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1 Abstract

The GOES-R series is a product line of four satellite, with two currently on-orbit
(GOES-16 “East” and GOES-17 “West”). GOES-17 is susceptible to a Loop-Heat-
Pipe (LHP) phenomenon where during Fall and Spring seasons, there are times of
day where some of the infrared bands records inaccurate readings from the Advanced
Baseline Imager (ABI). This occurs from joint astronomical behavior and position
of the GOES-17. This calibration issue occurs when the LHP instrument fails to
radiate the heat of the sun out of ABI. Predictive Calibration (pCal) is an algorithm
developed by instrument vendors for the National Oceanic Atmospheric Agency
(NOAA) to correct the readings of GOES-17. NOAA implemented the algorithm
July 26, 2019. pCal is a regression that corrects for the average temperature in a
region of interest where a threshold of points may be susceptible to LHP. pCal has
two components: an equation where the rapidly changing calibration parameters
are linearly interpolated in time, the second is more frequent calibration events,
such as looking at the internal calibration target. There are sixteen channels per
satellite, specialized to take measurements of various properties. In this project
we explore a multi-layer perceptron (MLP), neural network, to train a model
using various sample size. We compare our R-square scores, mean square error
(MSE), and mean absolute (MAE) between pCal and MLP models. In addition,
we explore different artificial intelligence, machine learning algorithms to detect
image anomalies which has broader flagging applications than just correcting for
temperatures.
Keywords— Machine Learning, Artificial Intelligence, GOES-R, Predictive Calibration,
Loop-Heat-Pipe, and Data Quality Flag
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2 Introduction

GOES stand for Geostationary Operational Environmental Satellite and both GOES-East
(16) and GOES-West (17) make up the GOES-R series. Within the GOES-R series
(GOES-16 and GOES-17) the Loop-Heat-Pipe (LHP) phenomenon affects GOES-17
based on its orientation. We examine a machine learning approach to correct GOES-17
temperature readings. There are two models constructed: both use multi-layer perceptron
(MLP), one for pCal corrected data and the other for non-pCal corrected data i.e. raw
data. In figure 1 we see the region of interest (ROI). The latitudinal range is from -
109.59326ºE to -102.40674ºE and the longitudinal range is from 8.94659ºN to -8.94656ºN.
This region of interest is chosen over the equator to minimize error from parallax behavior.
These extents were transcribed from the operational full disk netcdf files. For a full
disk image the time and band is the same for all pixels in that file. We use mode 3
and mode 6, which has 15 minute and 10 minute interval scan rates of the full disk
[DOC et al., 2020]. The band is the channel that satellite is tuned in for a radiance
reading [NASA, 2021a, NASA, 2021b]. The operational data is a cleaned version of the
raw satellite data for organizations such as NWS. We can round to five significant digits
for consistency.

Figure 1: Region of Interest for GOES

In addition, we examine picture artifacts that occur when we render the data as images.
There is no pattern and the aim is to develop an artificial intelligence tool to detect these
artifacts to aid human efficiency in labeling these images (figure 2).

2.1 Problem

2.1.1 What

One approach is a synthetic break-down of GOES-16 measurements to simulate the skew
of GOES-17 measurement with the hope of reverse engineering algorithm to generate a
correct GOES-17 measurement. Another approach is to compile a visualization library
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Figure 2: Artifacts on GOES-17, Band 12, 9 Feb 2020 at 04:00 UTC (image by
courtesy of Tim J. Schmit [Gunshor et al., 2020])

Figure 3: Non-artifact (“fillin”, left) at January 1, 2021 06:40 UTC, Band 7 and an
Artifact (“Shark Fin”, right) at February 20, 2020 16:15 UTC, Band 12

of temperature histogram to study behavior GOES-R radiance and anomalies. Finally,
taking both of these approaches into consideration, we do the next best thing: machine
learning. We explore an MLP with of 100 layers and 500 iterations under supervised
learning.

One pixel covers 1.54 square miles. The objective is to make accurate predictions of
pixel to pixel transformations. Currently, state-of-art predictions is limited to average
temperature of a region of interest, which can represent the size of a country (figure 1).

2.1.2 Why

Impact: The Cooperative Institute for Meteorological Satellite Studies (CIMSS) has
requested histogram plots as an added feature to their public database. This web page
can help users know when (day and times) and what GOES-17 pages are affected. The
values recorded from the operational data set is used by the National Weather Service
(NWS) for weather forecasting.

Novelty: previous work revealed that single-mode, bi-modal, and tri-modal features
occur in the histogram analysis [Adomako et al., 2020]. We are identifying radiance
anomalies using machine learning and will incorporate artificial intelligence into GOES.
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This project checks work done by CIMSS and the GOES community at large using
different methodology. Effective use of the developed tools in conjunction with data
stored on the cloud allows aspiring scientist to engage with tens of terabytes of GOES
data that they otherwise would not be able to play with on their personal device.

Reproducibility: findings are available to the open-source community for tracking and
reference1. Presentations, proceedings, and publishing are in collaboration with NOAA
Center for Earth Science Systems and Remote Sensing Technology (NOAA-CESSRST)
and CIMSS lab.

3 Related Work

In this section we cover related work in the domain of GOES-R, what has been done,
what is left, and how our current findings fills a gap. We were able to measure a true-
positive (hit rate or recall) up to 82 percent when we formalized the LHP phenomenon
as a classification problem of five categories. We used the Data Quality Flag (DQF)
provided by NOAA [Kalluri et al., 2018]. The DQF is an associated label to categorize
temperature measurements. The lower the measurement the more accurate. We mapped
this onto the five categories for DQF where zero is represented as the best quality.
GOES-16 DQF measurement was chosen as ground truth. We ran the same experiment
over where we compared standard deviation from the mean and got a similar recall for
GOES-17 where GOES-16 was again used as ground truth.

3.1 NOAA-Center for Earth System Sciences and Remote
Sensing Technologies (CESSRT)

Work done at NOAA-CESSRST includes a poster session at the The New York City Sci-
ence Research Mentoring Consortium for Satellite Validation and Analysis [Alvarez et al., 2019].
It was found that when removing pixels with cloud aberrations still yield results that
are statistically significant for when comparing average temperatures in the region of
interest of GOES. Previously, work in temperature correction of GOES did not explicitly
consider clouds on the radiance channels [Yu et al., 2019].

Additionally, work at CESSRST had previously focused primarily on meteorology,
environmental science, and related social impact. This study is a first for computer
science at CESSRST to support the NOAA mission statement: provisions were made
for a new cohort of researchers to study computer science. Figure 4 is a highlight of the
LHP phenomenon of the GOES-R study involving high school students in an education
mentoring, recruitment initiative [Alvarez et al., 2019].

1cimss.ssec.wisc.edu/goes-r/abi-/band statistics imagery.html
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In [7]:

In [8]:

VGG | RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
(https://discuss.pytorch.org/t/vgg-runtimeerror-element-0-of-tensors-does-not-require-grad-and-
does-not-have-a-grad-fn/74065/2)

In [9]:

['fillin', 'sharkfin'] 
['fillin', 'sharkfin'] 
['fillin', 'sharkfin'] 

    
    return trainloader, testloader, valloader
 
 

trainloader, testloader, valloader = load_split_train_test(data_train_d
                                                           data_test_di
                                                           data_val_dir
 
print(valloader.dataset.classes)
print(testloader.dataset.classes)
print(trainloader.dataset.classes)

device = torch.device("cuda" if torch.cuda.is_available() 
                                  else "cpu")
# model = models.resnet50(pretrained=True)
PATH = 'MODELS/model_epoch_99_May-10-21:1605_1620677105.pth'
model = torch.load(PATH)
#torch.save(model, 'ResnetPretrained.pth');

for param in model.parameters():
    param.requires_grad = False
    
model.fc = nn.Sequential(nn.Linear(2048, 512),
                                 nn.ReLU(),
                                 nn.Dropout(0.2), #nn.Dropout(0.2),
                                 nn.Linear(512, 2),
                                 nn.LogSoftmax(dim=1))
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=0.003)
 
# model.fc = nn.Sequential(nn.Linear(2048, 512),
#                                  nn.ReLU(),
#                                  nn.Dropout(0.5),#nn.Dropout(0.2),
#                                  nn.Linear(512, 2))
 
# criterion = nn.CrossEntropyLoss()
# optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
 
model.to(device);
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In [10]:

In [11]:

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        # m input image channel, n output channels, rxr square convolut
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 2)
 
#         super(Net, self).__init__()
#         self.conv1 = nn.Conv2d(3, 32, 5)
#         self.pool = nn.MaxPool2d(2, 2)
#         self.conv2 = nn.Conv2d(32, 64, 5)
#         self.fc1 = nn.Linear(64*9*9, 1024)
#         self.fc2 = nn.Linear(1024, 7)
 
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
 
#         x = self.pool(F.relu(self.conv1(x)))
#         x = self.pool(F.relu(self.conv2(x)))
#         x = x.view(x.size(0), -1)
 
#         #x = x.view(-1, 64)
#         x = F.relu(self.fc1(x))
#         x = F.relu(self.fc2(x))
#         x = self.fc2(x)
#         return x
 
 
net = Net()
#net.to(device)

# criterion = nn.CrossEntropyLoss()
# optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
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In [12]: def images_to_probs(net, images):
    '''
    Generates predictions and corresponding probabilities from a traine
    network and a list of images
    '''
    output = net(images)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = np.squeeze(preds_tensor.numpy())
    return preds, [F.softmax(el, dim=0)[i].item() for i, el in zip(pred
 
def plot_classes_preds(net, images, labels):
    '''
    Generates matplotlib Figure using a trained network, along with ima
    and labels from a batch, that shows the network's top prediction al
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "images_to_probs" function.
    '''
    preds, probs = images_to_probs(net, images)
    # plot the images in the batch, along with predicted and true label
    fig = plt.figure(figsize=(12, 48))
    for idx in np.arange(batch_size):
        ax = fig.add_subplot(1, batch_size, idx+1, xticks=[], yticks=[]
        matplotlib_imshow(images[idx], one_channel=True)
        ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
            classes[preds[idx]],
            probs[idx] * 100.0,
            classes[labels[idx]]),
                    color=("green" if preds[idx]==labels[idx].item() el
    fig.savefig(f'epoch_{epoch}-{stamp}.png')
    return fig
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In [13]: #sufficiently large pixel square side size for given number of random  
#from torchvision import transforms
test_transforms = transforms.Compose([transforms.Resize(224),
                                      transforms.ToTensor(),
                                     ])
 
def get_random_images(num):
    data = datasets.ImageFolder(data_train_dir, transform=test_transfor
    classes = data.classes
    indices = list(range(len(data)))
    np.random.shuffle(indices)
    idx = indices[:num]
    from torch.utils.data.sampler import SubsetRandomSampler
    sampler = SubsetRandomSampler(idx)
    loader = torch.utils.data.DataLoader(data, 
                   sampler=sampler, batch_size=num)
    dataiter = iter(loader)
    images, labels = dataiter.next()
    return images, labels
 
def predict_image(image):
    image_tensor = test_transforms(image).float()
    image_tensor = image_tensor.unsqueeze_(0)
    #print(image_tensor)
    my_input = image_tensor
    my_input = my_input.to(device)#defined
    output = model(my_input)#defined
    index = output.data.cpu().numpy().argmax()
    return index
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In [14]:

In [15]:

transform = transforms.Compose(
    [transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))])
 
classes = trainloader.dataset.classes
 
to_pil = transforms.ToPILImage()
images, labels = get_random_images(6)
fig=plt.figure(figsize=(10,10))
for ii in range(len(images)):
    image = to_pil(images[ii])
    index = predict_image(image)
    sub = fig.add_subplot(1, len(images), ii+1)
    res = int(labels[ii]) == index
    sub.set_title(str(classes[index]) + ":" + str(res))
    plt.axis('off')
    
    plt.imshow(image)
    
plt.show()

transform = transforms.Compose(
    [transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))])
 
classes = trainloader.dataset.classes
 
to_pil = transforms.ToPILImage()
images, labels = get_random_images(6)
fig=plt.figure(figsize=(10,10))
for ii in range(len(images)):
    image = to_pil(images[ii])
    index = predict_image(image)
    sub = fig.add_subplot(1, len(images), ii+1)
    res = int(labels[ii]) == index
    sub.set_title(str(classes[index]) + ":" + str(res))
    plt.axis('off')
    
    plt.imshow(image)
    
plt.show()
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Load already trained Input to Output for the Test set

Training set

In [201]:

Testing set

In [202]:

In [204]:

In [205]:

In [ ]:

prediction accuracy 0.9355333844973139 
macro precision 0.46956856702619415 
micro precision 0.9355333844973139 
macro recall 0.4979575163398693 
micro recall 0.9355333844973139 

prediction accuracy 0.9355333844973139 
macro precision 0.46956856702619415 
micro precision 0.9355333844973139 
macro recall 0.4979575163398693 
micro recall 0.9355333844973139 

data_train = trainloader.dataset.imgs
 
train_X = [ plt.imread(img[0]) for img in data_train]
train_y = [ img[1] for img in data_train]

data_pred = datasets.ImageFolder(data_test_dir, 
                                 transform=test_transforms)
    
predict_y = [predict_image( to_pil(pred[0].squeeze(0)))
             for pred in iter(DataLoader(data_pred))]
 
test_X = [ plt.imread(img[0]) for img in data_test]
test_y = [ img[1] for img in data_test]

print('prediction accuracy', accuracy_score(test_y, predict_y))
 
print('macro precision', precision_score(test_y, predict_y, average='ma
print('micro precision', precision_score(test_y, predict_y, average='mi
print('macro recall', recall_score(test_y, predict_y, average='macro'))
print('micro recall', recall_score(test_y, predict_y, average='micro'))

print('prediction accuracy', accuracy_score(test_y, predict_y))
 
print('macro precision', precision_score(test_y, predict_y, average='ma
print('micro precision', precision_score(test_y, predict_y, average='mi
print('macro recall', recall_score(test_y, predict_y, average='macro'))
print('micro recall', recall_score(test_y, predict_y, average='micro'))
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