2 . };)ESh abcy(a + c)].

Since y(a+c) = Yy(—h)y(abc) for every triple (a, b, c) € S, we obtain the assertion (ii). O

Proposition 4.3. For any odd prime number p, we get

- 2)(1 +2¥(h h
Q) K p)fp* = K-y + L2020, | VD,
14
2 h 1
(i) J(h,p>/p3=—w(—h>(fh+ﬁh+ sl )Bl,w+132,w)-

Proof. We first prove the assertion (i). By the 1-to-1 correspondence between the sets 7,
and {(hk(r + 1)*, hki*, k) € (F%)* | 1 < k.1 < p — 1}, we have

Kh,py= > Ak Nkt + 1) k),

k,t(p)
ki(t+1)20(p)

where [n] denotes the least nonnegative residue of n mod p. Since [x]/p = Pi(x/p) + 1/2 if
x ¢ Z and Pi(x/p) otherwise, we express K(h, p) by sums of products of P, functions and
take full advantage of their periodicity. Thus, we have

K(h,p)/p’

S8 ()Y ) e ) o

kt(t+1)20(p)

Upon simplifying, with the help of (ii)-(iv) in Lemma 4.1, we obtain the assertion (i).
We next prove the assertion (ii). By the 1-to-1 correspondence between the sets S and
{(kt(t + 1), hk(t + 1), —kt) € (IF;)3 |1 <k,t<p-1}, we have
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Jop)y = > [=kellk(t + DIke(e + DIY(=hCA (@ + 1)),

k.1(p)
kt(t+1)#£0(p)

Proceeding as before, expressing J(h, p) by sums of products of P; functions and simplifying
with the help of (v)-(vii) in Lemma 4.1, we obtain the assertion (ii). ]

In order to evaluate the Lee-Weintraub sums given in the introduction, we need the fol-
lowing proposition.

Proposition 4.4. For any prime number p, we get

2
() D2=y@Dy = =5 (20 +y@)Biy + Boy).
4+ u2
i) o =v@ars = 0,
2
Gi) =B = P28y,

Proof. In the notation of [5], we have D;, = S (h, ¢; 1). Therefore, by Theorems 4.5, 4.4,
and 3.1 in [5], we get D, = & (21 + ¥(2))By + Bay). Since Dyt = Y(2)D; is clear, we
have the assertion (1).

By a standard calculation as seen in Proposition 4.8 of [6], we get a; = %Bz,w. Re-
placing k by hk in the sum -1, we get a;,-1 = ¥(h)ay,. Thus the assertion (ii) follows.

Replacing (k, f) by (h~'k + ¢, —(h~'k + £)~'¢) in the sum S, whenever h~'k + t % 0, we get

k 1 h)+1
B =—uh) >\ P (5)1)1 (—)wac +hi) = —Wz)(—zDh . )2+ Biy).
ki) p p
Thus the assertion (iii) follows from (i). m]

Remark. The sum D), has been studied in greater generality in [5].

We now introduce some new notation. Let g;(k,?)(j = 1,2,3) be polynomial expres-
sions of k and . We write S (q;(k, 1), g2(k, 1), g3(k,t)) and D(q;(k, 1), g,(k,t)) to denote the
following sums of products of periodic Bernoulli functions.

S(qi(k, 1), q2(k, 1), q3(k, 1)) = Z Pi(q1(k, )/ p)P1(q2(k, 1)/ p)P1(q3(k, 1)/ p),
k.t(p)

D(q:(k, 1), q2(k, 1)) = Z Pi(q1(k, 1)/ p)P2(q2(k, 1)/ p).
k.1(p)

We note that the sum S (g1, g2, ¢3) is invariant under permutations of its arguments, whereas
the sum D(q1, ¢») is not.
We next give a proposition that is used only in Theorem 4.6.

Proposition 4.5 ([6]). Let r, s € Z. We have
Q) D(rkt, s(* — k*)) = 0,
() D@ + ki), s(k* + 2kt)) = D(r(k* + 2kt), s(* + k1)) = 0,
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(iii)  D(K* + kt, kt) = D(k* + 2kt, 2kt) = D(* + kt, k> + ki)

= y(2)DQ(* + kt), 2kt) = y(2)DQ2(F* + ki), 2(k*> + kt)) = —iBw,

3p
1-y(2 2
(iv)  D(* + kt, 2kt) = D(* + kt, 2(k* + kt)) = dt )31 = MBM,
2p T 6p 7
-y 1
(V) D(K* + 2kt, kt) = y(2)DQ2(K* + 2kt), 2kt) = i )31 v — ——Bsy,
4p ’ 12p
1
(vi)  D(kt,k* + kt) = D(2kt, k* + 2kt) = 5Bw,
1-y(2 1
(vii)  D(kt, k* + 2kt) = y(2)D(2kt, 2(k* + 2kt)) = z‘z( )BW + @BM’
(viii) DQkt,k* + ki) = =DQ(¢* + ki), k* + kt) = =D(Q2(¢* + ki), kt)

1-y(2) ¥(2)

ap Pt
(ix) D> + 2kt, > + 2kt) = y(Q)DQ(K* + 2kt), 2(1* + 2k1)) = —a,
4+y¢(2)

B3,I,D’

(x) DK + 2kt,2( + 2kt)) = — a,
(xi)  DQK* + 2kt), £ + 2k) = —A4(1,0,2).

Since the assertions of Proposition 4.5 can be found in Propositions 4.3, 4.5, and 4.6 in
[6], we omit the proof.

Set € = p/2. We define the following sums which frequently arise in the evaluation of
Lee-Weintraub sums.

X1 =S 2, (k +1)%),
X, =S(* + €, (k+1)%),
Xs =S+ €1 +€ (k+1)P),
X, =Sk +er +e(k+1°+e),

4.1 Y, = S(kt, k> + kt, > + kt),
Yy = S(kt + €,k* + kt, 1> + ki),
Y3 = S(kt + €, k> + kt + €, + ki),
Yy =Skt +ek>+ki+e*+kt+e),
y = D(kt, 2(k* + 2kt)).

Remark. For the Lee-Weintraub sums given in [6], we encountered the sums X, X5, X3,

and Y, and for the Lee-Weintraub sums given in this paper, we encounter the sums X, X»,
Yy, Ys, and V3.

We note that in the sums X;, Y; (i = 2, 3), it doesn’t matter which P; factors contain the
parameter €. Indeed, replacing (k, f) by (¢, k) and (—k — ¢, ¢) in the sum X», by (k, —k — 1) and
(—=k—t,t) in the sum X3, by (—k, k+1¢) and (—¢, k+1¢) in the sum Y;, and by (¢, k) and (-k—1,1)
in the sum Y3, we get
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X, =S, P+ € (k+1)) =Sk, 12, (k+1)* +e),
X3=8SU*+et,(k+1)+€) =SE, 1> +e€ (k+1)° +e),
Yo = S(kt,k* + ki + €, + ki) = S (kt, K> + kt, 1> + kt + €),
Y3 = S(kt + €, k* + kt,* + kt + €) = S (kt, k> + kt + €, + kt + ¢€).

We will routinely make use of the multiplication formula Lemma 2.1 to express periodic
Bernoulli functions shifted by 1/2 as follows.

(4.2) Pe(x+1/2) = 17251 P(2x) — Py(x) (k€ Z, k>0, x € R).

We will also regularly call upon Lemma 2.3 to “factor out” a ¥/(2) from a sum of products
of periodic Bernoulli functions.

In the next theorem (Theorem 4.6), we will frequently simplify sums of triple products
of periodic Bernoulli functions by applying the addition formula Lemma 2.2 to two of the
terms, then multiplying throughout by the remaining term and carefully summing. Thus we
write [a, b; c; (d), (e)] to mean “applying Lemma 2.2 with x = a/p, y = b/p, multiplying
throughout by P;(c/p) and summing over k, #(p) with the help of (d), (e) in Proposition 4.5”.
Through this process, we express our original sum of triple products as two new sums of
triple products plus three sums of double products and a correction sum involving just one
P,. That is, we get

S(a,b,c)=S(a,a+b,c)+S(b,a+b,c)— %(D(c,a)+D(c,b)+D(c,a+b))

v D Pielp)talp,blp),
k.t (p)

where 6(x,y) = 1 if x,y € Z, and 0 otherwise. All of the correction sums involving one P
are easy to evaluate and require no explanation. (In fact, all of the correction sums involving
one Py will vanish with the exception of Y ) P1(kt/p + 1/2)5((k* + 2k1)/ p, (* + 2kt)/ p))
which equals 6,3(¥(2) — 1)B;,.) All of the sums of double products have already been
evaluated in Proposition 4.5. Thus, we will only explain manipulations of sums of triple
products of periodic Bernoulli functions. We will apply the same sequence of steps to each
new sum of triple products arising. In this way, we will obtain a tree of sums. In the end,
we will condense the tree and express our original sum of triple products by Arakawa sums,
from which we can evaluate by virtue of the Arakawa Identities given by Theorem 3.1.

We remind the reader that A;(ky, k;, k3) are the Arakawa sums given in (3.1), and that A;, a
are the Arakawa sums given in (3.2). We now express the sums X;, Y; (1 <i < 4) in terms of
v and Arakawa sums A; (1 < i < 6), a. We note that only the sums Y», Y3 involve the sum v.

Theorem 4.6. For any odd prime number p, we get

. 1 6p—3+2p6p3 2
X,=6|Ay--a|-—————""By,——B
(1) 1 ( 1 361) 4p Ly p 3.4

()  Xo =2(1 +y¥(2) (A1 - %a) - 2¥(2) (A2 - éa) - 2(A3 - ga)

3
yQ -1, 4+¥Q)

+ —_—
4p Ly

B3y,
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1 1-y@),  2-¥Q

(lll) X3 =-2 (A] g ) + 2$(2) (Az - g ) + ;ﬁ l// 3;{ B3’¢,
1 2 1 -y 4—y(2

(IV) X4 = -6 (A] 5 ) + 6( 3 — 561) + ;b( )6[,,331,(/, + 2";;( )B3,¢,
1 3p+3-3y(2)-2po,. 3

@ = ol ga)r TR

(vi) Y>=2 (A1——a) (Az—%a)—2(A4+A5_2A6_@)

12
1, w@- D(@p - g 7¢(2) - 1zB
PR 16 T
P p

(vii) Y3=2(1—1//(2))( z—éa)+2(A4+A5—2A6—% )
_ly+ G + 22 -

B B
2 4p T T12p T
1 1 3Y(2) -3 +4poys 3
(Vlll) Y, =-6 (A] - —a) + 6(A2 - —a) + : Bl’ + —B3’ .
3 6 4p d 4p ¥

Proof. The assertions (i)-(iii) were proved in Theorem 5.1 in [6], so we omit the proofs.
We now prove the assertion (iv). We set

I =82k, 22,2k + 1)%).

By Lemma 2.3, we have I = (2)X;. On the other hand, by the multiplication formula
Lemma 2.1, we get I = X + 3X, + 3X3 + X4. Thus X4 = (W (2) — 1)X; — 3X, — 3X3 and the
assertion (iv) follows from (i)-(iii).

The assertion (v) was proved in Theorem 5.3 in [6], so we omit the proof. For the re-
maining assertions (vi)-(viii), we apply a sequence of transformations similarly used in the
proof of (v). We now prove the assertion (vi) by creating a tree of sums for Y, of depth 3.
By [kt + €, k% + kt; 2 + kt; (ii)-(iv)], we have

Y, = S(kt + €,k* + 2kt + €,1* + ki) + S (kK> + kt, k> + 2kt + €, * + ki)
2)—1 2
N Y(2) By, + Y(2)
8p ’ 24p
Replacing (k, t) by (—k, k + 1) in the second sum on the right, we get

B ).

Y, = S(kt + €,k* + 2kt + €, 1> + kt) + S (kt, k> + 2kt + €, 1> + ki)

4.3) 2)—1 2
) By + ¥(2)

8p ’ 24p

Bs,.
We now evaluate the first sum on the right of (4.3). By [kt + €,1> + kt; k> + 2kt +
€ (i), (iii), (v), (ix)-(xi)], we get
S (kt + €,k* + 2kt + €, 1> + k)
= Skt + €, k> + 2kt + €,1* + 2kt + €) + S (£ + kt, k> + 2kt + €, 1> + 2kt + €)

w(2)+1 1 1 2 w(2) -1 W(2) -2
— —A4(1,0,2) + =DQ(K* + 2kt), k B B; .
+ e 475 4(1,0, )+2 (2(k™ + 2kt), kr) + 16p Ly + 18p 3.p
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Replacing (k, 1) by (t — k, k) in the second sum on the right and applying (4.2), we obtain
S (kt + €, k* + 2kt + €, + k)
= S(kt + €, k* + 2kt + €,1* + 2kt + €) + S (kt,2(* — k*), k> — 2kt)

(4.4) Ay As g PO

Y(2) - lBl,w N y(2) -2
16p 48p

1 1
a-— 5A4(1, 0,2) + ED(Z(kz + 2kt), ki)

+

Bs .

We next evaluate the first sum on the right. By [—(k* + 2kt) + €,1> + 2kt + €; kt +
€; (1), (vi), (vii)], we get

S (kt + €, k* + 2kt + €, 1> + 2kt + €)

1
=Skt + ek +2kt+e,1 —k>) - Skt + €, + 2kt + €, —k*) — 57
1-yQ2 2)-2
MR PE)
4p ’ 12p
Replacing (k, t) by (k, —t) in the first sum and (k, ) by (¢, —k) in the second sum and applying
(4.2), we get

B3 ).

S (kt + €,k* + 2kt + €, 1> + 2kt)

4.5) | /) w(2) -2
=2A| —2A, — 2A4 + 2A¢ — = B
1 2 4+ 2A¢ 27 + 4p Lyt 12p

B3 .

We now evaluate the second sum on the right hand side of (4.3). By [k, 2+ kt; k> + 2kt +
€; (i), (v), (ix), (xi)], we get
S (kt, k* + 2kt + €, % + ki)

1
= S(kt, k> + 2kt + €, + 2k) + S (£ + kt, k> + 2kt + €, 1> + 2kt) — 34

(=291 -y@), 1

8p W 24p
Replacing (k, 1) by (t — k, k) in the second sum on the right and applying (4.2), we get

1 1
+ 5A4(1,o, 2) — 51)(2(1<2 + 2kt), ki) +

S (kt, k* + 2kt + €, + ki)
= S (kt, k* + 2kt + €, + 2kt) — S (kt, 2(£* — k*), k> — 2ki)

1 1 1
(4.6) + A, — Ea + §A4(1, 0,2) - ED(Z(kZ + 2kt), kt)
(1 =2p)(1 —¢(2)) 1
By, — —B3y.
+ 8p Ly 24p 3.y

We next evaluate the first sum on the right. By [—(k* + 2kt) + €, 1> + 2kt; kt; (i), (vii)], we
get

S (kt, k> + 2kt + €, + 2kt)

1
= S(kt, k> + 2kt + €,1> — k> + €) — S (kt, 1> + 2kt, > —k* + €) + 77
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Replacing (k, t) by (k, —t) in the first sum and (k, 7) by (¢, —k) in the second sum and applying
(4.2), we get

1
4.7 S (kt, k> + 2kt + €, 1% + 2kt) = —As + Ag + 7
Then, from (4.3)-(4.7), we have
1 1 Y(2)
Y =2(A — =a|-2[A) — —a|—-2|As + A5 — 24 — —
2 (1 361) (2 6(1) (4+5 6 12(1)
1 W(?2)-1@p-3) TY(2) — 12
—_—— B .
i T6p TP

Thus the assertion (vi) is established.
We next prove the assertion (vii) by applying a similar sequence of transformations to Y3
to obtain a tree of sums of depth 3. By [kt + €, k> + kt + €; 1> + kt; (ii)-(iv)], we have

Y3 = S(kt + €, k> + 2kt, > + kt) + S (k> + kt + €, k> + 2kt, * + kt)
2)—1 2)—-4
Y(2) By + Y(2)
4p ’ 12p
Replacing (k, 1) by (—k, k + t) in the second sum, we get

w(2) - 1Bl,l// N w(2) -4
4p 12p

+ B3,¢,.

(4.8) Y5 = 28 (kt + €, k* + 2kt, 1> + ki) +

B3 y.

By [kt + €, 1> + kt; k> + 2kt; (i), (iii), (ix), (x)], we get
S (kt + €, k> + 2kt, 1> + ki)
= S(kt + € k% + 2kt, 1> + 2kt + €) + S (£ + kt, k> + 2kt, 1> + 2kt + €)

Q-2 1@ ]

+ —Bsy.
12 8p T 2apTH

Replacing (k, 1) by (t — k, k) in the second sum on the right and applying (4.2), we obtain
S (kt + €, k* + 2kt, * + kf)

= 2 2 Y(2) -2
(4.9) = Skt + €, k° +2kt,1° + 2kt + €) + Az — A + —5—a
1-¢(@2 1
Biy + 5—Bsy.
TTp M T oap

By [—(k? + 2kt), 1> + 2kt + €; kt + €; (i), (vi), (vii)], we get
S (kt + €, k* + 2kt, 1> + 2kt + €)

1
=Skt+e k> +2kt, > -k +e)— Skt + €, +2kt +€,° —k*> + €) — -y

4
2)—1 2
TR C)
8p ’ 24p
Replacing (k, t) by (k, —t) in the first sum and (k, 7) by (¢, —k) in the second sum and applying
(4.2) together with Lemma 2.3, we get

+

Bsy.
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S(kt + €, k> + 2kt, 1> + 2kt + €)
(4.10) I (2 - 1 t//(2) v,

= —y(QAy; + Ay + As — Ag — —
U(2)Ar + Ay + As — Ag ya 8p 24 3
Then, from (4.8)-(4.10), we have
Y3 = 2(1 — )70(2)) (A2 — %a) + 2(A4 +A5 - 2A6 - %a)
1 v(2) -1 2Y(2) -3
- = B ————— B3y,
VT A, P T, W

Thus the assertion (vii) is established.
We next prove the assertion (viii) by applying a similar sequence of transformations to Y,
to obtain a tree of sums of depth 3. By [kt + €, k> + kt + €; 1> + kt + €; (ii)-(iv), (viii)], we have

Yy =Skt + € k* + 2kt,t* + kt + €) + S(k* + kt + €,k + 2kt 1> + kt + €) + %BM.
Replacing (k, f) by (—k, k + t) in the second sum, we get
4.11) Yy =28 (kt + €, k* + 2kt, 1> + kt + €) + %Bw.
By [kt + €,1* + kt + €; k* + 2kt; (ii), (iii), (v), (iX)], we have
S (kt + €, k* + 2kt, 1> + kt + €)

1
= S(kt + €,k + 2kt, 1> + 2kt) + S (£ + kt + €, k> + 2kt, 1> + 2kt) + 54

1-y@, 1
Y " 2ap

Replacing (k, 1) by (t — k, k) in the second sum, we get —A; + A,. Thus, we have
S(kt + €, k* + 2kt, t* + kt + €)

—B3y.

1 1-y(Q2)
@.12) :S(kt+e,k2+2kt,t2+2kt)—A1+A2+§a+ 3 By
L p
T 2ap

By [—(k? + 2kt), 1> + 2kt; kt + €; (i), (vi), (vii)], we get
Skt + €, k* + 2kt, 1> + 2kt) = S (kt + €, k> + 2kt,1* — k*) = S (kt + €, 1> + 2kt, 1> — k?)

2)—1+po 1
+lﬁ() pp,SB

+ —Bsy.
2p 1y 6p 3y

Replacing (k,t) by (k, —¢) in the first sum and (k, t) by (¢, —k) in the second sum, we get
—A] + Ay and A| — Ay, respectively. Thus, we have

2)—1+pé 1
(4.13) S(kt+e,k2+2kt,t2+2kt):—2A1+2A2+¢() P P 4+ —Bs,.
2p R4 D W

Then, from (4.11)-(4.13), we get

1 1 3(2) -3 +4pb,3 3
4.14 Yy=-6(A; — = 6|A) — = ~B —DB3,.
( ) 4 ( 1 3a)+ ( 2 6a)+ ap Ly + > 30
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Thus the assertion (viii) is established. m]
By virtue of the Arakawa Identities (Theorem 3.1), we express the sums X;, Y; (1 <i < 4)
and vy as linear combinations of generalized Bernoulli numbers.

Theorem 4.7. For any odd prime number p, we get
p—2 1

i X,=-—B,——8B
(1) 1 dp DT gp
. -2+y2)(p+4 4 +y(2
) o PT2HIOREH,  4re@),
24p 72p
-2 2)(1 -2 2—y2
(i) x5 = PTEHYQA-2) 2200
12p ’ 36p '
) -2)W(2)-1 4 —y2
V) X = (p —2)Y(2) )Bl»lﬂ"- Y( )Bs,w’
8p 24p
p—2 1
Y =- B,,—-—B
(V) 1 4p 15W 6p 35‘#’
. (p+ DA +y((2)) 2-y(2)
Y, = B B
(VI) 2 12p Ly + 36p 3.4
.. p—-2+y(2)1-2p) 2-y(2)
(vil) Y3 = 2 By + 36p B3y,
+1 1
(viii) Yy = —p4—p31,¢, - an,
) 1-y2 2
(IX) Y = w( )Bl,t// + MB?,#,.
4p 12p

Proof. By Theorem 4.6 and Theorem 3.1, we immediately get the assertions (i)-(v), (viii).
Thus it remains to prove the assertions (vi), (vii), and (ix). By (vi), (vii) of Theorem 4.6 and
Theorem 3.1, we get

VAP T UQEp D 8- u(2)

1
Y, =- + B3y,
“15) 2Ty 48p W 44 Y
’ 1 2p—1—-y(Q)dp+1) w(2)+4
Y3 =—-—=y+ Bl,w + B3,,/,.
2 24p 2p
We set

[ = S2kt,2(k* + kt), 2( + k).

By Lemma 2.3, we have I = ¢(2)Y;. On the other hand, by the multiplication formula
Lemma 2.1, we get [ = Y| + 3Y, + 3Y3 + Y4. Thus ¢(2)Y, = Y, + 3Y, + 3Y3 + Y4 and the
assertion (ix) follows from (4.15) and (v), (viii). The assertions (vi), (vii) then immediately
follow from (4.15) and (ix). m]

5. Evaluation of related Lee-Weintraub sums

In this section, we evaluate the Lee-Weintraub sums given in the introduction, thus estab-

lishing the Tsukano Conjectures (ii), (iv), and (v). We remind the reader of the notation.
a

Fix an odd prime p and let ¢ denote the Legendre symbol mod p: ¥(a) = (;) We put



THE TsukaNo CONJECTURES ON EXPONENTIAL SuMs 559

{ = exp(2ni/p). Let 7(yy) denote the Gaussian sum () = 25 ;11 Y(n)". We remind the
reader that X;, Y; (1 < i < 4) are the sums given in (4.1).
We now evaluate the Lee-Weintraub sums given in the introduction.

Theorem 5.1. For any odd prime number p, we have
ST-2x,2(x+ 1), x(x + 1)]

-p+2+¥2)5p+2) 1 +6y(2) 1+ 16y(2)
2 B],(/, + TBQ"’D + TB3’¢/ .

Proof. Let § denote the sum S[-2x,2(x + 1), x(x + 1)]. By Proposition 4.2, noting that
S =y(2)S[—x, x + 1,27 (x + 1)], we get

= T(kb)(

1 (p—D*Qu(2) + 1)
(5.1 S = %//(—l)p(—? k@' p+ L ) 4"[’ Biy|,
where by Proposition 4.3 together with Proposition 4.4, we get
- (p =21 +2y(2)) 6y(2) + 1
(5.2) K@ p)/p’ = Ko+ Vg, - "Z’TBM.

By Lemma 2.3, and then by the multiplication formula Lemma 2.1, we get

2k2 2 k 2
&4=M%§:ﬂ(—)HGJP%(+ﬂ)=wbﬂﬁxﬁ
i) p P )4

Thus, by Theorem 4.7, we have

p+4-502)p-2) 16y(2) + 1
o By — —————Bs,.
p 2p

Theorem 5.1 then immediately follows from (5.1)-(5.3). m]

(5.3) Ky1 =

Theorem 5.2. For any odd prime number p, we have
S[1,2x%,2(x + 1)%]

—2p+7 - y(2)8p - 19) 2)+1 4p(2) + 1
PRIV S WL, )

=T(lﬁ)(

Proof. Let S denote the sum S[1,2x?,2(x + 1)?]. By Proposition 4.2 together with (i) in
Proposition 4.4, we have

-1 -DQRy2)+1 -DW2)+1
(5.4) S=T(¢)(—w(pz)J(2,p)—(p )(2¢()+ )BW_(P )(f()+ )Bz,w)’

where by Proposition 4.3 together with Proposition 4.4, we get

2+0Q),  1+0Q)

(5.5) J2,p)/p’ = —y(-2) (Jz + Bz,w)~

By the multiplication formula Lemma 2.1, we have

2 2 2
h= P (ﬁ)P1 (k +kt)P1 (t +kt) Y, + Y
k) p p

Hence, by Theorem 4.7, we get
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2p+T+vQ2)(p+1) 4+ y(2)
5.6 = By — B3 y.
(5.6) J> 12p 1Ly 36p

Theorem 5.2 then immediately follows from (5.4)-(5.6). O

Theorem 5.3. For any odd prime number p, we have

2p+5—y)(p - 4) 1 1
Biy+ ~Byy— —Bay).
12 A R AT e

S[2.0%, (x+1)°] = r(w)(
Proof. Let S denote the sum S[2, x?, (x + 1)?]. By Proposition 4.2 together with (i) in
Proposition 4.4, noting that S = y(2)S[1,27'x%,27(x + 1)?], we get

-2 -DR2+yQ2 -1
l//(pz)‘](z—l’p)_(p )(2 W( ))Bw_p2 Bz,w),

where by Proposition 4.3 together with Proposition 4.4, we have

2+¥(2) 1
: )

6.7 S =1 (—

Bl,nﬁ + —Bz,,ﬁ

(5.8) J27 p)/pP = —y(-2) (le - 5

By Lemma 2.3, and then by the multiplication formula Lemma 2.1, we get

2 2
=) Y, 21 (2 2y (K () o v am e,
&ip) p p

Hence, by Theorem 4.7, we get

20(2) + 1 1
5. Jo1=——"8B — B,
(5.9) 21 1p W ap
Theorem 5.3 then immediately follows from (5.7)-(5.9). ]

We are now in position to prove the Tsukano Conjectures.

Theorem 5.4 (Tsukano Conjectures [8]). When p = 3(4), we have
A +y@)p+ I)B Y(2)+4

0 12 )W) = 2 =Yg,
. B -2—-y)(5p+2) 1+ 16y(2)
i) 127, p)/rw) = 2 ‘”24 Pr2p - 72‘” By,
1 1
i) J(1p)/p* =L ; Biy B,
(v Q= LD D, I W),
2 (2 1 2
W Je = P EEEPE D, B,

where 27! is regarded as an element of (Z] pZ)*.

Proof. We note that B, , vanishes in the case of p = 3(4). Since I(2, p) = Y(=1)S[-x, x +
2, x(x + 2)], the Tsukano Conjecture (i) follows from Theorem 5.1 in [6]. Since I(27!, p) =
Y(=2)S[=x, x + 1,27 x(x + 1)] = Y(=1)S[-2x,2(x + 1), x(x + 1)], the Tsukano Conjecture
(ii) follows from Theorem 5.1. The Tsukano Conjecture (iii) follows from Corollary 5.4 in
[6]. The Tsukano Conjecture (iv) follows from (5.5), (5.6). The Tsukano Conjecture (v)
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follows from (5.8), (5.9). m|
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