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ABSTRACT 

 
 

ATTENUATION OF METHAMPHETAMINE AND NMDA-INDUCED TOXICITY BY LEPTIN IN 

MURINE STRIATUM 

by 

NAWSHIN HOQUE KUTUB 

 

ADVISER: DR. JESUS A. ANGULO 

Methamphetamine (METH) is an addictive illicit psychostimulant that is neurotoxic and causes 

permanent brain injury. METH-induced neurological damage affects areas of the brain that mediates 

emotions, motivation, cognition and critical thinking. In the striatum METH neurotoxicity intertwines 

several factors such as dopamine (DA) overflow, glutamate signaling, and free radicals formation 

causing oxidative stress. In addition, excessive dopaminergic innervation leads to severe reduction in 

DA terminals, DA transporters (DAT), and vesicular monoamine transporters (VMAT)-2. METH use 

causes permanent damage which cannot be recovered even after three years of abstinence. 

Understanding the mechanism of METH-induced neurodegeneration will provide an avenue towards 

identifying effective therapeutic targets for treatments of METH abuse. Leptin is an important 

peripheral hormone produced mainly by adipose tissue in proportion to fat stores, which circulates in 

the plasma, and found ubiquitously in the central nervous system (CNS). Though leptin is primarily 

known for its regulation of energy homeostasis mediated by its receptors, ObRb, it was shown to serve 
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other functions as ObRbs are expressed in hypothalamic and extra hypothalamic areas, specifically 

in the ventral tegmental area (VTA), substantia nigra (SN), and nucleus accumbens (NAc), striatum, 

cortex, cerebellum and hippocampus. The precise molecular pathway underlying the direct effects of 

leptin in these regions is mostly unknown. But studies report that leptin administration decreased the 

firing rate of DA neurons in the VTA. The exact cellular mechanism for this reduced excitability by 

leptin remains to be determined. We show evidence that leptin signaling is neuroprotective in striatal 

neurons upon METH-induced injury. We hypothesized leptin would attenuate METH-induced striatal 

neural injury. Our data suggests that leptin produced a dose dependent attenuation of apoptosis upon 

METH administration. METH caused about 25% of the striatal neurons to undergo apoptosis. 

However, leptin treatment attenuated apoptosis by 18% suggesting that it protects striatal neurons 

from METH toxicity. Leptin did not prevent METH-induced hyperthermia or weight loss, one reason 

may be that it is an anorexigenic peptide and causes animals to increase activity and energy 

expenditure. In support of our hypothesis leptin treatment attenuated the over activation of the 

astrocytes and microglia caused by METH toxicity. It also dampened oxidative stress. Furthermore, 

we demonstrated here that leptin mediates striatal neuroprotection by modulating glutamate 

transmission. N-Methyl-D-aspartate (NMDA) -mediated apoptosis was attenuated by leptin treatment. 

It also reduced the NMDA-induced formation of nitric oxide (NO). However, leptin failed reduce NMDA-

induced striatal over activation of astrocytes and microglia. A plethora of evidence demonstrates that 

METH induces neural damage in the striatum and other parts of the brain. Our contribution to this area 

of research is the finding that peripheral hormone, leptin, can protect degeneration caused by METH 

in the striatum.  

 
 
 
 
 
 
 



 

vi 

 

 
 
 
 
 

ACKNOWLEDGEMENTS 
 
 
 

There are a host of people that supported me throughout the years in my pursuit of this Ph.D. 

First, I want express my deep appreciation and gratitude to my adviser Dr. Jesus Angulo for the patient 

guidance and mentorship he provided to me since I joined his lab. I would not have been able to work 

on such an interesting and intellectually stimulating project and learn the practice of science if I had 

not worked under his direction. Dr. Angulo allowed me the freedom to make decisions that would 

shape my research and also allowed me to learn from my mistakes. His intellectual heft is matched 

only by his genuine kind nature and humility. Without exaggeration, I am truly fortunate to have the 

privilege to be a graduate student in his laboratory and if I’m ever half as good a scientist as Dr. Angulo, 

I’ll be satisfied.  

I would also like to humbly thank my doctoral committee members for the friendly guidance, 

brilliant comments and thought provoking suggestions over the years. Each member is an expert and 

experienced scientist and their advice and support has been a big part of the learning process and 

instrumental in the completion of my thesis. I want to specially thank Dr. Peter Serrano for encouraging 

me through various formal and informal conversations that stimulated a great deal of query in my 

research especially at the onset of my thesis process and during the committee meetings.  I also want 

to recognize Dr. Syed Ali for always taking the time to discuss my project and provide advice each 

time I saw him at neuroscience and drug abuse conferences over the last couple of years, his kindness 

and helpful feedback were something positive I always brought back with me after each meeting. I 

want to thank Dr. Michael Lewis for his advice and recommendation to rotate in Dr. Angulo’s lab which 

was the genesis of my thesis project and for his and Peter’s suggestions during the pre-approval 



 

vii 

 

committee meeting. Finally, I want to thank Dr. Shirzad Janeb for his time and feedback on my writing. 

I want to acknowledge Dr. Nieves Angulo for her advice and encouragement on both research and 

career planning. In a similar vein, I want to thank Drs. Rae Silver and Joseph LeSauter for the 

contributions each made to my intellectual growth and curiosity during my years of study at Barnard 

College. Working in Rae’s lab provoked me to pursue a Ph.D.  

I want to thank my husband, Sal Kutub, his love, support, and encouragement through this 

academic endeavor was a key backbone in reaching the end. He was understanding of my unorthodox 

work hours for these past few years. He often picked me up from lab in bad weather, late nights and 

weekends and also was my weekend companion in the lab while I conducted experiments. I’d be 

remiss if I didn’t acknowledge my parents. There aren’t enough words to adequately express my 

gratitude to them, my mother Samsun Neher and father Mominul Hoque supported me and my 

education over twenty years. It is hard to imagine that the past few years in the lab were just the last 

bit of a journey that started when I was just a kid and my parents were there every step of the way. I 

want to express my utmost gratitude for their innumerable sacrifices in shouldering far more than their 

parenting duties and burdens while I pursued college and this final degree. Also, I want to thank my 

siblings Tasnuba and Adnan Hoque for their undeniable love, friendship and advice that has sustained 

me thus far, and reassurance to complete this long journey, I’m truly grateful to them. I want to thank 

my father and mother–in laws Mohammed Kutubuddin and Selina Kutub for their love, kindness and 

support during this research process. Also, I want to thank my twin nieces and nephew Lana, Lia and 

Amaan. In the short one year they have been in this world so far, their tiny smiles and laughter were 

breaks that helped me during data analysis and the writing process. Finally, I want to thank my sisters-

in-laws Farzana, who always remembered to find good espresso for me which I enjoyed during the 

writing process, and Farzana as well as my brother in-law Mohammed for their friendship and kindness 

during the past several years.       



 

viii 

 

I would also like to thank my fellow co-workers, graduate students and friends who started the 

Ph.D. journey together. I value their friendship, scientific expertise, technical advice and support in 

weathering this arduous journey. I want to thank and acknowledge the many research assistants/ 

honor students I had the chance to train and work with the last several years: Vartan Pahalyants, Jing 

Liang, Jenny Mamtora, Isabelle Ament, Liza Yelin and Nick Burney. Each person dedicated tireless 

hours and days to collecting data, helping with analysis and editing manuscripts. Their unfailing 

presence, dedication and passion for science helped me to complete this project efficiently. They not 

only afforded their technical assistance but their friendship which I value greatly, thank you.    

I appreciate the backing of The Graduate Center and Hunter College for extending support 

and teaching experience in various lectures and labs. These experiences are invaluable. The efforts 

of Ellen Breheny at the program office were also essential and helpful in navigating through the 

paperwork these past years. Ellen has always promptly and efficiently helped with transitioning from 

first year to the final. I could ask her almost any questions or come to her with a problem and she 

would get back promptly. I also want to thank Dr. Patricia Glennon and Barbara Wolin of Animal Facility 

who have allowed for easy communication and help with scheduling experiments. Finally, I want to 

thank the bio-imaging facility for providing technical support when using the facility in gathering my 

data.    

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



 

ix 

 

 
 
 
 
 

TABLE OF CONTENTS 
 
                        
 
 
ABSTRACT iv 
 
 
LIST OF FIGURES xii  
 
 
LIST OF ABBREVIATIONS  xiv 

 

CHAPTER 1  INTRODUCTION        

  1.1 History and Use of Methamphetamine      1 

1.2 Pharmacology and Addictive Properties of Methamphetamine  3 
 

1.3 Mechanism of Action and Neural Toxicity of Methamphetamine 4 
   

1.4 Basal Ganglia System and Striatal Neurochemistry   7 

1.5 Dopamine, Glutamate and Oxidative Stress in     9 
Methamphetamine Toxicity   

 

 

CHAPTER 2  ROLE OF LEPTIN IN NEUROPROTECTION  

2.1 History and Pharmacology of Leptin and     19 
Leptin Receptor Activity 

   
  2.2 Role of Leptin in Dopaminergic Pathway    22  

   2.3  Leptin Receptor Signaling      22 

 
 
 



 

x 

 

 
 
 
 
 
CHAPTER 3   RESEARCH DESIGN         

  3.1 Specific Aim 1 and Relevance      28  

  3.2 Specific Aim 2 and Relevance      29 

 

CHAPTER 4  METHODS AND MATERIALS       

  4.1 Animal and Systemic Drug Administration    30 

  4.2 Intrastriatal Infusion of NMDA and Leptin Injection   32 
 
  4.3 TUNEL Immunofluorescence      32 
 

4.4 NeuN, GFAP, Iba-1, NOS1, cGMP, Active Caspase-3,   31 
3-Nitrotyrosine Immunohistochemistry 

 
  4.5 Tyrosine Hydroxylase and Leptin Receptor Western Blot  34 
 
  4.6  Quantification and Statistical Analysis     35 
  
 
 
CHAPTER 5 ROLE OF LEPTIN IN METHAMPHETAMINE- 

INDUCED NEURAL INJURY 
 
  5.1 Attenuation of Apoptosis by Leptin     37 
 

5.2 Role of Leptin in Striatal Overactivation of Astrocytes    46 
and Microglia      

 
5.3 Role of Leptin in Methamphetamine-Induced     49 

Striatal Nitric Oxide and Caspase-3 Activation   
 

5.4 Discussion          55 
 
 
 
 
 
 
 



 

xi 

 

 
 
 
 
 
CHAPTER 6 LEPTIN MEDIATED STRIATAL NEUROPROTECTION  

BY MODULATING GLUTAMATE TRANSMISSION  
   

6.1 Contribution of Leptin in NMDA-Induced Striatal    57 
Apoptosis and Dopamine Terminal Toxicity 

 
6.2 Role of Leptin in NMDA-Induced Formation of Nitric Oxide  61 

  
6.3 Role of Leptin in Striatal Expression of Astrocytes and   63 

Microglia Upon NMDA     
 

6.4 Discussion        67 
 
 
 
CHAPTER 7  CONCLUSIONS       67  
 

 

REFERENCES           72 

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xii 

 

 
 
 
 
 

LIST OF FIGURES 

 

 

Figure 1 – 1:  Widespread distribution of methamphetamine in the USA   15 
 
Figure 1 – 2:  Molecular events during METH-induced DA terminal damage    16  

and apoptosis in the striatum 
  
Figure 1 – 3:  Glutamate transmission affected by DA overflow in METH toxicity  17 
 
Figure 1 – 4:  Nitric oxide signaling through cGMP      18 
 
Figure 2 – 1:  Leptin mouse and feedback loop      26 
 
Figure 2 – 1: Leptin receptor signaling pathways       27 
 
Figure 5 – 1:  Leptin alone does not cause apoptosis      40 
 
Figure 5 – 2:  Dose dependent attenuation of METH-induced apoptosis    41 

in the striatum by leptin 
 
Figure 5 – 3:  Leptin does not protect dopamine terminals from METH toxicity  42 

Figure 5 – 4:  Leptin protects against METH-induced cell death without    43 
preventing hyperthermia 

 
Figure 5 – 5:  Leptin does not protect against METH-induced weight loss   44 

Figure 5 – 6:  Leptin receptor expression in mouse striata     45 

Figure 5 – 7:  Activation of astrocytes measured using glial fibrillary     47 
acidic protein (GFAP)  

 
Figure 5 – 8: Activation of microglial cells in the mice striatum by     48 

METH is attenuated by leptin 
 
Figure 5 – 9:  Photomicrographs of nNOS stained striatal sections    52 
 
Figure 5 – 10:  Cyclic guanosine monophosphate (cGMP) expression in all    53 

cell types in the mouse striata 
 
Figure 5 – 11:  Photomicrographs of activated caspase-3 stained striatal sections  54 



 

xiii 

 

Figure 6 – 1:  Leptin attenuation of NMDA-mediated apoptosis in striatum   59 

Figure 6 – 2:  Leptin does not protect dopamine terminals from NMDA toxicity  60 

Figure 6 – 3:  NMDA-mediated striatal NO attenuated by leptin     62 

Figure 6 – 4:  NMDA-induced activation of astrocytes measured using    64 
glial fibrillary acidic protein (GFAP) 

  
Figure 6 – 5:  Activation of microglial cells in the mice striatum by NMDA-infusion   65 

is not attenuated by leptin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 

xiv 

 

 
 
 
 
 

LIST OF ABBREVIATIONS 
 
 

3-NT:  3-nitrotyrosine  

5-HT:    serotonin  

ACh:  acetylcholine  

aCSF:  artificial cerebrospinal fluid 

AgRP:  agouti-related peptide  

AMPA:  α-amino-5-hydroxy-3-methyl-4-isoxazde propionic acid  

ATP:  adenosine triphosphate  

Ca2+: calcium ion 

CART:  cocaine and amphetamine regulated transcript  

cGMP:  cyclic guanosine monophosphate 

CNS :  central nervous system 

CuZn-SOD:  cooper/zinc-superoxide dismutase   

Cy3:  cyanine 3 

D1:  dopamine 1 receptor 

D2:  dopamine 2 receptor 

DA:  dopamine 



 

xv 

 

DAPI:  4',6-diamidino-2-phenylindole 

DAT:  dopamine transporters  

db diabetic gene 

DEA:  Drug Enforcement Agency  

DOPAC dihydroxyphenylacetic acid 

Enk:  enkephalin  

eNOS:  endothelial nitric oxide synthase 

ERK:  extracellular signal-regulated kinase  

ETC:  electron transport chain  

FDA:  Food and Drug Administration  

Fe2+ iron II 

GABA:  gamma-aminobutyric acid  

GAD:  glutamic acid decarboxylase  

GC:  guanylyl cyclase  

GFAP:  glial fibrillary acid protein  

GluR: glutamate receptor 

GP: globus pallidus  

GPCRs:  G-protein coupled receptors   

GTP Guanosine-5’-triphosphate 

Iba1:  ionized calcium-binding adapter molecule 1  



 

xvi 

 

ICV:  intracerebroventricular   

IHC:  immunohistochemistry  

iNOS:  inducible nitric oxide synthase 

IP:  Intraperitoneal 

JAK:  Janus Kinase  

K+:  Potassium ion 

KO:  knockout  

LHA:  lateral hypothalamic area  

MAPK:  mitogen-activated protein kinase  

 
MDMA:  3,4-methylenedioxymethamphetamine 

METH:  methamphetamine  

mRNA messenger RNA 

MnSOD:  manganese superoxide dismutase  

mTOR mechanistic target of rapamycin 

NADPH:  nicotinamide adenine dinucleotide phosphate   

NAc:  nucleus accumbens 

NDIC:  National Drug Intelligence Center  

NK-1R:  neurokinin 1 receptor  

NMDA:  N-methyl-D-aspartate  

nNOS:  neuronal nitric oxide synthase 



 

xvii 

 

NO:  nitric oxide 

NOS:  nitric oxide synthase  

NPY:  neuropeptide Y  

NueN:  neuron-specific nuclear protein  

ObRb:  leptin receptor long form 

ONDCP:  Office of National Drug Control Policy  

PBS:  phosphate buffer saline  

PD:  Parkinson's disease  

PV:  parvalbumin  

PFC:  prefrontal cortex  

PI3K:  phosphoinositide kinase-3 

PKA: protein kinase A 

POMC:  pro-opiomelanocortin  

RNS:  reactive nitrogen species  

ROS:  reactive oxygen species  

SAMSHA:  Substance Abuse and Mental Health Services Administration 

SERT:  serotonin transporter  

SHP2:  Src homology phosphatase 2  

SNc and SNr:  substantia nigra par compacta and reticulata  

SOCS3:  suppressor of cytokine signaling 3  



 

xviii 

 

SP:  substance P  

SST:   somatostatin  

STAT:  signal transducers and activators of transcription 

STN:   subthalamic nucleus  

SOD: superoxide dismutase (SOD) 

TUNEL:  terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling  

TPH:  tryptophan hydroxylase  

TH:  tyrosine hydroxylase  

Tyr:  tyrosine residues 

UNODC:  United Nations Office on Drugs and Crime  

VTA:  ventral tegmental area  

vGLUT:  vesicular glutamate transporters  

VMAT:  vesicular monoamine transporters  
 



 

1 

 

 
 
 
 
 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 History and Use of Methamphetamine 
  

METH, an amphetamine analog, is a mind-altering drug behaving as a nervous system 

stimulant. It was first discovered from ephedrine around the early 1900s in Japan (Grinspoon and 

Hedblom, 1975). Ephedrine and pseudoephedrine are the most valuable precursor commodities for 

METH production in the illicit market. Because of its synthetic nature and potency many variations are 

produced. Some common terms used to describe METH and the combination of METH and other 

drugs are: crank, crystal, ice, speed, and poor man’s coke (UNDOC, 2014). These names are not 

representative of the quality, but rather used for the purposes of street marketing and illicit use. METH 

is a white, odorless, bitter-tasting crystalline power that is highly soluble in water or alcohol (UNDOC, 

2014). METH can be ingested orally, smoked, snorted, or injected. Even though it has a 10 –12 hour 

half-life in humans (Cook et al, 1992; Krasnova and Cadet, 2009) compared to 60 – 70 min in mice 

and rats (Brien at al., 1978; Melga et al., 1995), tolerance for METH occurs instantaneously upon use, 

and the “high” lasts for hours. The typical mode of usage is a “binge and crash” the drug is eliminated 

long after the diminished pleasurable effects (Schepers et al., 2003; Krasnova and Cadet, 2009). Also, 

unlike other psychostimulants like cocaine, METH is disseminated in the human and rodent brain 

(Fowler et al., 2008; O’Neil et al., 2006; Segal et al., 2005).  

Upon its discovery METH, was heavily used to increase alertness and concentration during 

World War II among British, Japanese and American soldiers. The grave popularity of legal use during 
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the war fueled the development of the illegal market and soon METH trafficking became popular 

(Grinspoon and Hedblom, 1975). Also, it was commonly prescribed in America and abroad in the late 

1940s and 1950s to treat opiate addiction, cerebral palsy, seasickness, narcolepsy and radiation 

sickness, alcoholism and obesity (Miller and Hughes, 1994). It wasn’t until the 1960s that the Food 

and Drug Administration (FDA) began to scrutinize amphetamine production causing pharmaceutical 

companies to stop its manufacture. But with so much of the population addicted, the illicit production 

rose to meet the demand (Brecher, 1972). The Controlled Substances Act passed in 1970 by the U.S. 

government grouped METH, barbiturates, opiates and narcotics into five schedules according to the 

rate of abuse and addiction levels. METH is classified as a Schedule II drug (DEA, 2015).  

The influx of METH into the local market followed the California Outlaw Motorcycle Gangs 

(OMGs), as they started conducting transactions with common users and formed strategic networks. 

Not only did the OMGs controlled 90% of METH trade in California they started working with Mexican 

drug traffickers to sell Mexican METH in America. METH’s popularity and synthetic nature fueled a 

shift from the clandestine super-labs to a rise in small local laboratories that could produce limited 

quantity but high quality products. From the early to mid-1990s, the number of people hospitalized for 

METH abuse (as their primary drug) increased from 1,400 to 42,000 (SAMSHA, 2011). In juxtaposition, 

the number of METH labs increased from about 7,000 to 8,500 (NDIC, 2011). By early 2000, although 

motorcycle gangs and Mexican cartels were still responsible for controlling METH trafficking in the 

U.S., local production increased tremendously. Legal ingredients like pseudoephedrine fueled local 

manufacturing. Only in 2004, laws were passed to restrict the purchase of pseudoephedrine and 

currently, every state has some type of limitation on purchasing this product (ONDCP, 2006). From 

2005 – 2007, upon implementing the pseudoephedrine legislation seizures of METH and the number 

of people seeking treatment decreased, for the first time in many years (SAMSHA, 2011). However, 

the decline in METH abuse was ephemeral as currently 70 – 90% of the METH in the U.S. is imported 

from Mexico (NDIC, 2011). In addition, local labs began to use cheaper ingredients to make METH.  
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Mexico efficiently smuggles METH in pill form or its precursor chemicals like ephedrine and 

pseudoephedrine from Southeast Asian and East Asian countries, to produce METH at very low cost 

and with high purity (UNODC, 2011). METH seizure is used by the governmental agencies as an 

indicator of METH supply in the country. One of the largest seizures of small METH labs took place in 

2012 due to recent increase in trafficking and high demand. At the same time, the largest amount of 

finished METH was seized in Mexico. In the U.S., the laws passed since 1970 to present, on regulating 

the different precursor chemicals for METH production has not significantly reduced the overall 

quantities of METH seized (UNODC, 2011). In the U.S., METH is the second most prevalent illicit drug 

used, other than cannabis, with an estimated economic cost of use to be $23.4 billion in 2005 with 1.2 

American users (Nicosa et al., 2009; UNODC, 2011). A recent survey showed that four percent of the 

American population have tried METH at least once due to very low cost and an intense euphoric 

feeling (UNODC, 2011). The METH market and illicit manufacturing is difficult to study because the 

U.S. and global market formed large and small networks that adapt to control efforts. In the U.S. METH 

use is one of the most poorly understood and most serious illicit drug problems that affects our society 

today (NDIC, 2011). See Figure 1 – 1.  

As defined by the American Psychiatric Association, drug addiction is paralleled to substance 

dependence (American Psychiatric Association, 2013). According to Koob and LeMoal (1997) 

addiction is deemed as a nonstop process of hedonic homeostatic dysregulation, governed by brain 

neurotransmitters, hormones and reinforcements. Thus, the brain fails to properly maintain regulation, 

ultimately leading to addiction and neural damage.        

  

1.2 Pharmacology and Addictive Properties of Methamphetamine  

Amphetamines and METH show no differences in terms of the neural injury caused by these 

drugs, according to human discrimination studies (Melega et al., 1995; Lamb, 1994; Shoblock, 2003). 

METH is chemically similar to the endogenous neurotransmitter dopamine, DA, which enables its 
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vehement actions in the brain. The immediate effects upon METH use are feeling of euphoria, 

increased sexuality, productivity and energy, and decreased anxiety and appetite. The negative 

consequences are tachycardia, paranoia, hallucinations, aggression, convulsions, and hyperthermia 

(sometimes to lethal level) (Ellinwood, 1971; Homer et al., 2008; Krasnova and Cadet, 2009). Chronic 

METH users suffer from anxiety, depression, aggressiveness, mood disturbances and other 

psychological dysfunctions (Daker et al., 2008; Homer et al., 2008; Scott et al., 2007). These users 

show deficits in attention, decision making and working memory, that persist even after abstinence 

(Gonzalez et al. 2004; Woods et al., 2005; Salo et al., 2002 Krasnova and Cadet, 2009). Some of the 

withdrawal effects of METH are irritability, fatigue, impaired social functioning, and intense craving 

(Brecht et al., 2004; Homer et al., 2008).  

Compared to other psychostimulants, METH remains unchanged in the body for a longer 

duration causing a prolonged stimulatory effect. Over the years, progressive increase in METH abuse 

and the neural deficits among users attracted attention from researchers and the government. It wasn’t 

until the 1970s that several studies began to research and report the neural degeneration caused by 

METH. Because the chemical structure of METH resembles the structure of neurotransmitter DA, 

scientists looked at the DA innervations in the brain and found that prolonged exposure to METH in 

cats elicit neural damage (Escalante and Ellinwood, 1970). More specifically, scientists found that 

about 80% of the DA in the striatum of monkeys upon METH administration is depleted (Seiden, 1975). 

Similar reductions were found in humans in cortical and limbic brain areas (McCann et al., 1998; 

Sekine et al., 2003; Volkow et al., 2001).  

 

1.3 Mechanism of Action and Neural Toxicity of Methamphetamine  

Immediately upon taking METH, excess DA is released from the vesicles into the cytoplasm 

(Sulzer et al., 2005). The euphoria experienced is associated with the high DA levels at the synapses 

caused by this excessive release (Volkow et al., 1999; Liechti and Vollenweider, 2000; Winslow et al., 
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2007). With repeated exposure to METH, the monoaminergic system is compromised. It causes 

damage to the dopaminergic innervations which results in a reduction in the levels of DA, DAT 

(Wagner et al., 1980; Eisch et al., 1992; Nakayama et al., 1993; Cass and Manning, 1999) TH and 

tryptophan hydroxylase (TPH) (Hotchkiss et al., 1979; Ricaurte et al., 1982; Seiden et al., 1988; 

Johnson, et al., 1989) and depletion in the activity and quantity of VMAT-2 (Frey et al., 1997; 

Villemagne et al., 1998; Hogan et al., 2000; McCann and Ricaurte, 2004). Typically, DATs remove 

excess DA from the synapse and VMAT-2 transports cytoplasmic DA into vesicles for storage, release 

and protection. METH enters the DA neurons via the DATs on the cell membrane. Once inside the 

neuron, METH enters the vesicles through the VMAT-2 initiating the excessive release, thus causing 

depletion. METH also compromises the passive diffusion of DA and changes the internal pH balance 

(Cubells et al., 1994; Sulzer et al., 2005). The function of VMAT is to maintain high concentration of 

neurotransmitters in storage vesicles. They recognize serotonin (5-HT), DA, noradrenaline, 

adrenaline, and histamine. VMAT-1 is present in the peripheral organs and VMAT-2 is found mainly 

in monoaminergic neurons in the CNS (Kavanaugh 1998). DAT knockout (KO) mice lack the gene for 

DAT, have high levels of extracellular DA, are hyperactive and fail to show further stimulatory activity 

in response to psychostimulants (Giros et al., 1996). However, these animals will continue to self-

administer cocaine, indicating that DAT functionality is not the only culprit in the rewarding properties 

of psychostimulants (Rocha, et al., 1998). Human neuroimaging studies show that after one year of 

abstinence, DAT reduction was similar to patients with Parkinson’s disease (PD) (Volkow, et al., 2001). 

Among the users, density of DAT reduction corresponds to the amount and duration of METH used 

and the amount of METH used negatively correlates with DAT recovery (Sekine, et al., 2001; Volkow 

et al., 2001). Interestingly, after abstinence, DAT recovered but cognitive deficits persisted. Even with 

acute METH administration synaptic DA levels greatly increased (Stephans and Yamamoto, 1995). 

See Figure 1 – 2.  
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A neurotropic role of glutamate signaling in METH-induced toxicity is its excessive release in 

the striatum (slightly reduced in the nucleus accumbens (NAc) (Stephans and Yamamoto, 1994; Nash 

and Yamamoto, 1992; Stephans et al., 1998). METH inhibits the binding of glutamate to its receptors 

in the striatum. Striatal neurons receiving dopaminergic innervations contain glutamate receptors α-

amino-5-hydroxy-3-methyl-4-isoxazde propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) 

(Betarbet and Greenamyre, 1999). Studies show that when an NMDA receptor antagonist, MK-801, is 

administered upon METH treatment, hyperthermia is prevented, and blocks the decreases in DA 

content and TH activity (Sonsalla et al., 1989, 1996) and thus contributes to neuroprotection (Bowyer 

et al., 2001; Albers et al., 1995; Ali, 1994). However, there is some inconsistency as another study 

demonstrated that attenuation of METH-induced deficits with NMDA antagonists is independent of 

body temperature regulation (Fuller et al., 1992). Another group of researchers used a different 

antagonist, mGluR5, to prevent METH-toxicity by preventing the release of glutamate (Rodrigues et 

al., 2007). Increase in glutamate transmission (acting via the NMDA receptors) produces reactive 

oxygen species, ROS, through the activation of nitric oxide synthases (NOS) and the generation of 

nitric oxide (NO) via neuronal nitric oxide synthase (nNOS) (Dawson et al., 1996; Yamamoto and Zhu, 

1998). See Figure 1 – 3.   

In the CNS, NO is a signaling molecule, involved in synaptic plasticity to maintain 

neurosecretion, appetite, and temperature regulation. NOS catalyzes the conversion of amino acid, L-

arginine to L-citrulline and NO in the presence of oxygen. There are three types of NOS: neuronal 

NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS); with nNOS being present in the 

CNS (Xie and Nathan, 1994). Among the limbic structures, nNOS is ubiquitously present in the 

striatum, NAc, amygdala, hippocampus, and olfactory bulb. nNOS is activated by the formation of 

Ca2+/calmodulin complex is found in astrocytes and involved in regular cellular functions such as 

neurotransmission, regulation of blood vessels, immune response. In addition, it uses nicotinamide-

adenine dinucleotide phosphate (NADPH) as cofactors for catalytic activity. NO undergoes chemical 
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changes to form toxic compounds like reactive nitrogen species (RNS) or reactive oxygen species 

(ROS) causing cellular damage (Dawson and Dawson, 1996; Cadet and Brannock, 1998). 

Overproduction of ROS and RNS leads to structure damage by the formation of superoxide anions 

and peroxynitrite/ nitrogen (III) oxide respectively (Itzhak and Ali, 1996). More specifically, peroxynitrite 

is formed by glutamate-induced oxygen species damages axon terminals (Ali and Itzhak, 1998; Pacher 

et al., 2007). In the brain, NO behaves as a neuromodulator. Its signaling cascade initiates when it 

interacts with guanylyl cyclase (GC) to stimulate intracellular activity and increases cyclic guanosine 

monophosphate (cGMP) which stimulates neurotransmission and in excess can damage axon 

terminals (Imam et al., 2001).  

 

1.4 Basal Ganglia System and Striatal Neurochemistry 

 Neuroimaging studies in human have shown various deficits and neural degeneration in the 

structure and chemistry mainly in the striatum and other brain areas of METH users (Chang et al., 

2007). In the 1980s, researchers looked at long-lasting influences of METH outside of the traditional 

monoaminergic pathways by investigating their effects on cortical neurons. They saw METH induced 

cortical neuron degeneration by using the silver stain method (Ricaurte, et al., 1982; Ricaurte, et al., 

1984). With the same methods they saw METH-induced degeneration of nigrostriatal dopaminergic 

fibers innervating the striatum (Ellison and Switzer, 1993; Bowyer et al., 1994). The striatum is the 

key area in the basal ganglia system that receives glutamatergic cortical inputs and is affected by 

METH. Typically the basal ganglia system is comprised of: cortex, striatum (which is comprised of 

caudate- putamen and NAc), internal and external segments of globus pallidus (GPi and GPe), 

subthalamic nucleus (STN), substantia nigra par compacta and reticulata (SNc and SNr). Overall, 

the dorsal basal ganglia are mainly involved in motor associative functions, while ventral basal 

ganglia are linked to limbic emotional functions. The major difference between the basal ganglia of 

mammals (mainly primates) and rodents is in the striatum. The rodent striatum lacks the unique 
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separation seen in the primate striatum, which has a distinct caudate nucleus (receive innervations 

from the prefrontal cortex (PFC) and putamen areas (innervations from motor and somatosensory 

areas) (Heinz and Tseng, 2010). 

About 95% of the neurons in the striatum are medium spiny gamma-aminobutyric acid (GABA) 

neurons that receive major inputs and send outputs to GPi and SNr. Also, these neurons synthesize 

the neuropeptides substance P, dynorphin, and enkephalin (ENK) (Kawaguchi, 1997). The remaining 

striatal neurons are interneurons. There are two types of interneurons; one type is the large aspiny 

acetylcholine (ACh) synthesizing neurons, which consists about 1-3% of the remaining cells. The ACh 

neurons receives inputs from the cortex, thalamus and axon collaterals of striatal projection neurons. 

They also contain most of the striatal dopamine 2 receptors (D2R), ACh muscarinic receptors and, to 

a lesser extent, dopamine receptors (D1R), NMDA receptors, the neurokinin receptors (NK-1R) (for 

the neuropeptide substance P), and glutamate receptors 1 and 2 (GluR1 and GluR2) (Kawaguchi et 

al., 1995). These interneurons are responsible for mediating interactions between both direct and 

indirect pathways between the thalamus and striatum. The second type of interneurons is the medium 

aspiny GABA-ergic neurons (Kita, 1993). These neurons contain the calcium binding protein 

parvalbumin (PV). They receive inputs from cortex and contain most of the striatal glutamate receptor 

(GluR2, GluR3, GluR4), NK-1 and some D1 and D2 receptors. These GABA-ergic interneurons are 

also involved in NO synthesis and produce somatostatin (SST) and neuropeptide Y (NPY) 

(Kawaguchi, et al., 1995). 

With respect to the stimulatory effects upon drug use, the striatal neurons are intricately 

affected since they receives mostly excitatory inputs on dendritic spines from cortical and limbic 

structures. These excitatory inputs communicate via DA, which increases the excitatory effect of the 

direct pathway and reduces the inhibitory effect of the indirect pathway. METH use exacerbates these 

pathways and causes damage. Mainly, the direct pathway works as follows: glutamatergic cortical 

projections send excitatory message via axon collaterals. Striatal GABA-ergic projection neurons 
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receive the excitatory message and send inhibitory message to the GPi and SNr complex, which then 

provides less inhibition of the thalamus (composed of mainly glutamatergic neurons), thus sending 

excitatory projections to the cortex. The indirect pathway works in the following ways: it also starts 

from cortical projections to the striatum, which sends axon collaterals to GPe (also contains GABA 

neurons). It receives more inhibition from the striatum and there is a net reduction of inhibition. This 

enables the STN to release glutamate to the SNr – GPi complex, which is stimulated to send more 

GABAergic inhibition to the thalamus and as a result prevents glutamate from being released into the 

cortex and prevents the motivated action. Also, most innervations to the GPe contain neuropeptide 

Enk and projections to the GPi-SN complex contain SP and dynorphin.  

 

1.5 Dopamine, Glutamate and Oxidative Stress in METH toxicity 

METH toxicity alters the normal DA and glutamate signaling among other crucial 

neurotransmitters, by tipping the balance between release and reuptake. All drugs of abuse increases 

DA release in various brain regions. There are four different DA systems: nigrostriatal, mesolimbic, 

mesocortical and tuberoinfendibular. METH use affects the nigrostriatal (originating in the SN, it 

projects to the caudate – putamen of the dorsal striatum) and the mesolimbic DA system (originating 

in the VTA and projects to the NAc (ventral striatum), bed nucleus, septum, amygdala, and 

hippocampus (Kandel et al., 2000). METH use leads to abnormal functioning (attenuation or over 

expression of DA) that is similar to neurodegenerative diseases such as PD, schizophrenia, and 

depression. The intertwining relationship between glutamate and DA plays a role in the dendritic 

spines of neurons in the striatum. DA modulates postsynaptic events that influence glutamatergic 

synaptic events. The effects of METH. DA release in the striatum increases GABA release in the SN, 

which reduces nigro-thalamic flow of GABA, thus causing disinhibition of thalamo-cortical afferents, 

which allows excessive release of GLU in the cortico-striatal pathway. See Figure 1 – 4. 
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METH-induced DA trafficking increases extracellular and cytosolic DA. DA auto-oxidizes form 

quinones and semiquinones which produce ROS that causes neural damage (LaVoie and Hastings, 

1999; Larsen et al., 2002; Krasnova et al., 2001). Excess DA is also mediated by an increase in NO 

production. METH toxicity overwhelms the antioxidant free radical scavenging systems. Toxic METH 

breaks down DA which increases hydroxyl radical production, via superoxides and hydrogen peroxide 

and cause oxidative stress, mitochondrial dysfunctions and lipid peroxidation (Giovanni et al., 1995; 

Cadet and Brannock, 1998; Yamamoto and Zhu, 1998). Typically NO scavengers act as a feedback 

system to inhibit release of harmful molecules. METH-induced damage as a result of NO can be 

attenuated by blocking its synthesis (Cadet and Brannock, 1998). One possible way of reversing the 

long-term effects of METH-induced decrease of striatal DA content is by antioxidants (Yamamoto and 

Zhu 1998). METH-induced toxicity is attenuated in the superoxide dismutase (SOD) transgenic mice. 

They overexpress the antioxidant enzyme, cooper-zinc-superoxide dismutase (CuZn-SOD) which 

neutralizes the NO-induced accumulation of superoxide radicals (Cadet et al., 1994; Cadet and 

Brannock, 1998). In addition, pre-treating monkeys with powerful antioxidants like n-acetyl-L-cysteine 

before METH administration prevents terminal damage (Hashimoto et al., 2004). Oxidative stress 

caused by METH in DA and glutamate signaling can cause mitochondrial damage (Jayanthi et al., 

2004). Mitochondria are the site of enzymatic reactions that make adenosine triphosphate (ATP) used 

by neurons to carry out general carry out general functions. METH inhibits these reactions, which then 

increases reactive oxygen species resulting in DA toxicity (Burrows et al., 2000; Brown et al., 2005). 

In some cases, it has been shown that METH-induced DA toxicity can be attenuated when inhibition 

of enzymatic reactions is counteracted (Stephans and Yamamoto, 1994).  

METH can induce apoptosis through multiple pathways by inhibiting electron transport chain 

activity in mitochondria, decreasing anti-apoptotic Bcl-2 related protein, increasing pro-apoptotic 

protein (Bax, Bad, Bid) or activating caspase death pathway. In attempt to find a relationship between 
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NO-induced cGMP accumulation and apoptosis we plan to co-label cGMP with activated caspase-3, 

which is an early marker of apoptosis (Jayanthi et al., 2004).   

D1 receptors on striatal medium spiny neurons co-localize with striatal interneurons that 

express NPY/SST/NOS. Pretreating rats with D1 receptor antagonist, SCH23390, prevents DA deficits 

upon METH administration (O’Dell, 1992; Sonsalla et al., 1989). Also, this antagonist prevents 

decrease of DA uptake upon acute METH-treatment (Gerfen et al., 1990). Since nNOS contributes to 

the DA deficiency caused by METH, D1 receptor agonist, SKF-82958, further exacerbates this system. 

However, pretreatment with nNOS inhibitor prevents this type of deficiency (Di Monte et al., 1996; 

Itzhak and Ali, 1996). Further, in nNOS deficient mice, METH doesn't induce this deficiency (Imam et 

al., 2001). Furthermore, D1 receptors form complexes with NMDA receptors (Fiorentini et al., 2003) 

and when D1 receptors are activated, they enable NMDA transmission (Cepeda et al., 1993) which is 

evidence of DA and glutamate signaling working together to accentuate toxicity.   

D2 receptor activation also plays a role in METH-induced deficits of DA. Administration of D2 

antagonists, prior to METH delivery, prevents the decrease in vesicular DA uptake and prevents the 

continuous damage that is independent of preventing hyperthermia (Xu, 2005; Broening et al., 2005). 

Peripherally, intense hyperthermia is an immediate reaction to METH. Some have shown that METH-

induced neurotoxicity caused by excess DA can be attenuated by preventing hyperthermia (Albers 

and Sonsalla, 1995; Broening, 2005; Bowyer et al., 1992). Within the last 15 years, it has become 

clear that when studying METH toxicity, researchers must take into account increased body 

temperature, as drugs used in most studies, D1, D2, agonists, antagonists alike show a reduction of 

METH-induced hyperthermia (Albers, 1995). For the purposes of this proposal, we will also measure 

body temperature.  

METH-induced toxicity increases levels of some but not all striatal neuropeptides. Our lab has 

identified that 25% of striatal neurons undergo apoptosis 24-hours post METH administration (Zhu et 

al., 2005). Relevant to this proposal, METH-induced apoptosis of striatal cells, shown by TUNEL 
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staining, a late marker for apoptosis, co-localized with neuronal marker neuron-specific neuronal 

nuclear protein (NueN) (Zhu et al., 2005). Some of the neurons that die upon METH toxicity are GABA-

parvalbumin interneurons, which mediate inhibitory signaling and receive innervations from 

glutamatergic cortical neurons (Zhu et al., 2006). The other type of interneurons affected by METH 

are the cholinergic interneurons, which affects the output of the projection neurons and mediate 

excitatory signaling (Zhu et al., 2006). Thus, the cholinergic transmission increases DA release and 

sensitivity of projection neurons to glutamate (Steiner and Tseng, 2010). Both the GABA and 

cholinergic interneurons are affected by METH, the inhibitory and excitatory signaling systems by 

these interneurons do not cancel each other out upon METH-induced toxicity. Rather, transmission is 

more favorable for SST/NPY/nNOS interneurons because they are spared from METH-induced 

toxicity (Zhu et al., 2006).  

Substance P, SP, is an excitatory neuropeptide with pro-toxic capacity upon METH. Neurons 

that release SP sends projections outside of the striatum. SP signaling via the NK-1R increases NMDA 

receptor activity and causes METH-induced overproduction of NO (Wu et al., 1994; Wang et al., 2008). 

NK-1R is co-localized with the cholinergic and SST/NPY/nNOS synthesizing interneurons (Kawaguchi 

et al., 1995). METH administration increases NK-1R signaling in these interneurons (Wang and 

Angulo, 2010). Therefore, overexpression is indicative of SP binding and signaling connected to NO 

formation (Wang et al., 2008; Wang and Angulo, 2010). Work in our laboratory demonstrated that, 

when animals are pretreated with NK-1 receptor antagonist (WIN-51,708), NO production was 

attenuated significantly (Wang et al., 2008; Zhu et al., 2009). NO production was quantified by 

measuring 3-nitrotyrosine (3-NT) levels, an indirect measure of NO production. 3-NT is formed when 

NO reacts with superoxide anion to produce peroxynitrite, which causes nitration of tyrosine, forming 

3-NT (Wang et al., 2008). Therefore, we can state that SP modulates or amplifies its response via its 

NK-1R, which can further exacerbate the toxic effects of METH.  
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NPY and SST both have inhibitory influences on striatal glutamatergic release and 

transmission. They modulate intracellular calcium influx which is how they protect from striatal 

excitotoxicity (Thiriet et al., 2005). The corticostriatal neurons release abundant amount of glutamate 

to the SST/NPY/nNOS interneurons (Kawaguchi et al., 1995) under METH. NPY can inhibit glutamate 

release and stimulate SST release (Silva et al., 2005). In the hippocampal cultures, NPY reduces 

AMPA degeneration (Silva et al., 2003). METH administration increases NPY mRNA expression in the 

striatum (Thiriet et al., 2005). Work in our laboratory have shown that NPY1 and 2 receptor agonist 

attenuate METH-induced NO accumulation, in a dose dependent manner (Yarosh and Angulo, 2012). 

ICV administration of NPY reduces METH-induced apoptosis in the striatum (Thiriet et al., 2005). SST, 

expressed in the striatal projection neurons which regulates the release of GABA, glutamate and DA 

(Thermos et al., 2006). SST can cause presynaptic inhibition of glutamate release. Therefore, it can 

be deemed to have neuroprotective capacity upon glutamate toxicity (Cervia et al., 2008). When 

NMDA receptors are activated in cortical and striatal cultures, SST is released (Forloni et al., 1997). 

Furthermore, NMDA mediated toxicity elevates SST mRNA expression. It has the ability to decrease 

NMDA function which could lower NO formation (Kumar, 2008). SST plays a tenet role in survival of 

SST, NPY, nNOS neurons during excitotoxicity, since ablation of SST enhances cell death (Kumar, 

2008).   

Further relevance to the current research, apoptosis peaks at 24 hours post METH and DA 

terminal marker for degeneration peaks at 3 days post METH (Zhu et al., 2005).  This may indicate 

that SP is mediating its connection to DA neurons via an indirect pathway (perhaps by coupling with 

the corticostriatal pathway) even though cell loss in the striatum is mediated by localized NK-1R. 

Another way METH can induce NO production is via the microglia and astrocytes which both express 

NK-1R (Rasley et al., 2002). Perhaps, there are other neuromodulators that can provide 

neuroprotection to striatal neurons upon METH toxicity. Recently, peripheral hormones have been 
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considered to have neuroprotective capacity. Understanding the molecular mechanism of how these 

peripheral hormones provide neuroprotection can help researchers find therapeutic targets.      
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Figure 1 – 1: Widespread distribution of Methamphetamine in the USA. Over 1.2 million 
Americans reported using METH (US Dept. of Health and Human Services, 2012). 
Methamphetamine use occurs across the country in both urban and rural areas. Distribution of 
methamphetamine is widespread in Pacific, Southwest and West. Currently, trafficking has spread 
across central regions, Great Lakes, Southeast regions and limited but rising spread in the Northeast 
and Mid-Atlantic regions. It is expanding eastward, with most of the METH, 70-90%, in the U.S. 
imported from Mexico (NDIC, 2011) 
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Figure 1 – 2: Molecular events during METH-induced DA terminal damage and apoptosis in the 
striatum (adapted from Krasnova and Cadet, 2009 with modification): The figure summarizes the 
role of DA, oxidative stress, and other mechanisms in METH toxicity. Within the neuron, METH enters 
via the terminal DAT and passive diffusion. It then enters into the vesicles through VMAT-2 and causes 
excessive DA release. In the cytoplasm, DA auto-oxidizes to form DA quinones, the generating of 
superoxide radicals and hydrogen peroxides. Subsequent formation of hydroxyl radicals through 
interactions of superoxides and hydrogenperoxide leads to oxidative stress, mitochondrial 
dysfunctions and peroxidative damage to pre-synaptic membranes. Also, with continuous excessive 
release, TH (the rate limiting enzyme of DA production) is exhausted leading to a significant reduction 
of TH and DA content. Finally, the toxic effects of released DA might occur through activation of DA 
receptors because interactions of DA with D1 receptors on post-synaptic membrane cause activation 
of transcription factors and upregulation of death cascades (active-caspase 3) in post-synaptic 
neurons resulting in apoptosis.  
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Figure 1 – 3: Nitric oxide signaling through cGMP (Adapted from Francis and Corbin, 2005) NO is 
synthesized from l-arginine by NO synthases located in neuronal. Calcium that enters the cell form 
complexes with calmodulin and activates NOS. The NO produced then diffuses through the 
intercellular space and crosses the cell membrane of a nearby target cell. Then NO binds to and 
activates guanylyl cyclase, which increases synthesis of cGMP from GTP and results in activation of 
PKG phosphotransferase activity. These processes initiate a cascade of reactions that are amplified 
at each step as shown by the arrows. In the current study, we measured the increase of NOS and 
cGMP after METH administration followed by leptin treatment.  
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Figure 1 – 4: Glutamate transmission affected by DA overflow in METH toxicity (Adapted from 
Mark et al., 2004): (A) under normal condition: basal activity of SN regulates both da and glutamate 
release in striatum. (B) Under METH: DA release in striatum increases GABA release in SN, which 
decrease nigrothalamic activity leading to disinhibition thalamocorticol activity and subsequent 
increased release of corticostriatal glutamate. Arrow thickness indicates degree of activity. 
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CHAPTER 2 

 

ROLE OF LEPTIN IN NEUROPROTECTION    

 
 
2.1 History and Pharmacology of Leptin and Leptin Receptor Activity    
 

Under the idea of identifying neuroprotective agents that can inhibit degeneration, leptin may 

be a candidate. Leptin is a 16 kDa endogenous protein hormone that is peripherally synthesized mainly 

by white adipose tissue and secreted into the bloodstream (Maffei et al., 1995; Zhang et al., 1994). In 

the brain, it is mediated by the leptin receptors, which helps it to cross the blood-brain barrier. Leptin 

was discovered when scientists saw a random recessive homozygous mutation in the mouse obese 

(ob) gene (Coleman, 2010). The mutation produced the ob/ob mice that weighed 300% more than 

normal mice, and a similar mutation is present in morbidly obese humans (Coleman, 1973; 2010). 

Researchers encoded the ob gene and found a hormone they named leptin (from the Greek word 

“leptos” meaning “thin”). The mutations caused these mice to be obese, completely deficient of the ob 

gene product, leptin, and these mice do not synthesize leptin (Zhang et al., 1994). But when leptin 

was administered to ob/ob mice they lost weight significantly, which indicates that leptin receptors are 

encoded by a different gene. The diabetic (db) gene was also identified around the same time and 

mice deficient of this gene (db/db) also do not synthesize leptin. But when leptin was administered 

peripherally it had no effect in these mice. Therefore, researchers concluded that db gene must encode 

for leptin receptors and the db/db mice lack functional leptin receptors which are required for leptin to 

produce its effects (Zhang et al., 1994; Gajiwala et al., 1995; Lee et al., 1996). See Figure 2 – 1.  
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Since all fat cells are able to secrete leptin, its circulation is proportional to the amount of fat 

mass (Maffei, et al., 1995) (See Figure 2 – 1). Therefore, obese individuals have higher levels of leptin 

than lean individuals and levels decreases weight loss (Maffei et al., 1995). Leptin-induced weight loss 

is a result of fat mass reduction without changes in lean body mass. It is important to note that a single 

meal cannot alter leptin levels and administering leptin will not simply inhibit meal consumption (Maffei 

et al., 1995). Leptin behaves as a modulator of energy expenditure by maintaining a set-point for 

satiety rather than participating in the short-term regulation of food intake (Spiegelman and Flier, 1996; 

Myers et al., 2009; Berthound, 2007). Prolonged fasting can decrease blood leptin levels (Boden et al. 

1996). The hormone is released into the bloodstream rhythmically, entrained by meal patterns, but its 

levels are typically high in the morning and low in the afternoon (Licinio et al., 1997). There are slight 

sex differences in leptin concentration, as women tend to have greater leptin concentration than men 

(Mantzoros and Moschos, 1998). 

As briefly described above, leptin causes its effect via its receptors, ObR, coded by the db 

gene (Tartaglia et al., 1997; Lee et al., 1996). The general structure of the leptin receptor is similar to 

cytokine receptors (Tartaglia et al., 1997). So far, six leptin receptors have been found: ObRa, ObRb, 

ObRc, ObRd, ObRe, and ObRf. All of these receptors have homologous extracellular domains and 

unique cytoplasmic domains varying in sequence and length (Lee et al., 1996; Tartaglia et al., 1997). 

ObRa and ObRc are short form, involved in transporting leptin across the blood-brain barrier 

(Bjorbaek, et al., 1998; Hileman, et al., 2002). The long form, ObRb, is ubiquitously expressed in the 

CNS and is mainly involved in leptin signaling in the brain (Elmquist et al., 1998; Fei et al., 1997; Gao 

et al., 2008). The presence of leptin in the CNS causes it to play a critical role in controlling its actions 

peripherally. Studies found a strong association between plasma leptin and cerebrospinal fluid DA 

levels (Hagan et al., 1999). Glial cells, astrocytes and microglia, express the long and short form of 

the leptin receptors (Hosoi et al., 2000). In mice and rats, ObR mRNA has been detected in the cortex, 
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hypothalamus, hippocampus, brain steam, cerebellum, amygdala, and substantia nigra (Hommel et 

al., 2006; Figlewicz et al., 2006; Fulton et al., 2006; Grill et al., 2006, Leshan et al., 2009).  

Though leptin receives most of its attention from studies on its neuroendocrine targets in the 

satiety centers of the hypothalamus, as it is very important for energy homeostasis, it also regulates 

the incentive value of food and rewards, suppresses depression and anxiety-like behaviors (Fulton et 

al., 2000; Lu et al., 2006; Figlewicz et al., 2006). Recently, several studies looked at leptin’s wider 

coverage in the CNS. When leptin was administered peripherally, it activated neurons in various brain 

areas. ObRb-projecting neurons are expressed in other brain regions including the ventral striatum, 

amygdala, cerebellum, hippocampus, brain stem, and substantia nigra (Harvey, 2007; Figlewicz et al., 

2003). However, the precise molecular pathway underlying the direct effects of leptin in these regions 

is mostly unknown. 

In the hypothalamus, ObRb colocalizes with NPY and Pro-opiomelanocortin (POMC) and 

STAT3 (see description below). When leptin levels are decreased, expression of orexigenic 

neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) is increased, while the 

expression of anorexigenic neuropeptides POMC and cocaine-and amphetamine-regulated transcript 

(CART) is decreased (Elmquist et al., 2005; Morton et al., 2006; Berthoud, 2007; Gao and Horvath, 

2007). As discussed previously, VTA neurons send projections to limbic areas (NAc, and amygdala). 

Leptin was shown to modulate the DA-dependent food and drug rewards. In addition, VTA neurons 

express ObRb and regulate lateral hypothalamic area (LHA) neurons expressing ObRb (Fulton et al., 

2000; Figlewicz et al., 2006; Hommel et al., 2006; Leinninger et al., 2009). It remains to be understood 

how leptin can influence the mesolimbic DA system. So far, there is a lack of information about the 

direct projections from ObRb neurons into and within the mesolimbic DA system.  
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2.2  Role of Leptin in Dopaminergic Pathways 

Addictive behaviors such as drug or alcohol abuse are driven by brain circuits that results in 

neuroadaptation generated by learned habits and powerful rewarding reinforcements. Among the four 

major dopamine pathways in the brain, mesolimbic and nigrostriatal pathways are of interest as they 

play a critical role in the reinforcing and rewarding properties of substance abuse. Mesolimbic 

dopaminergic neuron are found in the VTA and project to the NAc, whereas nigrostriatal neurons arise 

in the SN and project to the striatum. Leptin may control the mesolimbic DA system by its ObRb 

expressing neurons and their projections to the NAc. ObRb containing cells are present in the VTA as 

shown by leptin-induced STAT3 phosphorylation, pSTAT3 (Fulton et al., 2006; Hommel et al., 2006). 

A majority of the dopaminergic neurons in the VTA and SN are also ObRb expressing neurons 

(Elmquist et al., 1998). We and other labs have also found leptin receptors to be expressed in the 

striatum. However, the signaling pathway critical for its role in leptin-mediated neuroprotection in the 

striatum still remain to be elucidated. Finally, leptin crosses the blood-brain barrier, which further 

demonstrates that it acts in several pathways outside of the hypothalamus (Banks et al., 1996).    

 
2.3 Leptin Receptor Signaling 

 
In general, leptin resembles the Janus kinase (JAK) family of tyrosine kinase and its receptors 

are similar to the class-1 cytokine receptors (Madej, et al., 1995). The signal transduction pathway 

consists of leptin binding to its receptor, which contains an intracellular domain and 

autophosphorylates the JAK-binding site. The kinase then phosphorylates and activates the signal 

transducer and activator of transcription (STAT)-binding site. In rodents and humans, there are four 

JAK family members. JAK1, JAK2, JAK3 and TYK2. JAK2 is the main player in survival and mediate 

its signals through a variety of cytokine receptors pathways. 

Downstream leptin signaling requires leptin to bind to ObRb receptor, activating tyrosine 

kinase JAK-2 (activated by autophosphorylation), which phosphorylates the three tyrosine residues, 
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Tyr985, Tyr1077, Tyr1138, on the intracellular domain of the receptor. The phosphorylated tyrosine 

residues promote the recruitment of signaling proteins with their own specialized phosphotyrosine-

binding domains, meaning each tyrosine phosphorylation site has specific downstream signaling 

proteins according to their amino acid chain. Tyr985 recruits two different proteins: Src Homology-

domain containing phosphatase-2 (SHP2) and suppressor of cytokine signaling-3 (SOCS-3). SHP-2 

binds to phosphorylated Tyr985 and mediates the activation of ERK (extracellular signal-regulated 

kinases). SOCS-3 attenuates cytokine signaling and is known to mediate feedback inhibition of ObRb 

signaling. Tyr985 signaling is important for the attenuation of leptin action via ObRb signaling. 

Phosphorylation of Tyr1077 activates STAT5. Though, Tyr1077 mediates most of the ObRb dependent 

STAT5, Tyr1138 also mediate STAT5, but, the exact mechanisms of how STAT5 regulates gene 

expression is not clearly understood. Phosphorylated Tyr1138 also activates STAT3. STAT3 activation 

leads to translocation of STAT3 to the nucleus where it regulates transcription of SOCS3, which acts 

as a feedback inhibitor and negatively regulate ObRb signaling (Schindler and Darnell, 1995) (See 

Figure 2 – 2). JAK-STAT3 signaling leads to an upregulation of antioxidant enzyme, manganese 

superoxide dismutase (MnSOD) and anti-apoptotic protein, B-cell lymphoma-extra-large (Bcl-xL). 

MnSOD functions is to protect mitochondrial damage from superoxide, it is the cell’s primary defense 

against free radical mediated damage. Bcl-xL is located at the outer mitochondrial membrane and 

regulates mitochondrial membrane channel.  

Leptin can also activate PI3 kinase-Akt pathway and mitogen-activated protein (MAP) kinase 

pathways (Harvey et al., 2000; Najib et al., 2002). MAP-kinase pathways promote neuronal survival 

but little is known about leptin treatment’s effect on the level of phosphorylated MAP kinases (ERK1/2) 

in cultured hippocampal neurons. The STAT3, STAT5, ERK activation is mediated by the 

phosphorylation sites of ObRb, but there are other downstream signaling events that also take place. 

The activation of phosphoinositide-3 kinase (PI3-K), the regulation of mechanistic target of rapamycin 
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(mTOR) and the inhibition of the AMP-activated kinase (AMPK) in leptin signaling are all minimally 

understood.  

Neurotropic factors that activate JAK/STAT or PI3 kinase/Akt pathways can promote survival 

(Cheng et al., 2003). Neurotropic conditions in hippocampal cultures were shown by inducing oxidative 

stress with exposure to Fe2+ which induces hydroxyl radical production and membrane lipid 

peroxidation. Also, overactivation of glutamate receptors in the hippocampus leads to excessive Ca2+ 

influx through the glutamate receptors and voltage-dependent Ca2+ channels (Mattson, 2003). 

However, when cultures were pretreated with leptin the neurons survived under both neurotropic 

conditions (Guo et al., 2007). Oxidative stress and excitotoxicity can cause mitochondrial alterations 

leading to apoptosis. Therefore, researchers checked if leptin can attenuate mitochondrial insults by 

measuring mitochondrial ROS levels. They found that leptin treatment stabilized mitochondrial function 

and protected from apoptotic death in hippocampal slices (Guo et al., 2007). Also, when hippocampal 

neurons were treated with a specific JAK2 inhibitor, AG490, STAT3 phosphorylation was attenuated. 

AG490 can block the neuroprotective effects of leptin when neurons are exposed to toxic levels of 

glutamate. Therefore, JAK2 and STAT3 activation is necessary for leptin-mediated cell survival 

signaling of hippocampal neurons (Guo et al., 2007). Next, several studies demonstrated that STAT3 

induces expression of Bcl-xL and MnSOD (Terui et al., 2004). Treating tissue cultures with JAK2 or 

STAT3 blocker also blocked the ability of leptin to increase the levels of Mn-SOD and Bcl-xL (Guo et 

al., 2007). Thus, we know that leptin induces the expression of Bcl-xL and Mn-SOD. Neurons treated 

with PI3 kinase inhibitor (LY294002) blocks leptin’s ability to prevent glutamate-induced mitochondrial 

damage and ROS production. Therefore, PI3K-Akt pathway is likely to be involved in mitochondrial 

stabilization by leptin. Leptin showed neuroprotective ability when delivered (by intraventricular 

cannula in mice) to the hippocampal CA1 and CA3 regions prior to inducing seizures. Leptin modulates 

the excitability of hippocampal neurons via ObRb by activating K+ channels (Shanley et al., 2002). It 

inhibits hippocampal neurons via PI3-Kinase-driven activation of big K+ (BK channels) which are 



 

25 

 

calcium-activated potassium channels. At rest, leptin inhibit hippocampal neurons via BK channel 

activation (Shanley et al., 2001). BK channels do not normally contribute to the resting excitability of 

neurons but act as modulators if Ca2+ rises. Leptin receptor activation brings BK voltage to a 

physiological normal range without the increase of Ca2+ (Shanley et al., 2002). The neuroprotective 

mechanism of leptin may include JAK2  ANTI-APOPTOSIS; TYR985 ⇒ SHP2  ANTI-

APOPTOSIS; TYR985 ⇒ SOCS3  SIGNAL ATTENUATION; and TYR1077 ⇒ STAT5  ANTI-

APOPTOSIS. See Figure 2 – 2.  
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Figure 2 – 1: Leptin mouse and feedback loop. (A) A comparison of a mouse unable to produce 
leptin, resulting in obesity (right), and a normal mouse (left). (B) The ob gene in fat cells encodes the 
leptin protein, which triggers the hypothalamus to suppress appetite (adapted from Liu, 2004).  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

27 

 

 
 
 
 

Figure 2 – 2 Leptin receptor signaling pathways: leptin binds to ObRb and activates JAK2 resulting 
in autophosphorylation. JAK2 phosphorylates ObRb on Tyr 985/1077/1138, which provides docking 
sites for signaling proteins. Phospho Tyr985 allows binding of SHP2 and mediates activation of MAPK 
pathway. It also allows binding of SOCS3 and inhibit leptin signaling in a negative feedback manner. 
Phospho Tyr1077/1138 recruits STAT5, but little is known about its impact on gene expression. 
Phospho Tyr1138 recruit STAT3. STAT3 proteins translocate to the nucleus to induce gene expression 
such as c-Fos, activator proteins, SOCS3. SOCS3 negatively regulate signal transduction by binding 
to phosphorylated tyrosines where they inhibit the binding of STAT proteins and SHP-2. 
Autophosphorylated Jak2 can activate PI3K pathway. Leptin (L), Leptin receptor (ObRb), tyrosine 
(Tyr), Janus kinase (JAK2), Src homology phosphatase 2 (SHP2), signal transducers and activators 
of transcription (STAT), suppressor of cytokine signaling (SOCS3), Phosphoinositide Kinase-3 (PI3K), 
extracellular signal regulated kinase (ERK).  
JAK2  ANTI-APOPTOSIS; TYR985 ⇒ SHP2  ANTI-APOPTOSIS; 
TYR985 ⇒ SOCS3  SIGNAL ATTENUATION; TYR1077 ⇒ STAT5  ANTI-APOPTOSIS AND 
TYR1138 ⇒ STAT3  HYPERPROLIFERATION, CYTOKINES AND SOCS3 



 

28 

 

 
 
 
 
 
 

CHAPTER 3 

 

RESEARCH DESIGN 

 

METH-induced neurological damage colocalizes with degeneration that occurs in various 

neurodegenerative diseases such as Parkinson’s disease and Huntington’s disease. Therefore, 

understanding the mechanism of METH-induced neurodegeneration will provide an avenue towards 

identifying effective therapeutic targets for treatments of METH abuse and neurological disorders. 

Several labs including ours have identified the neuroprotective capacity of endogenous peptides, such 

as somatostatin (SST) and neuropeptide Y (NPY), upon METH-induced toxicity in striatal neurons. 

Similarly, leptin is an important peripheral hormone produced mainly by adipose tissue and is produced 

in proportion to fat stores, which circulates in the plasma, and is found ubiquitously in the CNS. Plasma 

leptin communicates energy stores in the periphery to the CNS. Most of the effects of leptin are 

attributed to the effects in the CNS. Though leptin is primarily known for its regulation of food intake 

and energy homeostasis governed by its receptors on hypothalamic neurons, it has been shown to 

serve other functions that deviate from its traditional role. We know that METH-induced striatal injury 

is a multimodal function from DA overflow, glutamate signaling, free radicals formation and oxidative 

stress and published work from our lab and others provide some of the basis of the relationship 

between METH, DA, glutamate and oxidative stress. These identified pathways of how METH affects 

the striatum helped us to demonstrate the ways leptin can play a role. We hypothesized leptin will 

attenuate the METH-induced striatal neural injury. 
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The specific aims outlined here are intended to measure and test the overall hypothesis that 

METH-induced striatal neural injury is attenuated by leptin. We know that METH-induced striatal injury 

is a multimodal function from DA overflow, glutamate signaling, free radicals formation and oxidative 

stress and published work from our and other labs provides some of the basis of the relationship 

between METH, DA, and oxidative stress. These identified pathways of how METH affects the striatum 

will help us to demonstrate the ways leptin can play a role. We will demonstrate how leptin attenuates 

METH-induced striatal injury and mediates striatal neuroprotection. The specific aims are: 

 
3.1 Specific Aim 1 and Relevance: Does Leptin Attenuate the METH- induced Striatal  

 
Neural Injury? 
 

To test the hypothesis that:  

a) Leptin will attenuate the apoptosis and dopamine terminal toxicity induced by METH in the 

striatum. 

b) Leptin treatment prevents the METH-induced striatal overactivation of astrocytes and 

microglia. 

c) Leptin treatment prevents METH-induced hyperthermia and weight loss.  

d) Leptin protects by inhibiting the METH-induced production of striatal nitric oxide: role of 

neuronal nitric oxide synthases. 

e) Leptin will prevent the overproduction of cGMP induced by METH in the striatum. 

 
3.2 Specific Aim 2 and Relevance: Does Leptin Mediate Striatal Neuroprotection by  
 

Modulating Glutamate Transmission? 
 

To test the hypothesis that: 
 
a) Leptin will attenuate the NMDA-induced striatal apoptosis and dopamine terminal toxicity. 

b) Leptin treatment attenuates NMDA-induced formation of nitric oxide. 

c) NMDA-induced overactivation of astrocytes and microglia will be attenuated by leptin. 
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CHAPTER 4 

 

METHODS AND MATERIALS 

 

4.1 Animal and Systemic Drug Administration 

All experimental animal use procedures were in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals, Hunter College of the City University of 

New York’s Institutional Animal Care and Use Committee and Animal Welfare regulations. 

Experimental Male of imprinting control regions (ICR) mice were purchased from Taconic laboratories 

(Germantown, NY, USA) at 10 weeks of age. We used this mouse strain due to previous published 

work from the lab established baseline and significant results when measuring the various markers. 

Mice were housed individually in translucent propylene cages (29 x 19 x 12.5 cm) and habituated to a 

12 hour light – dark (LD) cycle (light, 300 lux) for 2 weeks prior to commencement of intraperitoneal 

(IP) drug administration. The animal rooms were maintained at 21 ± 1°C and were provided with food 

and water ad libitum. For animal used in Western blot studies, received a change of bedding and wet 

food every 24 hours for 3 days post-drug administration.   

 (+)-Methamphetamine hydrochloride (Sigma, St. Louis, MO) was dissolved in 10mM 

phosphate-buffered saline (PBS); pH 7.4. All animals received one IP injection of saline or one bolus 

METH (30 mg/kg of body weight) in a volume of 200 µl. In addition to drug or saline treatment, leptin 

from mouse (Sigma, St. Louis, MO) (0.25, 0.5, 1, 2, or 3 mg/kg of body weight) was injected to animals 

of different groups to determine optimal dose. Afterwards, all leptin injections were at a dose of 1 

mg/kg. Control animals receive equivalent volumes of saline. Animals were sacrificed after 8, 24, or 
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72 hours post drug administration. For intrastriatal infusion study, NMDA (20 nM) was also dissolved 

in aCSF and injected into the striatum. Animals also received a saline or leptin injection 30 minutes 

prior to infusion. Animals for Western blot analysis of TH levels were sacrificed 72 h after treatment by 

decapitation. Brains were dissected, frozen on dry ice, and stored in -80 ̊C until use. Animals for cGMP 

and activate caspase-3 were sacrificed 8 hours post-treatment. For 3-NT, NOS1, NeuN, 

immunofluorescence or TUNEL, animals were sacrificed 24 hour post-treatment and animals for 

GFAP and Iba1 immunofluorescence were sacrificed 72 hours post-treatment via intracardiac 

perfusion.    

 
Perfusion  
 

Each animal received IP injection to be deeply anesthetized for sacrifice and tissue collection 

(8, 24 or 72 hours after METH injection), with 1:3 mixture of ketamine/acepromazine (100 mg/kg of 

body weight). Animals were perfused intracardially with 30 mL of phosphate buffer saline (PBS) 

followed by 30 mL of 4% paraformaldehyde in in PBS. Brains were dissected out and immediately 

post-fixed for 24 hours in 4% paraformaldehyde at 4°C and to enhance the penetration of the 

immunoreagents, the brains were equilibrated in a cryoprotectant solution (20% sucrose in PBS 

solution) in at 4°C for 48 hours. The brains were frozen at -80°C until ready to be used. Coronal 

sections 25 µm in thickness were collected using a cryostat at -20°C and stored in antifreezing solution 

(30% glycerin solution in ethylene glycol) at -20°C until used in immunohistochemistry assays. 

Immunohistochemistry 

For all immunohistochemical studies perfused brains were sliced using a cryostat at 25 µm 

serial coronal brain sections were collected between bregma 0.38 mm ± 0.1 mm. Sections were used 

either free-floating or mounted on glass slides prior to staining methods. For each 

immunohistochemical assay, we used one entire well (6 – 7 sections) per animal.   
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4.2 Intrastriatal Infusion of NMDA and Leptin Injections  

NMDA infusion protocol was adapted from Afanador et al., 2013. Thirty minutes prior to 

intrastriatal infusions, mice received one IP injection of leptin (1 mg/kg; Sigma, St. Louis, MO) or saline. 

The animals were anesthetized with inhaled isoflurane (2.5% for induction, 2.0% for maintenance). 

Their heads were immobilized in a stereotaxic frame (Model 5000; David Kopf Instruments, Tujnga, 

CA) and a burr hole was drilled into the skull at the following coordinates: +0.5 mm rostral-caudal; +/- 

2.0 mm medial-lateral from bregma; -2.5 mm dorsal-ventral from dura (Franklin and Paxinos, 1997). 

A 2 μL microinjection needle (25 gauge, Hamilton, Reno, NV) was lowered into the striatum and 

allowed to remain in position for 5 minutes. NMDA 1.0 μL (20 nM, Sigma, St. Louis, MO), or aCSF 

were injected into the striatum using the quintessential stereotaxic injector (Stoelting, Wheat Lane, IL) 

at a rate of 0.1 μL/minute and the needle remained in place for an additional 5 minutes before its 

removal. NMDA was dissolved in artificial cerebrospinal fluid (aCSF). The wound was closed with 

VetBond (n-butyl cyanoacrylate, 3M) tissue adhesive and the animal was allowed to recover. 

  

4.3  TUNEL immunohistofluorescence 

TUNEL (terminal deoxyncleotidyl transferase-mediated dUTP nick end labeling) 

histochemistry methods adapted from (Zhu et al., 2005) with minor modifications. Pre-mounted brain 

sections were washed in phosphate-buffered saline, (PBS) at pH 7.4  and then immersed in 0.4% 

Triton X-100 in PBS for 30 minutes at 70 ̊C. Sections were then washed in PBS and incubated in 

TUNEL reactions mix (Roche Applied Science, Indianapolis, IN) according to protocol in the manual, 

in a humidified chamber (37 ̊C) for 2 hours. Washed in PBS and coverslip with Vectashield + DAPI 

mounting medium (Vector Laboratories, Burlingame, CA).  
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4.4 NeuN, GFAP, Iba-1, NOS1, cyclicGMP, active caspase-3, and 3-Nitrotyrosine (3-NT) 

Immunohistochemistry 

Free-floating sections were washed in PBS with 0.3% Triton X-100 (PBS-TX) and blocked for 

non-specific binding using 10 % Normal Donkey Serum (NDS) in PBS-TX for antibodies: cGMP, active 

caspase-3 or 5% Normal Goat Serum (NGS) in PBS-TX for antibodies: NeuN, Iba-1 or Mouse- on-

Mouse IgG (BMK-2202,Vectorlaboratories, Burlingame, CA) for antibodies: 3-NT, NOS1, NOS2, 

GFAP at room temperature (RT) for 1 hour. Sections were then incubated in primary antibody in 5% 

NDS or NGS in 0.2% PBS-TX or M.O.M diluents buffer (80 µL/mL in PBS-TX for 15min). All primary 

antibody incubations were at 4°C overnight. Sections incubated with: mouse anti-NeuN (1:50; 

Chemicon, Temecula, CA)   a monoclonal anti-mouse antibody against 3-NT (1:500; Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA); mouse anti-NOS1 (1:250; Santa Cruz Biotechnology, Inc., Santa 

Cruz, CA); rabbit anti-cGMP (1:500; Millipore Billerica, CA); goat anti-active caspase-3 (1:100; Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA); rabbit anti-Iba-1 (1:1000; Wako Pure Chemical Industries, 

Japan) or Cy3-conjugated mouse anti-GFAP (1:30; Sigma, St. Louis, MO). Sections were then rinsed 

in PBS three times (10 minutes each) and incubated in secondary antibody at RT for 1 hour; for NeuN; 

Cy3-conjugated goat anti-mouse (1:100; Chemicon, Temecula, CA); for 3-NT, NOS1: donkey anti-

mouse conjugated to Cy3 (Chemicon, Temecula, CA); for cGMP: donkey anti-rabbit cy3 (1:500; 

Chemicon, Temecula, CA); for active caspase-3:  donkey anti-goat FITC (1:500; Chemicon, Temecula, 

CA) and for Iba-1: Alexa Fluro® 488 Donkey anti-rabbit (1:1000; Invitrogen, Carlsbad, CA). All 

immunohistochemical sections were washed three times with PBS (5 min each) and mounted onto 

super frost glass slides, sealed and coverslipped with Vectashield hard set mounting medium for 

fluorescence with DAPI (Vector Laboratories, Burlingame CA).  
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4.5 Tyrosine Hydroxylase and Leptin Receptor Western Blot  

Using a brain blocker on ice, a 2 mm thick coronal section of the striatum was removed. The 

samples were homogenized in approximately 150 μL of lysis buffer (40 mM Tris-HCL, 274 mM NaCL, 

2.0 mM EGTA, 20% glycerol, 1 mM Na3VO4, 1 mM PMSF, 1 mM ß-glycerophosphate, 2.5 Na4P2O7, 

50 mM NaF, 1% NP40, and protease inhibitor cocktail: 1.0 mM AEBSF, 0.8 μM aprotinin, 0.02 mM 

leupeptin, 0.04 mM bestatin, 0.015 mM pepstatin A, and 0.014 mM E-64) with a QSonica Sonicator 

3000 cup horn at 7 cycles of 30 seconds of sonication and 60 seconds of cooling. The mixture was 

first centrifuged at 4°C at 3000 rpm for 5 minutes and then the supernatant was centrifuged at 5000 

rpm for 5 minutes. The supernatant was removed once more and centrifuged for one final cycle of 

6000 rpm for 10 minutes. The protein content was assayed by the Bradford method (Bio-Rad, 

Hercules, CA). Ten μg of protein were loaded on a 10% Tris-HCL (Invitrogen, Carlsbad, CA) SDS-

PAGE and transferred to an iBlot stack membrane (Invitrogen, Carlsbad, CA). After blocking 

nonspecific binding using Odyssey blocking buffer (LI-COR Biosciences, Lincoln, NE) for 1 hour at 

room temperature, membranes were probed overnight with polyclonal rabbit anti-TH (1:5000, 

Millipore, Temecula, CA) antibody and monoclonal mouse anti-β-actin antibody (1:20,000, Sigma, St. 

Louis, MO) in Odyssey blocking buffer (LI-COR Biosciences, Lincoln, NE) with 0.2% Tween 20 at 4◦C. 

The next day the membranes were rinsed with 0.1% Tween 20 PBS followed by 3 washes at 5 minutes 

each. They were then incubated in a mixture of Odyssey’s IRDye® secondary antibodies donkey anti-

rabbit 800CW (1:15,000) and donkey anti-mouse 680LT (1:30,000) within Odyssey’s blocking buffer 

for 1 hour at room temperature. After an additional 3 washes at 5 minutes each with 0.1% Tween 20 

PBS as well as a final 15-minute wash with PBS alone, the proteins bands were then detected via the 

Odyssey infrared imager. Bands were quantified using the Odyssey Imager analysis software and 

normalized against β-actin. 
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4.6 Quantification and Statistical Analysis 

All images were taken with either Nikon Eclipse TE 200 inverted epifluorescence microscope 

and Molecular Devices imaging software Metafluor with FITC/TRITC filter used to capture fluorescent 

images with varying laser intensities (0.5 to 5 seconds) Or with a Leica SP2 confocal microscope and 

the corresponding Leica Lite LCS software system (Leica Microsystems, Heidelberg, Germany) using 

a 20x or 63x objective lens. FITC and Cy3 signals corresponds to single wavelength laser line 488 

(green) and 588 (red) respectively. The striatum was divided into two regions and z-stack images from 

each region were taken in 6 to 8 animals for each primary antibody. The pinhole setting was less than 

2µm and z-stacks of 10µm thick were recorded sequentially between frames in series.  Images were 

analyzed using NIH ImageJ (Schneider and Rasband, 2012) analysis program. All tissues selected, 

from the NMDA infusion studies stained with the different antibodies, must have a visible needle tract 

to ensure that the effect observed is due to the injected solution. The region chosen is adjusted to 

each side of the needle tip but avoiding the visible needle damage. They were scanned once by 

individuals that were blind to the experimental conditions. Analysis of the NMDA infusion studies were 

done using the Leica confocal microscope (described above).  

Statistical analysis of the data was conducted using GraphPad Prism (GraphPad Software, 

Inc., La Jolla, CA) software. The differences between groups means were determined utilizing one 

way ANOVA (mean ± SEM) to detect statistically significant differences at the 95% confidence level 

when experimental groups were compared to controls. The analysis was followed by planned pairwise 

comparisons or Post hoc analysis using Tukey’s post-hoc test to determine significance between 

experimental groups. All statistical analysis were conducted with a significance criterion value set at 

p<0.05.  
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CHAPTER 5 
 
 
 

ROLE OF LEPTIN IN METHAMPHETAMINE-INDUCED NEURAL INJURY 
 

It is well established that METH is a highly addictive illicit psychostimulant that is neurotoxic 

and causes permanent brain damage. METH-induced neurological damage colocalizes with 

degeneration that occurs in various neurodegenerative diseases. Understanding the mechanisms of 

METH-induced neurodegeneration will provide an avenue towards identifying effective therapeutic 

targets for treatments of neurological disorders. Several labs including ours previously identified the 

neuroprotective capacity of endogenous peptides, such as SST and NPY (Yarosh and Angulo, 2012; 

Afanador et al., 2013). Similarly, leptin is a peripheral hormone that circulates in the plasma and found 

ubiquitously in the CNS.  Under this idea of identifying neuroprotective agents that can inhibit 

degeneration, leptin may be a candidate as it mainly acts via its receptor, ObRb, found in the 

mesolimbic DA pathway, specifically in the VTA, SN, and NAc of the ventral striatum. The precise 

molecular pathway underlying the direct effects of leptin in these regions is mostly unknown. But 

studies report that leptin administration decreases the firing rate of dopaminergic neurons causing 

decreased DA release in the VTA. We have demonstrated that leptin attenuates striatal apoptosis in 

a dose dependent manner. Therefore, understanding the mechanism by which leptin can prevent or 

reverse toxicity of DA-terminals or apoptosis in the striatum will shed new light into the role of this 

endogenous peptide.  
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5.1 Attenuation of Striatal Apoptosis by Leptin 

METH-induced apoptotic cells in the striatum were measured by TUNEL 

immunohistofluorescence, which is a late marker of apoptosis. We tested various doses of leptin (0.25, 

0.5, 1, 2, and 3 mg/kg) alone and with METH (30 mg/kg) of body weight on the induction of TUNEL-

positive nuclei in the striatum. We tested the hypothesis that leptin alone will not show leptin-induced 

apoptosis but leptin + METH will have a dose dependent attenuation of METH-induced apoptosis. Our 

lab has previously shown that a single high dose of METH (30 mg/kg) causes peak striatal apoptosis 

at 24 hours post-METH (Zhu et al., 2006). Therefore, the groups tested are: leptin alone of varying 

doses (0.25, 0.5, 1, 2, and 3 mg/kg), METH alone (30 mg/kg), leptin + METH, and Saline. Brain tissue 

was collected by perfusion and processed with TUNEL immunohistofluorescence. Variables that was 

assessed is the number of striatal neurons positive for this marker.  Statistical analysis done using 

One-way ANOVA (95% confidence level) with planned comparisons to saline and METH treated 

animals. To determine the percentage of neurons undergoing METH-induced apoptosis, a reliable 

baseline of the total number of neurons in the entire striatum following Zhu et al., (2005) was 

established. Neuron-specific marker (NeuN) IHC staining was done on six serial sections of six 

animals and images were taken by Nikon Eclipse TE 200 inverted epifluorescence microscope. 

Neurons were counted manually. The average number of NeuN positive neurons for all sections were 

quantified and used to determine the percentage of TUNEL-positive neurons for the dose dependent 

study.  

Treatment of leptin alone did not show any apoptotic cell death when labelled with TUNEL 

(Figure 5-1 (a, b)). Next we assessed the optimal dose of leptin necessary to attenuate METH-induced 

apoptosis. Induction of TUNEL-positive nuclei in the striatum was measured. Compared to METH 

alone treated animals that shows 25% apoptotic cell death in the striatum , when animals received  

co-administration of leptin + METH, the dose of 1 and 2 mg/kg leptin of body weight demonstrated a 

statistically significant attenuation of METH-induced apoptosis (Figure 5-2 (a,b)). Apoptotic death 
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reduced to 5 – 6% in the striatum. There was partial attenuation with lower dosage of leptin (0.25 and 

0.5 mg/kg) but the lowest amount of leptin administration that caused the highest significant 

attenuation of METH-induced cell death was 1 mg/kg leptin. Therefore, this dose was used in future 

experiments. 

 Attenuation of METH-induced dopamine terminal toxicity by leptin was measured via TH 

levels assessed by Western blots. Since TH is the rate-limiting enzyme in DA biosynthesis (Fibiger 

and McGeer, 1971), the amount of TH protein in the striatum is a reliable measure of DA terminal 

viability, which was determined 72 hours post treatment following decapitation and dissections. Our 

lab has shown that TH depletion peaks at 72 hours post METH administration (Zhu et al., 2005). Leptin 

dose of 1 mg/kg showed significant reduction in apoptotic cell death as established from the previous 

experiment (Figure 5-2b). Henceforth this dose was used in all other experiments unless noted 

otherwise. Treatment with leptin prior to METH did not demonstrate protection of dopamine terminals. 

TH levels for the leptin + METH group remained almost equivalent to levels in the METH alone group. 

TH levels for the leptin alone group were comparable to baseline levels in saline group (Figure 5-3 (a, 

b)).   

It has been well established that temperature plays a pivotal role in METH-induced 

neurotoxicity (Ali et al., 1994, Krasnova and Cadet, 2005). To evaluate the severity of apoptotic cell 

death that is independent of METH-induced hyperthermia, we assessed core body temperature post 

treatment for saline, leptin alone, leptin + METH and METH alone groups. To determine if the 

neuroprotective effects of leptin were independent of METH-induced hyperthermia, rectal body 

temperature was measured with a BAT-12 thermometer coupled to a RET-3 mouse rectal probe 

(Physitemp Instruments, Clifton, NJ) every 2 hours for up to 8 hours post treatment. Room temperature 

was maintained at 20 – 22°C. We found that leptin protects against METH-induced cell death without 

preventing hyperthermia as both the leptin + METH and METH group showed similar 2.9°C  increase 
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from the average core body temperature of 36.6°C  (Figure 5-4). Also, by the eight hour, temperature 

returned to normal baseline for all four groups.  

METH use is well known to change appetite and induce weight loss but the interaction between 

hormones that regulate energy balance and satiety signals (leptin and ghrelin) and the use of club 

drugs is a poorly understood phenomenon. More than half of all drug addicts show significantly lower 

body weight. In both acute and chronic use, METH leads to the development of pharmacologically 

induced extreme weight loss similar to anorexia, which changes the body mass index (BMI) and eating 

habits (Salisbury and Wolgin, 1985; Cho et al., 2001). When rats were given IP injection of METH (2 

mg/kg) there was a significant reduction of food intake (Ginawi et al., 2005). Also, researchers have 

attributed drug-induced anorexia with decreased blood-leptin levels (Santolaria et al., 2003). Leptin 

production in the body is proportionate to the amount of adipose tissue in the body. However weight 

loss as a result of METH use may be mediated by a different pathway that is involved in satiety signals 

rather than blood hormone levels. In a study done by Kobeissy et al., (2007) found no significant 

difference between serum leptin and ghrelin levels when rats were administered different doses of 

METH that ranged from 5 mg/kg to 40 mg/kg in the various time points tested 6, 12, 24 and 48 hours. 

In the current study, similar results were observed when mice were in the four groups were 

administered either METH (30 mg/kg) or leptin (1 mg/kg) or leptin + METH or saline, the leptin and 

saline group displayed no change in body weight over a four-day period. However, the leptin + METH 

and METH groups displayed slight weight loss which were not significant when compared to their 

weights before injection (Figure 5 – 5).    

 Several studies have shown that leptin mediates its activity via its receptors (Russo et al., 

2004). Leptin receptors are expressed in many mouse brain areas (Zhang et al., 2007). Here, like 

other, labs we show both short and long isoforms of the leptin receptor were expressed in the striatum. 

Additionally, show that both leptin receptors are expressed in saline, leptin alone, leptin + METH and 

METH alone groups as assessed 24 hours post treatment (Figure 5 – 6). 
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(A) (B) 

 

 

 

 

 
 
 
 
 
 

Figure 5 – 1: Leptin alone does not cause apoptosis. (A) Treatment with leptin alone (0.25, 0.5, 1, 
2 mg/kg) of body weight does not induce apoptosis measured by TUNEL-staining in the mouse striata 
in a dose dependent manner. (B) Graph show mean ± SEM percentage of TUNEL-positive staining 
relative to total neuronal cell counts with NeuN. Differences between groups were analyzed by One-
way ANOVA, followed by Tukey’s post-hoc comparisons. Significance was set at *p< 0.05 compared 
with saline and METH alone. (***p< 0.001 compared to saline, !!!p< 0.001 compared to METH). 
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(A)                                                                               (B) 

   

 
 
 

 
 

 
 
 
 
 
Figure 5 – 2: Dose dependent attenuation of METH-induced apoptosis in the striatum by leptin. 
Mice were injected once with leptin (IP) at various doses and once with METH (30 mg/kg) (10 per 
group). Animals sacrificed 24 hours post treatment. Striatal tissue was processed for TUNEL 
immunohistofluorescence. (A) Micrographs of striatal tissue stained with TUNEL with FITC-conjugated 
dUTPs in saline, leptin (0.25, 0.5, 1, 2 mg/kg) of body weight and METH (30 mg/kg). (B) Counts of 
TUNEL positive neurons computed by percent TUNEL positive nuclei with respect to NeuN signals 
quantified using ImageJ for dorsal and ventral striatal region (mean ± S.E.M.). The lowest optimal dose 
that showed peak attenuation is 1mg/kg with 18% reduction in apoptosis. (*p<0.01, ***p<0.001 
compare to saline; ###p<0.001 compare to METH; !!!p< 0.001 compare to leptin 0.25 mg/kg. 
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Figure 5 – 3: Leptin does not protect dopamine terminals from METH toxicity. (A) Western blot 
analysis was used to measure striatal tyrosine hydroxylase (TH) protein levels and thus determine 
dopamine terminal viability. (B) Pretreatment with leptin failed to protect from METH-induced 
dopamine terminal degeneration. Four groups of mice (n=6 per group) received IP of saline, leptin (1 
mg/kg) or leptin + METH (30 mg/kg) or METH alone. Animals were sacrificed 72 hours after treatment. 
(**p< 0.01 as compared to saline group, #p< 0.05 as compared to leptin group).    
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Figure 5 – 4: Leptin protects against METH-induced cell death without preventing 
hyperthermia. Rectal body temperature was recorded every two hours starting from the onset of 
METH treatment for up to eight hours post treatment. Results were from mean ± SEM of 6 to 10 
animals per experimental group. Ambient room temperature was maintained at 20 – 22°C.  (**p<0.01, 
***p<0.001 compared to saline. #p< 0.05, ##p< 0.001 compared to leptin alone. 
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Figure 5 – 5: Leptin does not protect against METH-induced weight loss. Body weight was 
recorded one days prior to injections and for five consecutive days after injection. Saline and Leptin 
alone groups did not show any change in weight post injection. Leptin + METH and METH alone 
groups showed slight decrease in weight which is not significant. Ambient room temperature was 
maintained at 20 – 22°C. (*p<0.05 compared to day 1 weight of METH group). 
 

 

 

 

 

 



 

45 

 

 (A) 

 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 5 – 6: Leptin receptor expression in mouse striata: Both the short and long isoforms of the 
leptin receptor were expressed in the mouse striatum. (A) ObR protein levels were determined 24 
hours post treatment of saline, leptin, leptin + METH and METH alone groups (n=6 animals per group). 
(B) Quantification of protein levels of both long (not shown) and short form indicates there are no 
differences between in ObR protein levels between the four groups post treatment. 
 

 

Saline                Leptin            Leptin + METH       METH 

ObRl 
125 kDa 

  
  

ObRs 
100 kDa 

  
  

β-Actin 
42kDa 



 

46 

 

5.2 Role of Leptin in Striatal Overactivation of Astrocytes and Microglia 

Previously we have demonstrated that apoptosis peaks at 24 hours post METH treatment 

followed by increased activation of astrocytes and microglia (Zhu et al., 2005) by 72 hours. 

Identification of over activated astrocytes and microglia in the striatum was measured by 

immunohistochemistry using GFAP and Iba-1 staining respectively, post treatment of leptin (1 mg/kg) 

+ METH (30 mg/kg), METH alone, leptin alone and saline. We assessed the number of reactive glia 

in the dorsal and ventral regions of the striatum in 6-8 coronal striatal sections per animal (n=6 per 

group). GFAP and Iba-1 immunohistofluorescence using specific antibodies detected the levels of 

activated signals. The level of activation of the saline group was set at zero in order to assess the 

activated astrocytes and microglia in the leptin alone, leptin+ METH and METH alone groups. One-

way ANOVA (95% confidence level) with planned comparisons to METH alone group found a 

significant decrease in the over expression of astrocytes by 58% and microglia by 64% in the striatum 

in the leptin+ METH group (Figure 5 – 7 (a, b) and 5 – 8 (a, b)).  
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(A)                                                    (B) 

 
 

 
 

 
 
 
 
 
 
Figure 5 – 7: Activation of astrocytes measured using glial fibrillary acidic protein (GFAP): 
three days post injection of leptin (1 mg/kg) and METH (30 mg/kg) in mouse striatum. Coronal 
sections were processed for immunohistofluorescence with antibody against GFAP conjugated to 
the chromophore Cy3. (A) Micrographs of epifluorescent images of GFAP stained striatal tissue. (B) 
Percent of GFAP positive staining with respect to saline control shows that leptin attenuates the over 
activation of astrocytes (mean ± SEM). (***p<0.001 compare to saline, ###p<0.001 compare to 
leptin, !!!p<0.001 compare to METH). 
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(A)                                                                                (B)                                                                        

 
 

 
 
 
 
 
 
 
Figure 5 – 8 Activation of microglial cells in the mice striatum by METH is attenuated by 
leptin: (A) Microglia staining measured using immunohistofluorescence with antibody against Iba-1 
three days post injection of leptin (1 mg/kg) and METH (30 mg/kg) in mouse striatum. (B) Percent 
Iba-1 positive staining with respect to saline control shows that leptin attenuates the over activation 
of microglia (mean ±SEM). (***p<0.001 compare to saline, ###p<0.001 compare to leptin, !!!p<0.001 
compare to METH).  
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5.3 Role of Leptin in Methamphetamine-Induced Striatal Nitric Oxide and  
 

Caspase-3 Activation.  
 

 
METH causes a significant depletion of DA and mostly affects the striatal DA system. The 

toxicity imposed by METH includes the release of ROS as well as glutamate-induced NO production 

(Dawson and Dawson 1996). Research have shown that there is a relationship between METH-

induced toxicity and the over production of NO. Furthermore, nNOS knockout mice are spared from 

METH-induced DA toxicity (Itzhak et al., 1998). In another study METH treatment caused significant 

increase in nNOS expression in the striatum and hippocampus at one and 24 hours post treatment, 

further supporting the idea that NO plays a neurotoxic role in METH toxicity (Deng and Cadet, 1999). 

Researchers have reported high levels of nNOS and iNOS to be present in patients with PD in the SN 

(Hunot et al., 1996) and in animal models of these diseases (Liberatore et al., 1999). In the striatum, 

NO is involved in the regulation of striatal dopamine neurotransmission (West et al., 2002). Increased 

levels of NO also impose a neurotoxic effects in the SNc dopaminergic neurons (Przedborski et al., 

1996; Zhang et al., 2000).  

Nitric oxide is a small gaseous signaling molecule in the nerve terminals with a transitory life 

span, produced on demand to maintain neurosecretion, thermoregulation, and plasticity among other 

cellular homeostasis. Uncontrolled formation of NO plays an important factor in neurotoxicity and 

neurodegenerative disorders. It mainly acts by diffusing from neuron to neuron to directly act on 

intracellular mechanisms. The synthesis of NO in the brain is regulated by its synthase, NOS, the three 

types being neuronal NOS, endothelial NOS and inducible NOS. In neuronal cells NO is produced by 

the catalytic conversion of amino acid L-arginine to NO and L-citrulline by nNOS that gets activated 

when cellular levels of Ca2+ increases and the Ca2+/calmodulin complex binds (Itzhak et al., 2000). 

NO diffuses from the neuronal cells into the extracellular space where it tightly binds and activates GC 

(also known as NO-activated GC or soluble GC). This activated GC converts its substrate, GTP to 
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second messenger, cGMP. Therefore an increase in cGMP level activates several cascading signal 

transduction pathways (Alderton et al., 2001). With increasing NO, more GC is activated and cellular 

cGMP level rises and the cGMP pathway is stimulated. The key to controlling NO lies in regulation of 

its synthesis.  

We aimed to better understand NO production and striatal apoptosis upon METH 

administration and to see if leptin may attenuate such increased levels of nNOS and cGMP expression. 

The goal of this experiment was to know if leptin could decrease the over activation of nNOS 24 hours 

post treatment of leptin and METH as this time point was identified as the peak activation of nNOS 

(Deng and Cadet, 1999). Since NO affects the target cell by diffusion through the intracellular space 

and crosses the cell membrane of nearby target cell. We wanted to know if the production of cGMP is 

also decreased upon leptin treatment. Our lab previously characterized the cellular expression of 

cGMP in striatal neurons and found that peak expression happens at 8 hours after METH (Yarosh and 

Angulo, 2012).  Therefore, we used the established time course in the current experiment. nNOS and 

cGMP levels were assessed by immunohistochemistry. Increase of nNOS and cGMP are reliable 

indicator of NO toxicity. Furthermore, METH-induced apoptosis is caused by multiple pathways along 

with activated caspase death pathways. Activated caspase-3 is an early marker of apoptosis which is 

also expressed highly after METH administration and peaks at 8 hours post treatment (Yarosh and 

Angulo, 2012). We assessed the expression of activated- caspase 3 at the above mentioned time 

point. Brain tissue was collected by perfusion methods after METH and leptin administrations as 

previously described (see above). Serial coronal tissue sections were collected, stained and imaged 

by Leica confocal microscopy and Leica imaging software. Differences between groups were analyzed 

by one-way ANOVA with appropriate post-hoc test (95% confidence level). As shown in figure 5-8 (A, 

B), leptin treatment reduced the expression of nNOS positive neurons in the leptin+ METH treated 

animals compared to METH alone group. As expected both saline and leptin groups did not show a 

significant increase in nNOS expression. cGMP expression also diminished 8 hours post treatment in 
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the leptin + METH group compared to METH group, similarly, saline and leptin alone did not show a 

significant increase (Figure 5-9, (A, B)). Finally, leptin also attenuated the over activation of caspase-

3 in the leptin + METH group compared to METH alone group (Figure 5 – 10 (A, B)).   
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(A)                                                                           (B)                                                                     

  

 
 
 
 
 
Figure 5 – 9: photomicrographs of nNOS stained striatal sections. (A) Animals treated with saline, 
leptin, leptin + METH and METH were sacrificed at 24 hrs. (B) METH caused a significant increase in 
the number of nNOS positive cells whereas saline and leptin alone did not increase nNOS expression 
and leptin + METH group showed a slight reduction of nNOS expression at 24 hours compared to 
METH group. (**p<0.01 compare to saline, !!!p<0.01 compare to leptin, ##p<0.01 compare to METH). 
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(A)                                                                                           (B) 

 

 
 
 
 
Figure 5 – 10: Cyclic guanosine monophosphate (cGMP) expression in all cell types in the 
mouse striata. Treatment with leptin (1 mg/kg), METH, leptin + METH or Saline, animals sacrificed 8 
hours post treatment. (A) Micrographs of striatal tissue stained with cGMP antibody conjugated to Cy3 
in saline, leptin, leptin + METH and METH animals (6-8 animals per group) show leptin reduced cGMP 
production when compared to METH animals. (B) Analysis of cGMP production relative to saline 
control. (***p<0.001 compared to saline, !!! p<0.001 compared to leptin, ### p<0.001 compared to 
METH).   
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Figure 5 – 11: photomicrograph of activated caspase-3 stained striatal sections. The animals 
were treated with saline, leptin alone, leptin+METH or METH alone and sacrificed 8 hours post 
treatment. Leptin caused a significant decrease in active caspase-3 expression at 8 hours post drug 
administration compared to METH alone group and saline (as baseline activation) (*p<0.001 
compared to saline, # p<0.001 compared to leptin, ! p<0.001 compared to METH). 
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5.4 Discussion 
 

In the present study we demonstrated the protection of striatal neurons by leptin treatment 

from METH-induced apoptosis. Results described above provide evidence that, administration of an 

established acute-high dose of METH (30 mg/kg by body weight) and the determined optimal dose of 

leptin (1 mg/kg by body weight) shows attenuation from cell death. Leptin alone in various doses did 

not induce any toxicity. In addition, we found attenuation of apoptosis in the leptin + METH group 

across all five doses when compared to METH alone group. METH caused about 25% of the striatal 

neurons to undergo apoptosis. However, leptin treatment protected apoptosis by 18%. It is significant 

to note that even low dose of leptin (0.25 mg/kg) provided some reduction in cell death within the 

striatum. However, our data demonstrate that leptin failed to protect against striatal dopamine terminal 

toxicity. 

The effect of leptin on METH-induced hyperthermia was measured to delineate if 

neuroprotection from apoptosis was a result of leptin preventing hyperthermia. We measured METH-

induced hyperthermia and found that leptin does not reduce the rise in core body temperature. One 

reason leptin may not reduce hyperthermia is because it is an anorexigenic peptide and causes 

animals to increase activity and energy expenditure. Leptin + METH does not show a significant 

reduction of weight compared to METH alone group.   

METH-induced toxicity leads to release of harmful toxins like NO, which is formed by different 

isoforms of the enzyme NOS, such as neuronal NOS. nNOS is the primary source of NO in METH-

induced toxicity. nNOS expression is increased upon METH administration. In order to measure if 

nNOS is contributing to the METH-induced production of NO we tested if leptin can protect striatal NO 

production. When leptin was administered prior to METH administration, animals showed a slight 

reduction of nNOS expression compared to animals in the METH group. With increasing NO, more 

GC is activated and cellular cGMP level rises and the cGMP pathway is stimulated. The key to 

controlling NO is regulating its’ synthesis. So we measured cGMP levels in animals pretreated with 
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saline, leptin alone, leptin + METH and METH alone and found that leptin treatment reduced cGMP 

production when compared to METH animals.  

We also found that a single dose of leptin treatment (1 mg/kg) attenuates the ubiquitous over 

activation of the astrocytes and microglia caused by METH toxicity and decreases the activation of 

pro-apoptotic protein signal. A plethora of evidence demonstrate that METH induces neural damage 

in the striatum and other parts of the brain. Our contribution to this area of research is the finding that 

peripheral hormone, leptin, can protect degeneration caused by METH in the striatum.  
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CHAPTER 6 
 
 

LEPTIN-MEDIATED STRIATAL NEUROPROTECTION BY MODULATING GLUTAMATE 

TRANSMISSION. 

 
 

6.1 Contribution of Leptin in NMDA-Induced Striatal Apoptosis and Dopamine  
 

Terminal Toxicity 
 

High densities of glutamate receptor are concentrated in various parts of the brain including 

the cortex, hippocampus and striatum. It is now well established that prolonged stimulation or over 

activation of NMDA receptors damages and kills target neurons via excitotoxicity. Excess glutamate 

acting via the NMDA receptors mediates cell death in glutamate neurotoxicity and has been linked to 

neurodegenerative diseases like Huntington’s disease. NMDA receptor is a multifaceted molecular 

unit with numerous distinct recognition sites for endogenous and exogenous signals each with its own 

binding domains. Researchers have identified six pharmacologically distinct sites used by compounds 

to alter NMDA receptor activity. NMDA receptors can easily interact with other membrane and 

cytoplasmic proteins. Studying these interactions between proteins with NMDA receptors can allow 

researchers to find therapeutic use of glutamatergic drugs.    

One way the NMDA receptor activity induces glutamate toxicity is via the activation of NMDA 

receptors and increase in intracellular calcium levels. In the current, study we tested the hypothesis 

that leptin can attenuate excessive glutamate toxicity through the striatal NMDA receptor. We treated 

two groups of animals (6-7 per condition) for each experiment (TUNEL and TH levels). The first group 

(control) received IP injection of vehicle. The second group received leptin (1 mg/kg) 30 minutes prior 

to intrastriatal infusions. Intrastriatal infusion of 1µL NMDA (20 nM) on one side and artificial 
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cerebrospinal fluid (aCSF) on contralateral side of the striatum was injected (see general methods for 

experimental procedures). In order to see leptin attenuation of NMDA-mediated cell loss, mice were 

euthanized and brain tissue was collected by perfusion and processed using TUNEL 

immunohistofluorescence 24 hours post-NMDA infusion. Values from the injected side were compared 

with those of the contralateral control side by ANOVA (95% confidence level) followed by post-hoc 

Tukey’s test. For NMDA-induced dopamine terminal toxicity by leptin, fresh frozen brain tissue was 

collected 3 days after NMDA treatment, by decapitation and TH levels were assessed by Western 

blots. Protein expression was normalized to β-actin levels.  

Leptin attenuated form NMDA-induced apoptosis in the striatum. Figure 6-1 demonstrates 

significant cell loss in the brain with NMDA infusion alone compared to NMDA-infusion + peripheral 

leptin injection. However, NMDA- mediated dopamine terminal toxicity was not prevented by leptin 

(Figure 6-2).  

 

 

 

 

 

 

 



 

59 

 

 

 
 
 
 
 
Figure 6 – 1: Leptin attenuation of NMDA-mediated apoptosis in striatum.  Pretreatment with 
leptin caused a significant reduction in NMDA-induced apoptotic cell death measured with TUNEL 
histochemistry. Mice were IP injected once with leptin (at the 1 mg/kg dose) or with saline (n=10 per 
group) 30 minutes prior to intrastriatal infusion of NMDA (20 nM). Animals sacrificed 24 hours post-
NMDA treatment. Striatal tissue was processed for TUNEL immunohistofluorescence. (A) 
micrographs of striatal tissue stained with TUNEL with FITC-conjugated dUTPs in saline, leptin, NMDA 
or leptin+NMDA groups. (B) Quantification of TUNEL-positive neurons computed by percent TUNEL 
positive nuclei in the striatum quantified using ImageJ for dorsal and ventral striatal region (mean 
±S.E.M.). Cell counts analyzed by one-way ANOVA, normalized to control group (saline and aCSF). 
NMDA-mediated cell loss was attenuated by leptin signaling. ***p< 0.001 compare to saline, ### 
p<0.01 compare to leptin, @@@p<0.001 compare to NMDA.  
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Figure 6 – 2: Leptin does not protect dopamine terminals from NMDA toxicity. (A) Western blot 
analysis was used to measure striatal tyrosine hydroxylase (TH) protein levels and thus determine 
dopamine terminal viability. (B) Pretreatment with leptin failed to protect from NMDA-induced 
dopamine terminal degeneration. Mice (n=10 per group) received IP of saline or leptin (1 mg/kg) 30 
minutes prior to NMDA and aCSF infusion. Animals were sacrificed 72 hours after treatment. (***p< 
0.001 and **p< 0.05 as compared to aCSF group, !!!p< 0.001 and !!p< 0.05 as compared to leptin 
group).    
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6.2 Role of Leptin in NMDA-Induced Formation of Nitric Oxide 
 
 Our lab has previously studied METH-induced excess NO production and the activation of 

other pro-toxic neuropeptides (Wang et al., 2008; Wang and Angulo, 2011). Glutamate excitotoxicity 

has an essential role in METH-mediated neural injury. Glutamate innervation into the striatum mainly 

signals via NMDA receptors (Garside and Mazurek, 1997). The activation of NMDA receptors and the 

increase in intracellular calcium levels initiates glutamate neurotoxicity. Since NOS is a calcium-

dependent enzyme, activation of NOS could be involved in NMDA neurotoxicity which can increase 

NO production. When NO is generated in high amounts, a neurotoxic cascade is initiated. Cytotoxic 

pathways that get activated following increased levels of NO are stimulated by peroxynitrite (the 

reaction product NO and O2). 

We hypothesized that leptin is able to attenuate the NMDA-induced formation of NO. We 

tested the effects of leptin on NO production via glutamate signaling. Therefore, intrastriatal 

microinjection of NMDA (as described in the methods section) in the absence of METH should result 

in increase of 3-nitrotyrosine (3-NT) levels (an indirect measure of NO synthesis (Schulz et al., 1995). 

However, systemic administration of leptin (1 mg/kg) should reduce NMDA-induced 3-NT production. 

NO production after METH peaks at 24 hours post treatment, as established by our lab previously 

(Zhu et al., 2009; Afanador et al., 2011). Therefore, we followed this time course. If the assumption is 

that NO mediated oxidative stress is mainly responsible for cell loss then the bulk of NO synthesis 

should occur by the peak of striatal apoptosis, which occurs at 24 hours (Zhu et al., 2005). Animals 

(10 per group) received NMDA-infusion following IP leptin or saline injection. Brain tissues were 

collected and processed with 3-NT immunohistochemistry and imaged by Leica scanning confocal 

microscope and Leica imaging software to measure 3-NT staining intensity.    

Figure 6 – 3 shows that leptin treatment significantly reduced 3-NT staining within 24-hours in 

the leptin + NMDA infusion group compared to animals that received only NMDA infusion and a 

peripheral saline injection.  
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(A)                                                               (B)                                                              
                                                                                             

 
 
 
 
 
 
Figure 6 – 3: NMDA-mediated striatal NO attenuated by leptin. NMDA striatal infusion resulted in 
an increase in 3-nitrotyrosine production (3-NT) (10 animals per group). 3-NT is an indirect measure 
of nitric oxide synthesis, identifier of cell damage and inflammation which peaks at 24 hours. Animals 
were sacrificed 24 hours after NMDA infusion and leptin or saline IP injection. NMDA agonist caused 
a significant augmentation in 3-NT production but leptin caused a significant decrease in 3-NT 
production at 24 hours post treatment. (***p< 0.001 as compared to aCSF group, !!!p< 0.001  
compared to leptin group, ### p< 0.001 compare to NMDA.) 
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6.3 Role of Leptin in Striatal Expression of Astrocytes and Microglia upon NMDA-Infusion  

NMDA infusion also induces gliosis (astrocytic and microglial activation) that is similar to 

METH-induced activation as a response to neurotoxic injury. Excessive activation of glial cells is 

known to be harmful in the striatum and can release ROS (Krasnova and Cadet, 2009).  Therefore we 

hypothesize that leptin should block excessive astrocytic and microglial activation and show protection 

from NMDA-induced increase. Intrastriatal microinjection of NMDA (as described above) should 

increase glial activation. However, systemic administration of leptin (1mg/kg) should reduce NMDA-

induced glial activation. Injection, intrastriatal infusions, tissue collection, and analysis followed the 

paradigm described above; except mice were euthanized 3 days post NMDA infusion and leptin/saline 

injections. Immunohistofluorescence using GFAP (for astrocytes) and Iba-1 (for microglia) was done 

according to the procedures described above. Images taken using Leica scanning confocal 

microscope and ImageJ was used to analyze overactivation of GFAP and Iba-1 staining. Peripheral 

leptin injection did not significantly reduce NMDA-induced striatal activation of astrocytes and microglia 

(figure 6-4 and 6-5). Pretreatment with leptin prior to NMDA microinjection shows a very slight 

decrease in the overactivation with is not statically significant.  

 

 

 

 

 

 

 



 

64 

 

(A)                                                                                   (B)                                                                                      

 

 

 
 
 
 
 
Figure 6 – 4: NMDA-induced activation of astrocytes measured using glial fibrillary acidic 
protein (GFAP). Animals were sacrificed three days post injection of leptin (1 mg/kg) and NMDA 
infusion in mouse striatum. Collected coronal sections were processed for immunohistofluorescence 
with antibody against GFAP conjugated to the chromophore Cy3. (A) Micrographs of epifluorescent 
images of GFAP stained striatal tissue. (B) Percent of GFAP positive staining with respect to aCSF 
control shows that leptin did not attenuate the overactivation of astrocytes (mean ± SEM). (***p<0.001 
compare to saline, !!!p<0.001 compare to leptin). 
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(A)                                                                                   (B) 

 

 
 
 
 
 
 
Figure 6 – 5: Activation of microglial cells in the mice striatum by NMDA-infusion is not 
attenuated by leptin: (A) Microglia staining measured using immunohistofluorescence with antibody 
against Iba-1 three day post injection of leptin (1 mg/kg) or saline followed by infusion of NMDA in to 
the mouse striatum. (B) Percent Iba-1 positive staining with respect to saline control shows that leptin 
does not significantly attenuate the overactivation of microglia (mean ±SEM). ***p <0.001 compared 
to aCSF, !!!p <0.001 compared to leptin. 
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6.4 Discussion 

METH-induced striatal toxicity resulted in elevated concentration of both DA and glutamate 

release and an increased binding of glutamate to its NMDA receptor.  Nucleus accumbens and 

prefrontal cortex show excessive DA overflow but little GLU overflow. In the CPu METH-induced 

overflow of both DA and glutamate is high (Stephans and Yamamoto, 1994). In the second aim, we 

tested the hypothesis that leptin can attenuate excessive glutamate toxicity through striatal NMDA 

receptor. First, our results indicate that NMDA-induced apoptosis is attenuated by leptin 24 hours post 

intrastriatal infusion of NMDA. However, dopamine terminal toxicity was not prevented by leptin 

treatment upon NMDA-induced toxicity. Neurotoxic administration of METH or NMDA results in 

continued release of glutamate, which is associated with oxidative stress. We know that increased NO 

signaling leads to neurodegeneration, so we tested NMDA-mediated NO production since the 

glutamate/NO cascade plays a key role in degeneration of striatal areas. We found that leptin is able 

to attenuate NMDA-induced formation of NO by reducing 3-NT expression in NMDA infused animals 

upon leptin treatment. Finally, elevated gliosis was not reduced by leptin treatment prior to NMDA 

infusion. 
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CHAPTER 7 
 
 

CONCLUSION 
 

 

To recapitulate, use of METH can cause reduction of DA terminals, and cell body, along with 

significant decreases in TH activity, DAT, DA and its’ metabolites DOPAC, finally a decreased level of 

VMAT2. In addition to TH loss, which indicates fiber damage, METH causes 20 to 25% loss of 

dopaminergic neurons in the SNc (Hirata and Cadet, 1997; Sonsalla et al., 1996).  Furthermore, long-

term abstinence from METH does not entail full recovery of TH fibers in the striatum which is 

understood to be a result of loss of DA neurons in the SNc. This type of loss is similar to what occurs 

in Parkinson’s disease. Furthermore, METH toxicity and neurodegenerative disorders like Parkinson’s 

disease show commonality in the malfunction in the modulatory role between DA and glutamate input 

in the striatum. In the current study we sought to identify if and how leptin, an endogenous hormone 

can be responsible for mediating protection. If protection is offered by this hormone, we tried to 

delineate the mechanism behind it.    

Classically, cells releasing dopamine entail characteristics of neurons as neuromodulators, 

glutamate as excitatory and GABA as inhibitory signal. A current accepted view is that neurons also 

release other classical neurotransmitter different from the one they are typically associated and which 

may have opposing effects. The activity of midbrain DA neurons has an intricate and specific role 

during addictive behaviors that has been studied and shown to be enhanced under dopaminergic 

signaling. The precise molecular and synaptic mechanisms by which these neurons behave as 

neuromodulators and innervate the cortex, the basal ganglia and other targets remains elusive. They 

mediate goal-directed and reward-driven behavior which are better understood when diagnosed with 
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Parkinson’s disease or under METH abuse/addiction patients display severe psychomotor deficits. It 

is now believed that synaptic transmission between dopaminergic and striatal neuron population is not 

only complex but ranges beyond its respective neurotransmitter release.  

In the present study we demonstrated the protection of striatal neurons by leptin treatment 

from METH-induced apoptosis. Administration of an established acute-high dose of METH (Zhu et 

al., 2006) and optimal dose of leptin (1 mg/kg by body weight) showed attenuation from apoptotic 

death and protect striatal brain tissue. Leptin alone does not induce any toxicity. It is significant to 

note that even low dose of leptin (0.25 mg/kg) can provide some reduction in cell death within the 

striatum. METH caused about 25% of the striatal neurons to undergo apoptosis and leptin treatment 

protected apoptosis by 18%. Leptin did not prevent METH-induced hyperthermia or weight loss. 

Leptin may not reduce hyperthermia because it is an anorexigenic peptide and causes animals to 

increase activity and energy expenditure. Leptin treatment attenuated the ubiquitous over activation 

of the astrocytes and microglia caused by METH toxicity. METH-induced oxidative stress was 

attenuated by leptin. Furthermore we investigated the role of leptin in NMDA mediated glutamate 

transmission and NO production. We eliminated METH and narrowed in on NMDA transmission in a 

model that can be applied to METH toxicity. Leptin treatment prior to NMDA-mediated striatal cell 

loss resulted in a decrease in cell death. In addition, analysis of NMDA-mediated NO synthesis was 

attenuated by leptin treatment.  

The traditional notion of neurotransmitter release by neurons was thought to be fixed meaning, 

one type of neuron releases only its respective chemical defining its’ identity. A modern understanding 

has been the notion of transmitter switching defined as replacing one neurotransmitter for another by 

one type of neuron which depends on the cellular environment imposed (Hnasko et al., 2010; Lavin et 

al., 2005 ). This idea is known as a new form of plasticity which is prevalent during development, 

maturation and changes in the adult brain of humans and rodents. It may also provide new avenues 

for finding therapeutics and treatments of neurological and addictive disorders.      
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In METH-induced degeneration, in order to identify the effect of DA depletion on extracellular 

glutamate release, the notion of transmitter switching may come into play.  Cytoplasmic glutamate can 

be transported into vesicles by the vesicular glutamate transporters (vGLUTs). VGLUTs were 

discovered in 1994 even though glutamate was discovered in the late 1950s (Chiosa and Gane, 1956, 

Ni et al., 1994). Three isoforms of vGLUTs (vGLUT1, vGLUT2, vGLUT3) have been discovered 

throughout the years with high immunoreactivity of vGLUT1 in the neocortex, striatum, hippocampus, 

thalamus and cerebellum; high affinity of vGLUT2 in the olfactory bulb, nucleus accumbens, 

hypothalamus. Medium and low expression of vGLUT3 in the striatum, hippocampus, nucleus 

accumbens, cerebellum, hippocampus among other areas. It is important to note that all three VGLUTs 

are expressed in most CNS areas either with a strong or weak level of expression. In the striatum and 

NAc, vGLUT1 and 2 have opposing immunoreactivity. Presynaptic glutamate neurons harbors 

vGLUTs and their functionality includes packaging glutamate into vesicles before exocytosis, mediated 

by the electrochemical gradient (Takamori, 2006). vGLUT 1 and 2 are found glutamatergic neurons 

but, vGLUT3 is expressed in cholinergic, serotoninergic and GABAergic neurons (Gras et al., 2002; 

Fremeau et al., 2002). Cortical projections to the striatum uses vGLUT1 mainly (Raju et al., 2008).  

Another interesting way dopaminergic neurons impact the METH induced toxicity is that it has 

the ability to inhibit striatal projection neurons by co-releasing GABA (Hnasko et al., 2010). Similarly, 

there is evidence showing that stimulation of VTA dopaminergic neurons in rats show glutamatergic 

postsynaptic activation in the PFC and nucleus accumbens neurons (Chuhma et al., 2009, Lavin et al. 

2005). Also, glutamate corelease from the DA neurons activates postsynaptic glutamate receptors 

which indicates that DA neurons is capable of harboring the machinery necessary for releasing 

glutamate. vGLUTs are necessary for cytoplasmic release and signifies one way glutamate is being 

utilized as a transmitter besides its role in other cellular function such as protein synthesis and 

metabolism (Takamori, 2006). This may be one possible way how leptin is mediating neuroprotection. 

As we and others have found both long and short form of leptin receptors (ObR-l, ObR-s) to be 
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expressed in the striatum including the nucleus accumbens (Figure 5-6) (Zhang et al. 2007). The 

administration of leptin attenuated the METH and NMDA induced neuronal death in mice. Typically, 

glutamate uptake increases the pH across the synaptic vesicles, and dopamine uptake by VMAT-2 is 

mainly dependent upon passive diffusion and changes in the internal pH. Transmitter switching implies 

that transport of glutamate into the same vesicles might be expected to stimulate DA uptake. METH 

may cause the loss of vGLUT2 which may be one way to account for the reduction of DA content 

within the striatum. Also, METH compromises the balance and changes the pH of VMAT-2 and causes 

excessive release. Perhaps one way leptin is attenuating METH-induced toxicity is by playing a role 

in the transmitter switching mechanism. One possibility is that dopamine neurons that co-release 

glutamate, mediated by vGLUT2, may show a reduction of vesicular storage of DA in the striatum. 

Also glutamate may stimulate vesicular DA transport. Leptin receptors may be co-localized in these 

same neurons and may prevent the stimulation of vGLUT2 in these DA neurons and thus provide 

protection from METH toxicity.    

Additionally, recent studies have shown that glutamate corelease by mesostriatal DA neurons 

regulate a plethora of behavioral activation. However how glutamate release by DA neurons might 

play this role still remains to be elucidated. There is little research available regarding functional 

significance of glutamate corelease by DA neurons of the CNS. However, it’s important to note that 

many CNS areas coexpress one of several types of the vGLUTs, therefore, it might have a greater 

significance then what we know so far. Also, downregulation of vGLUT2 in DA neurons of mice was 

shown to decrease DA release in the striatum (Hnasko et al., 2010). With respect to the current study, 

applying the notions of transmitter switching within the nigrostriatal pathway suggests that transport of 

glutamate into the vesicles can stimulate DA uptake as well. Typically Glutamate uptake increases pH 

across the vesicles and since DA uptake depends on passive diffusion and pH balance a 

homogeneous status is maintained. Under METH which can cause a loss of vGLUTs along with its 

known loss of DAT, VMAT2, and DA content. Additionally it changes the pH balance of VMAT2 
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initiating excessive release which can’t be restored by vGLUTs. Leptin may be attenuating METH-

induced neurotoxicity, by using the transmitter switching mechanism via the DA neurons that 

coreleases glutamate. Past research have shown that nigrostriatal neurons harbor leptin receptors. 

Thus, these DA neurons corelease glutamate and contains ObRb. Upon METH administration along 

with leptin treatment the vGLUTs are becoming activated and possibly restoring the reduction of 

glutamate and by vesicular synergy also restoring DA in these neurons affording attenuation.   

Lastly, the field of leptin research within the extra-hypothalamic areas is in great need of 

further exploration. Years of work on molecular biology of leptin yielded a host of insights regarding 

the intricate functions of its activity. However, an integrated understanding of leptin activity will 

require a complete understanding of how this peptide interacts with other physiological functions. 

The mechanisms by which leptin intrinsically alters the expression or activity of other neuropeptides 

remain elusive. Currently, leptin’s ability to attenuate METH-induced toxicity in the striatum was 

investigated. Hopefully, new methods of determination of protein interactions and co-expression will 

pave the way for further breakthroughs.  
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