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ABSTRACT 23 

The biodiversity within tropical dry forests (TDF) is astounding and yet poorly cataloged due to 24 

inadequate sampling and the presence of cryptic species. In the Mexican TDF, endemic species 25 

are common, and the landscape has been continually altered by geologic and anthropogenic 26 

changes. To understand how landscape and environmental variables have shaped the population 27 

structure of endemic species, we study the recently described species of leaf-toed gecko, 28 

Phyllodactylus benedettii, in coastal western Mexico. Using ddRADseq data, we first explore 29 

population structure and estimate the number of ancestral populations. Results indicate a high 30 

degree of genetic structure with little admixture, and patterns corresponding to both latitudinal 31 

and altitudinal gradients. We find that genetic structure cannot be explained purely by 32 

geographic distance, and that ecological corridors may facilitate dispersal and gene flow. We 33 

then model the spatial distribution of P. benedettii in the TDF through time and find that the 34 

coastline has been climatically suitable for the species since the last glacial maximum (LGM). 35 

Landscape genetic analyses suggest that the combined influence of isolation by distance (IBD) 36 

and isolation by resistance (IBR; forest cover) influence the spatial genetic structure of the 37 

species. Overall, our genomic data demonstrate fine-scale population structure in TDF habitat, a 38 

complex colonization history, and spatial patterns consistent with both IBD and other ecological 39 

factors. These results further highlight the Mexican TDF as a diversity hotspot and suggest that 40 

continued anthropogenic changes are likely to impact native fauna. 41 

 42 
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INTRODUCTION 46 

A fundamental goal for evolutionary biology and landscape genetics involves documenting fine-47 

scale patterns of population genetic structure and elucidating the geographic and ecological 48 

causes of these patterns (Manel et al., 2003; Storfer et al., 2007; Holderegger & Wagner, 2008; 49 

Sork & Waits, 2010; Petren, 2013; Storfer et al., 2018). This not only informs us about how 50 

diversity is generated and maintained in nature, but also is fundamental to conservation efforts 51 

(Keller et al., 2015; Bowman et al., 2016). Geographic (Euclidean) distance between samples or 52 

populations (IBD; Wright, 1943) and both landscape and environmental differences can 53 

influence patterns of gene flow in diverse taxa (Storfer et al., 2010; Wang, 2012; Wang et al., 54 

2013; Sexton et al., 2014; Wang & Bradburd, 2014). Furthermore, the incorporation of 55 

ecological niche models (ENMs) into landscape genetic studies can provide researchers with the 56 

tools to assess the relative importance of IBD versus the contemporary or historical climate in 57 

shaping patterns of genetic structure (Ortego et al., 2012; Oliveira et al., 2018). Since landscape 58 

genetics emerged in 2003 (Manel et al., 2003), numerous studies have tested hypotheses 59 

regarding landscape and environmental effects on gene flow (see Storfer et al., 2010; Manel & 60 

Holderegger, 2013; Storfer et al., 2018 for review). However, the vast majority of studies have 61 

focused on taxa inhabiting temperate environments, with few targeting species living in diverse 62 

yet threatened tropical and subtropical habitats (Storfer et al., 2010; Rico, 2019). 63 

The preservation of global biodiversity is essential (Pimm, 1995). Empirical studies and 64 

conservation efforts in tropical latitudes have typically focused on rainforests, but tropical dry 65 

forests (TDFs) are similarly threatened and more poorly understood (Mooney, 1995). TDFs are 66 

distributed in tropical regions throughout the world and are recognized as hyper-diverse hubs for 67 

endemic plants, mammals, insects, and reptiles (Janzen, 1988). The expansive TDF in Mexico, 68 
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which formed roughly 20 to 30 million years ago (Becerra, 2005), has been understudied both 69 

geographically and taxonomically, precluding a thorough understanding of evolutionary patterns 70 

and processes throughout the biome. The current genomics revolution has substantial potential to 71 

increase our power to document fine-scale genetic structure and test alternative historical and 72 

contemporary evolutionary hypotheses impacting species inhabiting this system. 73 

Mexico is home to 8.7% of the world’s reptiles (Flores-Villela & Garcia-Vazquez, 2014), 74 

but Neotropical lowland taxa have received relatively little attention as compared to montane 75 

biota, and most studies have tested hypotheses at the phylogenetic or phylogeographic level (e.g. 76 

Devitt, 2006; Zarza et al. 2008; Bryson et al., 2011a, b; Bryson & Riddle, 2012; Blair et al., 77 

2015, Blair et al., 2022). However, evidence is accumulating that suggests the presence of 78 

cryptic, ancient lineages within widespread TDF taxa (Devitt, 2006; Zarza et al. 2008; Blair et 79 

al., 2013, 2015). Anthropogenic alteration of TDF drives an urgent need to characterize the 80 

region’s biodiversity and test hypotheses regarding fine-scale patterns of population structure, 81 

which is further exemplified by the introduction of non-native species (Trejo & Dirzo, 2000). 82 

Few landscape genetic studies have focused on taxa inhabiting Mexican TDF (Rico, 83 

2019). Using microsatellites, Blair et al. (2013) found that multiple landscape and climatic 84 

variables played critical roles in shaping patterns of gene flow in a leaf-toed gecko species 85 

(Phyllodactylus) in northwestern Mexico. To get a better understanding of landscape genetic 86 

relationships throughout the TDF, we utilize genomic data from the recently described P. 87 

benedettii (Ramirez-Reyes et al., 2018), which is endemic to Jalisco, Mexico. Most 88 

diversification within the P. lanei complex, of which P. benedettii is a member, dates to the 89 

Miocene and Pliocene epochs when both the Sierra Madre Occidental (SMO) and the Trans-90 

Mexican Volcanic Belt (TMVB) were forming (Blair et al., 2014 & 2015; Ramirez-Reyes et al., 91 
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2020), although some uncertainties remain (Ramirez-Reyes et al. 2017). Beyond introducing 92 

elevational and climatic gradients, uplifting of the SMO increased the extent of the Mexican 93 

TDF overall (Becerra, 2005), and the formation of the TMVB caused higher diversification rates 94 

in many species (Blair et al., 2015; Bryson & Riddle, 2012; Ruiz-Sanchez & Specht, 2013; Zarza 95 

et al., 2018). Southwestern Mexico, in particular, is a diversity hotspot with many taxa exhibiting 96 

relatively high diversification rates (Becerra & Venable, 2008). Although an increasing number 97 

of empirical studies are beginning to shed light into historical evolutionary patterns and 98 

processes in the region, few have focused on testing hypotheses on more contemporary 99 

ecological timescales.  100 

We use double-digest restriction site-associated DNA sequencing data (ddRADseq; 101 

Peterson et al., 2012) from P. benedettii to further characterize spatial patterns of molecular 102 

diversity throughout the region and determine if statistical models favor the inclusion of 103 

landscape and environmental variables over pure IBD (our null model). We specifically use our 104 

ddRADseq data set to test three primary hypotheses: (1) population structure occurs over a 105 

relatively fine spatial scale in southwestern Mexico; (2) there is limited gene flow between 106 

contemporary populations; and (3) population structure and gene flow are best explained by a 107 

combination of IBD, forest cover, and climatic variables (temperature and precipitation). An 108 

alternative hypothesis is that forest cover and environmental variables have a limited influence 109 

on gene flow, and IBD or other variables are the driver of patterns. To this end, we use ENMs to 110 

hypothesize the likely habitat suitability of P. benedettii in the Jalisco-Colima region, and assess 111 

how the species’ range has changed since the Last Glacial Maximum (LGM). We parameterize a 112 

resistance model to determine the relative importance of geographic and 113 

environmental/landscape predictors (current ENM, ENM projected to the LGM, forest cover) on 114 



5 

 

genetic differentiation. The results indicate that historical and contemporary range shifts, 115 

Euclidean distance, and ecological corridors have influenced the population structure of these 116 

geckos. Further, average annual temperature is a major variable influencing the distribution of 117 

the species, which has direct implications in light of future climate change.  118 

 119 

MATERIALS AND METHODS 120 

Sample Collection and ddRAD Assembly 121 

Genomic DNA was extracted from 161 individuals collected from nine sampling locations 122 

throughout Jalisco, Mexico (Fig. 1, Supplementary Table 1). Animal care protocols were 123 

approved by the Animal Care Committee at the Royal Ontario Museum (Number 2010-07; 124 

Toronto, Ontario, Canada). The ddRADseq libraries were prepared following the protocol of 125 

Peterson et al. (2012) and then submitted for paired-end 100 bp sequencing on two lanes of an 126 

Illumina Hi-Seq 2500 platform. Genomic DNA was digested using two restriction enzymes, SphI 127 

and MluCI, which recognize GCATGC and AATT sequences respectively. The DNA was then 128 

separated into seven pools of 43-48 samples, each with a unique index sequence which was 129 

ligated to one end of the DNA. At the other end of the indexed DNA, an inline-barcode was 130 

ligated. Size selection was performed for each pool using a Blue Pippin prep 2% dye-free gel 131 

cassette (V1; BDF2010, Sage Science) with the size set to ‘narrow’ at 400 bp. The DNA was 132 

multiplexed and amplified after direct size selection. All library preparation and sequencing was 133 

performed by the University of Arizona Genetics Core (UAGC). 134 

Raw ddRADseq reads were subsequently assembled de novo using ipyrad v.0.6.11 (Eaton 135 

& Overcast, 2020). Raw reads were demultiplexed to individuals based on unique barcode 136 

sequences, allowing no mismatches in the barcodes. Next, sequences were filtered using the 137 
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following parameters: Phred score of 33, no more than five low quality bases per read, a strict 138 

filter for adapter sequences, and a clustering threshold of 0.85. We retained a minimum of 20 139 

samples per ddRAD locus and used default settings for the remaining parameters.  140 

After assembling and quality filtering the reads, we performed further single nucleotide 141 

polymorphism (SNP) filtering using vcftools (Danecek et al., 2011). Only biallelic SNPs were 142 

retained. To assess the effect of missing data, we used two missingness thresholds: a 30% 143 

complete data matrix and a 50% complete data matrix. More conservative missingness 144 

thresholds resulted in matrices with very few loci. For both data sets, we thinned for a single 145 

SNP per locus to reduce the impact of linkage disequilibrium (LD) among SNPs.  146 

 147 

Population structure 148 

We used principal component analysis (PCA) to visualize genetic structure among individuals 149 

and assess the impact of missing data on downstream inference. We treated missing data in two 150 

ways. The first approach was to replace the missing genotype with the ancestral allele and the 151 

second was to impute missing genotypes by sampling from the distribution of allele frequencies 152 

per locality for each SNP. The use of both approaches allowed us to assess the bias introduced by 153 

the treatment of missing data. 154 

We additionally used ADMIXTURE v1.3.0 to explore population structure (Alexander et 155 

al., 2009). The software implements model-based estimation of ancestry proportions akin to 156 

STRUCTURE (Pritchard et al. 2000), with a considerably faster algorithm. In addition, 157 

ADMIXTURE is more suitable for moderately sized data sets with high missing data compared 158 

to model-free methods like sNMF (Frichot et al., 2014; Frichot & François 2015). In short, 159 

ADMIXTURE estimates ancestry coefficients for each individual and the proportion of the 160 

https://paperpile.com/c/s769LE/SVGR
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individual’s genome that originated from each of K possible ancestral pools. The K-value with 161 

the lowest cross-validation error is inferred to be the most likely number of ancestral pools. We 162 

used K-values from 2 to 9 to test the hypothesis that the nine sampling locations represented 163 

isolated populations. Additionally, we included an sNMF (LEA R package, v3.4.0) analysis for 164 

comparison with ADMIXTURE results, acknowledging its limitations with high missing data 165 

(Frichot et al., 2014; Frichot & François 2015). Ancestry proportions (Q-matrices) were 166 

visualized as bar plots using the R package ggplot2 (Wickham 2016) in R v4.1.0 (R Core Team 167 

2021). 168 

 169 

Spatially explicit genetic structure 170 

To evaluate the contribution of geographic distance and potential barriers to dispersal among 171 

sampling sites, we estimated effective migration surfaces using the EEMS pipeline (Petkova et 172 

al., 2015). This method jointly evaluates genetic and geographic distance under a null hypothesis 173 

of isolation-by-distance (IBD) to help identify putative corridors and barriers to gene flow. 174 

Effective migration was modeled through the comparison of expected and observed genetic 175 

dissimilarities between demes, which are regularly spaced and densely packed across the 176 

landscape. The model parameterizes a resistance distance matrix by integrating over all possible 177 

migration routes between a pair of demes and adjusting potential values to closely match 178 

empirical data (McRae 2006). We constructed a pairwise dissimilarity matrix and used the 179 

program ‘runeems_snps’ to implement EEMS with both 200 and 500 demes. We ran 2,000,000 180 

Markov chain Monte Carlo (MCMC) iterations for each, with 1,000,000 burn-in iterations and 181 

9999 thinning iterations between writing steps. We used all default values for hyperparameters, 182 

and over multiple replicates, tuned the proposal variances related to diversity parameters, 183 
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qEffctProposalS2 = 0.05 (cell effects) and qSeedsProposalS2 = 0.2 (cell locations), and those 184 

related to migration parameters, mEffctProposalS2 = 0.25 (cell effects) and mSeedsProposalS2 = 185 

0.05 (cell locations), to get results within the recommended acceptance proportions. 186 

 187 

Ecological niche modelling 188 

We used the R application Wallace (Kass et al., 2018) to estimate the extent of habitat suitability 189 

for P. benedettii across the landscape. Wallace represents a highly reproducible and flexible 190 

workflow for species distribution modeling. ENMs require geo-referenced occurrence data of 191 

sampled individuals and environmental data to predict areas of ecological suitability for a species 192 

(Elith & Leathwick, 2009). Models were trained using the coordinate locations of occurrence 193 

data collected for this study. We reduced the effects of spatial autocorrelation by spatially 194 

thinning the localities with a 5 km buffer (Aiello-Lammens et al., 2015). We obtained 19 annual 195 

temperature and precipitation raster layers at 30 arc-second resolution from the CHELSA 196 

database (v1.2; Karger et al., 2017). These rasters were downscaled from a global circulation 197 

model and summarized from monthly temperature and precipitation climatology for the years 198 

1979-2013 (Karger et al., 2017). To reduce model overfitting and increase interpretability of the 199 

final model, we reduced the climate data set by selecting variables that likely limit the species’ 200 

range and removed variables highly correlated (r > 0.7) with these variables. The study area was 201 

considered as a minimum convex polygon around the sampling localities with a 0.50 degree 202 

buffer. We sampled pseudo-absence environmental data from 10,000 randomly sampled 203 

background points contained within the study area. Given the low number of localities after 204 

spatial thinning (N = 8), we used a non-spatial jackknife approach to assess model fit 205 

(Shcheglovitova & Anderson, 2013). We used the Maxent algorithm for all modelling (Phillips, 206 
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Anderson, & Shapire, 2006), and assessed L (linear), LQ (linear-quadratic), H (hinge), and LQH 207 

(linear-quadratic-hinge) models with regularization multipliers from 0.5 to 5 in 0.5 intervals to 208 

test models of varying complexity. Clamping was used to prevent extrapolation of our models to 209 

environmental conditions outside of the training set (Phillips et al., 2005). We discretized model 210 

predictions into a binary presence-absence raster with a 10th percentile training threshold for 211 

visualizing changes in total occupied area. 212 

The top model was chosen based on the lowest Akaike Information Criterion, corrected 213 

for finite sample sizes (AICc). AICc penalizes model complexity and corrects for small sample 214 

sizes, giving it an advantage over other model selection approaches (Warren & Seifert, 2011). 215 

Because it was unknown which species of the P. lanei complex exists in Colima (south of 216 

Jalisco), we hypothesized the presence of P. benedettii there and extended our model projection 217 

to reflect that. We did not include northern regions where other species of the P. lanei complex, 218 

namely P. lupitae and another unnamed species, were proposed to exist (Ramirez-Reyes et al., 219 

2017). In addition, we conducted a Multivariate Environmental Similarity Surface (MESS) 220 

analysis to determine regions in the projected extent outside of the study area’s range of 221 

environmental variation (Elith, Kearney, & Phillips, 2010). Values below zero indicated 222 

dissimilar environments and, therefore, more uncertain predictions. 223 

Finally, we used ENMs to visualize how the distribution of P. benedettii may have 224 

changed since the LGM. Analyses used climatic data at 30 arc-second resolution from the 225 

CHELSA database, which applied an algorithm on Paleoclimate Modelling Intercomparison 226 

Project Phase III (PMIP3) global circulation model data (Karger et al., 2017). We conducted an 227 

additional MESS analysis following the steps listed above in order to hindcast to this time 228 

period. 229 
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 230 

Landscape genetics 231 

Given that leaf-toed geckos are generally found in warm and seasonally wet habitats in forested 232 

areas, we hypothesized that past and/or current climatic conditions in addition to forest cover 233 

likely influenced gene flow. To complement our EEMS analysis, we estimated the relative 234 

contributions of IBD, forest cover, current climate, and LGM climate (jointly, isolation-by-235 

resistance; IBR) on the pairwise genetic distances of P. benedettii. We quantified spatial genetic 236 

diversity by estimating genetic differentiation among localities with Weir and Cockerham’s 237 

(1984) FST in the R package diveRsity v1.9.9 (Keenan et al., 2013). We linearized the data 238 

(FST/1-FST) according to Rousset (1997) to avoid the possibility of non-linear relationships 239 

between the genetic distance and the predictors. 240 

Geographic distance was calculated as the Euclidean distance between localities on the 241 

WGS ellipsoid, using the raster v3.4 R package’s function pointDistance (Hijmans, 2019). We 242 

derived a binary forest cover predictor from a land cover classification raster produced by the 243 

North American Land Change Monitoring System (NALCMS), using data from 2010 to 2015. 244 

We classified forested areas as having low resistance to dispersal and non-forested areas as 245 

having high resistance to dispersal. Several cost ratios were considered (1∶10, 1∶100, 1∶1000, 246 

1:10000) to understand the impact of parameterization. We inverted the logistic output of the 247 

current and LGM ENM projections so low ENM values indicate high resistance to movement 248 

and high ENM values indicate low resistance to movement (Spear et al., 2010). For the forest 249 

cover, current climate and historical climate variables, we created resistance matrices in the R 250 

package gdistance v1.3 (van Etten, 2018) that quantify the cost of dispersal between localities 251 

given the environmental conditions (Alvarado-Serrano & Knowles, 2014). Individuals were 252 
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assumed to disperse in a stochastic manner ("random walk”) between two localities and the costs 253 

incurred for the journey were averaged to estimate the resistance distance (McRae, 2006).  254 

We used a multiple matrix regression with randomization (MMRR) approach to assess 255 

the relationship of IBD and IBR with genetic distance (Wang, 2013). This approach reduced the 256 

effect of autocorrelation among pairwise comparisons and helped to partition the relative 257 

contribution of each predictor on spatial genetic diversity. Prior to assessing the predictors’ fits 258 

with spatial genetic diversity, we assessed the Pearson correlation among predictors, removing 259 

those with an r > 0.70. We calculated AIC values (AICc) for candidate models. Candidate 260 

models were selected based on all combinations of IBR hypotheses with IBD and IBD alone. In 261 

combination with the multiple parameterizations of forest cover, 10 candidate models were 262 

considered. 263 

 264 

RESULTS 265 

ddRADseq assembly  266 

From a total of 161 samples, the mean number of raw reads per individual was 883,774, with 267 

880,287 retained after the initial quality control filtering. We obtained an average of 511,185 268 

total clusters per sample after clustering reads within samples, and an average of 20,453 high 269 

depth clusters per sample with average read coverage of 10. The final assembly was composed of 270 

153,014 pre-filtered loci, with an average of 21,013 loci per sample. After filtering for 271 

duplicates, maximum number of indels and SNPs, and minimum number of samples per locus, 272 

we retained 63,721 loci with 348,662 SNPs. We then removed five outlier individuals prior to 273 

filtering for SNP missingness. Our 30% complete matrix thinned to one SNP per locus resulted 274 
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in 34,447 SNPs, while the 50% complete matrix thinned to one SNP per locus resulted in 9,967 275 

SNPs. 276 

 277 

Population structure  278 

The PCAs run on the 30% complete and 50% complete genotype matrices showed highly similar 279 

patterns of genetic structure (Supplementary Fig. S1). Replacing the missing data with imputed 280 

allele frequencies resulted in higher clustering around localities, but overall patterns were similar 281 

to replacing the missing data with the ancestral allele. We used the 30% complete data matrix for 282 

all subsequent analyses, since there was little to no difference in genetic structure according to 283 

the PCA. 284 

The ADMIXTURE results indicated that the genetic structure of P. benedettii was best 285 

represented by five ancestral populations (K=5; cross-validation error = 0.184; Fig. 2). With 286 

slightly higher cross-validation scores, K=6 and K=7 were included for comparison (Fig. S2). 287 

Most individuals had low levels of mixed ancestry. Population structure appeared to follow 288 

latitudinal gradient (Fig. 2). In addition, the inland localities P-35, PZ, and P-30 shared the same 289 

ancestral population. All individuals from the LG locality shared some ancestry with this inland 290 

ancestral population, indicating an elevational coastal-inland gradient in ancestry (Fig. 2; 291 

Supplementary Table S1). sNMF results broadly agreed with those of the ADMIXTURE 292 

analysis (Supplementary Fig. S3). 293 

 294 

Spatial patterns of genetic diversity 295 

The EEMS method allowed us to spatially visualize the patterns and magnitudes of genetic 296 

connectivity and isolation across the landscape (Petkova et al., 2016). The estimated effective 297 

https://paperpile.com/c/s769LE/YGp1
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migration rate across the landscape showed a small deviation from a pure IBD model, with weak 298 

barriers and some evidence for dispersal corridors (Fig. 3A). We additionally visualized pairwise 299 

FST and within-locality average pairwise nucleotide differences (Tajima’s π) to contextualize the 300 

EEMS results (Fig. 3B-C). Pairwise FST broadly reflects the EEMS model, with lower FST 301 

across the inferred dispersal corridor (Fig. 3B).   Tajima’s π was lowest in the PC, ST, P-35, and 302 

P-30 localities (Fig. 3C), which corresponds with areas of low inferred migration from EEMS 303 

analysis and consistently high FST. 304 

 305 

Ecological niche models 306 

The top performing ENM predicted P. benedettii to occur along coastal Jalisco and Colima, with 307 

some occurrences inland (Fig. 4A). The chosen model was simple, with a single linear feature 308 

and a 2.5 regularization parameter. All models within two AICc of the top model (N=9) 309 

contained the same feature and were qualitatively similar to the chosen model. Phyllodactylus 310 

benedettii’s occurrence correlated positively with average annual temperature (Supplementary 311 

Fig. S4).  312 

Model projection to the LGM suggested overall range stability, with some evidence of 313 

recent expansion in Colima (Fig. 4B). Our MESS analysis indicated predominantly similar 314 

climate across projections, with dissimilar climatic conditions in the southern portion of the 315 

species’ predicted range during the LGM, predominantly in present-day Colima (Supplementary 316 

Fig. S5). Therefore, predictions made in Colima were interpreted with caution.  317 

 318 

Landscape genetics 319 
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Resistance matrices generated for current climate and LGM climate were highly correlated (R2 = 320 

0.962; P < 0.001). Because the independent effect of either was difficult to discern in the present 321 

analytical framework, we only retained the current climate, forest cover, and geographic distance 322 

matrices for the MMRR analyses. Spatial genetic diversity among the sampled populations of P. 323 

benedettii was jointly explained by IBD and forest cover (IBR) (AICc weight = 0.443, R2 = 324 

0.675; βIBD = 0.82; βIBR = -0.322; P = 0.002; Fig. 5; Table 1). IBD showed a statistically 325 

significant effect (PIBD = 0.001), while IBR was statistically insignificant (PIBR = 0.099) at α = 326 

0.05. The second most supported model, which was within two AICc of the top model, differed 327 

only in parameterization of the forest cover variable (ΔAICc = 0.365, AICc weight = 0.369).  328 

 329 

DISCUSSION 330 

The Tropical Dry Forest (TDF) of western Mexico falls within the Mesoamerican biodiversity 331 

hotspot (Myers et al., 2000), and previous studies have documented cryptic diversity in several 332 

taxa occupying the region (e.g. Devitt, 2006; Zarza et al., 2008; Blair et al., 2013, 2015; Suárez-333 

Atilano et al., 2014; Card et al., 2016). Here, we use ddRADseq data to assemble a de novo 334 

reduced representation genomic dataset for a recently identified species of gecko, P. benedettii, 335 

endemic to the Mexican TDF (Ramirez-Reyes, 2018).  We uncover fine-scale population 336 

structure for P. benedettii, and combine molecular and ecological data to test alternative 337 

hypotheses for the causes of differentiation. Results suggest substantial ancestral population 338 

structure, little admixture, and the presence of isolation by resistance (IBR) in addition to a 339 

strong signature isolation by distance (IBD) in influencing patterns of gene flow. Inference of the 340 

historical and contemporary processes underlying the patterns of population structuring is 341 
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essential for obtaining probabilistic estimates of dispersal patterns, colonization events, and 342 

periods of geographic isolation to inform conservation efforts (Lande, 1988). 343 

 344 

Spatial population structure 345 

Spatial population structure patterns suggest a latitudinal gradient in population turnover. In 346 

addition, three higher elevation inland localities (PZ, P-35, P-30) share ancestry with a fourth 347 

inland locality (LG). This suggests an elevational gradient in population structure from lowland 348 

coastal to higher elevation inland populations, mediated by a central dispersal corridor found in 349 

the EEMS analysis.  350 

Consistent with our population structure results, we find a strong pattern of IBD with a 351 

weak signal of IBR. Within the EEMS analysis, most of the sampled areas exhibit levels of 352 

effective migration slightly beyond IBD expectations. These altered patterns of migration and 353 

genetic diversity across the landscape are the drivers of structure within P. benedettii, and this 354 

presses further investigation into the specific environmental factors that influence gene flow. The 355 

presence of forest cover may facilitate gene flow in the presence of other strong environmental 356 

gradients from lowland to montane habitats (Blair et al., 2015). We considered climate and forest 357 

cover in a landscape genetic model of dispersal, as climate varies strongly along elevational 358 

gradients as the TDF near the coast gives way to pine-oak forest at higher elevations. Our best 359 

landscape genetic model includes both IBD + IBR (forest cover) with an AICc weight of 0.443, 360 

supporting the hypothesis that distance and landscape characteristics influence gene flow (Table 361 

1). These results are corroborated by the second top model, which differs only in the way that 362 

forest resistance is parameterized (1:10 vs 1:10,000). Together, these two models have a 363 

cumulative AICc weight of 0.812. In contrast, the best model that includes all three predictors 364 
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(i.e. IBD, forest cover, current climate) has substantially lower support (AICc weight = 0.065) 365 

and a marginally better R2 value (0.713 vs 0.675). Thus, forest cover and geographic distance 366 

influence gene flow to a greater extent than current climate variables. Notwithstanding, the 367 

regression coefficient for forest cover is non-significant in our best model, indicating forest cover 368 

predicts dispersal in P. benedettii only when considered in tandem with geographic distance. 369 

These results are similar to another landscape genetics study on a related species inhabiting TDF 370 

that also shows that patterns of gene flow are a function of geographic distance and landscape 371 

characteristics (Blair et al., 2013).  372 

Our ENMs show that the lowland regions of Jalisco (i.e. the coastline) are particularly 373 

suitable for P. benedettii (Fig. 4). Interestingly, the species’ predicted range extends beyond the 374 

species’ northernmost coastal population (PC, Fig. 4), yet this locality has lower nucleotide 375 

diversity and lower effective migration than other localities (Fig. 3).   Intervening historical 376 

environmental fluctuations or biotic factors not captured by our models may influence the 377 

genetic diversity of P. benedettii, and deserve further investigation (e.g. Kass et al. 2020). 378 

Similar situations may influence other species in the P. lanei complex, or other lowland taxa 379 

throughout the Mexican TDF (Devitt, 2006; Zarza et al., 2008; Blair et al., 2013; Suárez-Atilano 380 

et al., 2014; Ramirez-Reyes et al., 2017). This highlights the importance of both geographic 381 

distance and landscape features, such as forest configuration, in establishing spatial genetic 382 

structure and patterns of gene flow. 383 

 384 

Environmental correlates of persistence and dispersal 385 

ENMs uncover how a species’ range relates to environmental variables to find new or unknown 386 

populations of species, identify barriers to dispersal, and to inform conservation efforts 387 
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(Peterson, 2006). ENMs are often explicitly incorporated into landscape genetic studies to test 388 

hypotheses regarding spatial patterns of genetic diversity and gene flow (e.g. Ortego et al., 2012; 389 

Velo-Antón et al., 2013). Landscape genetic hypotheses are usually tested by examining the 390 

effects of multiple explanatory variables in isolation, such as land cover and vegetation density, 391 

stream connectivity, and elevation (Spear et al., 2005; Vignieri, 2005; Blair et al., 2013; Trumbo 392 

et al., 2021). Although this approach can be useful to determine the best single variable 393 

influencing gene flow, the inclusion of many variables makes model testing more challenging 394 

while also introducing issues of multicollinearity among predictors (Trumbo et al., 2021). 395 

Further, it is more likely that dispersal and gene flow are a result of several landscape and 396 

climatic variables acting together. By combining multivariate ENMs with calculations of 397 

landscape resistance, our approach minimizes the number of predictor matrices while testing for 398 

the effects of climate on gene flow.  399 

Although we explicitly utilize multivariate environmental data derived from current 400 

climatic conditions for our ENMs, only a single bioclimatic variable (average annual 401 

temperature) contributes to the distribution of P. benedettii (Supplementary Fig. S4). More 402 

specifically, warmer temperatures correlate with a higher probability of presence. The western 403 

coast of Jalisco has consistently higher temperatures than inland regions (Pongpattananurak et 404 

al., 2012), and thus temperature variables are also likely important for shaping patterns of 405 

dispersal and gene flow. Beyond the responses of the data to specific climate variables, our 406 

model hints at other ecological variables that may make the coast suitable for P. benedettii. The 407 

soil at the coastline of Jalisco is extremely sandy, with some of the lowest levels of clay and silt 408 

found in the entire state (Pongpattananurak et al., 2012). Because the niche of P. benedettii was 409 



18 

 

found to be heavily related to soil (Ramirez-Reyes et al., 2018), this characteristic of the 410 

coastline may be another factor making this region particularly suitable for P. benedettii. 411 

Our finding that the coastline of Jalisco and Colima is climatically most suitable for P. 412 

benedettii raises two important points. First, the coastline is at a lower elevation than the inland, 413 

montane region of western Mexico, which bolsters our argument that vagility, and subsequent 414 

gene flow, is limited between populations separated by an elevation gradient. Second, because 415 

Colima has not yet been sampled, we hypothesize that P. benedettii is present there, or may 416 

extend to there soon. It follows that individuals may continue to expand southward along the 417 

Jalisco coast into Colima and form populations in this region, if not there already. Alternatively, 418 

it is possible that competition with other species of leaf-toed geckos and introduced 419 

Hemidactylus will limit range expansions into suitable habitats (Ramirez-Reyes et al., 2018).  420 

Although our ENMs suggest that temperature is important in shaping the distribution of 421 

these geckos, our landscape genetic analyses indicate that patterns of genetic structure are driven 422 

primarily by a combination of IBD + IBR (forest cover). Given the presumed low vagility of 423 

these geckos, we expect a signal of IBD to build up quickly. However, a model containing 424 

geographic distance alone ranks poorly in our analysis (AICc weight = 0.047), indicating that 425 

additional processes are also contributing to patterns of gene flow, corroborating our EEMS 426 

analyses. IBR has been shown to predict patterns of gene flow in other species with low vagility 427 

(Wang, 2012; Sexton et al., 2014; Wang & Gideon, 2014), and our results lend additional 428 

support to the hypothesis that environmental and landscape heterogeneity can limit dispersal. 429 

Currently, there are several ways to parameterize models to determine the influence of 430 

environmental variables on genetic patterns. While some approaches include sophisticated 431 

methods of parameterizing landscape resistance surfaces (e.g., resistanceGA, Peterman, 2018) or 432 
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use mixed-effects models to control for non-independence of pairwise distance calculations (van 433 

Strien et al., 2012), they require large numbers of localities to effectively make inferences and 434 

are designed for individual-based analyses, two requirements that our sampling design does not 435 

satisfy. Given currently available analytical methods in landscape genetics, our approach 436 

provides the most power to detect strong correlates of dispersal and gene flow based on 437 

characteristics of the data (Wang, 2013). 438 

 439 

Future directions 440 

Moving forward, use of a latent factor mixed model (LFMM), such as that used by the package 441 

LEA (Frichot & François, 2015), could identify loci that correlate with particular SNPs (after 442 

controlling for population structure), and may indicate adaptation. The identification of SNPs 443 

associated with a particular population would likely provide information on how adaptation to 444 

the coastal lowlands has led to the genetic diversity and structure within this species complex. 445 

Additionally, because morphological variation is common within and among species of the P. 446 

lanei complex (Ramirez-Reyes et al., 2018), analysis of the SNPs associated with phenotypic 447 

variables could uncover the relationship between genetic and morphological variation (Raposo 448 

do Amaral et al., 2018). The high genetic diversity and population structure in such a small 449 

region of the landscape indicates that P. benedettii is filling a niche space (Ricklefs, 2010). A 450 

competitive, invasive gecko species could, therefore, present a threat to Phyllodactylus if they 451 

occupy the same niche and drive competitive exclusion dynamics (Ricklefs, 2010). One such 452 

invasive species may be Hemidactylus frenatus that have been seen “stalking, lunging towards 453 

and biting other geckos” (Ramirez-Reyes et al., 2018). Lastly, although not explored here, 454 

Ramirez-Reyes et al. (2018) suggest that P. benedettii has a distinct karyotype (2n=38) compared 455 
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to other species in the P. lanei complex (2n=33-34). This may present an additional variable one 456 

can use, in addition to morphological measurements, exploratory genetic analyses, and 457 

coalescent analyses, to accurately delimit species of Phyllodactylus. In sum, our genome-wide 458 

data provide additional evidence that the TDF of western Mexico harbors unrecognized diversity 459 

and a deep genetic history over small spatial scales. Such studies will continue to be vital, as 460 

deforestation and habitat loss threaten biodiversity throughout the region (Ceballos & Garcia, 461 

1995; Trejo & Dirzo, 2000). Our results also indicate that ddRADseq (and related methods) 462 

continues to serve as an invaluable tool for identifying spatial patterns of genetic diversity and 463 

gaining a clearer picture of how gene flow, adaptation, and population structure form in non-464 

model organisms in response to landscape and environmental characteristics. 465 
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TABLES AND FIGURES 719 

 720 

 721 

 722 
 723 

Fig. 1. Sampling localities of P. benedettii from nine lowland locations within Jalisco, Mexico. 724 

Pie charts at each locality represent the proportion of individuals assigned to an ancestral genetic 725 

population, further detailed in Fig. 2. Of note, LG individuals contain substantial admixture from 726 

the [P-35, PZ, and P-30] ancestral population, and P-35 contain substantial admixture from the 727 

[ST and LS] ancestral population. Marker labels are as follows: ST = Station; PC = Puente Cuate 728 

I; LG = Road to Llano Grande; P-35 = Road to Purificación km 35; PZ = Puente El Zarco; CH = 729 

El Charco House; PT = Puente Tigra; LS = Llano Seco; P-30 = Road to Purificación House km 730 

30. Further detail on sampling is provided in Supplementary Table S1. 731 

 732 
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 741 

 742 

 743 
 744 

Fig. 2. ADMIXTURE analysis results for P. benedettii. A) Barplot of admixture proportions for 745 

the top performing run (K=5), where spatial structure is evident. Each vertical bar represents one 746 

individual, and individuals are grouped by sampling locality along the x-axis, arranged from the 747 

northernmost locality to the southernmost. Each individual was assigned to a most-likely 748 

ancestral population according to the population with the highest admixture proportion for that 749 

individual. The bottom row represents the proportion of individuals assigned to each ancestral 750 

population for each locality. The cross-entropy plot B) shows the support for different K values 751 

considered in the analysis, where lower cross-validation error indicates more support. The 752 

bottom-right inset is an in-situ photograph of the study species (Photo credit: Tonatiuh Ramirez). 753 
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 755 
 756 

Fig. 3. EEMS migration surface and raw genetic diversity estimates, showing that effective 757 

migration is qualitatively similar to linearized FST (FST/(1 - FST)) and localities with high 758 

connectivity generally have higher nucleotide diversity (Tajima’s π). Black dots in A) indicate 759 

sampling locations and their sizes reflect the number of samples collected from that site (see 760 

Supplementary Table S1). Mean migration rates (m) A) are highest along a central corridor, 761 

bridging the LG and LS localities, while m is lower in parallel transects along the coast and 762 

further inland. This pattern is broadly reflected in B) pairwise linearized FST. The localities with 763 

the lowest pairwise divergence in B) also generally have the highest nucleotide diversity in C), 764 

with the southernmost locality, CH, being the exception.  765 
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 767 
 768 

Fig. 4. ENM results indicating suitability of the southwestern Mexican coastline for P. 769 

benedettii. A) projection to current climatic conditions; B) projection to the last glacial maximum 770 

(LGM). The black dots represent the nine sampling sites. Dark blue indicates predicted presence 771 

based on a 10th percentile training threshold, while light blue indicates predicted absence. 772 

Sampling locality codes correspond to those in Fig. 1 and Supplementary Table S1. The species’ 773 

range is predicted to have remained stable since the LGM, with some evidence for an inland 774 

expansion in Colima. Note that coastal land area during the LGM extends beyond current coastal 775 

boundaries. 776 
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 778 
 779 

Fig. 5. Linearized FST among sites plotted as a function of the MMRR model. There is a stronger 780 

signature of isolation by distance (IBD) compared to isolation by resistance (IBR, Forest Cover) 781 

among populations of P. benedettii (R2 = 0.675; βIBD = 0.82; βIBR = -0.322; P = 0.002). IBD 782 

shows a statistically significant effect (PIBD = 0.001), while IBR is statistically insignificant (PIBR 783 

= 0.099) at α = 0.05.  784 

 785 
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Table 1. Multiple matrix regression with randomization model comparison results. These models 787 

represent the relationship between genetic distance (linearized FST) and the predictors geographic 788 

distance, current climate, and forest cover. We tested four cost ratios of forest cover (1:10, 1:100, 789 

1:1000, 1:10000). The top two models with nearly identical support represent two forest cover 790 

parameterizations and are qualitatively similar. Models are ranked by their AICC value. K = 791 

number of model parameters, FC = Forest cover, Geo = geographic distance, Current = current 792 

climate.  793 

 794 

Model R2 K AICc ΔAICc AICc 

weight 

Cumulative 

weight 

Log 

Likelihood 

P-value 

FC 1:10000 

+ Geo 0.675 
4 99.950 0.000 0.443 0.443 -45.330 

0.002 

FC 1:10 + 

Geo 0.725 
4 100.314 0.365 0.369 0.812 -45.512 

0.001 

FC 1:100 + 

Current + 

Geo 0.713 

5 103.786 3.836 0.065 0.877 -45.893 

0.001 

Geo 0.575 3 104.443 4.493 0.047 0.924 -48.846 0.001 

FC 1:100 + 

Geo 0.694 
4 105.373 5.423 0.029 0.954 -48.041 

0.001 

Current + 

Geo 0.587 
4 105.845 5.895 0.023 0.977 -48.277 

0.002 

FC 1:1000 + 

Current + 

Geo 0.693 

5 108.087 8.137 0.008 0.985 -48.043 

0.003 

FC 1:1000 + 

Geo 0.677 
4 108.379 8.429 0.007 0.991 -49.544 

0.002 

FC 1:10000 

+ Current + 

Geo 0.690 

5 108.649 8.700 0.006 0.997 -48.325 

0.002 

FC 1:10 + 

Current + 

Geo 0.752 

5 109.853 9.904 0.003 1.000 -48.927 

0.001 

 795 
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 797 

SUPPLEMENTARY TABLES & FIGURES 798 

 799 

Supplementary Table S1. Sample information for each of the nine sampling localities in 800 

Jalisco, Mexico. In parentheses next to each abbreviated site name is a letter indicating whether 801 

the locality is indicated as coastal (C) or inland (I).  802 

 803 

Site 

# 

Full Site Name Abbreviated 

Site Name 

Coordinates Elevation 

(m) 

# Samples 

1 Station ST (C) 19.498028 N 

105.044361 W 

587 20 

2 Puente Cuate I PC (C) 19.771 N 

105.250278 W 

17 17 

3 Road to Llano Grande LG (I) 19.888917 N 

105.098 W 

327 11 

4 Road to Purificación, km 

35 

P-35 (I) 19.61925 N 

104.878861 W 

377 5 

5 Puente El Zarco PZ (I) 19.658917 N 

104.802722 W 

401 17 

6 El Charco House CH (C) 19.247167 N 

104.518139 W 

154 14 

7 Puente Tigra PT (C) 19.289806 N 

104.766306 W 

40 20 

8 Llano Seco LS (C) 19.332889 N 

104.932528 W 

50 27 

9 Road to Purificación 

House, km 30 

P-30 (I) 19.611222 N 

104.849972 W 

296 25 
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 819 
 820 

 821 

Supplementary Fig. S1. The first five principal components of the A-B) 30% complete and C-822 

D) 50% complete genotype matrices, where missing data was either A-C) replaced with the 823 

ancestral allele, or B-D) imputed from allele frequencies sampled from the locality the individual 824 

was from. The overall patterns are highly similar between the two datasets, with tighter locality-825 

specific clustering from the imputed matrices.   826 



43 

 

 827 
Supplementary Fig. S2. Barplots of admixture proportions for the three most supported K 828 

values, A) K=5 (see Fig. 2), B) K=6, and C) K=7. Evident from all is the high levels of genetic 829 

structure among sampling localities. Localities are oriented along a north to south axis, where the 830 

northernmost locality, LG, is on the left and the southernmost locality, CH, is on the right. 831 
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 833 
 834 

Supplementary Figure S3. sNMF barplots of admixture proportions for the three K values that 835 

correspond with ADMIXTURE results presented in the main text, A) K=5, B) K=6, and C) K=7. 836 

To further compare with the main results, we included ancestry proportion bars under panel A). 837 

While sNMF indicates higher proportions of individual admixture, we acknowledge that sNMF 838 

tends to perform poorly with the high levels of missing data we used in our analyses. Overall, the 839 

sNMF population assignments correspond with those in the ADMIXTURE analysis, although the 840 

corresponding populations sometimes occur for differing K-values. This is expected, given the 841 

stochastic nature of both methods. Localities are oriented along a north to south axis, where the 842 

northernmost locality, LG, is on the left and the southernmost locality, CH, is on the right. 843 
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 845 
Supplementary Fig. S4. Response curve for average annual temperature (bio1; °C * 10), the 846 

single feature used in our top ecological niche model (ENM). The y-axis represents the 847 

probability of occurrence, a cloglog transformation of Maxent’s raw output. 848 
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 853 
 854 

 855 

Supplementary Fig. S5. Multivariate Environmental Similarity Surface (MESS) maps for A) 856 

current and B) last glacial maximum (LGM) climate. More negative values (red) indicate 857 

environments dissimilar from the environment used in training the model. The high level of 858 

dissimilarity in the southern region of the LGM projection indicates that predictions made in this 859 

area should be interpreted with caution.  860 
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