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ABSTRACT
Owing to mathematical theory and computational power evolution, modern cryp-
tosystems demand ingenious trapdoor functions as their foundation to extend the gap
between an enthusiastic interceptor and sensitive information. This paper introduces
an adaptive block encryption scheme. This system is based on product, exponent, and
modulo operation on a finite field. At the heart of this algorithm lies an innovative and
robust trapdoor function that operates in the Galois Field and is responsible for the
superior speed and security offered by it. Prime number theorem plays a fundamental
role in this system, to keep unwelcome adversaries at bay. This is a self-adjusting
cryptosystem that autonomously optimizes the system parameters thereby reducing
effort on the user’s side while enhancing the level of security. This paper provides an
extensive analysis of a few notable attributes of this cryptosystem such as its exponential
rise in security with an increase in the length of plaintext while simultaneously ensuring
that the operations are carried out in feasible runtime. Additionally, an experimental
analysis is also performed to study the trends and relations between the cryptosystem
parameters, including a few edge cases.

Subjects Computer Networks and Communications, Cryptography, Security and Privacy
Keywords Galois Field, Finite field, Product Exponent Modulo, Prime number theorem,
Threshold cryptography, Autonomous encryption scheme

INTRODUCTION
Cryptography is the art of hiding messages to provide it with a certain level of security to
maintain confidentiality and integrity. This new idea, whether it was to hide secretmessages,
or to transform the original message tomake it look fancy, dignified, etc. continued through
the medieval ages, the renaissance period saw the birth of the polyalphabetic substitution
cipher, called the Vigenère Cipher (Rubinstein-Salzedo, 2018). An encryption device called
the Enigma machine (Singh, 1999) was used by the Nazi Germans during World War II.
Although history suggests that it has been in use for ages, systematic study of cryptology
as a science (and perhaps an art) just started around one hundred years ago (Sidhpurwala,
2013).

But it was not until the 1970s, that studies in cryptography got serious. Data
Encryption Standard (DES) was introduced by IBM in 1976 (Tuchman, 1997) followed
by Diffie Hellman Key Exchange in the same year (Kallam, 2015). In 1977, RSA came
along (Calderbank, 2007) and in 2002, AES was accepted as a standard security protocol

How to cite this article Bhowmik A, Menon U. 2021. An adaptive cryptosystem on a Finite Field. PeerJ Comput. Sci. 7:e637
http://doi.org/10.7717/peerj-cs.637

https://peerj.com/computer-science
mailto:abhowmik901@york.cuny.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.637
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.637


to be used in both hardware and software (Dworkin et al., 2001). And thus cryptography
became popular.

The strength or foundation of a modern encryption protocol relies upon the inherent
Trapdoor Function. As classical cryptography evolved, it has become clear that some key
components are essential in making stronger trapdoor functions, also known as one-way
functions. Studies have shown that prime numbers are an essential part of numerous
cryptosystems, and with a bit of effort, numerous mathematical concepts can be used
to generate stronger cryptosystems. Conventional, widely used algorithms such as RSA
rely on integer products involving large primes. Breaking this system is essentially an
attempt to solve the integer factorization problem, which can be readily attained using
Shor’s algorithm, Pollard’s Rho algorithm, etc (Aminudin & Cahyono, 2021; De Lima
Marquezino, Portugal & Lavor, 2019).

Cryptography algorithms rely on integer mathematics, in particular, number theory
to perform invertible operations such as addition, multiplication, exponentiation, etc.
over a finite set of integers. Finite Fields, also known as Galois Fields, are fundamental to
any cryptographic understanding. A field can be defined as a set of numbers that we can
add, subtract, multiply and divide together and only ever end up with a result that exists
in our set of numbers. This is mainly advantageous in cryptography since we can only
work with a small number of incredibly huge numbers (Kohli, 2019). When cryptography
algorithms rely solely on converting raw string data in ASCII format, we are restricted
to 256 different characters only. Doing such leaves us with only a handful amount of
invertible operations in modulo 256 On the other hand, the Galois Field GF(28) offers
numerous such operations. In fact, Advanced Encryption Standard (AES) (Daemen &
Rijmen, 2001) uses the multiplicative inverse in GF(28). Using the Galois Field also shines
forth the opportunity to use the concepts of irreducible polynomials (Shoup, 1990). In AES,
addition and subtraction is a simple XOR operation. For multiplication, it uses the product
modulo an irreducible polynomial. For example, the integer 283 refers to the irreducible
polynomial f (x)= x8+x4+x3+x+1 in GF(28) whose coefficients are in GF(2) (Desoky
& Ashikhmin, 2006).

Threshold cryptography is a form of security lock where private keys are distributed
among multiple clients or systems. They are even asked to provide digital signature
authentication for verification purposes. Only when these keys are combined, can
information be effectively decrypted. In practice, this lock is an electronic cryptosystem that
protects confidential information, such as a bank account number or an authorization to
transfer money from that account (Henderson, 2020). The encryption scheme described in
this paper has traits that resemble threshold cryptography. Existing threshold cryptosystem
protocolsmight benefit from the positive aspects of our system,making it a viable alternative
contender soon. The suggested approach can also be integrated into intelligent systems that
use master–slave communication topologies, such as swarm robots (Chen & Ng, 2021).

The technique suggested in this study uses an inventive trapdoor function based on
the finite field to handle data encryption in cases with enormous string lengths in a
reasonable amount of time, demonstrating that it is extremely light. This is a self-adjusting
cryptosystem that optimizes the system parameters on its own, saving the user time and
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effort while increasing security. The inherent lightness of this cryptosystem makes it an
ideal contender for applications involving IoT devices with limited computational power.
Confusion and diffusion, covered in ‘Observed Security Features’, are two aspects of a safe
cipher’s functioning in cryptography. Due to the system’s demonstration of confusion
and diffusion properties, it could potentially be used in scenarios such as encrypting bank
transaction details, where a high degree of variance in the ciphertext is desirable upon
altering few characters in the plaintext. Furthermore, data from our benchmarks in section
‘Experimental Analysis’ shows promising results when tested on large chunks of data
proving that given sufficient computing power, this system could potentially be used for
confidential military applications or as a layer of security for the compilation of large
datasets in Big Data analytics.

The remainder of this paper is organized as follows. ‘‘Literature Review’’ gives a brief
description of numerous sectors where the proposed system can be introduced. ‘‘Trapdoor
Function’’ section explains in brief, the working of a traditional trapdoor function from
a mathematical perspective. ‘Prime number theorem’, ‘Galois Field in Cryptography’,
‘Generating Upper Bound for q’ and ‘Fermat’s Factorization’ describes the required
preliminaries for a better understanding of the algorithm that follows in ‘Proposed
Algorithm’. Next section talks about two essential properties of the operation of a secure
cipher, beforemoving onto ‘Experimental Analysis’. Next, a fewways is covered in which an
adversarymight try to break into systems running this cryptosystem. ‘From an interceptor’s
perspective’ shows that it would be near impossible for them to achieve their goal. ‘Remarks
on edge cases’ addresses an edge case of the system that revolves around the inbuilt block
size optimization function. The paper concludes by briefly summarizing the study’s overall
accomplishments and providing important insights into future research directions.

LITERATURE REVIEW
Recently in the field of Internet of Things (IoT), research has been conducted on flexible
privacy-preserving data publishing schemes in the sector of smart agriculture. Their study
shows that over the years protection and privacy concerns for smart agriculture have grown
in importance. In these IoT-enabled systems, the internet is used for communicating
with participants. Since the cloud is often untrustworthy, higher privacy standards are
needed (Song et al., 2020).

Security and privacy at the physical layer have become a serious challenge in recent
years for numerous communication technologies. IoT networks are typically comprised
of a network of interconnected sensors and information relaying units that communicate
in real-time with one another. Individual nodes typically have specialized sensor units
for detecting specific environmental attributes and have fewer computing resources
available. For example, in a house, various technologies such as facial recognition, video
monitoring, smart lighting, and so on will all function in tandem. Security and privacy
are key impediments to the realistic deployment of smart home technologies (Shen et al.,
2018).

The majority of the network’s elements use sensitive user data and seamlessly exchange
information with one another in real-time. To keep intruders out of such a network,
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a dependable and stable solution based on edge computing is preferred. Another real-
world application of secure edge computing lies in the domain of smart grids. Smart
grids are recognized as the next-generation intelligent network that maximizes energy
efficiency (Wang et al., 2020). Smart grid solutions help to monitor, measure and control
power flow in real-time that can contribute to the identification of losses, and thereby
appropriate technical and managerial actions can be taken to prevent the same. Smart grids
generally rely on data recorded by energy meters from different houses. Since electricity
usage data can be classified as confidential user metrics, there is a need for implementing a
layer of security before transmitting this data to other parties for further analysis. Encryption
of this data at the smart energy meter stage itself can be beneficial. However, this requires
the development of a lightweight encryption protocol that can be easily integrated with
microprocessors with minimal compute power.

The amount of data provided by users during numerous online activities has increased
dramatically over the last decade. Celestine Iwendi et al. performed research that used a
model-based data analysis technique for handling applications with Big Data Streaming to
glean useful information from this massive amount of data. The method suggested in their
research has been tested to add value to large text data processing (Iwendi et al., 2019). Our
proposed schematic leverages an ingenious trapdoor function based on the finite field to
handle data encryption in scenarios involving large string lengths within feasible runtime,
proving it to be considerably lightweight.

TRAPDOOR FUNCTION
The essence of any cryptosystem relies on some special mathematical trapdoor function
that makes it practically impossible for an unwelcome interceptor to gain access to secretive
information. Simultaneously, these functions also ensure that the authorized parties (who
know the secret key) can continue sharing data among themselves.

A trapdoor function is a mathematical transformation that is easy to compute in one
direction, but extremely difficult (practically impossible) to compute in the opposite
direction in feasible runtime unless some special information is known (private key).
Analogously, this can be thought of like the lock and key in modern cryptography
where until and unless someone has access to the exact key, they can’t open the lock.
In mathematical terms, if f is a trapdoor function, then y = f (x) easy to calculate but
x = f −1(y) is tremendously hard to compute without some special knowledge k (called
key). In case k is known, it becomes easy to compute the inverse x = f −1(x,k).

The components of the proposed system in this paper that act as the trapdoor function
is the modulo operation on a Galois field (Benvenuto, 2012).

PRIME NUMBER THEOREM
Positive integers that are divisible by 1 and itself, are known as prime numbers. The
sequence begins like the following...

2,3,5,7,11,13,17,19,23,29,31,37,...
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Table 1 Prime density and approximation to logarithmic integral.

Search Size x # of Primes Density (%) li(x) li(x)−π(x)
π(x) ×100

10 4 40 6.16 54.14
102 25 25 30.13 20.50
103 168 16.8 177.61 5.72
104 1229 12.3 1246.14 1.39
105 9592 9.6 9629.81 0.39
106 78498 7.8 78625 0.17
107 664579 6.6 664918 0.05
108 5761455 5.8 5.76×106 0.01

and has held untold fascination for mathematicians, both professionals and amateurs alike.
A result that gives an idea about an asymptotic distribution of primes is known as the
prime number theorem (Goldstein, 1973).
π(x) is the prime-counting function that gives the number of primes less than or equal

to x , for any real number x . This can be written as

π(x)=
∑
p≤x

1 (1)

It is seen via graphing, that x
lnx is a good approximation to π(x), in the sense that the limit

of the quotient of the two functions π(x) and x
lnx as x increases without bound is 1.

lim
x→∞

π(x)
lnx
x
= 1 (2)

This result can be rewritten in asymptotic notation as

π(x)∼
x
lnx

(3)

The logarithmic integral provides a good estimate to the prime density function.

π(x)
x
∼ li(x)=

∫ x

2

1
lnt

dt (4)

To get an idea of the distribution of primes, it is important to count the number of primes
in a given range and find the percentage of primes. Consider an infinitely tall tree, losing
its leaves. The leaves represent prime numbers. Most leaves are found near the root, and
the number of leaves reduces as we walk away from the center. But no matter how far we
are from the center, we always find more leaves. These leaves are unpredictably scattered in
an infinite area surrounding the tree. This is the situation with the distribution of primes
as resembled by Table 1. Figure 1 shows the prime density and logarithmic integral on the
left, and the asymptotic nature of the prime counting function on the right.

GALOIS FIELD IN CRYPTOGRAPHY
Galois Field, named after Evariste Galois, also known as finite field, refers to a field in
which there exist finitely many elements. A computer only understands the binary data
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Figure 1 Demonstration of the Prime Number Theorem. (A) Shows Prime density and logarithmic in-
tegral while (B) resembles the asymptotic form of prime counting function.

Full-size DOI: 10.7717/peerjcs.637/fig-1

format, which consists of a combination of 0′s and 1′s. If we consider GF(2), which is
simply the Galois Field of order 2, this representation becomes possible which enables us
to apply mathematical operations for functional data scrambling. The elements of Galois
Field GF(pn) is defined as

GF(pn)=(0,1,2,...,)∪

(p,p+1,p+2,...,p+p−1)∪

(p2,p2+1,...,p2+p−1)∪···∪

(pn−1,pn−1+1,pn−1+2,...,pn−1+p−1)

where p∈P andn∈Z+. The order of the field is given by pnwhile p is called the characteristic
of the field. On the other hand, GF , as one may have guessed it, stands for Galois Field.
Also note that the degree of polynomial of each element is at most n−1 (Benvenuto, 2012).

Properties of finite field
For arbitrary elements a,b,c and binary operations (+,·) in a finite field F, the following
properties hold (Stallings, 2006; Kohli, 2019).
1. Closure: For any two elements a,b, a+b∈F, a ·b∈F
2. Associativity: (a+b)+ c = a+ (b+ c),(a ·b) · c = a · (b · c)
3. Commutativity: a+b= b+a,a ·b= b ·a
4. Identity: There exists a 0 such that for any element a in the field a+0= 0+ a= a

known as additive identity. There exists a 1 such that for any element a in the field
a ·1= 1 ·a= a multiplicative identity.

5. Every arbitrary element a has an additive inverse a−1 such that a+a−1= a−1+a= 0
and a multiplicative inverse a−1 such that a ·a−1= a−1 ·a= 1

Finite field operations
Let f (p) and g (p) two polynomials in the Galois fieldGF(pn) with the respective coefficients
A= a0,a1,...,an and B= b0,b1,...,bn for f ,g . Then the following operations are valid
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1. Addition and Subtraction
ck ≡ ak±bk mod p (5)

2. Multiplication and Multiplicative Inverse For an irreducible polynomial m(p) with a
degree of at least n, we have the following
h(p)≡ f (p) ·g (p) mod m(p) (6)
and polynomials x(p),y(p) are called multiplicative inverses of each other iff
x(p)y(p)≡ 1 mod m(p) (7)

Applications in cryptography
Cryptography is the most prominent and extensively used application of Galois Field.
There are many different representations of data. One such representation is a vector in a
finite field. Once the data is in this desired format, finite field arithmetic easily facilitates
calculations during encryption and decryption (Benvenuto, 2012). In the 1970′s, IBM
developed Data Encryption Standard (DES) (Tuchman, 1997). However, a humble 56-bit
key usage never posed a serious challenge to a supercomputer, which was able to break the
key in less than 24 hours. Thus the need for a refined algorithm to replace the existing DES
arise. Rijndael, a much more sophisticated algorithm devised by Vincent Rijmen and John
Daemon in 2001, has been known as the Advanced Encryption Standard (AES) ever since.
An issue regarding this breakthrough was published by Federal Information Processing
Standards Publications (FIPS) on November 26, 2001 (Dworkin et al., 2001).

GENERATING UPPER BOUND FOR Q
The proposed algorithm, requires generating a list of primes ps ∈P whose size equals the
block size s. It also requires a prime q ∈ P which is greater than all ps’s. The algorithm
involves generating inverses of all ps’s within a Galois fieldGF(qm) wherem is an arbitrarily
chosen positive integer.

Generation of the shuffled list of primes requires us to know the prime q. On the other
hand, determining the value of q requires us to know the largest prime present in the
shuffled list. This poses a paradoxical problem.

To get around this paradox, we consider the following.

• The number of primes to be stored in the shuffled list ps is equivalent to the block size s.
• The value q must be chosen such that it is prime and larger than the maximum prime

present in ps.
• Prime Number Theorem is used to find is used to find the number below which s primes
are available. Let this required number be denoted by x .

s=
x
lnx

s lnx = x

s lnx = e lnx

lnxe−lnx =
1
s
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−lnxe−lnx =−
1
s

−lnx =Wn

(
−
1
s

)

x = e−Wn(− 1
s )

whereWn is the Lambert W Function also known as the product log function. This means
that it is possible to generate the upper limit for generating a list of primes for an arbitrary
block size. Since the number of primes is positive, x must be positive (Weisstein, 2002;
Corless et al., 1996). This means that it is possible to have a Lambert W Function in the
branch of n= 0 or n=−1 since ey ≥ 0∀y ∈R. If x = a+ ib that is x ∈C, we consider
b<(x)c to generate the upper bound.

• The prime larger than this x is set to be q.

FERMAT’S FACTORIZATION
Fermat’s factorizationmethod, named after Pierre de Fermat, is based on the representation
of an odd integer as the difference of two squares (De Fermat, 1891). For a given number
N , the objective is to find a,b such that

N = a2−b2 (8)

To start, the square root ofN is taken, and the nearest integer a is squared and subtracted.
If the resulting number is a square then, a,b has been found. If it is not the case, then a is
increased by 1 and the process is repeated. This is what is used to generate an algorithm
for the block size depending on the size of the plaintext.

OPTIMAL CHOICE FOR BLOCK SIZE
The following is an algorithm that automatically chooses an optimal value for the block
size so as to ensure minimum time of execution for the algorithm.
1. Get the lengthN of plaintext. Take square root and consider the ceiling of the resulting

real number, i.e.,
⌊√

N
⌋

2. If
(⌊√

N
⌋)2
≤N and N ≡ 1 mod 2, then optimal block size is

⌊√
N
⌋

PROPOSED ALGORITHM
The proposed algorithm for this cryptosystem involves numerous sections, making it a
robust and impenetrable layer of security. Note that this algorithm autonomously sets the
critical private key parameters of the system to their optimal values based on the user’s
secret message. Figure 2 illustrates a flow chart for the proposed schematic.

For IoT-enabled networking devices, an additional layer of intrusion detection protocol
can be appended to the proposed scheme to enhance the existing security. The Internet of
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Figure 2 Algorithm FlowDiagram.
Full-size DOI: 10.7717/peerjcs.637/fig-2

Medical Things (IoMT) is a subset of IoT in which medical equipments connect to share
sensitive data. In such scenarios, machine learning methods are commonly employed in
Intrusion Detection Systems (IDS) for dynamically identifying and categorizing threats at
the network and host levels (Swarna Priya et al., 2020).

Plaintext pre-processing
1. An input message is provided and split into characters.
2. The optimum block size is evaluated as discussed in section ‘Optimal choice for block

size’.
3. The plaintext is split into blocks and padding is applied to maintain consistency of the

modified plaintext.
4. Each character in each block is converted to its designated ASCII equivalent.

Key generation
1. User inputs a non negative integer m, which is used to determine the Galois Field

GF(qm).
2. The value of q is obtained via the calculation described in section ‘Generating upper

bound for q’.
3. A function sets an optimal block size depending on the length of plaintext via the

algorithm described in section ‘Optimal choice for block size’.
4. A list of unique primes is randomly generated between [p1,pblocksize] and p−1k mod qm

exists, such that each block has the same primes. The size of this list is equal to the
block size.
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Key permutation algorithm
1. Since each block is assigned the same primes, entropy is introduced into the system by

rearranging the order of primes for each block in the list of primes.
2. A central element is kept fixed, the primes on the left side are left-shifted and the ones

on the right are right-shifted a certain number of times. The shift factor consequently
increases linearly as the block index increases. It is crucial that the block size must be
an odd number for such a rearrangement procedure to take place.

Encryption
For each block, take the product of the corresponding ASCII values ak and the prime
number from the permuted prime list. Then take this product modulo qm.

akpk ≡ ck mod qm (9)

These lists of ck are arranged in a matrix of order n
s ×s, where n=length of padded plaintext

and s=block size.

Decryption
For each encrypted value ck in the block, multiply with the inverse of corresponding prime
in the permuted list in the field qm.

ckp−1k ≡ ak mod qm (10)

Padding is removed, and the remaining characters are joined to return the original message.

OBSERVED SECURITY FEATURES
In cryptography, confusion and diffusion are two properties of the operation of a secure
cipher which were identified by Claude Shannon in his paper Communication Theory of
Secrecy Systems, published in 1949 (Shannon, 1949).

Confusion is a technique that ensures confidentiality, that is, a ciphertext gives no clue
about the plaintext. This is commonly used in the block and stream cipher method. This
can be achieved by the substitution method.

An extensive analysis was performed to study the behavior of the encryption scheme
when the same plaintext was encrypted twice with only 1 single character changed. Two
simple messages (‘abcdefghijklmnopqrstuvwxyz’) and (‘abcdefghijklmnopqrstuvwxyp’)
were considered. Note that both messages are identical except for one single character at
the end (‘z’ and ‘p’). An identical set of encryption parameters were set up for this analysis
and the generated ciphertext in both cases were noted down:

abcdefghijklmnopqrstuvwxyz
Encryption
−−−−−→

m=7



679 1078 198 500 303
1122 721 208 315 530
749 1188 218 550 333
1232 791 228 345 580
819 1298 238 600 363
854 528 96 240 144
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abcdefghijklmnopqrstuvwxyp
Encryption
−−−−−→

m=7



194 686 1089 300 505
714 206 1144 525 318
214 756 1199 330 555
784 226 1254 575 348
234 826 1309 360 605
224 336 528 144 240


If each element of both the ciphertext matrices are compared element-wise (order

matters), one can easily notice that there is 0% similarity. This implies that cryptanalysis
techniques that rely on the similarity of elements in ciphertexts will fail to crack this
cryptosystem.

In diffusion, the statistical structure of the plaintext is dissipated into long-range
statistics of the ciphertext (Stallings, 2006). This increases the redundancy of the plaintext
by spreading it across rows and columns. It is only used in block cipher protocols. This
phenomenon can be achieved by a permutation technique known as Transposition. A
perfect example of diffusion and confusion is the AES cryptosystem.

Additionally, the encryption scheme was also tested with strings which have the same
character repeating multiple time. For instance, the plaintext (‘she sells sea shells on the
sea shore’) was encrypted using regular encryption parameters. The following ciphertext
matrix was returned by the algorithm:

she sells sea shells on the sea shore
Encryption
−−−−−→

m=3



345 208 505 352 805
202 324 540 805 352
345 202 485 352 805
208 303 540 756 1265
96 222 550 352 812
312 202 160 1265 707
194 96 575 728 1221
342 202 240 528 336


From an unauthorized eavesdropper’s perspective, the ciphertext matrix will give the

impression of being just a random sequence of numbers which makes it all the more
difficult to come up with a logical approach to retrieve the secret message without any
knowledge of the private key.

EXPERIMENTAL ANALYSIS
Stringlength vs time for encrypt-decrypt cycle
For this benchmark test, the value of m was fixed at 7 different values m= 2n where
n ∈ [0,6],n ∈ Z while the length of plaintext was successively increased in powers of
10 starting from 100 till 1,000,000 while noting down the time it takes for successful
encrypt-decrypt cycles. The tabular data shown in Tables 2 and 3 shows the variance of
runtime upon altering string lengths. Figure 3 shows the implementation of the program
on a Intel

R©
CoreTM i7-10750H CPU R©2.60 GHz and a Raspberry Pi 4 Model B (Quad core

Cortex-A72 (ARM v8) 64-bit SoC R©1.5 GHz) respectively.
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Table 2 Effect of length of plaintext on runtime (seconds) for different values ofm for Intel
R© CoreTM

i7-10750H.

Values form

String Length 1 2 4 8 16 32 64

102 0.0005 0.0002 0.0002 0.0003 0.0004 0.0007 0.0004
103 0.0024 0.0024 0.0024 0.0027 0.0030 0.0037 0.0038
104 0.0311 0.0393 0.0321 0.0342 0.0358 0.0418 0.0470
105 0.3143 0.3201 0.3596 0.3580 0.3975 0.4288 0.5501
106 3.2605 3.3822 3.9073 4.0346 4.4580 5.0636 6.0518

Table 3 Effect of length of plaintext on runtime (seconds) for different values ofm for Raspberry pi.

Values form

String length 1 2 4 8 16 32 64

102 0.0010 0.0011 0.0012 0.0012 0.0013 0.0015 0.0018
103 0.0101 0.0102 0.0116 0.0122 0.0138 0.0160 0.0205
104 0.1176 0.1248 0.1379 0.1399 0.1587 0.1911 0.2529
105 1.3059 1.4381 1.4981 1.6747 1.8104 2.1556 2.9447
106 14.3205 16.3886 16.7864 18.4380 20.6584 24.5239 34.1969

Figure 3 Stringlength vs Runtime (seconds) for fixed values ofm. (A) and (B) shows the demonstra-
tion on an Intel

R© CoreTM i7-10750H and a Raspberry Pi 4 Model B respectively.
Full-size DOI: 10.7717/peerjcs.637/fig-3

Herem is the exponent of a prime finite field. It means that any arbitrary value a mod q
will generate non-negative integers within [0,q−1]. But for any m> 0,m ∈Z, we have
qm > q which consequently means a mod qm generates non negative integers within
[0,qm−1] which gives larger values. This takes a bit of time to process. Hence smaller
values of m will be less impactful on the time constraint.
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Table 4 Effect of exponent of prime finite fieldm on runtime for fixed string (size = 1000).

Runtime (seconds)

Values ofm Intel
R© CoreTM i7-10750H Raspberry Pi 4 Model B

1 0.0025 0.0099
2 0.0025 0.0010
4 0.0024 0.0111
8 0.0025 0.0120
16 0.0028 0.0134
32 0.0035 0.0160
64 0.0036 0.0204
128 0.0054 0.0301
256 0.0076 0.0556
512 0.0153 0.1294
1024 0.0416 0.3402

To study the behavior of this algorithm on devices with low compute power, it was
benchmarked on a Raspberry Pi 4 Model B (8 GB RAM variant). The Raspberry Pi is a
low-cost, credit-card-sized device that connects to a computer monitor or TV and operates
with a regular keyboard and mouse. It is sometimes referred to as a Single Board Computer
(SBC) because it runs a complete operating system and has enough peripherals (memory,
Processor, power regulation) to begin execution without the inclusion of hardware. The
Raspberry Pi can run various operating systems and needs only power to boot. Some
Raspberry Pi models can boot directly from the network, but in general, file-system
storage, such as a micro SD card, is necessary (Johnston & Cox, 2017). The Raspberry Pi
features GPIO (general purpose input/output) pins that allow one to manipulate electronic
components and low-powered sensors for physical computing and explore the Internet of
Things.

In this case, it was observed that if we limit the string length to 20,000 characters, the
encryption-decryption cycle completes within a mere 5 seconds. Altering the m-values
and repeating the benchmark made a negligible difference, as seen on the graph. It should
be noted that executing this benchmark on the raspberry pi for 100,000 characters takes
up to 35 seconds or more. However, most IoT applications involve the collection of data
from various sensors and transmitting them in discrete chunks to servers across multiple
timesteps for further processing. In such scenarios dealing with limited batches of data, the
proposed cryptosystem can achieve feasible encryption in real-time.

Variation of runtime with value of m
This section analyzes how changing the exponent of the prime finite fieldm has an influence
on the operational runtime of the encrypt and decrypt functions when a fixed string of
random alphanumeric values having a size of 1000 characters is fed into the proposed
algorithm. The algorithm autonomously sets the block size to 31. This is clearly visible
from the data in Table 4.
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Figure 4 Prime finite field exponentm vs Runtime for plaintext of 1000 characters. (A) and (B) shows
the demonstration on an Intel

R© CoreTM i7-10750H and a Raspberry Pi 4 Model B respectively.
Full-size DOI: 10.7717/peerjcs.637/fig-4

Figure 4 demonstrates that m vs runtime follows a fairly linear trend. There is a slight
imperfection in the trend since at this magnified time scale, changes in the memory usage
patterns of the system can lead to noticeable changes in the efficiency of the algorithm.
Note that these are of the order of 10−3 seconds when executed on a workstation. Testing
this on the Raspberry Pi, however, took 10 times more time than that on the computer.

FROM AN INTERCEPTOR’S PERSPECTIVE
Longer messages, greater security
The proposed system has a built-in recommendation system due to its design of the
algorithm. It automatically sets the block size depending on the length of the input
message. It has been noted that the block size increases as the length of the input string
increases. A larger block size means each block has more primes.

If block size= n, then there are n! arrangements possible. Only one of them is the correct
combination for each block. So an interceptor has a 1

n! chance to get the combination right,
for successful decoding. Since

lim
n→∞

1
n!
= 0 (11)

it consequently means that a larger block size makes it nearly impossible for an attacker to
correctly guess all the permuted blocks.

Hensel’s Lifting Lemma
Lemma 1 (Hensel’s Lemma): Given prime p,e ≥ 2, and f (x)∈Z[x], if ais a solution to

f (x)≡ 0 (mod pe−1).

Then if gcd(p,f ′(a)) = 1, there exists a solution to f (x) ≡ 0 (mod pe) of the form
b= a+kpe−1where k satisfies

f (a)
pe−1 +kf

′(a)≡ 0 (mod p) .
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This cryptosystem requires the user to pick an exponentm for an automatically generated
q value, allowing the use of the field of order qm. When it comes to an interceptor, they
only have access to a number b where b= qm, and have no idea of q and m separately.
Hence, they would have to apply heuristic, or brute force approach to solve for q and m
given the value of b. This is because there are no known, deterministic methods to solve an
equation with two unknowns.

REMARKS ON EDGE CASES
An imperative consequence of the block size optimization function described in section
‘Optimal choice for block size’ is that

No. of Blocks≥Block size

The key generation paradigm demands that the size of the final list of unique primes
should be the same as the block size and all elements of this list should be smaller than
the value of q that is evaluated in the background using the prime number theorem as
discussed in section ‘Generating upper bound for q’. This implies that if a plaintext with
very few characters is chosen such that Block size≤ 3, the shuffled list of unique random
primes can hold only 2 possible elements i.e., 2,3 which are both lesser than the calculated
value of q= 5. In this scenario, since 3 primes are not available, the system gets hung up in
an infinite loop and fails to encrypt the message. For instance, when the message ’’hello’’
was passed, it resulted in the optimal block size being set to 3 and q= 5. Irrespective of the
value of the prime finite field exponent m chosen by the user, it was observed that the key
generation algorithm breaks down.

One simple way to solve this issue would be to add a different special padding scheme
in case the message entered by the user is too small to ensure that the optimal block size
evaluates to a number greater than or equal to 5. This way, the key generation algorithm
has enough prime numbers available to work with.

CONCLUSION
In this paper, a new block cipher encryption scheme was discussed in detail. It was
observed that longer messages provide better security whereas shorter messages provide
faster execution assuming sufficient padding. This system can come in handy, especially
in social media sites where the short messaging system (SMS) is common. For example,
Twitter, which has a current maximum string length of 280 characters (Twitter, 2021).
The time of execution was benchmarked on a modern-day computer CPU (Intel

R©
CoreTM

i7-10750H processor) as well as on a Raspberry Pi 4 Model B. It was found that the
proposed schematic can easily be integrated into IoT networks involving low compute
microprocessors to provide a layer of security. Other applications of this system could
be in encrypting confidential military files that are large. As a threshold cryptosystem
candidate, this system can find multiple applications in swarm robotics in cases where
slaves communicate with a master robot over an insecure network. The list of permuted
primes that constitutes the private key of this system could be scattered across multiple
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slaves and could be used collectively to ensure that none of the nodes in the system gets
attacked by an unauthorized party and/or fails at any given time. Whether or not this could
be used as an industry standard is beyond the scope of this paper. The progress so far has
been compiled into a GitHub repository (Bhowmik & Menon, 2020).
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