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ABSTRACT 
 

Phylogeography of Southeast Asian flying foxes (Chiroptera: Pteropodidae: Pteropus) 

 

By Susan M. Tsang 

Advisor: David J. Lohman 

  

 Flying foxes (Pteropus) are a genus of Old World fruit bats that are important seed 

dispersers and pollinators for plants native to the 200,000+ islands in Southeast Asia, yet they are 

some of the most poorly known bats in the world. They comprise some of the largest known bat 

species, and are morphologically relatively conserved on the genus level. Pteropus is the most 

species-rich genus within Pteropodidae, though the origin for this diversity remains incompletely 

understood. In Chapter 1, I discuss the importance of Pteropus to the ecosystem and as reservoir 

hosts. In Chapter 2, a molecular phylogeny is presented with Pteropus species organized into 

fewer species groups than recognized from previous research that better reflected the 

comprehensive dataset. An increase in relative divergence rate was detected within Pteropus 

during the Pliocene that led to rapid radiations in three species groups. Additionally, discordant 

signals from nuclear and mitochondrial genes suggested incomplete lineage sorting and 

hybridization were present, likely as a result of the young clade age, low genetic variability, and 

rapid diversification of the genus. In Chapter 3, using the species tree generated in Chapter 2, I 

tested biogeographic mechanisms and scenarios that resulted in current distributions of Pteropus 

species using several ancestral area reconstruction methods. Dispersal and founder-event 

speciation were both important mechanisms through which species expanded into new areas. 

Wallacea was an integral part of the evolutionary history of Pteropus, and likely the region of 
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origin, a new result uncovered largely a product of the increased taxonomic and geographic 

sampling. I then used a combination of phylogenetics and population genetics to determine the 

population connectivity of two commonly studied Pteropus hosts that are of interest to the 

disease ecology community, P. vampyrus (Chapter 4) and P. alecto (Chapter 5). Host 

metapopulation dynamics are important for predictions of pathogen diversity, aggressiveness, 

and transmission. Pteropus vampyrus and P. alecto highlight differences in management 

strategies needed and pathogen model predictions. Chapter 6 presents a general discussion 

regarding these findings and future directions for research. 
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CHAPTER 1 

An introduction to the ecological and biomedical importance of Pteropus 

The genus Pteropus (Chiroptera: Pteropodidae), commonly referred to as flying foxes, is 

the most species-rich genus of the Old World fruit bats, comprising 65 of approximately 200 

species of the family (Simmons, 2005; Helgen et al., 2009). Pteropus species are primarily 

distributed in Wallacea and the South Pacific, but have diversified throughout the Paleotropics, 

with species reaching as far as Mauritius and Madagascar off the east coast of Africa, the 

Ryukyu Islands in Japan, coastal areas of Australia, and the remote islands of Tonga and Samoa 

in the South Pacific. Since most Pteropus are island- or coastal-dwelling species that occur in 

remote areas (Mickleburgh et al., 1992), relatively little population or natural history data have 

been collected due to the difficulties in accessing these localities. Pteropus species are vital to 

ecosystem functioning in tropical forests (Fujita & Tuttle, 1991; McConkey & Drake, 2006) and 

important natural reservoir hosts for zoonotic pathogens (Field et al., 2007). A comprehensive 

understanding of the evolutionary history of the genus is necessary for development of effective 

conservation and management actions. Pteropus species also exhibit unusual evolutionary 

phenomena such as gigantism (Gould & MacFadden, 2004; Giannini et al., 2012) and 

evolutionary rate shifts (Shi et al., 2014) that cannot be fully explained in the absence of a 

resolved phylogeny. To further explore questions about diversification, biogeography, 

morphological evolution, and to address the urgency of management needs in Southeast Asia, a 

comprehensive molecular investigation of the genus Pteropus using species tree methods was 

conducted here so that these questions may be addressed within a phylogenetic framework in the 

future. The need for a greater understanding of Pteropus is felt most acutely in Indonesia, 
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where—despite the occurrence of a third of all extant Pteropus species—few recent studies have 

been conducted (e.g., Sheherazade & Tsang, 2015).  

Ecological Significance of Pteropus 

 Pteropus species are obligate phytophagous bats—they rely solely on fruits, flowers, 

leaves, pollen, and seeds for their metabolic needs (Voigt et al., 2011). Pteropodids play a key 

role in ecosystem functioning as seed dispersers and pollinators of over 300 plant species in 

approximately 200 genera, which include many canopy and emergent tree species (Fujita & 

Tuttle, 1991). On remote islands, large flying foxes may be the only animals capable of 

dispersing medium or large seeds (Wilson & Graham, 1992; McConkey & Drake, 2006). In 

tropical landscapes, plants generally rely on seed dispersing guilds comprised of both birds and 

mammals, resulting in low specificity with any host (Meehan et al., 2002). However, as seed size 

increases, fewer seed dispersers with the necessary gape size remain, and these animals are often 

species that are most susceptible to anthropogenic disturbance (Corlett, 1998). In the past, 

Pteropus species may have only been one of many of these seed dispersers, but the local 

extinction of other large-bodied dispersers has led to an increasingly important role in this 

process for remaining Pteropus colonies (Meehan et al., 2002). The need for Pteropus to forage 

over large home ranges promotes gene flow between geographically distant areas, though the 

extent to which this occurs is poorly known in most Pteropus species. 

Pteropus bats retain seeds in their guts for more than twelve hours, making it possible for 

them to carry seeds over large oceanic expanses (Shilton et al., 1999). Pteropus also periodically 

drops seeds in flight, which is critical to reseeding clearings (Corlett, 1998), particularly in 

fragmented landscapes (Nyhagen et al., 2005). Pteropus species are an important part of 

fortifying a healthy seed bank for forest regeneration (Muscarella & Fleming, 2007), which 
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previous research has demonstrated after entire island ecosystems have been destroyed by 

typhoons (Esselstyn et al., 2006) or volcanic eruptions (Shilton & Whittaker, 2009). Figs (genus 

Ficus) and other Moraceae are the most commonly visited plants by Pteropus species (Fujita & 

Tuttle, 1991; Stier & Mildenstein, 2005; Nakamoto et al., 2008).  

Pteropus bats have been known to visit chiropterophilous (bat pollinated) flowers of 

economically important plants, including durian (Durio zibethinus) (Jones & Kunz, 2000; 

Bumrungsri et al., 2008; Kingston, 2008). Chiropterophily is a pollination syndrome in plants 

characterized by flowers that are generally night-blooming, strongly scented, dull-colored, 

sturdy, and held away from the foliage (Tschapka & Dressler, 2002). Most Pteropus-pollinated 

plants belong to the Malvaceae and Myrtaceae (Fujita & Tuttle, 1991; Elmqvist et al., 1992; 

Nyhagen et al., 2005). Plants from these families produce important products such as kapok 

(Ceiba pentandra), which is used commonly for its light but resistant fibers and essential oils and 

various light timbers (Fujita & Tuttle, 1991; Singaravelan et al., 2009).  

Taxonomy and Its Implications for Disease Ecology Studies 

Bats have been increasingly recognized as natural reservoir hosts for a suite of emerging 

infectious pathogens (Calisher, 2006; Smith & Wang, 2013). Pteropodids alone are implicated as 

vectors of some pathogens causing recent pandemics (Wong et al., 2007). Of these, species of 

Pteropus have been identified as potential reservoir hosts of paramyxoviruses, including Hendra 

and Nipah virus, both of which are highly pathogenic to humans and have high mortality rates in 

humans (Halpin et al., 2011). Rapid human encroachment into primary forests (Sodhi et al., 

2010) and intense bushmeat consumption (Mickleburgh et al., 2009) are not only threats to the 

persistence of bat populations, but also introduce new avenues for potential transmission. 

Outbreaks of paramyxoviruses have been previously recorded in both Malaysia (Yob et al., 
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2001; Rahman et al., 2010) and Bangladesh (Hsu et al., 2004), where their spread resulted in 

significant negative consequences for both human health and local economies. Cross-disciplinary 

approaches to surveillance can suggest where host jumps may occur, which is crucial to early 

detection and effective control of emerging infectious diseases. As next-generation sequencing 

becomes more readily available and bioinformatics pipelines become more sophisticated and 

user-friendly, host genomic data and phylogenies will also be able to answer questions on 

whether selection on host alleles may have occurred in the past or if pathogens may be locally 

adapted. The growth of this “applied systematics” approach to emerging infectious diseases 

requires a deeper look into host evolution.  

Despite the importance of understanding bat and bat-borne virus ecology, only a handful 

of species, such as Pteropus alecto and P. vampyrus, have been studied beyond initial discovery 

of novel viruses (Table 1.1). These data were obtained primarily through reactionary 

investigations following an outbreak (Wang et al., 2008). The few recent surveillance efforts 

focus solely on virus detection, and consideration of host natural history in disease dynamics has 

been limited (Chua et al., 2001; Sasaki et al., 2012). Knowing the disease profile (e.g. prevalence 

of infectious diseases, particularly in relation to age cohorts; signs and symptoms of disease) for 

each bat species can better inform public health agencies in each of the localities that the species 

occurs, and precautions can be taken accordingly. Understanding host natural history, evolution, 

and diversity will contribute to public health goals by providing 1) data on bat host species 

diversity, which can inform models for prediction of where high viral diversity may occur, 2) 

data on bat host relationships to predict where spillovers may occur, and 3) more accurate 

population-level relationships between host populations to determine where host and pathogen 

dispersal routes may occur. These elements can contribute to a more fully realized model of 
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transmission of zoonotic diseases, such as in studies of rabies in Eptesicus fuscus (Big Brown 

Bats) in North America, which found that life history traits along with long viral incubation 

periods promoted pathogen persistence (George et al., 2011). However, if there are no host 

ecological niche models, coalescent models of past histories, or phylogenies available, this level 

of understanding is impossible, as is presently the case with Pteropus.  

Important but Endangered—the Conservation Status of Pteropus 

Many Pteropus species are threatened by habitat loss, specifically loss of roosting sites in 

primary forest or mangroves, and are persecuted by farmers as crop pests (IUCN, 2014). 

Additionally, Pteropus are often sought after in the bushmeat trade, either as a form of 

sustenance or as a traditional remedy (Mickleburgh et al., 2009; Croes, 2012; IUCN, 2014; 

Sheherazade & Tsang, 2015). Hunting of Pteropus often operates at an unsustainable rate, and 

increases the degree of contact between humans and bats, providing opportunities for pathogens 

to spread and increasing disease risk (Epstein et al., 2009; Mickleburgh et al., 2009; Harrison et 

al., 2011).  

The entire genus Pteropus is listed under the Convention for International Trade of 

Endangered Species (CITES) Appendix II (CITES, 1989) to provide protection against illegal 

international trade, though no protection within their native countries. Some Pacific island 

species have been listed as Appendix I due to overhunting for the commercial bushmeat trade 

across international borders prior to the 1980’s (CITES, 2014): P. insularis (now P. pelagicus, 

see Buden et al., 2013), P. loochoensis, P. mariannus, P. molossinus, P. pelewensis, P. pilosus, 

P. samoensis, P. tonganus, P. ualanus, and P. yapensis. In sum, 85% of the genus is classified by 

IUCN in a threatened category or Data Deficient (Fig. 1.1) (IUCN, 2014). Several species listed 

as of Least Concern likely warrant further study because their population trends are either 
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unknown (P. neohibernicus, P. admiralitatum), populations appear to be decreasing (P. 

hypomelanus, P. giganteus), or their reported population trends represent a combined, global 

measure of species status without taking recent population crashes or other threats into account. 

For instance, the death of thousands of P. alecto in Australia due to extreme heat waves, as 

documented recently by Welbergen et al. (2008, 2014), and intensive bushmeat hunting in 

Sulawesi, Indonesia as documented in Sheherazade & Tsang (2015) threaten different 

populations locally in a way that may affect their global conservation status.  

Conservation Implications of Revised Taxonomy 

 Due to the lack of recent study and much historical confusion regarding species identities, 

clarification of taxonomic issues will make conservation management easier for non-

taxonomists. The benefits of accurate taxonomic delineation and creation of unambiguous keys 

to Pteropus conservation are immediately apparent. Appendix II species are listed to protect 

similar-looking species as a way of discouraging illegal wildlife trafficking, and Pteropus clearly 

suffer from being indistinguishable to non-experts due to high levels of morphological similarity. 

An easily navigable dichotomous key would be invaluable to wildlife management authorities 

and forestry staff for monitoring illegal trade or local population trends. Pteropus bats are 

charismatic species for public outreach and conservation efforts, but an accurate guide to these 

species cannot be made without revising the currently flawed taxonomy. 

 International conservation legislation requires focuses on the rank of species, and an 

updated understanding of Pteropus taxonomy is therefore essential for accurate assessment of 

conservation priorities. This is a pressing issue as poorly defined species complexes and 

understudied species will not have access to resources that may help conserve their habitats or 

populations (Bickford et al., 2007). As human populations continue to grow exponentially and 
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encroach into natural habitats, new species are as likely to be discovered in a bushmeat market as 

in a forest (e.g. Sanamxay et al., 2013). Despite Southeast Asia being home to multiple 

biodiversity hotspots and facing dire environmental issues, biodiversity research still lags behind 

that of other tropical regions and is sorely needed (Sodhi et al., 2010; Wilcove et al., 2013). 

In the late nineteenth and early twentieth centuries, each newly discovered island 

population of Pteropus was often given a new name, though many were later synonymized with 

the species names in use today (Dobson, 1878; Andersen, 1912; Corbet & Hill, 1992). 

Understudied Pteropus populations require further examination, as they may represent multiple 

species (Almeida et al., 2014), but determination of species limits for most Pteropus have not yet 

incorporated molecular data. Recognition of cryptic taxa as distinct species is critical to the 

protection of island species, as demonstrated by the recent preventable extinction of Pipistrellus 

murrayi on Christmas Island, Australia (Lumsden, 2009; Martin et al., 2012). Similarly ill-

defined species designations exist within Pteropus. For instance, there is still discussion as to 

whether or not Pteropus melanopogon should be recognized as distinct from P. aruensis and P. 

keyensis (Flannery, 1995; Bergmans, 2001; Simmons, 2005)—a problem that can only be 

resolved with more research on this species complex. The revised phylogeny presented in this 

dissertation clarifies relationships among Pteropus species and also allows for identification of 

evolutionarily distinct lineages in support of further conservation action. 

To study evolutionary and biogeographic phenomena and provide a framework for other 

applied studies, my dissertation research addressed these foundational questions about Pteropus: 

1) What are the evolutionary relationships among species, and do molecular data corroborate 

previous classifications from morphology; 2) What is the age of the genus Pteropus; 3) Are 

lineages evolving at a uniform rate through time; 4) What mechanisms govern their distribution, 
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and how does geography affect speciation; 5) Does the inclusion of founder-event speciation 

affect the performance of models of ancestral area reconstruction; 6) What is the population 

structure of P. vampyrus, and what implications does this have for conservation and management 

actions; 7) What is the population structure of P. alecto and what implications does this have for 

conservation and management actions. 

Table 1.1. List of viruses previously isolated from Pteropus. Of these, in-depth studies about 
host dynamics exist only for P. alecto, P. giganteus, and P. vampyrus. 
 
Virus Name Bat species Country Citation 
RNA Viruses       
Flaviviridae 	  	   	  	   	  	  
GBD-V P. giganteus Bangladesh Epstein et al., 2010 
Japanese encephalitis P. alecto Australia van den Hurk et al., 2009 
Paramyxoviridae 	  	   	  	   	  	  
Nipah virus P. hypomelanus Malaysia Yob et al., 2001 
Nipah virus P. vampyrus Malaysia Yob et al. 2001 
Nipah virus P. hypomelanus Malaysia Chua et al., 2001 
Nipah virus P. giganteus Bangladesh Hsu et al., 2004 
Nipah virus P. lylei Cambodia Reynes et al., 2005 
Nipah virus P. rufus Madagascar Iehlé et al., 2007 
Tioman virus P. rufus Madagascar Iehle et al. 2007 
Tioman virus P. hypomelanus Malaysia Chua et al. 2001 
Hendra virus P. alecto Australia Halpin et al., 2000 
Hendra virus P. poliocephalus Australia Halpin et al. 2000 
Hendra virus P. rufus Madagascar Iehle et al. 2007 
Menangle P. alecto Australia Philbey et al., 2008 
Menangle P. poliocephalus Australia Philbey et al. 2008 
Menangle P. conspicillatus Australia Philbey et al. 2008 
Reoviridae 	  	   	  	   	  	  
Pulau virus P. hypomelanus Malaysia Pritchard et al., 2006 
Broome virus P. scapulatus Australia Thalmann et al., 2010 
Rhabdoviridae 	  	   	  	   	  	  
Lyssavirus P. alecto Australia Gould et al., 1998 
Lyssavirus P. hypomelanus Philippines Arguin et al., 2002 
DNA Viruses       
Adenoviridae   	  	   	  	  
Mastadenovirus P. dasymallus Japan Maeda et al., 2008 
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Figure 1.1 IUCN Red List status of Pteropus species. This summarizes species and names 
as they are understood by IUCN (2014) and may not represent taxonomic and 
nomenclatural changes made from more recent studies.  
	  



 

	  

10	  

CHAPTER 2 

Evolutionary relationships and nomenclatural changes of the genus Pteropus based on 

multilocus molecular evidence and species tree methods 

Abstract  

This study aims to resolve taxonomic issues and phylogenetic relationships within the 

genus Pteropus using molecular evidence, extensive sampling of Southeast Asian species, and 

species tree methods for reconstructing a phylogeny. This study includes five species that have 

never before been included in molecular analyses; their placement in the Pteropus phylogeny 

informs biogeography and conservation research. Pteropus species were found to belong to 

fewer distinct evolutionarily lineages than previously thought and were categorized into the 

following species groups following the species tree from this study: personatus, pelagicus, 

scapulatus, vampyrus, temminckii, griseus, and samoensis. The genus is only Miocene in age, 

with many short internodes, suggesting rapid radiations during the Plio-Pleistocene. This agrees 

with findings from BAMM (Bayesian Analysis of Macroevolutionary Mixtures), which suggest a 

relative increase within the genus in lineage divergence rates for the vampyrus, temminckii, 

griseus, and samoensis species groups. This species tree is the foundation of the biogeographic 

work completed for Chapter 3, and will also be used to provide better taxonomic keys for non-

experts to use by clarifying some confounding aspects of Pteropus relationships. Discordance in 

nuclear and mitochondrial signals suggest rampant incomplete lineage sorting issues, with some 

potential cases of hybridization as well in some lineages. However, due to the low genetic 

variability of Pteropus, these issues can only be addressed more rigorously in the future with 

high throughput sequencing data. 
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Introduction 

Previous Research 

 Traditionally, the genus Pteropus has been split into as many as 17 species groups based 

on morphological characters including pelage coloration, cranial morphology, and dentition 

(Andersen, 1912; Corbet & Hill, 1992; Francis, 2008). Andersen’s monograph was the last 

comprehensive treatment of the genus and was based on 956 skins, 444 alcohol specimens, and 

1228 skulls, with each species represented by at least one or a series of skulls (with the exception 

of P. aruensis). However, Pteropus species often lack unambiguous diagnostic morphological 

differences, and character variation is insufficient for use in phylogenetic reconstruction (Colgan 

& Flannery, 1995). In a study including over 4500 phenotypic characters, the Assembling the 

Tree of Life Mammals Project was able to score 2600 phenotypic characters in one species of 

Pteropus (O’Leary et al., 2013) but only 909 of these vary among the bats sampled, and fewer 

than 0.05% of these vary among species within the genus Pteropus. Even dental morphology, the 

most commonly used character system of mammalian systematics, is relatively uninformative in 

pteropodids. Giannini and Simmons (2005) were able to identify only 37 dental characters that 

vary within Pteropodidae, and most of these are invariant within the genus Pteropus.  

Species of Pteropus are distinguished morphologically by body size measurements 

(which may overlap among species), qualitative craniodental anatomy, and differences in pelage 

patterns (e.g., color of the ventral fur and neck ruff) that may also overlap among species 

(Andersen, 1912; Corbet & Hill, 1992; Flannery, 1995; Patterson & Webala, 2012). Andersen’s 

(1912) species groups, based on this limited subset of morphological information, often make 

very little sense from a biogeographic perspective. For example, the “livingstonii” species group 

consists of P. livingstonii, P. melanopogon, P. aruensis, and P. keyensis. P. livingstonii is found 
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in the Comoros near Madagascar and the other species all form a closely related species complex 

in the Moluccas in Indonesia (Simmons, 2005). More recent molecular data have resulted in 

regrouping P. livingstonii with another Mascarene species, P. voeltzkowi, instead (O’Brien et al., 

2009; Almeida et al., 2014). That two geographically distant species are morphologically similar 

to one another may be an example of convergence within the morphologically conservative 

Pteropus genus and do not reflect real evolutionary lineages. Although neither of these two 

studies included any P. melanopogon specimens, it is unlikely the P. melanopogon species 

complex is sister to P. livingstonii. The revised species groups from Almeida et al. (2014) more 

likely reflect monophyly, but many relationships remain unresolved (see Table 2.1 for old 

species group designations).  

Despite recent advances in genetic and phylogenetic methods, few molecular phylogenies 

have included Pteropus species from multiple biogeographic areas or species groups. Earlier 

molecular studies were unable to resolve species-level relationships among Pteropus, largely due 

to sparse taxon sampling and a dearth of genes for resolving such a young clade (Giannini & 

Simmons, 2005; Giannini et al., 2008). A more recent study included short fragments of 

mitochondrial cyt-b from rare or extinct Pteropus by using ancient DNA from museum skins 

along with available Genbank data for a total representation of 50 species (Almeida et al., 2014). 

In the full nuclear dataset from the same study, only 21 species were included in the final 

analysis. Almeida et al. (2014) classified Pteropus into 13 species groups, many of which were 

found in the same region of the world, unlike the species groups of Andersen (1912). Their study 

also provided the first evidence that there may be incomplete lineage sorting issues in Pteropus 

and that the genus had only experienced its most explosive radiations in the past one to two 

million years. 
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These data provide a starting point from which to consider the species history of the 

genus Pteropus in the present study. Previous studies fail to appreciate that: 1) gene trees can 

reflect the species tree and species history, but should not be treated as equivalent to species trees 

(Maddison, 1997), 2) species should not be represented by a single individual as it may not fully 

represent species genetic diversity (Edwards & Beerli, 2000; Edwards, 2009), 3) males and 

females may behave differently, resulting in sex-specific genealogical histories. This may be 

especially evident in mammals, which are known for sex-based dispersal and philopatry (e.g. 

Weyandt et al., 2005; Lausen et al., 2008; Clare, 2011). Previous studies also failed to take 

advantage of new advances in statistical analyses that allow for 1) the treatment of each gene as 

an independently evolving locus, 2) the inclusion of multiple individuals to represent a single 

species, and 3) incorporation of coalescent methods (Bouckaert et al., 2014). 

Table 2.1. List of species groups from this study as compared to those recognized in 
Andersen (1912) and Almeida et al. (2014). Putative placements based on morphological data 
are preceded by a question mark; those that are based on previous studies are in parentheses. 
Names used here are following Simmons (2005), Helgen et al. (2009), and Buden et al. (2013). 
Species marked with † are extinct. Species groups are similar to those in Almeida et al. (2014) 
and have been aligned by group names for ease of comparison. 
 
From this study Almeida et al. (2014) Andersen (1912) 
personatus group personatus group personatus group 
personatus ? personatus personatus 
lombocensis 

 
capistratus 

 
lombocensis group temminckii 

 lombocensis  
   
scapulatus group scapulatus group scapulatus group 
scapulatus scapulatus gilliardorum 
  mahaganus 
pelagicus group pelagicus group scapulatus 
molossinus macrotis woodfordi 
gilliardorum woodfordi  
woodfordi mahaganus molossinus group 
(pelagicus) gilliardorum lombocensis 
(macrotis) molossinus molossinus 
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(mahaganus) pelagicus rodricensis 
(tokudae†) tokudae†  
   
vampyrus group vampyrus group vampyrus group 
caniceps pselaphon giganteus 
chrysoproctus dasymallus intermedius 
melanopogon pumilus lylei 
poliocephalus rodricensis vampyrus 
dasymallus vampyrus  
pselaphon giganteus caniceps group 
pumilus lylei caniceps 
giganteus aldabrensis  
rufus rufus livingstonii group 
lylei seychellensis aruensis 
vampyrus niger keyensis 
niger  melanopogon 
(livingstonii) livingstonii group livingstonii 
(voeltzkowi) livingstonii  
(seychellensis) voeltzkowi niger group 
(aldabrensis)  aldabrensis 
(rodricensis)  niger 
? subniger†  rufus 
? keyensis  seychellensis 
? aruensis  voeltzkowi 
? argentatus   
 poliocephalus group poliocephalus group 
 poliocephalus macrotis 
  pohlei 
  poliocephalus 
   
samoensis group samoensis group samoensis group 
anetianus nitendiensis anetianus 
capistratus tuberculatus samoensis 
rayneri anetianus  
samoensis fundatus pselaphon group 
vetulus samoensis pelagicus 
(rennelli) rayneri nitendiensis 
(cognatus) cognatus pilosus† 
(nitendiensis) rennelli pselaphon 
(fundatus) ? brunneus† tokudae† 
(tuberculatus) ? pilosus† tonganus 

 
? coxi† tuberculatus 

 ? allenorum† vetulus 
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 vetulus group chrysoproctus group 
 vetulus argentatus 
  chrysoproctus 
temminckii group capistratus group cognatus 
temminckii capistratus fundatus 
 ennisae rayneri 
 temminckii rennelli 
   
griseus group griseus group mariannus group 
alecto hypomelanus loochoensis 
ocularis griseus mariannus 
hypomelanus speciosus pelewensis 
griseus neohibernicus ualanus 
admiralitatum conspicillatus yapensis 
conspicillatus alecto  
neohibernicus tonganus alecto group 
tonganus ualanus alecto 
pelewensis admiralitatum  
(speciosus) pohlei conspicillatus group 
(mariannus) mariannus conspicillatus 
(ualanus) pelewensis ocularis 
(pohlei) ? howensis  
 ? faunulus neohibernicus group 
  neohibernicus 
 ornatus group  
 ornatus subniger group 
  admiralitatum 
group incertae sedis group incertae sedis brunneus† 
ornatus melanotus dasymallus 
melanotus melanopogon faunulus 
howensis keyensis griseus 
faunulus aruensis howensis 
brunneus† argentatus hypomelanus 
pilosus† caniceps ornatus 
coxi†  pumilus 
allenorum† 

 
speciosus 

 
 subniger 

 
  

 
 melanotus group 

  melanotus 
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Previous studies also did not have access to many species from Southeast Asia, 

particularly Indonesia, which is a hotspot of Pteropus species diversity (Simmons, 2005). As 

mentioned earlier, approximately one-third of all recognized Pteropus species are native to 

Indonesia (21 of the 65), and 12 are found in no other country (Suyanto, 2001). Besides being 

home to such a diversity of species, the archipelagic nature of Indonesia has apparently led to a 

variety of subspecies isolated on remote islands (Andersen, 1912; Corbet & Hill, 1992). Some of 

these species may be better recognized as full species, pending further scientific review. This 

includes 9 of 16 subspecies of the P. hypomelanus species complex and 6 of 7 subspecies of the 

widespread P. vampyrus (Mickleburgh et al., 1992). In terms of individuals from Indonesia, 

molecular data are available for only three species: P. hypomelanus (O’Brien et al., 2009), P. 

griseus, and P. lombocensis (Almeida et al., 2014). Other genetic data available for Indonesian 

species has come from populations in other countries or biogeographic areas (e.g. P. alecto from 

Australia and P. vampyrus from Almeida et al., 2014). Missing data from taxa and populations 

across such an important and broad area as Indonesia undoubtedly skews phylogenetic and 

biogeographic inferences (Wiens, 2003). 

Synthesis of Population Genetics and Phylogenetics—the Case for Species-Tree Methods 

 In the past decade, systematists have recognized that synthesis with population genetic 

theory was necessary for resolving phylogenies that more accurately reflect the true species 

history. It is now broadly accepted that that species evolve as multiple individuals in a 

population, and that each locus is an independently evolving entity (Edwards & Beerli, 2000). 

The need to move away from gene trees towards species tree methods was also necessary for 

decreasing methodological artifacts and increasing the rigor of models employed in such 

investigations (Edwards, 2009). Species-tree methods may assist in determining if gene-tree 
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discordance may be due to lineage sorting, introgression (e.g. gene flow, hybridization), 

differences in mitochondrial or nuclear genetic inheritance, and allow for the incorporation of 

uncertainty around the data (Drummond & Rambaut, 2007).  

It may also be the case that topologies in a phylogeny are largely driven by a single gene 

and the dominance of the phylogenetic signal by a single locus may not be evident if all data 

were concatenated (Edwards, 2009). Single-gene species-delimitation methods do not provide 

sufficient levels of evidence that species boundaries exist, and often overestimate species by 

splitting them into too many mitochondrial clades (Song et al., 2008; Lohse, 2009). However, the 

opposite problem exists in African pteropodids, where it has been shown that mitochondrial 

genes may not be able to distinguish species (Cruaud et al., 2011). Species delimitation requires 

a suite of independently evolving genes and traits to be accounted for when determining where 

boundaries exist (Fujita et al., 2012), something that cannot be done with a single marker. DNA 

barcodes suggest that the biodiversity of Southeast Asia may be underestimated due to the 

existence of cryptic species that require further study (e.g. Lohman et al., 2010). Subsequent 

collection of data from multiple independently segregating markers increase rigor of species 

delimitations made on the basis on genetic data, and are necessary to detect lineage sorting and 

hybridization (Yang & Rannala, 2010). Ideally, identification of species combines multiple lines 

of evidence (e.g., molecular, morphological, behavioral, or acoustic data), and genealogical data 

are now commonly only the first step in differentiating closely related species. 

Methods 

Taxonomic Sampling 

The total dataset of 188 individuals included multiple individuals of Pteropus species, 

resulting in 39 ingroup taxa. Individuals from the genera Macroglossus, Rousettus, Nyctimene, 
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Syconycteris, Chironax, Dobsonia, and Acerodon were included as outgroups to root the tree 

based on what is known of generic relationships within Pteropodidae (Almeida et al., 2011). 

Typically, addition of multiple individuals is more effective in increasing the accuracy of species 

tree estimates than addition of multiple loci for recent divergences (Knowles & Kubatko, 2011). 

Previous research on Pteropus suggests that it is a young clade (Almeida et al. 2014), therefore, 

where possible, multiple individuals were sampled. 

Sample Acquisition 

Tissue Loans 

 Tissue sample loans were obtained from the Lubee Bat Conservancy (LBC), Natural 

History Museum of Los Angeles County (LACM), Museum Zoologicum Bogoriense 

(Indonesian Institute of Sciences, MZB), National Museum of the Philippines (NMP), Lee Kong 

Chian Museum of Natural History (formerly Raffles Museum of Biodiversity Research, 

Singapore, RMBR), Museum of the North (University of Alaska, Fairbanks, UAF), National 

Museum of Natural History (Smithsonian Institution, USNM), University of Wisconsin Madison 

Zoological Museum (UWZM), and Western Australian Museum (WAM). These supplemented 

loans previously granted to Nancy B. Simmons, Francisca C. Almeida, and Kristofer M. Helgen: 

American Museum of Natural History (AMNH), Australian Museum (AM), Carnegie Museum 

of Natural History (CMNH), Field Museum of Natural History (FMNH), Museum of Vertebrate 

Zoology (University of California, Berkeley, MVZ), Royal Ontario Museum (ROM), and 

USNM. Pteropus pselaphon and P. dasymallus specimens from Okinawa could not be exported 

from Japan and lab work was conducted by Norimasa Sugita at the National Museum of Nature 

and Science, Tokyo (NSMT). 

Field Collection 
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Few if any tissue samples of Pteropus were collected from Indonesia and the Philippines prior to 

2012.  We therefore conducted extensive fieldwork to fill in geographic and taxonomic gaps 

(Fig. 2.1). A full list of specimens is provided in Appendix 2.1. Methods were approved by the 

IACUC committee at City College of New York—CUNY through protocol No. 896.2 to D.J. 

Lohman and S.M. Tsang. Permits for fieldwork were obtained from the Ministry of Foreign 

Research and Technology and the Ministry of Forestry in Indonesia, and the Department of 

Environment and Natural Resources and the Biodiversity Management Bureau in the Philippines. 

Since all Pteropus are protected by CITES, I worked with only CITES-approved institutions in 

each country to ensure that I could receive tissue samples through the AMNH, which is a 

CITES-approved institution. Lab work took place at the Cullman and Monell Laboratory at 

AMNH. Import permits from U.S. Fish and Wildlife Services and Centers for Disease Control 

and Prevention were obtained prior to specimen transport.  
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Potential roost sites were found by contacting local forestry rangers and researchers for 

information on if there were any Pteropus sighted near the area, with subsequent tracking and 

confirmation conducted by the field team and myself. Georeferenced locality data for field sites 

were collected using a Garmin Oregon 550 handheld GPS (available from author upon request). 

After locating roost sites, the exit trajectory of each flying fox colony was observed to determine 

optimal locations for mist net placement. Potential nearby foraging sites were located and 

searched for stands of fruit with telltale marks of bat foraging such as large bites and scratched 

trees. Canopy mist nets were set up 20 to 30 m above the ground by tying the nets to a pole 

extending above the highest trees. A 6 m, 9 m, or 12 m net was used depending on the distance 

 
 
Figure 2.1. Map of Pteropus specimens used for this study. Orange dots are museum 
loans, green dots are fresh tissue samples from recent field expeditions.	  
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between trees in the flyway. When bats were caught in the mist net, the pulley was immediately 

lowered to extract the bat and raised again until the desired number of individuals were 

captured—two males and two females. This sampling goal was influenced by both theoretical 

and practical considerations. While multiple individuals are necessary, typically, the return in 

species tree estimation from adding too many individuals diminishes rapidly (Heled & 

Drummond, 2010). Theory and simulation studies suggest that most genes will coalesce within 

five coalescent units, meaning five individual intraspecific lineages are sufficient for capturing 

the species’ genetic diversity (Patel et al., 2013). Additionally, too much commotion from setting 

up mist nets repeatedly may repel bats and may disperse the colony from a roost (pers. obs.).  

Identification of species in the field followed comparisons of external character 

measurements and qualitative traits with descriptions and data from original diagnoses including 

those in Andersen (1912), Corbet & Hill (1992), and Suyanto (2001). Upon returning from the 

field, species identities were confirmed with additional cranial examinations. 

After capture, each bat was placed in a white cloth bag. Holding bags were occasionally 

sprayed with water to keep bats comfortable while they awaited processing. Bats were weighed 

using spring scales while in the cloth bag. External morphological features were measured in the 

field using digital calipers: head and body length (HB), tail length (TAIL), ear length (EAR), 

forearm length (FA), tibia length (TIB), and hind foot length without claw (HF).  

A 4 mm2 wing punch was taken from both wings of each individual; one was preserved 

in 95% ethanol and the other in RNAlater. Fecal samples were collected opportunistically from 

cloth bags.  Oral swabs and anal swabs of each individual were taken for viral assays. A dry hair 

sample from the mantle was taken using iris scissors. All samples were labeled with the same 

field number. Bat ectoparasites were collected whenever they were encountered and preserved in 



 

	  

22	  

95% ethanol for later identification. These included bat flies (Diptera: Nycteribiidae), ticks 

(Ixodida: Argasidae), and mites (Acari). Duplicate batflies were preserved in RNAlater for later 

genomic analyses related to their potential as an intraspecific pathogen vector. We also collected 

environmental samples opportunistically at roost sites where possible for later genomic analyses 

of viruses that could potentially be transmitted through feces or ejecta (seeds and other half-eaten 

material spat from the mouth). Other incidentally captured pteropodids were sampled and then 

released after providing a sugary treat to the bat. Voucher specimens were deposited in museums 

in the countries of collection (MZB and NMP). At some sites, additional tissue samples were 

taken from salvaged individuals (e.g., hunting remains, fallen juveniles), but these specimens 

were not always intact. Tissue samples were deposited at the Ambrose Monell Cryo Collection at 

the American Museum of Natural History (AMNH) for long-term storage. 

Traditional Collecting Methods 

At some sites in Indonesia, local laws required the use of traditional methods to capture 

flying foxes to restrict the number of individuals taken. These laws were in place to prohibit the 

use of guns to ensure the continued residence of the colony at the site. However, this also meant 

that we were not permitted to use mist nets. At other sites, such as some offshore mangrove 

islands, mist net placement was not logistically possible. The following section describes 

traditional methods used at each site, which supplemented or replaced mist netting of bats due to 

these limitations. These details were also documented below as they may be of interest to 

conservation biologists or anthropologists. 

Tomoli, Sulawesi Tengah 

Pulau Kelelawar is an offshore mangrove island with a large colony of P. alecto and Acerodon 

celebensis near the village of Tomoli in Central Sulawesi. The bats move between three 



 

	  

23	  

mangrove islands from year to year and the villagers place large bamboo poles (about 6 m in 

height) around the island the bats are occupying. A monofilament line is drawn loosely between 

each of these poles and fishing hooks are placed intermittently to catch the bats as they fly to and 

from the roost. The pole is lowered to bring the line down and the bat is taken. Since we were not 

allowed to capture bats at this site and this is a regular practice by the villagers, we sampled 

individuals captured by villagers.  

Olibu, Sulawesi Utara 

Olibu is a small, remote village nested between the mountains of Northern Sulawesi near 

Paguyaman. There is a large mangrove island with a mixed colony of P. alecto and A. celebensis. 

The locals trade the bats once a week in distant markets and are protective of the bats as a natural 

resource, even fighting off the army the year prior to our visit when soldiers tried to kill all the 

bats for food. A large nylon net controlled by a pulley system is set up across the entire width of 

the entrance of the mangrove (about 25 m). When the bats emerge, they are caught in the nets 

and brought back to shore. The bats are kept alive in a shed close to the village until they are 

brought to the market. Since we were not allowed to disturb the bats at their roosting site, we 

sampled individuals housed in the shed. 

Situ Lengkong, Panjalu, Jawa Barat 

Situ Lengkong is a large, freshwater catchment lake in the mountains (749 m) in the village of 

Panjalu in West Java. A colony of P. vampyrus lives on a forested island in the middle of the 

lake, though some individuals were seen occupying trees onshore during the day and perching at 

the lake shore when exiting at dusk. The lake is a culturally important site—pilgrims visit every 

day to pray and fetch holy water from the spring on the island. According to local lore, an 

ancient king brought the water back from Arabia along with Islam, and he is thought to be buried 
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in the area, though his gravesite is unknown. His son and many other important figures are 

buried in a cemetery along the route the pilgrims take up to the prayer site. The dense vegetation, 

varied elevation, and throngs of pilgrims made capture of bats with mist nets difficult. Some 

local people told us that they captured bats using kites. One or two people would get into a small 

kayak or stay onshore closest to the island and fly a kite. The kite is flown high into the air with a 

hook on the line. When a bat nears the kite, the villagers would swing the kite towards the bat to 

catch it on its wing. The bat then falls into the water and the villagers quickly row over to fetch 

it. We sampled two P. vampyrus through this method. It is also common practice for the local 

guides to rehabilitate juveniles by raising them as pets if they find fallen from the roost tree, 

which allowed sampling of wing punches from an additional individual.  

Kintamani and Alas Kedaton, Bali 

Local religious and cultural beliefs prevented us from taking any vouchered specimens, as 

Hindus frown upon killing animals. At Kintamani, a coffee plantation farmer had found an 

orphaned P. vampyrus two years ago in a nearby forest and since kept it as a pet. We were 

permitted to take a wing punch and take feces and ejecta found in its enclosure. At Alas 

Kedaton,, a colony of P. vampyrus is in residence in the forest behind the temple. During the 

day, a small group of bats descends to a manmade branch about a meter in height made by the 

locals for their “bat show.” The bats allow the locals to handle them and tourists may approach 

and take photographs. They will even follow simple hand signals and calls in exchange for fruit 

rewards, with some wearing loose bracelets on their necks and responding to names. At dusk, the 

bats all return to the tree. The relationship between the people and the bats is symbiotic. As a 

result, we had permission to only take a single wing punch from each bat.  

Cokrowati, Jawa Timur 
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There is only a single P. vampyrus colony of approximately 200 individuals at this site. The 

villagers believe that the bats are magical, consuming them only occasionally as medicine for 

respiratory diseases and as a panacea for good health. Only one or two bats are taken under these 

circumstances, and only by special request of sick people. The night roosting site is atop a small 

mountain and overlooks a cliff, though the colony splits into two smaller groups during the day. 

One of the day roosts is near a cemetery, whereas the other is in the middle of farmland, at a 

mausoleum to the first village chief. The day roosts were at flatter sites than the night roost, but 

since the trees were too tall at the day roosts for mist nets and we were not permitted to disturb 

these sites for cultural reasons, capture had to be at the main roost. Hence, I set up a 12 m raised 

mist net near the roost at an exit point, but difficulties in capture on such steep terrain required 

the use of kites again. Similar to the method employed at Situ Lengkong, the villagers would run 

the kite into the bat to bring it down before restraining it. I was able to sample two individuals of 

P. vampyrus using this method. 

Pematang Gedung, Kalimantan Barat 

The P. vampyrus colony was located at the center of a system of meandering rivers surrounding 

very dense mangrove forests. The water levels of the river vary as the tide levels changed 

throughout the course of the day, and it was deemed impossible to enter the mangrove forest to 

check nets after dusk because the water would have risen too high and there was the possibility 

of conflict with crocodiles. The colony was located on the far side of the mangrove forest, which 

could not be reached by boat. Instead, one of the locals traversed the mangrove forest alone, so 

as to not disturb the colony, and used a slingshot to fell the flying foxes. I was able to sample two 

individuals of P. vampyrus using this method. 

Laboratory Methods 
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I extracted DNA from fresh tissue samples using a QIAgen DNEasy Blood & Tissue Extraction 

Kit. Some museum loans were from samples that were not preserved using best practices (e.g., 

kept in unrefrigerated, dilute ethanol for several years). These samples were extracted in a fume 

hood dedicated to ancient DNA extractions to decrease the possibility of contamination using a 

modified protocol of the QIAgen DNEasy Extraction Kit with 1X PBS to increase yield, 

decrease PCR inhibitors, and prevent contamination. I used variable autosomal markers with 

highly conserved priming sites for this study: ATP7A, PLCB4, BDNF (Eick et al., 2005); 

STAT5A (Piaggio & Perkins, 2005); RAG-1, RAG-2 (Giannini et al., 2008). I also included 

COPS7A-4, a variable mammalian intron with a conserved priming site (Igea et al., 2010). Two 

variable mitochondrial markers commonly employed in vertebrate phylogenetics were also 

sequenced: cyt-b (Kocher et al., 1989) and D-loop (Brown et al., 2011). These standard 

chiropteran loci were included to facilitate use of the data in future higher-level phylogenetic 

analyses. The combination of all loci resulted in 7626 bp per specimen of genetic data for 

analyses. Thermal cycle protocols for each gene were as follows: 35 cycles of initial denaturation 

at 95º C for X min, annealing for 30 s, extension at 72º C for 2 min; then a final extension at 72º 

C for 3 min. Annealing temperatures for each primer are listed in Table 2.2. Successfully 

amplified PCR products were cleaned using ExoSAP or a vacuum manifold. Products were run 

on an Applied Biosystems 3730xl automated sequencer. Genes were aligned using Geneious 

5.4.3 and MAFFT 7.0 (Katoh & Standley, 2013).  

 

 



 

	  

27	  

Analytical Methods 

Haplotypes for each nuclear gene were estimated probabilistically using PHASE 2.0 

(Gowri-Shankar & Rattray, 2007) for 20,000 iterations for 10 runs. The program jmodeltest2 

(Darriba et al., 2012) selected appropriate genetic substitution models using a corrected Akaike 

Information Criterion (AICc; Table 2.3) for use in maximum likelihood and Bayesian 

phylogenetic reconstructions. Trees of the total taxon set of 188 individuals, including outgroups, 

were inferred using a partitioned MrBayes 3.2 analysis (Ronquist & Huelsenbeck, 2003), 

Table 2.2. Primers and annealing temperatures for each of the genes used for species tree 
analysis. Annealing temperatures are based on optimization experiments for Pteropus from this 
study and may vary for different genera. Primers on the first line are forward primers; primers 
on the second line are reverse primers. 
 

Gene  TA (°C) Primers Size 
ATP7A 52 TCCCTGGACAATCAAGAAGC 671 
    AAGGTAGCATCAAATCCCATGT   
BDNF 55 CATCCTTTTCCTTACTATGGTT 558 
    TTCCAGTGCCTTTTGTCTATG   
cyt-b (part 1) 49 CGAAGCTTGATATGAAAAACCATCGTTG 1140 
    AGTGGRTTRGCTGGTGTRTARTTGTC   
cyt-b (part 2) 49 CATGAGGACAAATATCATTCTGAGG   
    TCTTCATTTYWGGTTTACAAGAC   
D-loop 55 GCTGAGGTTCTACTTAAACT 420 
    GAGATGTCTTATTTAAGGGG   
FGB7 55 CCACAACRGCATGTTCTTCAGCAC 595 
    GTATCTGCCATTTGGATTGGCTGC   
PLCB4 55 GTGAAATTGGAAGCCGAGAT 309 
    CACCAAGCTCATTTACTTGTGA   
PSMB8 52 CCACTCAGGGACTGGAAGAA 854 
    TCGGACCCTGGACACTACA   
RAG-1 55 GCTTTGATGGACATGGAAGAAGACAT 1058 
    GAGCCATCCCTCTCAATAATTTCAGG   
RAG-2 55 GATTCCTGCTAYCTYCCTCCTCT 747 
    CCCATGTTGCTTCCAAACCATA   
STAT5A 55 CTGCTCATCAACAAGCCCGA 493 
	  	   	  	   GGCTTCAGGTTCCACAGGTTGC 	  	  
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discarding the first 25% of trees as burn-in. MCMC runs from multiple chains of MrBayes were 

tested for topological convergence using Are We There Yet? (Nylander et al., 2008).  

To compare results using different reconstruction methods, trees were inferred with the 

same dataset using TNT (Goloboff et al., 2008) and RAxML-VI-HPC (Stamatakis, 2006) for 

maximum parsimony and maximum likelihood methods, respectively. Individual gene trees for 

each locus were run prior to the species tree run in both RAxML and MrBayes to detect potential 

anomalies in the dataset and ensure potential lineage sorting issues or introgression would be 

detected. The final species tree was estimated with *BEAST implemented in BEAST 2 

(Bouckaert et al., 2014) with a reduced taxon set of 104 individuals that excluded specimens 

lacking sequence data for some markers (with the exception that one sample of P. niger was 

included despite missing data, as it was the only representative of its species). The tree model 

utilized a relaxed clock birth-death model. In the case of the widespread species, P. hypomelanus 

and P. alecto, populations (some of which corresponded to known subspecies) were treated as 

distinct operational taxonomic units (OTUs). Gene flow between species units violates the 

Table 2.3. Models of evolution for each gene. Model selection was based on AICc scores. 
The two mitochondrial genes were tested separately in jmodeltest2 since it is known that D-
loop broadly evolves at much more rapid rate than cyt-b in bats. Best models did not vary 
greatly except for cyt-b and PLCB4. 
 

Gene AIC AICc BIC 
ATP7A GTR+G HKY+G TrN+G 
BDNF TrN+G K80+G K80+G 
COP7A4 TrN+G TrN+G TrNef+G 
cyt-b GTR+G JC GTR+G 
D-loop TrN+G TrN+G TrN+G 
FGB7 TVM+G HKY+G HKY+G 
PLCB4 GTR+G JC GTR+G 
PSMB8 TIM2+G K80+G TrNef+G 
RAG1 TIM2+G TIM2ef+G TrNef+G 
RAG2 TVM+G TPM1+G TPM1+G 
STAT5A TIM3+G K80+G TPM3+G 
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species delimitation methods’ assumption of no introgression, therefore, the mitochondrial data 

could not be used in species tree estimates. Markov chain performance for species trees was 

verified using Tracer (to ensure ESS values above 200, appropriate level of burn-in, and chain 

convergence). This required combining multiple *BEAST runs with the same parameters, for a 

final completed run of over 2 billion generations.  

There are insufficient fossil data to calibrate the tree near the crown clades of 

Pteropodidae. Instead, the species tree was calibrated using secondary calibrations from Almeida 

et al. (2014), a study which used cyt-b (the only gene with a substitution rate estimated from 

fossil splits of Myotis nattereri and M. schaubi at 6 mya and M. daubentonii and M. bechsteinii 

at 5 mya) under a relaxed clock model implemented in BEAST to estimate the divergence times 

for Pteropus clades. The divergence times used for the present study were the Acerodon-

Pteropus split (µ = 8.01 mya, σ = 1.2) and two local calibrations that corresponded to clades 

found in earlier Bayesian runs (P. gilliardorum-P. woodfordi, µ = 0.93 mya, σ = 0.1; and a 

“widespread species” clade consisting mostly of the vampyrus species group, µ = 4.44 mya, σ = 

0.2). These splits were chosen since they were the most consistently recovered nodes from all 

tree reconstruction methods.  

Discordance between markers was examined in PhyloNet (Yu et al., 2012, 2014a) to 

determine whether incomplete lineage sorting or hybridization was to blame for conflicting 

signal. PhyloNet uses established methods for minimizing deep coalescence (Maddison & 

Knowles, 2006) by using gene trees along with sequence data to test for both incomplete lineage 

sorting and hybridization in reticulate phylogenetic networks. I tested for discordance in two 

separate species trees: one estimated from the nuclear data only and one from the combined 

nuclear and mitochondrial data.  
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Species limits were defined following the Metapopulation Lineage Species Concept 

(MLSC, de Queiroz, 2005), which states that each independently evolving metapopulation 

lineage is a species. Almeida et al. (2014) suggests that there are potential incomplete lineage 

sorting and hybridization issues, meaning that reciprocal monophyly may not be the best 

indicator of species limits. The MLSC recognizes that sister species may be on a continuum of 

differentiation and may not have all the characteristics that other species concept require to 

delimit species. This species concept recognizes the potential for incomplete lineage sorting to 

occur and does not rely on monophyly as a criterion for defining species, making it compatible 

with species tree methods (Edwards, 2009). Species designations were validated using Bayesian 

species delimitation methods implemented in BPP 2.2 (Yang & Rannala, 2010) and Brownie 

(O’Meara, 2009). Additional morphological, biogeographic, or behavioral information was taken 

into account when considering what are the diagnosable characters to consider something a full 

species. Each of these two analyses was conducted three times with different starting seeds to 

confirm results. BPP 2.2 was run for 1,000,000 generations with a sampling frequency of 5 

discarding the first 25,000 generations as burn-in. The *BEAST species tree was used as the 

guide tree and species delimitation was set to 1 (rjMCMC species delimitation). A rjMCMC 

analysis treats the mixture components as a model parameter instead of assuming they are fixed. 

The algorithm was set to 0, and with a fine-tuning parameter (ε) of 10 since low ε values may 

result in poor mixing (e.g., cannot move between models) in large datasets. Species 

distinctiveness was further confirmed based on available morphological measurements and 

qualitative external characteristics. For the Brownie analysis input, gene trees were generated 

from the MrBayes runs and converted to ultrametric trees using the R package ape, for input into 

Brownie. A heuristic search was run for 100,000 generations. This method assumes that the 
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topology of the most probable gene tree agrees with the species tree and aims to minimize 

intraspecific genetic discordance, and its results must be treated cautiously, since Bayesian and 

ML analyses identified conflicting signals among gene trees. 

Of all pteropodid genera, Pteropus exhibits unusually high species diversity, especially in 

Wallacea and the South Pacific (Corbet & Hill, 1992; Flannery, 1995). Despite being species 

rich, Pteropus species exhibit relatively low morphological variability at the genus level, leading 

to a prediction of a higher rate of diversification than expected. To test this hypothesis, I 

implemented diversification analyses in BAMM (Rabosky et al., 2014), a rjMCMC parameter 

estimation method to detect branch-specific diversification rate shifts. Starting parameters were 

estimated using the R package BAMMtools. Additional specimens of both ingroup and outgroup 

species were included to reach a minimum of seventy species required to increase inferential 

accuracy. The results of BAMM analyses of the 70-taxon tree were compared to the *BEAST 

species tree; they were topologically similar. Therefore, the ranked results presented here the 

four most credible rate shift scenarios generated by analyzing the *BEAST species tree. 

Analyses of trait evolution were not implemented in BAMM since morphological data for some 

species represented by loaned tissue samples were not available. The analysis was simulated for 

10 million generations with a sampling frequency of 10,000, discarding the first 10% as burn-in. 

Multiple rate shift configurations were compared using BAMMtools to calculate posterior odds 

ratios and rank all potential models by posterior probabilities. Comparisons of the null model (no 

rate shift) to alternative models of rate shifts were compared using Bayes factors. 

Results and Discussion 

Topologies of the Bayesian and ML inferred gene trees (Appendix 2.2) generally agreed with 

one another, along with the reconstructed species tree (Fig. 2.2), with a few notable exceptions 
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that are discussed in greater detail in the species-level 

findings section below. All putative species were verified as 

separate species by BPP 2.2 except for P. yapensis and P. 

ennisae (discussed further below). Concatenated datasets 

methods were unable to provide rigorous support for some of 

these contentious nodes, likely due to the conflicting 

phylogenetic signals and/or low genetic variation. Notable 

differences in topology for each species group are discussed 

below in separate sections below. Nuclear markers generally 

agreed with one another. However, mitochondrial data 

produced a substantially different topology from any nuclear 

gene (Fig. 2.3). Nucleotide diversity of nuclear genes was generally low, and this faint 

phylogenetic signal was unable to resolve a completely bifurcating tree; several polytomies 

remain. There was little mitochondrial genetic variability within species, but considerable 

distance between species. There was an order of magnitude of difference in the nucleotide 

diversity of the nuclear and mitochondrial genes (Table 2.4). Divergence time estimates in the 

species tree had low support and the 95% range of credible time estimates for each node were 

generally overlapping. The relatively recent, late Miocene age of the genus (Almeida et al., 

2014), its subsequent rapid radiation, lack of fossil calibrations, and low genetic variability 

complicate efforts to estimate a time-calibrated phylogeny. Divergence time estimates should 

therefore be interpreted with caution.

Table 2.4. Nucleotide 
diversity (π) of nuclear and 
mitochondrial genes.  
 
Gene π 
mitochondrial 
cyt-b 0.09148 
D-loop 0.41537 
nuclear 

 RAG-1 0.01156 
RAG-2 0.01227 
STAT5A 0.02984 
PLCB4 0.01393 
BDNF 0.00353 
FGB7 0.01608 
PSMB8 0.01469 
COPS7A4 0.01921 
ATP7A 0.00740 
	  



	  

 
Figure 2.2. Species tree of the genus Pteropus reconstructed using BEAST2, simulated for 2 
billion generations with 25% burn-in. Species groups are listed on the right. Thick black lines 
represent well-supported nodes from all analyses (posterior probabilities ≥ 0.9 from BEAST and 
MrBayes analyses, bootstrap values ≥ 70 from RAxML and TNT analyses). Thin black lines 
represent nodes well supported by the species tree and Bayesian analyses only. Green lines 
represent nodes well supported by the species tree, Bayesian, and ML analyses only. Blue lines 
represent nodes well supported by the species tree, Bayesian, and MP analyses only. Red lines 
represent nodes well supported by the species tree only. Dashed black lines represent nodes that 
are well supported by ML and MP analyses only. Dashed red lines represent nodes that have low 
support values from all analyses. Timescale should be used with caution, as divergence estimates 
were based on secondary calibrations and were not well supported by the BEAST analysis.  
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Figure 2.3 Different topologies produced from mitochondrial data using different 
reconstruction methods. A) Species tree from BEAST2 including mitochondrial data. Asterisks 
mark significant departures from nuclear data only species tree. B) Mitochondrial data only tree 
inferred from RAxML. Outgroups were condensed due to high level of divergence. 
Mitochondrial gene trees from MrBayes and TNT were similar and omitted for clarity. Gene 
trees had low intraspecific variability with long branches between species, resulting in the 
vampyrus species group taxa collapsing into a large polytomy in both the Bayesian and MP 
analyses. Paraphyly in gene trees often correspond to where there were significant departures in 
the species tree with mitochondrial data. 
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Discordant signals between the mitochondrial and nuclear data may be caused by 

hybridization or incomplete lineage sorting. The greater number of changes in the mitochondrial 

data can overwhelm the nuclear signal, thereby biasing the topology of the species tree that 

utilized both types of molecular data. Based on the PhyloNet analysis, all genes had evidence of 

incomplete lineage sorting, however, different populations of Australian Pteropus may also have 

hybridized recently. This will be tested more rigorously in Chapter 5. The young age of Pteropus 

(e.g. shallow divergences) and colonial nature of most species likely resulted in large ancestral 

effective population sizes, which increases the likelihood of incomplete lineage sorting. Species 

designations were generally supported by BPP analyses, though Brownie was unable to 

differentiate conventionally recognized species: Pteropus was divided into just three major 

groups (vampyrus, samoensis, and griseus). Brownie works by attempting to minimize 

intraspecific genetic structure, which might explain its poor resolving power with this dataset. 

Markers analyzed in this study had such a low degree of variation that further minimizing 

genetic structure resulted in loss of signal.  

Species-level findings 

By increasing the number of species sampled, the species group organization of Pteropus 

results in far fewer species groups than suggested by Almeida et al. (2014), where 7 out of 13 

species groups were monotypic. Species groups in the present study were monophyletic 

groupings designated using unifying morphological, ecological, and behavioral characteristics, 

with only a small handful of exceptions in large species groups. These species groups are: 

personatus, pelagicus, scapulatus, vampyrus, temminckii, griseus, and samoensis (Table 2.1). 

Each of these groups is named for the oldest species name in each group. Support values 

reported in the text are the posterior probabilities from the species tree only, see Fig. 2.2 for more 



	  

	  

37	  

details on nodal support from other methods. External morphological measurements used for 

species identification from newly captured specimens are reported in Table 2.5. 

The personatus species group, a Wallacean clade 

Two medium-sized Pteropus form an early-diverging clade: P. personatus and P. 

lombocensis. The nuclear tree indicates that the two species are deeply divergent sister taxa (BPP 

= 0.78). P. lombocensis individuals from different islands in the Lesser Sundas form mildly 

substructured monophyletic populations according to the Bayesian tree with all individuals (BPP 

= 1). The mitochondrial data place P. lombocensis in a different position. While incomplete 

lineage sorting is usually weaker in mitochondrial DNA than nuclear DNA (Rosenberg, 2002), 

the PhyloNet analysis supported a model indicating incomplete lineage sorting, not 

hybridization. The distribution of P. lombocensis overlaps with both P. vampyrus and P. alecto, 

though its dissimilarity in both size (smaller) and behavior (not found in gregarious colonies) 

from either one of these species makes hybridization unlikely, but not impossible. 

Table 2.5. Measurements of external characteristics for specimens used in this study. 
Weight is in grams, all other measurements are in millimeters. Blank cells are missing 
measurements if field conditions prevented taking them. Field numbers are used since museum 
catalog numbers are not yet available. 
 

ID Species Age/Sex WT FA HB TAIL EAR TIB HF 
SS002 Pteropus alecto A ♂ 590 165 230 - 31.09 77.57 13.46 
SS004 Pteropus alecto A ♀ 580 165 240 - 33.99 75.95 48.07 
SS025 Macroglossus minimus A ♂ 12 39 64 - 15.08 15.90 11.13 
SS026 Rousettus celebensis A ♂ 66 76 106 25.2 18.12 34.28 19.65 
SS027 Chironax melanocephalus A ♂ 15 47 72 - 12.26 16.33 10.58 
SS028 Rousettus linduensis A ♂ 81 77 120 31.2 19.11 35.09 20.06 
SS029 Macroglossus minimus A ♂ 14 41 64 - 15.48 15.96 10.91 
SS030 Acerodon celebensis A ♂ 400 143 225 - 33.34 58.90 43.49 
SS031 Acerodon celebensis A ♀ 400 133 205 - 30.95 58.15 37.84 
SS032 Acerodon celebensis A ♀ 370 137 200 - 30.2 57.86 39.30 
SS033 Pteropus alecto A ♀ 610 174 250 - 29.93 78.37 48.28 
SS034 Pteropus alecto A ♂ 580 161 235 - 32.58 77.28 48.23 
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SS035 Pteropus alecto ♀ 300 138 195 - 29.08 61.60 43.03 
SS036 Pteropus alecto ♂ 310 138 208 - 30.01 63.93 48.98 
SS037 Pteropus alecto A ♂ 390 147 210 - 28.44 69.10 50.16 
SS038 Pteropus alecto ♂ 310 142 200 - 28.35 61.41 47.10 
SS039 Pteropus alecto ♀ 340 142 180 - 26.03 61.71 41.70 
SS040 Pteropus alecto A ♀ 490 160 222 - 27.59 69.54 45.80 
SS041 Pteropus alecto A ♀ 505 160 235 - 30.91 70.02 44.60 
SS049 Pteropus alecto A ♀ 380 155 225 - 29.8 71.51 46.51 
SS050 Pteropus alecto A ♀ 450 172 215 - 30.56 78.29 48.62 
SS051 Pteropus hypomelanus A ♂ 210 123 190 - 25.18 56.08 37.98 
SS052 Pteropus hypomelanus A ♀ 300 135 190 - 26.61 59.94 40.03 
SS053 Pteropus hypomelanus A ♂ 310 138 200 - 27.15 61.93 43.27 
SS054 Pteropus alecto A ♂ 610 175 265 - 33.11 79.26 52.07 
SS057 Pteropus alecto A ♀ 500 156 230 - 28.36 73.03 46.51 
SS064 Nyctimene cephalotes A ♂ 36 67 99 25.6 15.36 24.18 14.12 
SS065 Nyctimene cephalotes A ♂ 40 65 108 22.6 15.15 23.13 14.78 
SS066 Syconycteris australis A ♀ 19 47 74 - 14.51 16.29 11.57 
SS067 Syconycteris australis A ♀ 22 48 80 - 16.26 18.18 12.58 
SS068 Dobsonia viridis A ♂ 160 109 155 23.0 24.05 48.23 24.38 
SS069 Macroglossus minimus A ♀ 12.5 40 66 - 12.18 17.02 9.92 
SS070 Dobsonia viridis A ♂ 180 110 145 27.0 25.48 51.04 24.72 
SW001 Pteropus vampyrus A ♂ 1340 251 315 - 39.41 101.73 61.68 
SW002 Pteropus vampyrus A ♂ 1343 250 350 - 41.01 108.92 63.03 
SW003 Pteropus vampyrus Juv ♂ 300 116 160 - 32.25 54.10 52.50 
SW006 Pteropus vampyrus A ♂ 1380 215 278 - 39.39 100.02 66.72 
SW007 Pteropus vampyrus A ♀ 

 
225 

     SW008 Pteropus vampyrus A ♂ 
 

220 
     SW009 Pteropus vampyrus A ♀ 

 
195 

     SW010 Pteropus vampyrus A ♂ 
 

210 
     SW011 Pteropus vampyrus A ♀ 

 
215 

     SW013 Pteropus hypomelanus A ♂ 550 165 240 - 29.40 77.90 50.36 
SW014 Pteropus hypomelanus A ♂ 500 165 240 - 29.03 84.54 50.48 
SW077 Pteropus vampyrus A ♂ 700 188 245 - 41.22 96.42 68.11 
SW078 Pteropus vampyrus A ♂ 1300 210 273 - 36.78 104.00 63.55 
SW105 Pteropus chrysoproctus ♀ 290 138 190 - 27.08 62.39 48.73 
SW106 Pteropus chrysoproctus A ♀ 780 180 265 - 30.81 79.91 52.00 
SW107 Pteropus chrysoproctus ♀ 380 150 210 - 32.09 66.14 49.26 
SW108 Pteropus chrysoproctus ♂ 420 144 220 - 30.91 65.72 52.66 
SW120 Pteropus temminckii A ♀ 200 106 155 - 22.71 47.10 32.38 
SW121 Pteropus melanopogon Juv ♂ 150 91 146 - 23.71 38.31 45.33 
SW123 Pteropus temminckii A ♂ 150 97 160 - 23.92 45.59 30.09 
SW124 Pteropus temminckii A ♀ 160 102 140 - 22.88 44.86 31.51 
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SW125 Rousettus amplexicaudatus SA ♂ 48 77 112 24.2 20.18 33.19 
 SW126 Pteropus ocularis ♂ 400 144 195 - 26.29 60.89 44.38 

SW127 Pteropus vampyrus A ♀ 630 182 240 - 43.41 87.78 51.91 
SW128 Pteropus vampyrus A ♂ 950 186 275 - 40.37 90.23 56.68 
SW131 Pteropus vampyrus A ♀ 880 198 290 - 42.26 97.37 56.32 
SW132 Pteropus vampyrus A ♂ 680 195 265 - 42.04 98.04 59.17 
SW133 Pteropus vampyrus A ♂ 560 172 225 - 40.25 84.36 57.50 
SW134 Pteropus hypomelanus A ♂ 940 185 280 - 39.42 90.96 56.94 
SW140 Pteropus vampyrus A ♀ 600 165 230 - 37.76 81.75 56.39 
SW143 Pteropus lombocensis A ♂ 215 101 150 - 25.66 45.22 35.65 
SW144 Pteropus lombocensis A ♀ 360 122 180 - 26.47 52.04 35.71 
SW145 Pteropus lombocensis A ♀ 360 122 178 - 25.79 56.54 37.04 
SW146 Acerodon sp. Lombok A ♂ 520 147 230 - 35.35 64.80 50.28 
SMT207 Acerodon jubatus Juv ♀ 145 109 149 - 23.30 31.40 11.50 
SMT214 Pteropus pumilus SA ♂ 110 113 152 - 16.27 35.49 10.46 
JBS111 Acerodon jubatus A ♂ 1160 210      
MJV418 Acerodon jubatus A ♀ 1060 202      
MJV419 Pteropus cf. hypomelanus A ♂ 580 170      
MJV420 Pteropus vampyrus A ♂ 860 192      
MJV435 Pteropus vampyrus A ♀ 960 189      
MJV436 Pteropus vampyrus A ♀ 1000 192      
MJV451 Pteropus dasymallus SA ♀ - 125      
MJV458 Pteropus dasymallus SA ♂ 210 120      
MJV504 Pteropus cf. vampyrus A ♂ 856 193      
MJV505 Pteropus cf. vampyrus A ♀ 456 172      

 
Two of the P. personatus specimens (T24 and T26) were sister to one another (BPP = 1) 

and formed a basal clade with P. lombocensis within Pteropus. However, a third individual 

identified as P. personatus (T41) was found to be sister to one of the outgroup taxa, Nyctimene 

cephalotes (BPP = 1) (e.g., it is sister to the genus, not to that species explicitly). All of these 

individuals were captured on Ternate, North Maluku, Indonesia and identified as P. personatus 

initially by S. Wiantoro. Polyphyly of P. personatus would explain why previous research has 

suggested P. personatus may not be a Pteropus species (Almeida, 2014)—it may be that the 

original description of P. personatus is a true Pteropus, but a similar, sympatric non-Pteropus 

species is also recorded from here and often confused as P. personatus. By providing evidence 
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that P. personatus is a true Pteropus, assignment of the name to the species group is appropriate 

as it is the oldest taxonomic name. 

The pelagicus species group, an early-diverging South Pacific clade 

A strongly supported basal radiation in the South Pacific is reconstructed in the species 

tree comprising (P. molossinus (P. gilliardorum, P. woodfordi) (BPP = 1). Following the data 

available from Almeida et al. (2014), P. macrotis, P. pelagicus, P. tokudae, and P. mahaganus 

all also belong in this clade, though P. tokudae and P. pelagicus are not strongly supported. 

Pteropus pelagicus is the oldest name. This radiation shares morphological and dietary 

similarities (narrower skulls and smaller teeth often found in nectar and pollen feeding species) 

(Flannery, 1995; Buden et al., 2013), rather distinct compared to most other Pteropus which 

subsist primarily on fruit. Data from a greater number of specimens would be necessary for 

determining the relationships of each of these lineages in a biogeographic context. 

The scapulatus species group, a unique Australian lineage 

Pteropus scapulatus is the only Australian lineage found in an early diverging position in 

the Pteropus tree (BPP = 0.61), though it is weakly supported. Pteropus scapulatus is 

morphologically distinct from other Australian Pteropus. These bats have narrower skulls and 

are much smaller than other Australian Pteropus, which fits with their predominantly nectar-

based diet (Churchill, 2008). No previous research suggests that P. scapulatus hybridize with the 

other three common Australian species (discussed in greater detail below), despite being 

sympatric (Sinclair et al., 1996; Vardon & Tidemann, 1999). However, the PhyloNet analysis 

indicates there may be incomplete lineages sorting between P. scapulatus, P. lombocensis, and 

P. rayneri. These three species are not sympatric, but they do share a nectarivorous diet and P. 

lombocensis and P. rayneri are distributed in areas adjacent to the range of P. scapulatus. More 
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fine-scale data and specimens of P. rayneri will be needed to resolve the evolutionary dynamics 

and taxonomic position of P. scapulatus. 

The vampyrus species group, a “widespread” species clade 

 The vampyrus species group forms a clade of species that are generally large-bodied, fly 

long distances, and form large colonial aggregates (Corbet & Hill, 1992; Jones & Kunz, 2000; 

Francis, 2008). A polytomy of ((P. vampyrus, P. lylei), (P. giganteus1, P. rufus), (P. pumilus (P. 

dasymallus, P. pselaphon)) is sister to P. niger. The position of P. niger, which is poorly 

supported (BPP = 0.52), may be a result of a great deal of missing nuclear data due to the poor 

quality of the sample. The final species tree in Fig. 2.2 is presented without P. niger, since the 

missing data significantly affected posterior probabilities in the vampyrus species group. Taking 

into account only strongly supported relationships, there are two clades in the vampyrus species 

group, one that includes all species in the group on and west of Sundaland and a second clade 

that diverged eastward, including the Philippines and Micronesia.  

 The species tree analysis also corroborates the position of P. pselaphon and P. 

dasymallus in the vampyrus species group using the full nuclear data. However, in Almeida et al. 

(2014), P. pselaphon was sister to all other vampyrus species group members, which may have 

been an artifact in their study of using only fragmentary mitochondrial data totaling 381bp, 

which I resolve here by using a fuller dataset and species tree methods. Instead, P. pselaphon 

was found to be sister to P. dasymallus, with the relationship (P. pumilus (P. dasymallus, P. 

pselaphon). It should be noted that our specimens of P. dasymallus were from the Batañes, a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This study maintains the name P. giganteus instead of P. medius as suggested by Mlikovsky 
(2012), as P. giganteus is the more commonly recognized name and nomenclatural stability is 
needed for preserving conservation gains in the countries of origin for this species (India, 
Pakistan, Bangladesh, Bhutan, Nepal, Myanmar, Sri Lanka, and Maldives), as changing names 
may addle application of environmental laws. 
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Philippine archipelago north of Luzon, not Japan, so it is not simply a case of the Japanese 

species forming their own radiation. The biogeography of this clade will be revisited in Chapter 

3, as they form a monophyletic clade in the northeastern edge of the genus’ distribution. 

 The two large-bodied Moluccan species, P. melanopogon and P. chrysoproctus, are sister 

species. They form a Moluccan radiation with P. cf. caniceps (see griseus group for discussion 

of M64 specimen). Both of these species previously were classified by Andersen (1912) in 

separate species groups: P. melanopogon was classified under the livingstonii species group and 

P. chrysoproctus was classified under the chrysoproctus species group. Pteropus aruensis and P. 

keyensis likely belong to this radiation as well, as they are part of the P. melanopogon species 

complex. Previously recognized similarities between P. chrysoproctus and P. argentatus would 

also result in classification of P. argentatus under this radiation.  

 The species tree analysis suggest that the traditionally recognized vampyrus species 

group is sister to a clade of (P. poliocephalus (P. melanopogon, P. chrysoproctus)) based on 

nuclear data alone. The phylogenetic position of P. poliocephalus was drastically different in the 

full dataset though—it nested with the pelagicus species group when mitochondrial data were 

included. Our increased sampling of nuclear data in the species tree does not support this basal 

position of P. poliocephalus—even from individual nuclear genes. Pteropus poliocephalus either 

clustered with the large Moluccan Pteropus species or all other vampyrus species. Almeida et al. 

(2014) found a similarly discordant position for P. poliocephalus based on mitochondrial as 

compared to nuclear data and suggested that this is due to hybridization rather than lineage 

sorting. Pteropus poliocephalus is known to hybridize with the P. alecto (Webb & Tidemann, 

1995). Putative hybridization between P. poliocephalus and the sympatric and synchronously 

breeding P. conspicillatus has also been suggested through observed mating, though the viability 
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of hybrids is unknown (Parsons et al., 2010). Both P. alecto and P. conspicillatus are part of the 

griseus species group and are not closely related to P. poliocephalus.  

Despite not having many of the species available for inclusion in this dataset, previously 

published data from O’Brien et al. (2009) suggest that P. seychellensis, P. aldabrensis, and P. 

rodricensis will be included in this species group. Almeida et al. (2014) suggested that a P. 

livingstonii + P. voeltzkowi clade forms its own species group. Given what is known about the 

natural history of other members of the vampyrus species group, minor genetic differences are 

not enough to warrant a separate species group, following the earlier criteria set in this study for 

common morphological, ecological, and behavioral traits being used for species group 

classifications. Its life history and morphological traits are similar to many of the other vampyrus 

species group members (large-bodied, colonial, frugivores, robust skulls) (Andersen, 1912; 

Gerlach, 2004), and this Indian Ocean radiation is similar to the Moluccan radiation above in that 

it is distinct from the main Sundaic radiation, but is still a part of the vampyrus species group. 

Presumably, the extinct Mauritian P. subniger would also have belonged to the vampyrus species 

group, though its teeth are smaller and narrower (Andersen, 1912), suggesting a nectarivorous 

diet. The unusual cranial morphology (skull shape, dentition, ear shape, and size) of P. subniger 

and P. rodricensis suggest a sister-species relationship as compared to other African vampyrus 

species group members. Andersen (1912) lists P. rodricensis in the same species group as P. 

molossinus and remarks on the similarity of the delicate dentition of P. subniger to that of the 

nectarivorous P. molossinus, but did not recognize the similarities between P. rodricensis and P. 

subniger. The precise relationship of each of the Indian Ocean radiations within the vampyrus 

species group are unknown until the inclusion of more Indian Ocean Pteropus is possible. 
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Inclusion of P. subniger would necessitate the use of high-throughput sequencing methods, as 

the species is only represented by nineteenth-century specimens in a few European collections. 

The vampyrus species group is both the most species rich and geographically diverse 

clade in Pteropus. Where Pteropus are distributed, there is at least one member of the vampyrus 

species group, with most regions supporting a small radiation. Given the high dispersal 

capability inherent in this species group, its presence in many of the islands in the Paleotropics is 

predicted. However, few natural history data are available for these species, so few inferences 

about speciation mechanisms can be made. More ecological information about diet selection, 

roosting habitat, or mating behaviors may help to understand these divergences in the future. 

 The temminckii species group, a unique lineage 

 Pteropus temminckii is sister to the vampyrus species group radiation (BPP = 0.71). The 

nuclear and mitochondrial signals were discordant for this species. The nuclear loci generally 

agreeed with one another on the position of temminckii as sister to the vampyrus species group. 

However, the mitochondrial data indicated a significantly different phylogenetic position—either 

sister to other Moluccan Pteropus (cyt-b) or nested within the hypomelanus species group (D-

loop). The morphological features of P. temminckii are significantly different from those of the 

vampyrus species group—they are smaller, the skull is proportionately shorter and less robust, 

and the fur is dense and colored uniformly tan-blond across the body (Andersen, 1912; Corbet & 

Hill, 1992; Flannery, 1995). Pteropus temminckii generally occurrs as solitary roosters in a 

variety of forest habitats, and has never been encountered as colonial aggregates (pers. obs.) as 

one would with most species in the vampyrus group.  

The griseus species group, an island species group 
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 At the base of the griseus species group is P. ocularis, a rare Central Moluccan species. 

Andersen (1912) had previously categorized P. ocularis within a conspicillatus species group as 

a smaller cousin, as the light rings around its eyes superficially resembled the rings around the 

eyes of P. conspicillatus. However, the P. conspicillatus specimen analyzed in this study was 

strongly supported to be sister to P. neohibernicus (BPP = 0.91) in the species tree, though 

additional individuals would allow for more rigorous tests of introgression. A closer relationship 

between P. ocularis and P. conspicillatus is still a possibility though since the PhyloNet analysis 

weakly supported the possibility of hybridization between P. alecto and other members of the 

griseus species group (P. griseus and P. conspicillatus).  Previous research has shown that P. 

conspicillatus and P. alecto can produce viable hybrid offspring (Fox, 2006). If the individual 

used in this study was the descendent of a lineage with a history of introgression with P. alecto, 

then the position of P. conspicillatus will likely shift in the tree. 

There was also clear evidence of introgression at some level between the Lesser Sundaic 

and Australian populations of P. alecto and other members of the griseus species group from P. 

alecto morio and P. alecto gouldi populations in the Lesser Sundas and Australia, respectively 

(on the species tree as P. alecto gouldi). The Sulawesi P. alecto alecto all form their own 

monophyletic clade sister to all other griseus group species. A more comprehensive look at P. 

alecto population genetics, along with potential lineage sorting or introgression issues in this 

clade, will be discussed in Chapter 5. Given that the Sulawesi populations represent the 

nominotypical form and are distinctly separate (e.g., not hybridizing) from other Pteropus 

species, its phylogenetic position in the species tree should be where P. alecto is considered to be 

located within the genus. There is also a monophyletic clade of P. tonganus, though a clear 

divide between the populations on Samoa and Vanuatu exists according to the MrBayes trees. 
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Further study of the biogeographic dynamics between the Samoa, Fiji, and Vanuatu populations 

would be possible within P. tonganus had specimens from Fiji been available.  

In the species tree, P. pelewensis and P. yapensis were sister taxa, but with a weak 

posterior probability (BPP = 0.51). BPP species delimitation could not verify these two should 

be treated as separate species and primarily mitochondrial differences underlie their bifurcation. 

Both of these species were previously considered subspecies of P. mariannus, and were 

recognized as full species in the most recent edition of Mammal Species of the World (Simmons, 

2005) following Flannery (1995), which lacked an explanation for this designation. However, the 

two taxa are incredibly similar, and pelage coloration does not vary greatly between the two 

species (both have brown undersides, with yellowish necks and mantles). Only the average size 

of the species differs: mean forearm length in male P. pelewensis is 114.5 mm whereas P. 

yapensis is 130 mm (Flannery, 1995) and condylobasal length averages 53.4 mm and 57.3 mm, 

respectively (Almeida et al., 2014). It is possible that these two species diverged so recently that 

few markers are reciprocally monophyletic (Knowles & Maddison, 2002). In another recent 

study of populations of the closely related P. mariannus from Palau, Guam, Rota, and the 

Mariana Islands (Brown et al., 2011) suggests that gene flow between islands exists, which is 

also possibly in the case of P. pelewensis and P. yapensis. These two species should be treated as 

conspecific under the name P. pelewensis, as suggested by Almeida et al. (2014), pending 

additional population studies. Inclusion of samples of P. mariannus and P. ualanus would be 

needed for a more complete understanding of Micronesian flying foxes and biogeography. 

 The P. hypomelanus species complex was represented by 4 of 17 recognized subspecies 

(sensu Corbet and Hill 1992), along with a few other newly discovered populations: P. h. 

hypomelanus (from the type locality, Ternate), P. h. macassaricus (from Sangir), P. h. 
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cagayanus (from the Visayas), an unnamed P. hypomelanus population from Pulau Panjang 

(north of West Java), and an unnamed P. hypomelanus population from the island of Madura 

(north of East Java). While a majority of all subspecies fell into a clade with P. alecto, P. 

griseus, P. tonganus, P. pelewensis, and P. neohibernicus (all members of the griseus species 

group, sensu Almeida et al. 2014), one of the individuals representing the nominotypical form (P. 

h. hypomelanus) from Ternate (M64) was found to be nested within the vampyrus species clade 

instead (originally labeled as “P. cf. hypomelanus”). The second individual from Ternate (M50), 

originally labeled “Pteropus sp. Ternate,” clustered with all other P. hypomelanus individuals. 

Sigit Wiantoro originally captured these two individuals (M50 and M64) in 2011 on the same 

expedition. The confusion in species identity suggests that some of the “P. h. hypomelanus” in 

North Maluku may be a cryptic species or actually represent the sympatric P. caniceps. Given 

the position of M50 on the species tree, this specimen is considered here as a representative 

individual of the true P. h. hypomelanus (BPP = 1). The M64 specimen, which appeared as sister 

to the Moluccan radiation in the vampyrus species group, is likely an individual of the sympatric 

P. caniceps, a North Moluccan species that is almost indistinguishable from larger forms of P. 

hypomelanus externally (Flannery, 1995), and not a new cryptic species. There are slight 

morphological variations in the skull and teeth noted by Andersen (1912), such as larger orbits 

and broader palatal ridge and rostrum, that suggest that P. caniceps belonged to the vampyrus 

species group, but no molecular data were previously available given the dearth of specimens 

from Maluku. Additional cranial measurements will be needed from this specimen to corroborate 

this assertion, but M64 is considered here to represent P. cf. caniceps.  

Other members of the griseus group are nested among the P. hypomelanus subspecies as 

(P. griseus (P. admiralitatum (P. pelewensis (P. tonganus (P. conspicillatus, P. 
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neohibernicus))))). The position of the various subspecies of P. hypomelanus was well-supported 

by the species tree (BPP > 0.95), but poorly supported by the other analyses. Verification using 

BPP 2.2 species delimitation methods provided support for splitting P. hypomelanus subspecies 

into individual species. A revision of the P. hypomelanus species complex is needed using high-

throughput sequencing data, as these species are rather closely related and may have diverged 

only within the last million years. It is unclear if and how either of the Javan subspecies is related 

to the various subspecies named from the Riau Islands, and will require inclusion of collection 

skins in future studies, as some of these populations are exceedingly rare or extinct in the wild. 

P. h. cagayanus was sister to the subspecies from Sangir (an archipelago north of Sulawesi), P. 

h. macassaricus. As this represents the northeastern extent of the range of P. hypomelanus, a 

stepping stone model of speciation would predict that these would form a singular clade 

representing constant gene flow from Wallacea to the Philippines, which is what the phylogeny 

suggests. Including P. h. tomesi could more rigorously test this hypothesis, a subspecies not 

represented in this dataset, from Mindanao, in the southern half of the Philippines.  

 The samoensis species group, a second Pacific radiation 

 A second radiation of Pacific species includes P. anetianus (Vanuatu), P. vetulus (New 

Caledonia), P. capistratus (Bismarck Archipelago), P. rayneri (Solomon Islands and 

Bougainville), and P. samoensis (American Samoa, Fiji, Samoa). The molecular data from 

Almeida et al. (2014) strongly support the inclusion of three Solomon Island endemics P. 

rennelli, P. nitendiensis, and P. cognatus in this species group as well. Pteropus fundatus 

(Vanuatu) and P. tuberculatus (Solomon Islands) were also nested weakly within this group 

(Almeida et al., 2014). There are morphological similarities that suggest the inclusion of the 

extinct species P. brunneus (Percy Island, Australia), P. pilosus (Palau), P. coxi (Samoa), and P. 
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allenorum (Samoa) in this species group (Helgen et al., 2009; Almeida et al., 2014), but the 

multiple colonization events of the Pacific islands already apparent from distantly related griseus 

group members means that this classification should be approached with caution. The species 

tree and subsequent validation approaches do not support treating P. capistratus ennisae as its 

own species as suggested by Almeida et al. (2014). The species tree had low posterior support 

(BPP = 0.56) at that node and BPP 2.2 could not verify that they were independently evolving 

lineages. The distinct P. vetulus, which has converged in some superficial ways with Pteralopex 

monkey-faced bats (Flannery, 1995), was recovered within this clade (BPP = 0.81). Since so 

many of the species in this clade are missing (8 of 13 missing) from the species-tree analysis, 

testing for biogeographic models of diversification among the Pacific Islands would not be 

possible at . Additionally, there is evidence of low posterior probabilities due to incomplete 

lineage sorting, likely due to shallow internodes with a large ancestral population. 

New species 

 A pale pteropodid with a distinct, brown facial mask (similar to the mask of P. 

capistratus) was captured on Lombok (SW146, MZB 36977)—the first masked pteropodid ever 

found on Lombok—and is unquestionably a new species. It shares a great deal of morphological 

similarity with the enigmatic North Moluccan P. personatus but is unequivocally not sister to it, 

as it is nested well within the genus Acerodon. Using external characters, we identified it as 

belonging to Pteropodini (sensu Bergmans 1997) and cranial morphology indicates it is not a 

Pteropus. The squared-shaped M1 suggests that it is an Acerodon (as compared to a longer M1 

that would be expected in Pteropus). The species tree clearly indicates that the individual falls 

outside of crown Pteropus and is nested within Acerodon outgroup species. It does not conform 

to the species description for A. mackloti (tan in color, forearm range of 139 to 145 mm, 
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Andersen, 1912), the Lesser Sundaic endemic, though further comparison to a series will be 

needed to confirm measurement comparisons. A formal species diagnosis for this specimen is in 

progress, and it is temporarily represented on this tree as “Acerodon sp. nov. Lombok” (Fig. 2.2). 

 The specimen T41 from Ternate, North Maluku, Indonesia was initially identified as P. 

personatus due to its external similarities (pale, with a brown mask), and superficially similar 

cranial features. The overall size, especially the diagnostic forearm size, of this pteropodid is 

slightly smaller than that of P. personatus (89.8 mm, compared to average 93.25 mm in P. 

personatus), a significant difference in mid-sized pteropodids. The cranial morphology must be 

re-examined before a formal species diagnosis is conducted for this specimen. The molecular 

data places this species outside of Pteropus, though more outgroup taxa are needed to verify its 

precise relationship to other pteropodids. It may be similar to other masked pteropodid species 

with narrow skulls, such as those belonging to the genus Styoctenium. It remains represented in 

the tree as “T41.” 

Relative divergence rates 

 Multiple independent BAMM runs were conducted, 

and they converged on similar posterior distributions. Model 

comparisons using Bayes factor evidence is strongly in favor 

of a rate shift as compared to the null model of no rate shifts 

(Table 2.6). The BAMM analysis suggests that a single rate 

shift is the most credible scenario within the genus Pteropus. 

Not all Pteropus had an elevated rate of diversification 

though. An increase in diversification rate at the node joining 

Table 2.6. Bayes factors for 
models with k shifts relative 
to the null model of 0 shifts 
from BAMM analysis. 
Bolded is the best overall 
model as compared to the null 
model, a single rate shift. 
 
Shifts Bayes factor 

0 1.0 
1 401.03233 
2 377.61007 
3 247.58536 
4 128.57026 
5 65.66056 
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the temminckii, vampyrus, samoensis, and griseus species group radiations was the most credible 

rate shift configuration (Fig. 2.4a Rank 1, posterior = 0.43). The mean time-averaged clade-

specific rate at this node was much higher (11.09159) than the background rate (3.689555). 

Notably, the second most likely model was also a single rate shift that included all of the above 

taxa and P. scapulatus (Fig. 2.4b, Rank 2, posterior = 0.29).  

Gigantism in Pteropus  

My species tree reveals that gigantism evolved either twice (independently in each of the 

vampyrus and griseus species groups) or once at the node joining the griseus, temminckii, 

vampyrus, and samoensis species groups (with a subsequent loss or relaxation of effect on body 

size in the temminckii and samoensis species groups). Selective pressures for gigantism changing 

over time would be assumed, as there are a few members of the vampyrus and griseus species 

groups that are medium-sized. Based on the species tree, the most parsimonious model would 

assume that gigantism evolved independently twice. When taken into consideration with home 

range size, it may be that there is little selective pressure for temminckii and samoensis species 

group members to evolve gigantism because their home ranges are restricted to rather small 

islands. Some of the largest members of the vampyrus and griseus species groups fly some of the 

greatest distances to forage when necessary (Palmer & Woinarski, 1999; Palmer et al., 2000; 

Epstein et al., 2009). These larger home range sizes may not be necessary on smaller islands, 

since there are fewer competitors for the same resources (Wilson & Graham, 1992).  
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Figure 2.4. Most credible rate shift scenario results from BAMM analyses. Scenarios are in 
descending order from most credible on, with posterior values above each plot. Red circles 
indicate where rate shifts are located. Red indicates rate acceleration and blue indicates rate 
deceleration. The legend on the right is a histogram of the frequency of rates.  
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Of note though is that the ancestral node of these four species groups is also the most 

credible node where a diversification rate increase occurred according to the BAMM analysis. 

There are likely other ecological or geographical forces affecting body size, but it is possible that 

body size could have potentially acted as a key innovation allowing for greater dispersal 

capability and leading to increased ability for Pteropus species to colonize remote islands. For 

instance, the dominance of wind-dispersed dipterocarps in Southeast Asia (Fleming et al., 1987) 

and masting in forests (Appanah, 1993) means that pteropodids may need to disperse over 

greater distances to forage than their Neotropical counterparts. A masting event can lead to 

Pteropus following resource availability over great distances to a new area, leading to initial 

isolation. The bats subsequently do not disperse long distances as the need to do so is reduced, 

and only forage locally, eventually leading to speciation. More data would be needed to test if 

dispersal capability linked to body size changes is the reason for this rate acceleration in 

Pteropus, or if there are other factors tied to this diversification increase. General conceptual 

hypotheses for gigantism also suggest that extreme isolation, small island areas, 

thermoregulatory needs, and ecological release may result in gigantism (Lomolino et al., 2012), 

though how these factors affect Pteropus directly have yet to be tested due to lack of natural 

history data for many of the largest species. 

Implications for Conservation and Disease Ecology Studies 

 The taxonomic findings reported here are especially important for global challenges in 

conservation and disease ecology. The nuclear data generated here may be of great importance to 

conservation biologists who want to identify sympatric Pteropus species that are 

morphologically similar but may have potentially hybridized recently(e.g., P. lylei and P. 

vampyrus in zoos). Knowing that the Pteropus molecular clock ticks particularly slowly is 
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important to conservation, as bottlenecks in genetic variability may be a result of deeper 

historical (e.g. evolutionary) factors and not necessarily crashes caused by recent habitat loss or 

hunting. To detect changes in population size due to anthropogenic factors, more rigorous 

models may be necessary, which may necessitate the collection of a larger number of loci and 

individuals. Alternatively, inclusion of samples from historical specimens for comparisons of 

haplotypes and genetic diversity of historical populations to modern populations using coalescent 

models may allow for more precise identification of population bottlenecks. These analyses 

coupled with data on land use changes may provide a more accurate picture of how Pteropus 

populations are affected by habitat conversion.  

 These results also provide stronger empirical evidence for previous assumptions about 

the genus. Taxa that are highly dispersive and have directed flight (e.g., destination not 

controlled by wind currents only), were generally assumed to have low genetic divergence, even 

on the spatial scales necessary for dispersal to remote islands (Gillespie et al., 2012). It was 

generally assumed that widespread Pteropus species are panmictic due to their high dispersal 

capability (Sinclair et al., 1996; Webb & Tidemann, 1996; Olival, 2008; Olival et al., 2013). 

However, panmixia has only been empirically shown once with limited taxon and gene sampling 

(Olival, 2008). In other cases, a lack of structure was found across multiple populations though 

within a single biogeographic area, a species may be panmictic (e.g. P. conspicillatus, Fox et al., 

2009). For disease ecologists, panmixia may mean constant gene flow increases the potential for 

pathogens to spread between non-adjacent countries. For conservation biologists, panmixia 

means that loss of other populations may affect the level of genetic diversity within the species. 

It is entirely likely that some populations have constant gene flow between them despite 

geographic distance whereas others do not, but that it depends heavily on the landscape. In the 
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lycaenid butterfly Lampides boeticus, population structure was present throughout archipelagic 

areas, but was entirely lacking (e,g,, panmictic) from peninsular Southeast Asia to east Africa 

(Lohman et al., 2008). Based on studies of other volant taxa, we would expect a similar pattern 

in Pteropus. 

According to disease ecology theory, the genetic similarity detected among vampyrus 

species group members would lead to predictions of increased likelihood of pathogen spillover 

(e.g., host switching) from the original host. This prediction would mean that all Pteropus 

species of the vampyrus species group may be acting as a single pool of pathogens, and host 

species boundaries are porous enough to allow pathogen transmission. In this case, retroviruses 

would be shared among vampyrus species group members with higher likelihood than would be 

predicted from probabilistic pathogen transmission models. Understanding how host genetic 

diversity can affect pathogen spread is especially important in this group, as member species are 

commonly found from Sundaland and the Philippines to Madagascar in large colonies that often 

come into contact with dense human populations. Additionally, since most Pteropus species are 

closely related, viral diversity may be promoted (Huang et al., 2015). In a recent global analysis 

of carnivores, parasite diversity was negatively correlated with evolutionary distinctiveness 

(defined by phylogenetic terminal branch length) (Huang et al., 2015). Parasite abundance is also 

negatively correlated to taxonomic distance in small mammals (Krasnov et al., 2004). These 

studies suggest that the close phylogenetic relationship of Pteropus would promote high levels of 

viral diversity and abundance. 

 While P. alecto does not belong to the vampyrus species group, it has also received a 

great deal of attention from the biomedical community due to outbreaks of the Hendra virus 

(Paramyxoviridae) in Australia. The precise relationship of pathogens hosted by P. alecto to 
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pathogens hosted by vampyrus species group members remains unclear, but the low level of 

genetic diversity in the genus may allow for spillover events to occur despite P. alecto being 

distantly related to vampyrus species group members. This could be tested in a real scenario, as 

hybridization between Australian Pteropus is common. Spillover between P. alecto and the 

closely related, sympatric P. conspicillatus may be more common, and pathogens are predicted 

to be more similar between these two species. Spillover between P. alecto and the distantly 

related, sympatric, P. poliocephalus would accelerate pathogen evolution according to disease 

ecology theory, as pathogens would have to evolve more mechanisms for adapting to new host 

(Hatcher & Dunn 2011).  

 The single rate acceleration found in Pteropus may also have affected pathogen 

diversification. Presumably, associated pathogens would have also diverged quickly and there 

may be a radiation of closely related pathogens at that same node. Previous research on parasites 

in carnivores (Huang et al., 2015) and primates (Nunn et al., 2004) also found greater parasite 

diversity in rapidly evolving clades. If that is the case, there may be a large pool of pathogens 

that could easily spread between hosts who are very closely related and genetically similar. This 

would mean that the disease profile for Pteropus species in large radiations, such as the 

vampyrus species group, may have a higher level of pathogen diversity as compared to other 

Pteropus species groups.  

Conclusion 

 Efforts towards determining species-level relationships between Pteropus have always 

suffered from a paucity of samples from Wallacea, and the inclusion here of multiple nuclear loci 

for many species brings additional clarity to the evolutionary history of this genus. The inclusion 

of many previously unsampled species in the tree reduced the long branches in the phylogeny. 
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This study also highlights the importance of nuclear data for global comparisons in this clade, as 

mitochondrial-nuclear gene tree discordance suggests that hybridization or incomplete lineage 

sorting results in misleading inferences from mitochondrial data. Divergent mitochondrial 

signals can be a result of hybridization or lineage sorting, and bottlenecked island populations 

with small effective population sizes may further enhance the effects of genetic drift (Knowles & 

Richards, 2005). Mitochondrial data may still be informative for intraspecific studies or studies 

of sister species, but is clearly insufficient for understanding such a complex genus-level 

evolutionary history as that of Pteropus.  

Despite the inclusion of multiple nuclear loci and the use of species tree methods, there 

remain some poorly supported nodes in this phylogeny, and more loci are likely needed to fully 

resolve some internal nodes within the genus Pteropus. Rapid radiation causing short intermodal 

periods may have contributed to low support at internal nodes prior to the burst of recent 

speciation in the temminckii, vampyrus, samoensis, and griseus species groups. Further 

resolution of Pteropus could perhaps be achieved using next-generation sequencing techniques, 

which would provide additional data and would also allow the inclusion of recently extinct or 

rare and remote taxa unlikely to be sampled again. Genomic data from next generation 

sequencing would allow for the sampling of several magnitudes more loci for understanding not 

only species level relationships, but also intraspecific relationships.   
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CHAPTER 3 

Biogeography of the genus Pteropus in the Indo-Australian Archipelago 

Abstract 

 Pteropus is a genus of highly mobile bats native to the island landscapes of the Indo-

Australian Archipelago (IAA). Islands provide opportunities for isolation from sister 

populations, promoting speciation. Most of the landmasses in the IAA are oceanic in origin, and 

the ability of organisms to disperse to these islands can vary. For volant taxa in the IAA, 

dispersal and founder-event speciation should therefore be the dominant biogeographic forces 

instead of vicariance. To empirically test this hypothesis, Pteropus serves as a suitable model 

system since it has multiple widespread and endemic species on every landmass in the IAA. I 

implemented the DEC and DEC+J model in BioGeoBEARS and the BBM model in RASP 3.0 to 

determine what biogeographic forces shaped the genus Pteropus. Wallacea was found to be the 

center of origin of the genus, with dispersal as the most common scenario through which 

lineages diverged. Founder-event speciation was similarly found to be the mechanism for 

expansion of Pteropus species into Micronesia and islands in the western Indian Ocean. The rate 

of dispersal for Pteropus is a magnitude higher than most other volant taxa, such as flycatchers 

and Papilio butterflies, again highlighting the importance of dispersal in the genus.  

Introduction 

The genus Pteropus (Chiroptera: Pteropodidae) presents a unique opportunity to model 

the biogeography of a species-rich taxon distributed throughout Southeast Asia, which includes 

the Indo-Australian Archipelago (IAA), one of the most geologically complex tropical areas in 

the world (Lohman et al., 2012). One or more of the approximately 65 species in Pteropus are 

found on every major landmass in the IAA, with some taxa being endemic while others are 
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widespread (Simmons, 2005).  This diversity and distribution pattern makes it possible to answer 

questions about the influence of geography on population biology and dispersal dynamics within 

the genus. Pteropus diversity is concentrated in Indonesia and the South Pacific, with additional 

radiations on islands in the western Indian Ocean and Micronesia (Corbet & Hill, 1992). This 

pattern of distribution is similar to some bird (Moyle et al., 2012; Harris et al., 2014) and insect 

species (D.J. Lohman, unpublished data), but has never been empirically studied before using bat 

taxa.  

Unlike other regions, the IAA presents unique challenges to accepted null models in 

biogeography. Many of the landmasses in the IAA are comprised of young crustal terranes, 

ancient continental rafts, or some combination of the two (Hall, 2002). Examples of these 

include the Philippines, Sulawesi, and New Guinea (Hall, 2002; Lohman et al., 2012; Stelbrink 

et al., 2012). Biotic studies in the IAA are few, especially in Wallacea, an area extending east of 

Wallace’s Line to the Sahul Shelf west of Lydekker’s Line. The major islands found in this 

region are Sulawesi, the Moluccan Islands, and the Lesser Sundaic Islands. Most Pteropus 

species native to this area are only known from studies of museum collections (Andersen, 1912; 

Bergmans, 2001; Helgen et al., 2009); few recent expeditions in the last twenty years have 

investigated bat biodiversity in the area (Kitchener & Maryanto, 1995). This is an unfortunate 

circumstance, as the level of species diversity and population structure in Pteropus species 

suggests that there are many unresolved taxonomic issues remaining (Chapter 2). Based on the 

species diversity of Pteropus in the region, Wallacea is potentially important to understanding 

the ancestral site of origin and mechanism of diversification of Pteropus,. Previous ancestral area 

reconstructions of the genus relied heavily on taxonomic sampling from South Pacific species, 

and reconstructed ancestral ranges may thus have been at least in part a result of sampling 
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artifacts (Almeida et al., 2011). Mechanisms of diversification cannot be explored without a clear 

understanding of its biogeographic history. 

Speciation requires separation of daughter lineages, and islands in the IAA would seem to 

provide myriad opportunities for speciation. In previous studies of Southeast Asian terrestrial 

biota, island size is often predicted to be positively correlated with species diversity, resulting in 

Borneo being predicted as the place of origin for many taxa (de Bruyn et al., 2014). This is not 

necessarily true of Pteropus species. Compared to the diversity on much smaller islands in 

Wallacea and the South Pacific, Borneo is relatively species poor, with only two species 

(Mickleburgh et al., 1992). Seram has four Pteropus species despite being 2% the size of Borneo 

(Corbet & Hill, 1992; Mickleburgh et al., 1992). The Samoan Islands also had four Pteropus 

species in the recent past (two are now extinct), despite being 0.5% the size of Borneo (Helgen, 

2009). The number of Pteropus species per island does not appear to be proportional to an 

island’s size, with the exception of among the Pacific Islands (Fig. 3.1). Smaller islands are often 

disproportionately species rich, perhaps because most Pteropus prefer coastal areas, which 

abound on small islands. This pattern fits with predictions of the “small island effect” where 

species richness is independent of island area when island size is too small (e.g. lower than the 

variable evolutionary threshold, Lomolino & Weiser, 2001).  

Previous molecular studies of Pteropus included a geographically biased subset of 

taxonomic diversity and sampled too few species for confident ancestral area reconstruction (Fox 

& Waycott, 2007; Olival, 2008; O’Brien et al., 2009; Brown et al., 2011; Larsen et al., 2014). 

There were no representative taxa from an important biogeographic area (Wallacea) in previous 

phylogenetic studies of the genus (Giannini et al., 2008), or only fragmentary mitochondrial data 

from a handful of taxa (Almeida et al., 2014). As previously discussed in Chapter 2, I have 
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overcome this issue with more thorough taxonomic sampling and increased geographic sampling 

throughout Southeast Asia. This allows for the inference of the evolution of species’ ranges 

through time as a fully resolved tree is necessary for most ancestral area reconstruction methods.  

Departures from the Null Hypothesis of Vicariance in Biogeographic Inference 

When inferring biogeographic scenarios to explain the distribution of extant species, 

vicariance is typically viewed as far more likely than dispersal (Morrone, 2009; Ronquist & 

	  
 

Figure 3.1. Log island area in relation to number of Pteropus species. Only major island 
and archipelagoes were included (see Appendix 3.1). Number of Pteropus species derived 
from Mickelburgh et al. (1992), Corbet and Hill (1992), Simmons (2005), and Helgen 
(2009). All models showed a significant relationship (overall model: adjusted R2 = 0.07, p < 
0.05), although only in the South Pacific did island area explain a substantial portion of the 
variance in species richness (Pacific Islands only: adjusted R2 = 0.69, p < 0.05; all other 
categories combined: adjusted R2 = 0.06, p < 0.05). The highest number of species is New 
Guinea, which is not only large but in close proximity to the Wallacean origin of Pteropus, 
both factors which may have contributed to its high species richness. 
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Sanmartín, 2011). However, the cyclic fission and fusion of landmasses in the IAA complicates 

its geologic history (Lohman et al., 2012).  The presence of many taxa on oceanic islands that 

have never had a mainland connection, and the plausibility and observation of overwater 

dispersal by volant animals, suggests that dispersal is an important factor explaining species 

distributions in the IAA (Kodandaramaiah, 2009; Shilton & Whittaker, 2009). Vicariance as the 

null model may be especially uninformative for Pteropus since at least some species are 

undeterred by large oceanic expanses (e.g., Roberts et al., 2012). With volant species, the 

increased complexity of high dispersal capability presents challenges to modeling population and 

species dynamics. Pteropus can fly more than 50 km a night to forage (Jones & Kunz, 2000; 

McConkey & Drake, 2006), and long distance dispersal seems common.  

Recent historical biogeographic inferences of ancestral areas have been based on the 

DEC (dispersal-extinction-cladogenesis) model, and inferences have been implemented in 

Lagrange (Ree & Smith, 2008) or DIVA (Ronquist, 1997). However, the assumptions in DIVA 

are often times too simple or inflexible (Kodandaramaiah, 2010) to characterize the multiple 

mechanisms affecting Pteropus populations and species. DEC models improve upon 

biogeographic inference by increasing the scenarios that can be evaluated, but still exclude some 

scenarios that are likely in a highly vagile group such as Pteropus: 1) daughter species cannot 

both inherit a widespread ancestral range, 2) vicariant ranges are not allowed to be split evenly 

(e.g., ABCD cannot become AB and CD daughter ranges), and 3) long-distance dispersal is not 

modeled (Matzke, 2014). Pteropus includes species that are both widespread (e.g. P. vampyrus) 

and restricted (e.g. P. chrysoproctus) in range, and previous biogeographic research suggests that 

rely a great deal on long-distance migration to reach remote areas (O’Brien et al., 2009); the 

inclusion of founder-event speciation would likely more accurately infer ancestral area estimates. 
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Additionally, the role of local extinction may be stronger than in other terrestrial vertebrates that 

occupy continental areas since Pteropus species are often restricted to small islands. Moreover, 

the true ranges of Pteropus species may be even further restricted to specific habitats, such as 

mangroves (e.g. Aul et al., 2014; Bates et al., 2014), resulting in predictions of higher extinction 

risk given a small species range size. Rejection of vicariance as the null model and the increased 

significance of both dispersal and extinction make reconstruction methods reliant on vicariance 

models inappropriate for biogeographic analyses in Pteropus. 

Sympatric Diversity 

Biogeographic inference will provide insight into the mechanisms for the distributions 

observed in island systems. Many examples of multiple sympatric congeners co-occurring in 

small island ecosystems exist. However, it is unclear whether these sympatric species are a result 

of multiple colonization events (e.g., dispersal) or in situ radiations after a single colonization 

event. Determining which mechanism explains the diversity of sympatric species would allow 

for further understanding of drivers of speciation in these organisms and ecosystems. Both 

mechanisms leave distinct molecular signatures, and they can be tested using the resolved 

phylogeny. A single colonization event and subsequent in situ radiation would result in 

sympatric species being sister to one another on the phylogeny. Alternatively, multiple 

colonization events as a result of dispersal will result in sympatric species not being sister taxa 

on the phylogeny.  

Methods 

The BEAST species tree described in Chapter 2 was used for biogeographic analyses. 

The zoogeographic areas were defined as: Wallacea (A), New Guinea + Australia + South 

Pacific (B), Sundaland + South Asia (C), the Philippines (D), Micronesia (E), and western Indian 
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Ocean (F) (Fig 3.2). These designations were based on current understanding of geological 

history per Hall (2002). Impossible area combinations were excluded from the analysis to more 

realistically model how biogeographic areas are distributed in space (e.g., Wallacea and Africa is 

not a possible combination). The maximum number of areas was set to four, matching the 

maximum number of areas occupied by any taxa in the analyses. Area assignments for each 

species was based on known distribution data according to Simmons (2005). Ancestral area 

estimation was implemented using BioGeoBEARS (Matzke, 2013), which accounts for founder-

event speciation (the +J model) and compares multiple methods of biogeographic inference 

(DEC, DIVALIKE, and BAYAREALIKE) in a single R package, for a total of six models. 

BioGeoBEARS allows for tests of biogeographic scenarios under each of the different model 

types common to biogeographic inference using a single analytic framework. BioGeoBEARS’ 

implementation of DIVALIKE and BAYAREALIKE models are modified to fit within a 

likelihood framework and are simply for exploration of whether or not results would vary greatly 

between methods. I will therefore focus on the presentation of results from the DEC and DEC+J 

models, as those were the intended models implemented by BioGeoBEARS. The d (dispersal) 

and e (extinction) parameters were allowed to vary freely. Results from the DEC and DEC+J 

analyses implemented in BioGeoBEARS were compared to those of DEC implemented in the 

Python script for Lagrange (Ree & Smith, 2008). Results from the BAYAREALIKE and 

BAYAREALIKE+J analyses implemented in BioGeoBEARS were compared to those of BBM 

(Bayesian binary MCMC) analyses implemented in RASP 3.0 (Reconstruct Ancestral State in 

Phylogenies; Yu et al., 2014). RASP ancestral area reconstruction was simulated using two 

independent runs with 10 chains each for 1 million generations and sampled every 100 

generations at a temperature of 0.1 under the F81+Γ model to allow for estimated rate 



	  

	  

65
	  

	  
 

Figure 3.2. Map of biogeographic areas used in this study, labeled as follows: Wallacea (A), New Guinea + Australia + South 
Pacific (B), Sundaland + South Asia (C), the Philippines (D), Micronesia (E), and Africa (F). The Japanese islands of Ryukyu and 
Bonin were included as part of Micronesia due to their proximity and shared geologic history. Wallace’s Line (red) and Lydekker’s 
Line (green) are indicated on the map to separate the Sunda Shelf, Wallacea, and the Sahul Shelf. Huxley’s Line (blue) indicates 
the split between Palawan and the rest of the Philippines. 
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frequencies and rate variation between sites. In addition to the anagenetic models tested by DEC, 

RASP allows for a scenario where widespread sympatry occurred. This scenario is possible 

within Pteropus given the number of widespread species, and inclusion of RASP would allow 

for these comparisons to be made. The Pteropus and Acerodon species tree was attached using 

supertree methods to the pteropodid tree of Almeida et al. (2011) to ensure that the smaller set of 

outgroups from this study did not bias the ancestral area estimates. This larger set of outgroups 

did not change estimates for Pteropus, and have been omitted for clarity. For the purposes of the 

biogeographic analyses, “widespread” here is defined as any distribution that is three of more of 

the biogeographic areas. 

Results and Discussion 

 Models utilizing the founder-event speciation parameter consistently outperformed those 

without it (DEC –lnL = -109.5, DEC+J –lnL = -93.95, p = 2.40E-08) (Table 3.1). Likelihood 

scores and ancestral area estimation under each of the six models did not vary greatly (Table 

3.2), and I will focus on reporting the results under the DEC+J model. Ancestral area estimations 

from DEC+J implemented in BioGeoBEARS (Fig. 3.3), DEC in Lagrange (Fig. 3.4), and BBM 

in RASP (Fig. 3.5) were generally similar to each other, though nodes at the root of Pteropus 

estimated under RASP estimated a dispersal event from Wallacea unequivocally instead of equal 

likelihoods of dispersal from Wallacea or Wallacea + the South Pacific. Extinction (e) was a 

small, non-zero number, and none of the methods found that scenario to be likely. Dispersal was 

the most commonly estimated scenario, though founder-event speciation was also recovered at 

nodes related to range expansion into Africa and Micronesia. 
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 The most significant difference between the DEC+J and BBM models was ancestral area 

estimation at the node joining the samoensis species group to the temminckii + vampyrus species 

groups. Under DEC+J, ancestral areas at those nodes are estimated to be the result of narrow 

vicariance or sympatric speciation in a subset of areas, resulting in a widespread ancestral area 

(ABCD). Under BBM in RASP, ancestral areas are estimated to be the result of separate 

dispersal events to the South Pacific (B) and Wallacea (A) with subsequent radiations in each of 

the respective species groups. The BAYAREALIKE+J ancestral area estimations from 

BioGeoBEARS agree with the RASP results. These different ancestral area estimates may be due 

to the failure of RASP to estimate narrow vicariance and sympatry in a subset of areas, which are 

potential scenarios when considering the biogeographic histories of a mixture of widespread and 

restricted species such as those in Pteropus. It is possible that this ancestral area estimate may 

Table 3.1. Model performance comparisons implemented in BioGeoBEARS of each of 
the biogeographic models with and without the founder-event speciation parameter (+J). 
Models with +J significantly outperformed null models in every type of ancestral area 
estimation. 
 

Null Model Alt. Model LnL(null) LnL(alt) p value AIC 
DEC DEC+J -109.5 -93.95 2.40E-08 223.1 
DIVALIKE DIVALIKE+J -116.8 -99.11 2.80E-09 237.5 
BAYAREALIKE BAYAREALIKE+J -148.7 -101.6 2.80E-22 301.5 

 
Table 3.2. Ancestral area estimations under each of the models implemented by 
BioGeoBEARS. Dispersal (d), extinction (e), and jump (j) parameter estimates were also 
reported. Bolded is the best model according to likelihood scores, the DEC+J model. 
 

Models Likelihood d e j 
DEC -109.52691 0.2910336 1.00E-12 0 
DEC+J -93.95459 0.1429571 1.00E-12 0.04955305 
DIVALIKE -116.75608 0.4510047 1.00E-12 0 
DIVALIKE+J -99.10639 0.2110676 1.00E-12 0.0475716 
BAYAREALIKE -148.72571 0.4777523 2.65E+00 0 
BAYAREALIKE+J -101.62144 0.1836749 1.00E-07 0.05277385 
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also have been a result of the simplified designations of some areas in Wallacea and the South 

Pacific necessary to reduce the number of areas in the analysis.  

The griseus species group, which consists of primarily insular taxa, had a Wallacean 

ancestral area. The vampyrus species group ancestral area estimate was widespread. The 

samoensis species group, which is sister to the vampyrus + temminckii species groups was 

estimated to have shared that widespread ancestor, but subsequently speciated in the South 

Pacific. The samoensis species group is the only instance of a large clade (e.g., more than three 

species) in a single biogeographic area. Most other sympatric species occurrences were a result 

of multiple colonization events of the same area. With the Samoan species (P. tonganus and P. 

samoensis), these multiple colonization events were to multiple small, remote islands, such as 

Fiji, Tonga, Samoa, and American Samoa. Micronesia was colonized twice from different 

routes—colonization in the vampyrus species was through the Philippines, but colonization in 

the griseus species group was through the South Pacific. Australia was also colonized multiple 

times, through either a combined ancestral area of Wallacea plus the South Pacific, or from each 

individual area. 

One of the only other examples of a radiation that was apparently the result of in situ 

speciation within a single archipelago is that of the Moluccan Pteropus species: P. caniceps, P. 

melanopogon, and P. chrysoproctus. The Moluccan Islands and North Moluccan Islands all 

existed in some form as oceanic terranes by the early Miocene (20 mya), but geological activity 

did not stop until the late Pliocene (3 mya), resulting in their present-day configuration (Hall, 

2002). Colonization of the Moluccas by this radiation would be close to the estimated time scale 

for when this group would have diverged, and it is possible that they were able to radiate as some 

of the first colonizers to these oceanic islands.  
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Figure 3.3. DEC+J results from BioGeoBEARS analysis. Ancestral area estimations at 
nodes represent areas before instantaneous speciation event. “Corner” estimates (states 
immediately after speciation) have been omitted for clarity, as they generally agree with 
descendent areas. Species groups are listed on the right. Multiple areas are represented by 
combining colors of component areas. 
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Figure 3.4. DEC results from Lagrange analysis. Results were plotted using R scripts 
available from the BioGeoBEARS package. Ancestral range estimations generally agreed 
with those from DEC+J. At several nodes (in grey), the DEC model could not estimate 
ancestral ranges.  
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Figure 3.5. BBM results from RASP 3.0. Results from RASP were recoded and plotted 
using R scripts from BioGeoBEARS. The most significant difference from ancestral area 
estimations in the DEC+J model is the different mechanisms at the node joining the 
samoensis species group to the temminckii + vampyrus species groups. Under BBM, the node 
is estimated to result in two dispersal events into two different biogeographic areas (South 
Pacific and Wallacea, respectively). 
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The P. pumilus (P. pselaphon, P. dasymallus) clade in the Philippines and Micronesia is 

apparently the result of dispersal from the rest of the vampyrus species group’s widespread 

ancestral area. Based on the estimated ancestral ranges before and after each node, this radiation 

is likely the result of sympatric speciation in a subset of areas and subsequent dispersal, as 

vicariance would not be possible. The Izu-Bonin-Mariana Arc is estimated to have formed 

through transformation of an oceanic fault into a subduction zone with subsequent volcanic 

activity during the Eocene (Stern & Bloomer, 1992; Ishizuka et al., 2006). Pteropus pselaphon is 

an endemic Bonin Island species, and these islands have never been connected to any continental 

crust, making vicariance impossible.  

Founder-event speciation was clearly a common mechanism for long-distance dispersal 

and expansion of the clade into Africa and Micronesia. Inferred founder events may become 

more common if each of the major South Pacific archipelagoes was treated as a separate area. 

Combining all South Pacific islands into a single area was necessary for this study, which 

covered such a wide geographic range, but a focused study on the samoensis species group and 

its radiation in the South Pacific would be important to understanding the role of founder-event 

speciation in remote island systems.  

 Wallacea has played a significant role in the evolution of Pteropus, a clear and novel 

result that has emerged from comparisons developed for the first time here. As a clade that 

thrives on islands, the archipelagoes of Indonesia and the South Pacific offer great opportunity 

for isolation, and thus speciation. Pteropus cannot be defined as being predominantly part of the 

Asian or the Australian biotas; instead it appears to have a distinct Wallacean origin with 

daughter lineages extending both to the east and the west. High dispersal ability has resulted in 

multiple crossings of both Wallace’s Line in the west and Lydekker’s Line in the east. To better 
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understand fine-scale biogeographic histories of individual Pteropus species, future analyses 

may need to split areas in Southeast Asia and the South Pacific even further, according to 

geological histories. This would require a computationally more intensive method for 

incorporating a large number of areas, such as that of BayArea (Landis et al., 2013). Data from a 

few missing taxa must first be obtained before BayArea can be implemented, but it is a 

promising method for unraveling biogeographic relationships and mechanisms in such a complex 

region.  

Islands, especially oceanic islands such as the majority of those in Wallacea and the 

South Pacific, apparently acquire biotic diversity primarily through dispersal (and subsequent 

evolution). When comparing dispersal in Pteropus to other terrestrial taxa in the few published 

studies also implementing BioGeoBEARS, the d parameter representing dispersal rate (rate of 

range addition along a branch) is at least a magnitude higher in Pteropus than in non-volant 

organisms (Pyron, 2014) and plants (Matzke, 2014). Not all volant taxa rely on dispersal instead 

of vicariance, as dispersal may be related to other life history traits or the geographical location. 

For instance, the Neotropical nymphalid butterfly genus Calisto owes its current distributions to 

ta combination of vicariant events, with a few instances of long distance dispersal when founder-

event speciation is taken into account (Matos-Maraví et al., 2014). Dispersal parameter estimates 

in this case are two magnitudes lower than those recovered in Pteropus in this study. Future 

comparisons to dispersal parameters in other volant taxa found in the IAA that have been posited 

to be good dispersers are needed. Having these comparisons would be important to 

understanding how communities are assembled in remote island ecosystems, as these taxa also 

often carry seeds and affect primary productivity on islands directly.  
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Repeated colonization events from a single core area are commonly estimated as the 

scenario for other volant taxa that share the same distribution as Pteropus (Moyle et al., 2012, D. 

J. Lohman, unpublished data). Fruit doves (genus Ptilinopus), which share a similar ecological 

niche with Pteropus, are generally thought to have originated in New Guinea with separate 

radiations into Asia and Melanesia (Cibois et al., 2014). However, this inference may be due to 

limitations from the Lagrange DEC model—there are two instances of possible founder-effect 

speciation from New Guinea to Asia and Micronesia. Repeated colonization events may be more 

common than previously thought in volant taxa with high dispersal capability and mechanisms 

that have resulted in present distributions may need to be reconsidered. 

The breadth of the distribution and exceptional species richness of Pteropus is not 

matched by any other pteropodid genus. However, there are other pteropodid genera with more 

than ten species, such as Nyctimene and Dobsonia. These genera have radiated in the South 

Pacific and Wallacea as well, and species are characterized as being good dispersers able to 

survive in severely resource-limited areas or disturbed areas (Flannery, 1995). The small gape 

size of Nyctimene is thought to be important to seed dispersal of early successional plants, as 

many of these plant species often produce small fruits with many small seeds (Muscarella & 

Fleming, 2007). It is possible that Nyctimene are not as geographically widespread as Pteropus 

simply because they are much smaller and cannot fly as great distances (Nyctimene species 

forearm size range from 50 to 80 mm, Pteropus species forearm size range from 90 to 220 mm). 

Dobsonia species, which are much closer in size to Pteropus (forearm size ranges of 95 to 160 

mm), may be limited by their dependence on caves as day roosts or on availability of foliage 

roosts (Flannery, 1995; K. Helgen, pers. comm.). Comparison of biogeographic histories in these 

other pteropodid genera is of great interest, though not currently possible given the lack of 
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resolved phylogenies for Nyctimene and Dobsonia. Biogeographic comparisons would also 

necessitate splitting Wallacea and the South Pacific into smaller fragments, as mentioned before, 

as Nyctimene and Dobsonia species primarily occur in those areas. This offers a unique 

opportunity to study multiple pteropodid species with overlapping ranges to determine if there 

may be simultaneous patterns of divergences across pteropodid lineages when new islands arise.  

Size does not guarantee that large pteropodid species will be long-distance dispersers. 

The monkey-faced bats (Pteralopex spp. and the closely allied monotypic Mirimiri acrodonta, 

previously classified as Pteralopex acrodonta) are larger-bodied than most Pteropus species 

(forearm size range 111 to 160 mm), but these bat species are restricted to the Solomon Islands 

(and Mirimiri in Fiji) (Helgen, 2005). Pteralopex is a forest-dependent clade that is incredibly 

sensitive to human disturbance and habitat conversion (Flannery, 1995). With such a narrow 

niche compared to Pteropus, this would likely preclude Pteralopex from being able to colonize 

areas unless a forest is established on an island already. Additionally, the wings of M. acrodonta 

have been noted to be suited for slow, maneuverable flight, likely for avoiding obstacles in dense 

primary forests (Flannery, 1995). This may affect their ability to disperse long distances, and 

may explain why monkey-faced bats are restricted to small islands.  

Conclusion 

The importance of dispersal to the biogeographic history of Pteropus is distinctly tied to 

its ability to both colonize and speciate. The degree and potential for colonization of islands or 

subsequent in situ speciation are generally dependent on island area, age, and distance from 

mainland (Lomolino, 2000; Lomolino & Weiser, 2001), but the data on Pteropus diverge from 

the usual model predictions. As a relatively young clade, Pteropus apparently have used their 

high dispersal capability to reach young, remote, oceanic islands with few competitors. The data 
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presented here have shown dispersal to be a powerful mechanism that should be considered of 

greater importance than vicariance, and should be considered when studying the biogeography of 

volant taxa in the IAA.  
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CHAPTER 4 

High levels of inferred gene flow among geographically distant populations of Pteropus 

vampyrus across their range in Southeast Asia 

Abstract 

 Understanding the population structure of the Large Flying Fox (Pteropus vampyrus) is 

critical to addressing regional challenges faced by conservation biologists and disease ecologists. 

The distribution of P. vampyrus is one of the widest of all Pteropus species in Southeast Asia, 

and its ability to cross large oceanic expanses makes management of this threatened species an 

international issue. Pteropus vampyrus is an important seed disperser and pollinator in forest 

ecosystems, but is also a natural reservoir host for emerging infectious pathogens. I used 

phylogenetic inference and population genetic indices to infer gene flow between populations 

and modeled past migration events and frequencies using MIGRATE. Population genetic 

parameters indicate low levels of nucleotide variability with high haplotype diversity, likely 

implying a demographic scenario of recent population expansion after a bottleneck. Both the 

phylogeny and the MIGRATE inferences indicate that P. vampyrus from geographically distant 

populations frequently intermix. These findings indicate that P. vampyrus acts as a near 

panmictic population across its broad range. For conservation, this may mean that protection of 

the species requires international cooperation and monitoring to ensure metapopulations persist. 

For disease ecology, this suggests that P. vampyrus is likely capable of pathogen transmission 

across international boundaries. The low genetic variability and large size of the host gene pool 

also may lead to more aggressive pathogens evolving in the host system. Increased genetic 

sampling is needed to more accurately determine commonly used dispersal routes or asymmetric 

gene flow between populations. Furthermore, protection of the species and its habitats is 
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important, as environmental stress will likely lead to increasing frequency of emergence of 

infectious pathogens. 

Introduction 

Pteropus vampyrus (the Large Flying Fox or Malayan Flying Fox) is the largest bat 

species in the world (Andersen, 1912; Corbet & Hill, 1992). It is native to the Philippines, 

western Indonesia, and peninsular Southeast Asia, often occurring in large, colonial aggregations 

of thousands of individuals in coastal areas (Goodwin, 1979; Corbet & Hill, 1992; Jones & 

Kunz, 2000). Pteropus vampyrus is an important seed disperser and pollinator of ecologically 

and economically important plants, such as figs (Ficus spp.) and durian (Durio zibethinus) 

(Fujita & Tuttle, 1991; Jones & Kunz, 2000; Stier & Mildenstein, 2005). In general, the efficacy 

of flying foxes as seed dispersers depends on maintaining large, healthy populations (McConkey 

& Drake, 2006), which is becoming difficult as their populations are dwindling rapidly in the 

face of habitat conversion and intensive hunting (Mickleburgh et al., 1992; Mohd-Azlan et al., 

2001; Struebig et al., 2007). The species is listed under CITES Appendix II and by IUCN as 

Near Threatened, but few national laws exist in Southeast Asia to enforce protection. Given the 

current, significant declines across its range due to overhunting, the species may soon be 

categorized as Vulnerable (Bates et al., 2014).  

There is little or no local momentum for regional protection of P. vampyrus in Southeast 

Asia, where local residents lack incentive for biodiversity conservation (e.g., Harada, 2003) and 

access to environmental education (Sulistyawati et al., 2006). There is minimal to no 

enforcement of quotas or hunting bans and seizure activities are rarely initiated by local 

enforcement agencies (Nijman, 2005; Shepherd & Njiman, 2008). In the entirety of the range of 

P. vampyrus, hunting bans only exist in 3 of 16 Malaysian states and federal territories (Heng, 
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2012). Incidental protection due to the proximity of a colony to religious sites or government 

grounds exists in Thailand (Bumrungsri, pers. comm.), Cambodia (Ravon et al., 2014), Vietnam 

(L.Q. Dang, pers. comm.), the Philippines (pers. obs.), Bali (pers. obs.), and Myanmar (pers. 

obs.), but none of these sites have legal protection, resulting in continued hunting or persecution 

of flying foxes. In Indonesia, flying foxes are not listed as a protected species (Maryanto et al., 

2008). In Borneo, excessive hunting of P. vampyrus threatens the continued persistence of 

populations (Struebig et al., 2007; Harrison et al., 2011). In Malaysia, population modeling 

suggests that current levels of hunting are unsustainable (Epstein et al., 2009). Populations in 

Sumatra and Java are occasionally hunted for medicinal use (Croes, 2012), though hunters have 

expressed the greater difficulty in locating populations in recent years (pers. obs.). Steep declines 

in P. vampyrus populations across its range can result in dire consequences for forest 

regeneration, as much of their preferred diet consists of early successional plant species (Stier & 

Mildenstein, 2005).  

 The burgeoning interest in P. vampyrus as a natural reservoir host for emerging infectious 

pathogens has resulted in a plethora of recent species-specific studies on viral detection and 

disease ecology, especially with the increasing availability of molecular detection tools (Yob et 

al., 2001; Sendow et al., 2006; Olival et al., 2007; Wang et al., 2008; Rahman et al., 2010, 2013; 

Sohayati et al., 2011; Breed et al., 2013). These viral studies and reports have quickly outpaced 

those in other fields such as ecology (Mohd-Azlan et al., 2001; Stier, 2003; Gumal, 2004; 

Mildenstein et al., 2005; Stier & Mildenstein, 2005), conservation (Struebig et al., 2007; 

Harrison et al., 2011; Croes, 2012; Heng, 2012), and physiology (Reeder et al., 2006a, 2006b; 

Riskin et al., 2010). Studies of evolutionary relationships have included P. vampyrus, but have 

never delved deeply into the subspecies and population dynamics (Giannini et al., 2008; Almeida 
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et al., 2014). However, understanding population genetic diversity and frequency of gene flow 

between populations can have a direct effect on studies of viral transmission (e.g. predicting 

source populations of pathogens). The aim of this chapter is to remedy this lacuna so that 

conservation management needs can be met and questions related to population connectivity can 

be addressed. I hypothesize that P. vampyrus are panmictic across its range. Alternatively, 

individuals in populations that are geographically closer are more closely related. This is the first 

study sampling populations of P. vampyrus across its broad distribution and aims to provide 

indirect evidence regarding population connectivity by using genetic data to model migration. 

Having some foundational framework can in the future allow for the creation of targeted satellite 

telemetry projects for each region to get more specific, direct evidence of gene flow.  

Methods 

	  
 

Figure 4.1 Map of specimen localities overlain on distribution map of P. vampyrus from 
IUCN Red List (Bates et al., 2014). Green dots represent freshly collected tissue, orange 
dots represent museum loans. 
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Acquisition of specimens and genetic data was described in Chapter 2. These specimens 

represent populations from across the range of P. vampyrus (Fig. 4.1)—from Negros Occidental 

(Philippines), West Kalimantan (Borneo), Sumatra, Java, Bali, Flores, and peninsular Southeast 

Asia. I assumed a maximum of seven possible populations given the geographical breadth of my 

sampling—the most geographically comprehensive study to date. Five population genetic indices 

commonly used by conservation geneticists were calculated for each gene using DnaSP (Rozas 

et al., 2003) to provide a general understanding of genetic diversity. Nucleotide diversity (π) is 

the average number of nucleotide differences per site between two randomly chosen sequences. 

Haplotype diversity (h) is a measure of the uniqueness of a haplotype within a population and 

calculated as the probability that two randomly selected haplotypes are not the same. Both are 

important for understanding genetic variability. The Watterson estimator (θ) allows for an 

estimation of the mutation rate since θ is four times the effective population size (Ne) times the 

mutation rate (µ) (θ  = 4Neµ). The number of segregating sites (S) is important as well for the 

estimation of the mutation rate and calculation of Tajima’s D. Under the infinite alleles model, S 

is the same as the total number of mutations. Tajima’s D is a statistical test to determine if genes 

are behaving under the neutral model or not, which allows for interpretation of biological 

scenarios such as selection or population size changes. Populations were also compared using the 

allelic fixation index, FST (Nei, 1973). Other measures of genetic variation between populations 

have been recently presented as an alternative to FST (e.g., G’ST, D), but given the low variability 

among Pteropus, FST remains the best measure of population differentiation (Whitlock, 2011). 

DnaSP also calculates pairwise effective migration rates (Nm) from FST, where N is the effective 

population size and m is the migration rate.  
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To make inferences of population history, phylogenies of all P. vampyrus individuals 

were reconstructed based on a gene tree using a partitioned Bayesian analysis of all 11 loci 

implemented in MrBayes 3.2 (Ronquist & Huelsenbeck, 2003). The analysis was simulated for 

10 million generations, with a sampling frequency of 1000 and 25% burn-in. Models for all loci 

used were the same as those reported in Chapter 2 (see Table 2.3). A total of 40 P. vampyrus 

individuals representing the 7 populations were included in the ingroup, with a single Acerodon 

celebensis, P. hypomelanus, and P. alecto used as outgroup taxa to root the tree. The null 

hypothesis of no migration between populations would predict that individuals from the same 

population would form a monophyletic clade. However, if there was migration, individuals 

would not necessarily be most closely related to others in the same putative population. If 

migration occurred, isolation by distance would predict that populations that are geographically 

adjacent would be more closely related to one another than those that are geographically more 

distant (e.g., gene flow results in a shared molecular signature). However, long-distance dispersal 

facilitates gene flow between geographically distant individuals, resulting in individuals from 

different populations being more closely related, regardless of population identity. A clustering 

analysis was conducted in Structure (Pritchard et al., 2000) and the most probable number of 

populations (k) was chosen via the methods described by Evanno et al. (2005). 

To estimate past migration rates and frequency of migration events, a Bayesian inference 

of all parameters was implemented in MIGRATE (Beerli & Palczewski, 2010) using a Bayesian 

framework. Given the low rate of variation of sampled nuclear loci, migration analyses were 

conducted using only mitochondrial genes and two nuclear genes with higher nucleotide 

variability, STAT5A and FGB7. Mutation rates were calculated within the program as a relative 

rate among loci given the sequence data from a Watterson’s estimator for each locus. Per-locus 
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test runs using a constant mutation rate were also conducted for comparative purposes and for 

refining priors for the multilocus analyses. FST values were used to estimate starting parameters 

and ten replicate runs were conducted in a single analysis. Skyline plots generated by MIGRATE 

visualized migration rate changes through time between population pairs. 
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Results 

Table 4.1 Genetic diversity indices for a) Pteropus vampyrus and b) the genus Pteropus. 
Both are presented here to allow for a comparison in an evolutionary context. Nucleotide 
diversity is π, haplotype diversity is h, the Watterson estimator is θ, and segregating sites is S. 
Comparisons of gene flow using the allelic fixation index FST and Nm are included here for P. 
vampyrus. It may seem that P. vampyrus has an especially low level of nucleotide diversity, 
but when compared to the genus level genetic variability, it is only a magnitude lower.  
 

a) Pteropus vampyrus (n = 40) 
Gene π h θ S Tajima's D D sig. FST Nm 
mitochondrial               
cyt-b 0.00651 0.992 0.0143 55 -2.01679 *, P < 0.05 0.00469 53 
D-loop 0.27709 0.998 0.1952 307 1.631 NS 0.01092 22.64 
nuclear 

        RAG-1 0.00245 0.690 0.00733 17 -2.25052 **, P < 0.01 0.14924 1.43 
RAG-2 0.00325 0.892 0.0056 15 -1.37383 NS 0.08514 2.69 
STAT5A 0.00512 0.776 0.01263 18 -2.06068 *, P < 0.05 0.02837 8.56 
PLCB4 0.00173 0.316 0.00558 6 -1.89994 *, P < 0.05 0 3.68 
BDNF 0.00136 0.280 0.00355 5 -1.65533 NS 0.064742 3.46 
FGB7 0.00499 0.917 0.01053 23 -1.79096 NS 0.04418 5.41 
PSMB8 0.00466 0.858 0.00461 10 0.03106 NS 0 1.37 
COPS7A4 0.0031 0.830 0.00417 9 -0.83058 NS 0.08428 2.71 
ATP7A 0.00124 0.492 0.0032 7 -1.76615 NS 0.08619 2.65 
  

b) Genus Pteropus (n = 188) 
Gene π h θ S Tajima's D D sig. 
mitochondrial           
cyt-b 0.09148 0.9955 0.1317 584 -1.00276 NS 
D-loop 0.41537 0.9973 0.15751 327 5.33022 ***, P < 0.001 
nuclear             
RAG-1 0.00849 0.843 0.02592 61 -2.07616 *, P < 0.05 
RAG-2 0.01227 0.964 0.03022 106 -1.89316 *, P < 0.05 
STAT5A 0.02984 0.908 0.07243 86 -1.87146 *, P < 0.05 
PLCB4 0.01393 0.723 0.03781 44 -1.87218 *, P < 0.05 
BDNF 0.00353 0.678 0.0174 32 -2.33763 **, P < 0.01 
FGB7 0.01608 0.872 0.05551 84 -2.21939 **, P < 0.01 
PSMB8 0.01441 0.015 0.04203 76 -2.12799 *, P < 0.05 
COPS7A4 0.01873 0.956 0.04667 79 -1.9333 *, P < 0.05 
ATP7A 0.0074 0.854 0.02337 68 -2.11243 *, P < 0.05 
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 The variability of all P. vampyrus genetic diversity indices was low for each gene, except 

for the hypervariable mitochondrial D-loop (Table 4.1a), which agrees with the low level of 

genetic diversity found for the genus Pteropus in Chapter 2. To put this in perspective, P. 

vampyrus has a similar range for π as mitochondrial nucleotide diversity in Asian elephants, 

another slowly evolving mammal, which has values of π ranging from 0.00195 to 0.01643 

between populations, and an overall π of 0.0176 in Asia. Populations of P. vampyrus were 

almost panmictic in all of the genes, with FST values lower than 0.1 in most genes. Tajima’s D 

 
 
Figure 4.2 Phylogenetic relationships of all P. vampyrus sampled. The outgroups are 
collapsed together as a black triangle. Starred nodes indicate posterior probabilities over 
0.9. Specimens are color-coded to their putative populations based on their sampling 
locality. Most individuals were most closely related to individuals from a different 
population.	  
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was not significant for most of the genes in P. vampyrus. However, Tajima’s D was significant 

and negative for a majority of the genes at the genus level for Pteropus. This suggests a 

population expansion after a recent bottleneck, and may partly explain the depressed levels of 

genetic diversity in Pteropus. The high degree of haplotype diversity despite low nucleotide 

diversity also supports a demographic scenario of population expansion after a recent bottleneck. 

The only gene that exhibited a significant, large positive value for Tajima’s D was D-loop, which 

suggests a sudden population contraction instead. 

The phylogenetic analyses suggested P. vampyrus has high levels of gene flow between 

populations (Fig. 4.2). The Structure results also indicated that P. vampyrus essentially are acting 

as a single population (k = 1, lnL=-1731.3). The MIGRATE analyses also suggested that these 

migration events have occurred at high frequencies in the recent past with no significant 

asymmetry in any particular direction (Fig. 4.3 for an example, all remaining plots in Appendix 

4.1). However, individuals from the continental areas clustered differently from those on islands. 

In the island populations, individuals were not most closely related to others from the same 

colony or population. Populations also did not follow predictions from isolation by distance, with 

some Philippine individuals being found to be sister to Sumatran, Javan, or Lesser Sundaic 

individuals (Fig. 4.2). However, on the continent, specimens from Vietnam were more closely 

related to one another. The peninsular Malaysian specimen was more closely related to two 

individuals from Sumatra and West Java, which would be predicted by an isolation by distance 

model. Vietnam and Malaysia were treated as two separate populations in the final MIGRATE 

analysis as a result of this finding. Peninsular Malaysia to southern Vietnam is approximately 

1000 km (though longer if avoiding flight over water), whereas peninsular Malaysia to south 

Sumatra and West Java is approximately 700 km. Bats have been recorded flying from 
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peninsular Malaysia to Sumatra over the Strait of Malacca using satellite telemetry (Epstein et 

al., 2009), but direct observations of long distance dispersal have not been recorded outside of 

peninsular Malaysia. An isolation by distance model on the mainland of Southeast Asia could be 

further tested by including populations from Thailand, Cambodia, and southern Myanmar and a 

larger sample of marker loci.  

Discussion 

Pteropus vampyrus is essentially panmictic across its range, confirming my hypothesis. 

Given that P. vampyrus has a generalist diet and is capable of dispersing over large areas, it is 

not surprising that populations are interconnected as a result of traveling increased distances, 

perhaps to facilitate foraging in an increasingly fragmented habitat. This might first be 

interpreted as good news for conservation biologists, as protection of the species in some parts of 

its range may be adequate for protection of the genetic diversity of the species as a whole. 

However, this highlights the need for transnational strategies for conservation, as individuals 

cross country boundaries often and threats in one part of its range may severely affect population 

persistence. Additionally, this study did not test for genomic adaptations in each population to 

the local environment. Clinal variation in size in P. vampyrus has been recorded in older studies, 

though pelage coloration was not tied specifically to subspecies names (Andersen, 1912; Corbet 

& Hill, 1992). Since P. vampyrus is able to occupy such a wide range of habitats, it is unlikely 

that they are locally adapted. To detect localized adaptations, next generation sequencing data 

will be needed, as tests for recent selective sweeps may indicate whether there are population-

level differences due to localized environments or anthropogenic exposure (e.g., mining in 

Borneo may have similar effects on bat populations as urbanization has on mouse populations, 
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such as in Harris et al. (2013), by changing allele frequencies of loci related to adapting to heavy 

metal exposure).  

  

 
 
Figure 4.3. Example of a skyline plot generated by analyses in MIGRATE for 
migration rate through time between populations. Populations noted here in the 
subscripts for M are: 1) Sumatra, 2) Java, 3) Borneo, and 4) Bali. Time is scaled by 
coalescent units on the X-axis and M is the migration rate on the Y-axis. Red dots mean 
that either upper quantile or main values was higher than the Y-axis. See Appendix 4.1 for 
all additional MIGRATE plots.	  
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The high level of connectivity among P. vampyrus populations may also be a 

methodological artifact given the genes used in the study, but that is unlikely. The vampyrus 

species group radiated approximately 2 mya, near the beginning of the Pleistocene, with P. 

vampyrus diverging from its sister species, P. lylei, within the last million years (Chapter 2). 

Since Pteropus exhibit such low levels of genetic variability, the recent population divergence in 

P. vampyrus may not have been enough time for lineage sorting issues to be resolved. Gene tree 

results (Chapter 2) have also suggested mitochondrial introgression between P. vampyrus, P. 

alecto, and P. lombocensis in the Lesser Sundas, though tests for hybridization provided only 

weak support.  

In the closely-related large, generalist colonial species P. giganteus, habitat 

fragmentation due to land use change has been found to be an issue, apparently resulting in a 

larger number of smaller colonies because fewer trees were available for roosting (Hahn et al., 

2014). A similar effect is likely in P. vampyrus, as large populations were only observed in some 

areas of the Philippines and the Lesser Sundas where there are large undisturbed forests and 

mangroves (pers. obs.). In highly disturbed areas, such as Java, Sumatra, West Kalimantan, and 

Bali, colonies of P. vampyrus were smaller than 1000 individuals (pers. obs.). Further research is 

necessary to determine the impact of smaller colony size on the genetic stability and persistence 

of the species, but currently little is known about yearly roosting patterns of P. vampyrus in 

Indonesia and metapopulation connectivity among roosting colonies to assess this.  

Connectivity between P. vampyrus populations, to the point where populations are nearly 

panmictic, has direct consequences for our understanding of how viral systems evolve. Disease 

ecology theory predicts that connected populations will produce more aggressive pathogens with 

higher resistance than will occur in isolated populations with localized dispersal (Morand & 
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Krasnov, 2010; Carlsson-Graner & Thrall, 2015). This is a direct result of the host population 

essentially serving as a single population. Localized extirpation of a pathogen may be temporary; 

the pathogen may be harbored in one of many host populations and be transmitted again. This 

prediction of host population connectivity to pathogen aggressiveness (e.g. how infective a 

pathogen is) can be directly tested through isolating and characterizing pathogens in P. vampyrus 

and comparing them to other vampyrus species group members that have more isolated 

populations exhibiting lower population connectivity (e.g. P. melanopogon or P. chrysoproctus, 

which also do not overlap in range with P. vampyrus). However, connectivity may also mean 

that hosts can share pathogen resistance that may have developed in a single population within a 

metapopulation, allowing for equilibrium to exist between hosts and pathogens (Carlsson-Graner 

& Thrall, 2015). The high level of panmixia found in P. vampyrus is in contrast to that of P. 

alecto, the other well-studied flying fox in terms of disease ecology, which exhibits some level 

of population substructure across its range (discussed in further in Chapter 5), meaning that 

pathogen aggressiveness and resistance may also contrast with what is found in pathogens from 

P. vampyrus. Increased genetic sampling (e.g., more loci) would provide more data for modeling 

dispersal routes across a metapopulation to better model potential routes of transmission for 

pathogens in both species. 

Conclusion 

Pteropus vampyrus exhibit high degrees of gene flow between geographically distant 

populations throughout their range in Southeast Asia. Knowledge of host population structure is 

essential to the formation of strategies for combating the spread of zoonotic pathogens in the 

event of a pandemic. The analyses demonstrate that a concerted effort across many international 

borders is needed, as P. vampyrus readily cross into Malaysia, Indonesia, Singapore, Vietnam, 
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the Philippines, and presumably Thailand, Cambodia, and Brunei as well. Biodiversity loss has 

been linked to the increasing global disease incidences (Daszak et al., 2001; Patz et al., 2004; 

Pongsiri et al., 2009), and safeguarding flying fox populations and natural spaces can decrease 

the likelihood for transmission and pathogen prevalence. As increasing environmental pressure 

stresses P. vampyrus populations more, the potential for pathogen spread and outbreaks increases 

(Daszak et al., 2001; Dobson & Foufopoulos, 2001). That means the health of P. vampyus 

populations should be both a conservation and public health issue to every member nation of 

ASEAN (with the exception of Lao PDR, where P. vampyrus do not occur). Southeast Asia is 

one of the most densely populated areas in the world (United Nations Population Division, 2013) 

and these issues must be addressed as a precautionary measure, not a reactionary one.  
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CHAPTER 5 

Population structure of Pteropus alecto in Indonesia and Australia and its implications for 

disease ecology 

Abstract 

 Pteropus alecto is a colonial species of flying fox native to Indonesia, Australia, and 

Papua New Guinea. However, most research effort has focused on Australian populations and 

little is known about the species in the Indonesian portion of its range. The relationship of 

Indonesian populations of P. alecto to Australian populations is important for both conservation 

management decisions and studies of pathogen transmission. I sampled 24 individuals from 4 

putative populations of P. alecto from North Sulawesi, Central Sulawesi, the Lesser Sundas, and 

Australia. Inference from phylogenetic reconstruction of species relationships and Structure 

analyses indicated that colonies from Sulawesi have been acting as a single population, but there 

is some degree of population structure between Sulawesi, the Lesser Sundas, and Australia. The 

Lesser Sundaic population is more closely related to the eastern Australian population despite 

being geographically closer to Sulawesi. The high genetic diversity of populations from both 

Sulawesi and Australia suggest a potential for higher diversity of pathogens in those populations. 

The separation of Sulawesi from other P. alecto populations highlights the need for protection of 

Sulawesi populations threatened by bushmeat hunting, as they represent a distinct genetic lineage 

not found in any other part of the species’ range.  

Introduction 

 Pteropus alecto (Temminck, 1837) is a colonial, tropical flying fox species ranging from 

the Lesser Sundas and Sulawesi in Indonesia to southern Papua New Guinea and the northern 

and eastern coasts of Australia (Hutson et al., 2014). It is the most abundant flying fox species in 
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Australia (Halpin et al., 2011), though extreme heat events there have recently led to massive 

die-offs (Welbergen et al., 2008, 2014) and it still faces intensive levels of hunting in Sulawesi 

(Lee et al., 2005; Sheherazade & Tsang, 2015). It is one of the only species of Pteropus that has 

been extensively studied from an ecological (Palmer et al., 2000; Markus & Hall, 2004), 

behavioral (Vardon & Tidemann, 1998, 1999; Vardon et al., 2001; Markus, 2002; Phillips et al., 

2007), and medical perspective (Field, 2004; van den Hurk et al., 2009; Halpin et al., 2011). It is 

the only Pteropus species with a high coverage genome (Zhang et al., 2013), with some studies 

already studying receptor and interferon expression as it relates to potential infection (Cowled et 

al., 2011; Cowled, Baker, Zhou, Tachedjian, & Wang, 2012; Janardhana et al., 2012; Zhou, 

Cowled, Wang, & Baker, 2013). Most of this work was conducted solely on Australian 

populations, and very little is known about P. alecto populations from other parts of their range.  

Much of the genomic and medical research regarding P. alecto has been largely driven by 

the discovery of Hendra virus in 1994 and a subsequent unprecedented series of outbreaks of 

Hendra virus in northeastern Australia in 2011 (Smith et al., 2011b). Hendra virus belongs to the 

genus Henipavirus (family Paramyxoviridae) and it is widely recognized as an emerging (e.g., 

increasing in incidence in the past twenty years) zoonotic pathogen that causes highly fatal 

encephalitis (Drexler et al., 2012). Henipavirus has a wide range of hosts, a unique feature for a 

paramyxovirus (Wang et al., 2008), and a contributing factor to its interest to the medical 

research community. Medical interest in paramyxoviruses aligns with a more general recognition 

of pteropodid bats as natural reservoir hosts for many emerging infectious pathogens (Calisher et 

al., 2006). However, most of this work is still focused on viral discovery; relatively little research 

has been conducted from the perspective of host ecology and host population dynamics. Host 

population dynamics, such as degree of host population connectivity, can be used as proxy 
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measures for viral dispersal routes. Given that there is still no standardized direct method for 

tracking flying foxes (Smith et al., 2011a), population connectivity studies of dispersal will need 

to rely on indirect measures from population genetics. 

Novel viral emergence has been tied to anthropogenic environmental changes (Daszak et 

al., 2001; Chapman et al., 2005). Persistent human encroachment on natural spaces will continue 

to increase the potential for pathogens to be transmitted from bat hosts to other animals that they 

would not have any contact with naturally. For instance, it is unknown whether the pathogens 

already found in Australian populations of P. alecto are capable of infecting livestock, or 

whether these pathogens are also found in Indonesian or Papua New Guinea populations of P. 

alecto. Infectious pathogens pose the greatest threat in North Sulawesi, where intensive 

consumption of P. alecto and another flying fox, Acerodon celebensis, increases contact between 

bats, intermediary hosts, and humans. Bushmeat hunting is one of the biggest threats to large-

bodied bats (Mickleburgh et al., 2009), but little is known about how increasing hunting pressure 

on P. alecto populations (Lee et al., 2005; Sheherazade & Tsang, 2015) is affecting viral density 

and abundance in host species. The degree of connectivity between bushmeat markets on 

different islands increases the potential for pathogens to be spread by humans or intermediary 

hosts, greatly increasing the potential geographic scope of pathogen transmission. For instance, 

bats are brought live to Beserhati in North Sulawesi only killed once they are at the market, 

exacerbating issues of interspecific contact. 

In Chapter 5, phylogenetic and population genetic inferences of P. alecto metapopulation 

history will determine connectivity between populations in Indonesia and Australia. The 

population dynamics of P. alecto are important from both a conservation and a disease 

perspective, especially given the different challenges each population faces. Pteropus alecto 
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populations are known to change roosting sites according to seasonal changes that reflect shifts 

in both food availability and the bat’s reproductive cycle (Vardon et al., 2001). This suggests 

frequent migration between roost sites, but it remains unclear whether migration over water is 

common, or whether bats only migrate to other sites on the same land mass. Knowledge of 

population connectivity will better inform studies of pathogen evolution and transmission across 

international borders.  

Methods 

 
 

Figure 5.1. Map of sampling localities overlain on IUCN Red List range map for P. 
alecto. Red dots indicate where four populations were located.	  
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Samples were collected from four localities for P. alecto (Fig. 5.1), totaling 24 

individuals. Indonesian P. alecto were collected from both northern and central Sulawesi 

populations. Tissue loans from the Western Australian Museum and Australian Museum 

represented populations from the Lesser Sundas and eastern Australia, respectively. Methods of 

DNA sequencing and model selection were as described in Chapter 2. Four outgroup taxa were 

used to root the tree: Pteropus vampyrus, P. admiralitatum, Acerodon celebensis, and Rousettus 

celebensis. A phylogenetic tree was inferred using all available data and implemented in 

MrBayes 3.2 (Ronquist & Huelsenbeck, 2003), run for 10 million generations sampled every 

1,000 generations and discarding the first 25% of sampled trees as burn-in. Haplotype networks 

were reconstructed as minimum spanning trees for each gene using genetic distances generated 

from MEGA6 (Tamura et al., 2013) and visualized using HapStar (Teacher & Griffiths, 2011). A 

clustering analysis was conducted in Structure (Pritchard et al., 2000) and the most probable 

number of populations (k) was chosen via the methods described by Evanno et al. (2005). 

Structure results indicated that k = 3 is the most probable scenario (Ln = -363.7). Therefore the 

Sulawesi localities were treated as a single population in additional analyses. The same 

population genetic indices were calculated as those from Chapter 4 for P. vampyrus. 

The species tree from Chapter 2 suggested that populations of P. alecto in Australia are 

potentially interbreeding with other sympatric Pteropus species. Mitochondrial and nuclear gene 

tree discordance suggest that there are incomplete lineage sorting in nuclear genes, and potential 

hybridization in both mitochondrial genes. Based on the mitochondrial gene trees, the Australian 

P. alecto are hybridizing with P. conspicillatus, whereas the Lesser Sundaic P. alecto are 

hybridizing with P. griseus (Chapter 2). Previous research using both backcrossing observations 

and genetic data suggested the possibility of hybridization between P. alecto and both P. 
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poliocephalus (Webb & Tidemann, 1995) and P. conspicillatus (Fox, 2006). To test this 

hypothesis, I implemented a maximum likelihood comparison as in Lohse & Frantz (2014) to 

compare P. alecto populations (separated into Sulawesi and Australian populations) to P. 

conspicillatus. The analysis was not possible with P. poliocephalus due to the poor quality of the 

data (i.e., too much missing data). This method required breaking down comparisons to triplet 

populations and small genomic blocks of 100bp each in order to increase efficiency in parameter 

estimation. Calculations were solved using notebooks for Mathematica 8 written by Lohse & 

Frantz (2014).  

Results 

Evidence of gene flow between the North and Central Sulawesi populations was detected 

in the phylogenetic analyses, as individuals from either population formed mixed clades (Fig. 

5.2). Nucleotide and haplotype diversity (Table 5.1a) were similar to that of P. vampyrus 

presented in Chapter 4. Tajima’s D were mostly not significant, meaning that genes were 

behaving neutrally. However, the allelic fixation index FST was higher for each locus in P. 

alecto, indicating a higher degree of population substructure than in P. vampyrus. As a result, the 

pairwise effective migration rate (Nm) was lower than in P. vampyrus. Both the phylogenetic 

tree and the haplotype networks for each gene support the conclusion that there is a minor degree 

of substructure, with the break being between Sulawesi and the Lesser Sundas-Australia. When 

considered by population, Sulawesi and Australia were both far more diverse than the Lesser 

Sundas (Table 5.1b).  

 The haplotype networks show a clear break between the Sulawesi population and the 

Lesser Sundaic-Australian populations, for instance, in both mitochondrial D-loop (Fig. 5.3a) 

and nuclear STAT5A (Fig. 5.3b) signal (all other haplotype networks in Appendix 5.1). FST 
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values between the Australian and Lesser Sundaic populations were smaller than between the 

Sulawesi and Lesser Sundaic populations, despite being geographically closer (Table 5.2). In the 

Sulawesi population, the star topology of many of the genes suggests a rapid expansion from a 

small founder population. This scenario would fit with what is known of Pteropus evolution and 

biogeographic history—that species may often be the result of dispersal or founder-effect 

speciation to islands (from biogeographic analyses in Chapter 3) and that the genus is 

experiencing population expansion after a recent bottleneck (from Tajima’s D in Chapter 4). The 

low nucleotide and haplotype diversity within P. alecto also suggests a rapid expansion from a 

small founder population. 

The potential hybridization of P. alecto with other sympatric Pteropus suggested in 

Chapter 2 may be the cause of the large break between Sulawesi and other populations of P. 

alecto. However, the calculations to test for hybridization using the Lohse and Frantz (2014) 

method were inconclusive due to insufficient variability in the data. Pteropus alecto is a rather 

young species from Wallacea that is approximately Pliocene in age (Chapters 2 and 3). The 

results of Chapter 2 suggest that the species expanded into the Lesser Sundas and Australia in the 

Pleistocene and hybridized with sympatric Pteropus species. To determine what admixture 

scenario is most likely in such a young clade, genomic level data will be needed. No 

hybridization in Sulawesi P. alecto was detected, though this may be because there are no other 

Pteropus species common to the main island of Sulawesi. Unlike in the Lesser Sundas and 

Australia, Sulawesi does not have any other extant flying foxes that are of a similar size. 
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Figure 5.2. Phylogenetic tree of Pteropus alecto individuals inferred from MrBayes. 
Asterisks above nodes indicate posterior probabilities greater than 0.9. Central and North 
Sulawesi individuals intermix consistently, resulting in low posterior probabilities due to the 
lack of informative content in the data. Australian individuals were not monophyletic, both 
being more closely related to different Lesser Sundaic P. alecto than to each other. 
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Table 5.1. Genetic diversity indices for Pteropus alecto. FST values were generally higher 
than those for P. vampyrus, indicating at least some level of population substructure.  
 

a) Pteropus alecto 
Gene π h θ S Tajima's D D sig. Fst Nm 
mitochondrial               
cyt-b 0.08352 0.992 0.09399 636 -2.1682 **, P < 0.01 0.08608 2.65 
D-loop 0.32837 1 0.5841 308 2.50725 *, P < 0.05 0.04688 5.08 
nuclear 

        RAG-1 0.00261 0.279 0.00262 6 -0.46942 NS 0.11093 2 
RAG-2 0.0039 0.903 0.00713 18 -1.62046 NS 0.11214 1.98 
STAT5A 0.00955 0.725 0.00968 14 -1.02868 NS 0.25055 0.75 
PLCB4 0.00026 0.071 0.00026 1 -1.15142 NS 0.05003 4.75 
BDNF 0.00126 0.271 0.00126 5 -1.79547 NS 0.05486 4.31 
FGB7 0.00354 0.818 0.00356 15 -1.85999 *, P < 0.05 0.05116 4.64 
PSMB8 0.0064 0.934 0.00645 11 -0.69829 NS 0.05723 4.12 
COPS7A4 0.00658 0.866 0.00758 12 -0.4627 NS 0.11432 1.94 
ATP7A 0.00117 0.279 0.00117 8 -2.12302 *, P < 0.05 0.0577 4.08 

 

b) Combined for all genes comparisons by population 
  π S 
Australia 0.5099 206 
Lesser Sundas 0.08705 68 
Sulawesi 0.2842 281 
	  
Table 5.2. Comparison of FST values between each population pair. The Lesser Sundaic 
population is more similar to Australian population, despite being geographically closer to 
Sulawesi.  
 

Population 1 Population 2 FST 
Australia Lesser Sundas 0.02406 
Lesser Sundas Sulawesi 0.51851 
Sulawesi Australia 0.12521 
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Figure 5.3. Haplotype networks of P. alecto for a) D-loop and b) STAT5A. Populations 
are Sulawesi (green), Lesser Sundas (blue), and Australia (red). Smallest circles represent a 
single individual and are scaled up according to number of haplotypes. Black dots indicate a 
single base pair change. The Sulawesi population is entirely distinct from the Lesser Sundaic 
and Australian populations in all loci. 
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Discussion 

The metapopulation breaks among Sulawesi, the Lesser Sundas, and Australia agree with 

recognized subspecies designations in Pteropus alecto (Corbet & Hill, 1992), which demonstrate 

some degree of morphological variation. Pteropus a. alecto (Sulawesi) is the largest of the 

subspecies, P. a. morio (Lesser Sundas) is the smallest, and P. a. gouldi (Australia) has a 

narrower rostrum, palate, and smaller teeth (Bergmans & Rozendaal, 1988; Corbet & Hill, 1992). 

Variation in skull morphology of P. a. gouldi may result in part from hybridization with other 

Australian Pteropus, as intermediary morphological traits have been noted in previous research 

(Webb & Tidemann, 1995).  

Recognizing distinct populations of P. alecto has direct consequences for conservation 

management decisions. Pteropus alecto is currently listed as Least Concern by the IUCN Red 

List across its range, but P. a. alecto faces an unsustainable level of hunting in Sulawesi that 

must be addressed. While P. alecto may be thriving in Australia, Sulawesi populations have 

experienced steep declines since the 1970’s (Lee et al., 2005; Sheherazade & Tsang, 2015). The 

Sulawesi populations of P. alecto all act as one gene pool, and the rapid loss of colonies in the 

north, along with expanding bushmeat trade into other provinces in Sulawesi, cannot be ignored 

if populations in Sulawesi are to be preserved. The species is now locally extirpated in North 

Sulawesi province (Lee et al., 2005; Sheherazade & Tsang, 2015) and no legal protection exists 

to curtail this loss. There is also no formal protection for the small handful (< 10) of large roosts 

that still exist in Sulawesi for P. alecto. These factors would categorize P. alecto as Near 

Threatened within its Indonesian range, and reevaluation by the IUCN Red List may be 

necessary to ensure this issue attracts enough attention to spur conservation actions. The effect 

that P. alecto population crashes have on Sulawesi flora is unknown, as there are no studies 
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about specific diets or host plant associations on Sulawesi. These data are essential if new 

agroforestry developments are to make sustainable choices that promote native biodiversity 

instead of harm it. 

The geographic break between P. alecto populations across the Java Sea is unexpected 

based on distance or geologic history. The distance from Sulawesi to the Lesser Sundas is 

approximately 800 km whereas the distance between the Lesser Sundas and eastern Australia is 

approximately 3000 km. Isolation by distance would predict a closer relationship between 

Sulawesi and Lesser Sundaic populations instead, but this is not what was observed. Plant 

distribution data also suggests a close connection between Java, the Lesser Sundas, and Sulawesi 

in the recent past (Whitten et al., 2013). Why the Java Sea acts as an effective population barrier 

for P. alecto whereas the Timor Sea does not, despite being about the same distance across, is not 

clear from the data available. The potential for isolation by distance in P. alecto populations 

from the Lesser Sundas to eastern Australia could be more accurately tested if samples from 

northern Australia (Northern Territory, Western Australia) were available. However, this region 

is not as well-represented in collections due to its relative inaccessibility as compared to colonies 

near populated areas of eastern Australia. Colonies of P. alecto from northern Australia would be 

geographically closer to the Lesser Sundas (700 km) than to eastern Australia (3000 km), but 

bats would have to cross over an oceanic expanse to migrate from the Lesser Sundas to northern 

Australia. This may present different challenges than overland dispersal and as such dispersal 

may not be as frequent. This could be tested if individuals from northern Australia were available 

to determine to which population they are more closely related. 

Based on what is known from other mammalian parasites, the high genetic variability 

found in both Sulawesi and Australian populations suggests that pathogens that occur in these 
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populations might be more diverse and more aggressive (Nunn et al., 2004; Carlsson-Graner & 

Thrall, 2015; Huang et al., 2015). Why outbreaks of paramyxoviruses have been reported in 

Australia but not Sulawesi is unclear, but the data presented here suggest nucleotide diversity in 

Australia is even higher than Sulawesi, and perhaps that has led to the evolution of more 

aggressive parasites. Additionally, eastern Australian Pteropus are often found in urbanized 

areas and may experience a chronic elevated stress response that may deleteriously affect the 

bats as reservoir hosts and shift the equilibrium dynamics between host and pathogen (Bradley & 

Altizer, 2007; Plowright et al., 2008; Brearley et al., 2012). Higher levels of infection by Hendra 

virus in another Australian Pteropus species has previously been associated with nutritional 

stress, meaning habitat loss and climate change may also increase pathogen outbreaks (Plowright 

et al., 2008). Sulawesi P. alecto may not experience the level of stress seen in Australian 

populations, and in the past decade, rates of logging in Sulawesi have been low compared to 

other Indonesian islands (Margono et al., 2014). However, palm oil production is slated to 

increase rapidly in Sulawesi (Shean, 2009) and the effect this may have on pteropodid 

communities is largely unknown. The potential for an outbreak is high given the increasing 

degree of contact between P. alecto, humans, and potential intermediary hosts that are 

experiencing high levels of stress in bushmeat markets (Sheherazade & Tsang, 2015). 

The higher degree of genetic diversity in Australian populations compared with other P. 

alecto populations may potentially be a result of putative admixture with other sympatric 

Pteropus species. If new haplotypes are often introduced into Australian P. alecto by 

hybridization events, that would increase the observed nucleotide diversity, especially in cases of 

hybridization with P. poliocephalus (Webb & Tidemann, 1995), with which is relatively 

distantly related. No genomic tests of hybridization have been conducted to determine how 
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common this is in Australia, which acts as a contact zone for three similarly-sized Pteropus 

species with some degree of niche overlap. Range expansions have been noted for P. alecto and 

P. poliocephalus in the past decade (Roberts et al., 2012b), and increasing frequency of shared 

camps may increase interspecific contact for pathogen transmission as well.  

During field collection, concerted efforts were made to collect RNALater-preserved 

samples of the liver of P. alecto, especially since there are few samples available from 

Indonesian populations. A recent study of P. alecto and Acerodon celebensis from Sulawesi 

found novel rubulavirus-like and henipavirus-like pathogens (Sasaki et al., 2012), but little is 

known beyond these initial discoveries. Fecal and anal swabs were screened for viral isolates at 

CSIRO (Australia) and positives were sent to Duke-NUS (Singapore) for deep-sequencing of 

transcriptomes. However, these data were not available at the time of writing this dissertation 

and analyses of co-evolution between host and pathogen could not be conducted. Tests of 

convergence of host and viral phylogenies will be implemented in Jane (Conow et al., 2010) 

when possible. I predict that any viruses found in Sulawesi will be distinct from those in 

Australia, though there will likely be similar degrees of viral diversity in each population. Given 

that P. alecto often co-roost with A. celebensis, viruses in P. alecto could potentially jump 

between the two closely related host species. I predict that pathogens are more phylogenetically 

similar between these co-occurring host species than they are to pathogens found in Australian P. 

alecto. 

The population structure presented here for P. alecto is in direct contrast to that of P. 

vampyrus from Chapter 4. Pteropus vampyrus has an essentially panmictic population, requiring 

a multinational strategy involving most of the member nations of ASEAN in order to address 

conservation and public health challenges. Pteropus alecto, on the other hand, has populations 
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that are rather distinct from one another genetically and face unique challenges in each part of 

their range. Management of P. alecto in the Lesser Sundas may involve transnational agreements 

with Australia, but more data should first be collected to determine the degree of connectivity 

between those populations. Pathogens would not have as geographically widespread a gene pool 

as they do in P. vampyrus but may instead be endemic to specific populations of P. alecto hosts 

and their diversity, abundance, and transmission rates may be controlled by different ecological 

factors. These ecological data are more readily available for Australian P. alecto but more 

concerted studies of natural history in Sulawesi and the Lesser Sundas are needed to be able to 

make comparisons among ecological correlates for pathogen prevalence among populations. 

Conclusion 

 Pteropus alecto is extensively studied for biomedical reasons only in a part of its range. 

These types of studies should be extended to populations in Indonesia, which suffer from a 

paucity of data. Systematic surveys of Sulawesi and Lesser Sundaic pteropodids are not very 

common in the past decade, yet they may have important consequences for management of 

agroforestry development and maintenance of native plant diversity. The distinctiveness of the 

Sulawesi population points to a need for more study in order to address conservation challenges 

it faces. No effective conservation plans can be properly made if so little is known about what 

should be preserved in Sulawesi to promote species persistence. 
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CHAPTER 6 

Concluding remarks and the future of research on the evolution of Pteropus 

 From the research conducted in this dissertation, I have produced a more comprehensive 

hypothesis of Pteropus species relationships by including previously unobtainable Southeast 

Asian Pteropus species. From this species tree, I was able to establish that most Pteropus 

lineages are the result of rapid radiations during the Pliocene. Rampant incomplete lineage 

sorting issues and putative hybridization detected from discordant nuclear and mitochondrial 

genes point to a need for genomic-scale datasets for understanding the evolutionary history of the 

genus. Relatively young clade age, short internodal periods, and rapid diversification makes 

Pteropus the ideal model system for answering questions related to hybridization, lineage 

sorting, and radiations using next-generation sequencing data. The genus originated in Wallacea 

and its high vagility allowed it to colonize new landmasses throughout the Indo-Australian 

Archipelago and South Pacific with dispersal and founder-event speciation as the mechanistic 

forces generating biogeographic distributions. These findings highlight the need to shift 

biogeographic theory away from the null model of vicariance, which is unsuitable for 

understanding phenomena that have driven distributions in this genus.  

 A basic understanding of flying fox evolution is critical to future conservation 

management and pandemic containment planning. In the latter chapters, case studies of two 

Pteropus species highlighted the different predictions in viral diversity and aggressiveness based 

on population connectivity and genetic diversity of the host system. Combined with viral data, 

metapopulation networks of host species can provide a clearer understanding of how pathogens 

may spread. Different population structures also mean conservation planning has to occur on 

different scales. For P. vampyrus, it requires the cooperation of many ASEAN member nations, 
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whereas for P. alecto, it requires action primarily on a provincial level. However, in both of these 

cases, the need for more natural history data on Pteropus species is underscored. For disease 

ecology, ecological factors leading to depression in host immunity leading to pathogen 

transmission cannot be modeled without accurate host natural history data. In terms of 

conservation—host plant associations, roosting ecology, and other basic life history data are 

unknown for most species, and understanding of species’ fundamental niche and ecological role 

would inform and assist plans towards their protection and persistence. 

This is the ideal time to research Pteropus. Armed with a basic understanding of the 

evolutionary and biogeographic history of the genus, questions regarding overlapping subspecies 

complexes and hybrid contact zones can be better addressed. High-throughput sequencing costs 

are decreasing rapidly and these methods are now a viable option for studying non-model 

organisms. New field studies to collect samples and natural history information and use of 

museum specimens can be combined with new sequencing technologies to address questions 

regarding community assemblages, biogeography, and host immunity. Working with Pteropus 

will undoubtedly lead to maximization of existing collections-based resources as well, since 

hundred year-old skins can be informative of baseline environmental conditions or tell a different 

story of adaptation to changing landscapes. In this dynamic and charismatic genus, these many 

different and relevant scientific phenomena can be highlighted, and in turn, used to educate 

others about the connection that biodiversity has to our own continued existence and well-being. 
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APPENDIX 2.1 
 
List of specimens included in this study. Specimen codes follow museum catalog IDs or field 
numbers. Localities are listed according to major islands or archipelagoes. 
 
Sample Code Species Island Collection 
M50 Pteropus hypomelanus Halmahera Wild 
M64 Pteropus caniceps Halmahera Wild 
SS002 Pteropus alecto Sulawesi Wild 
SS004 Pteropus alecto Sulawesi Wild 
SS007 Pteropus alecto Sulawesi Wild 
SS033 Pteropus alecto Sulawesi Wild 
SS034 Pteropus alecto Sulawesi Wild 
SS035 Pteropus alecto Sulawesi Wild 
SS036 Pteropus alecto Sulawesi Wild 
SS037 Pteropus alecto Sulawesi Wild 
SS038 Pteropus alecto Sulawesi Wild 
SS039 Pteropus alecto Sulawesi Wild 
SS040 Pteropus alecto Sulawesi Wild 
SS041 Pteropus alecto Sulawesi Wild 
SS049 Pteropus alecto Sulawesi Wild 
SS050 Pteropus alecto Sulawesi Wild 
SS051 Pteropus hypomelanus Sangihe Islands Wild 
SS052 Pteropus hypomelanus Sangihe Islands Wild 
SS053 Pteropus hypomelanus Sangihe Islands Wild 
SS054 Pteropus alecto Sulawesi Wild 
SS057 Pteropus alecto Sulawesi Wild 
SS058 Pteropus alecto Sulawesi Wild 
SS059 Pteropus alecto Sulawesi Wild 
SS060 Pteropus alecto Sulawesi Wild 
SW001 Pteropus vampyrus Java Wild 
SW002 Pteropus vampyrus Java Wild 
SW003 Pteropus vampyrus Java Wild 
SW006 Pteropus vampyrus Java Wild 
SW007 Pteropus vampyrus Bali Wild 
SW008 Pteropus vampyrus Bali Wild 
SW009 Pteropus vampyrus Bali Wild 
SW010 Pteropus vampyrus Bali Wild 
SW011 Pteropus vampyrus Bali Wild 
SW012 Pteropus hypomelanus Madura Wild 
SW013 Pteropus hypomelanus Madura Wild 
SW014 Pteropus hypomelanus Madura Wild 
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SW077 Pteropus vampyrus Java Wild 
SW078 Pteropus vampyrus Java Wild 
SW105 Pteropus chrysoproctus Seram, Maluku Wild 
SW106 Pteropus chrysoproctus Seram, Maluku Wild 
SW107 Pteropus chrysoproctus Seram, Maluku Wild 
SW108 Pteropus chrysoproctus Seram, Maluku Wild 
SW120 Pteropus temminckii Seram, Maluku Wild 
SW121 Pteropus melanopogon Seram, Maluku Wild 
SW123 Pteropus temminckii Seram, Maluku Wild 
SW124 Pteropus temminckii Seram, Maluku Wild 
SW126 Pteropus ocularis Seram, Maluku Wild 
SW127 Pteropus vampyrus Kalimantan Wild 
SW128 Pteropus vampyrus Kalimantan Wild 
SW131 Pteropus vampyrus Sumatra Wild 
SW132 Pteropus vampyrus Sumatra Wild 
SW133 Pteropus vampyrus Flores, Lesser Sundas Wild 
SW134 Pteropus hypomelanus Flores, Lesser Sundas Wild 
SW140 Pteropus vampyrus Sumbawa, Lesser Sundas Wild 
SW143 Pteropus lombocensis Lombok Wild 
SW144 Pteropus lombocensis Lombok Wild 
SW145 Pteropus lombocensis Lombok Wild 
T24 Pteropus personatus Ternate Wild 
T26 Pteropus personatus Ternate Wild 
T41 Pteropus personatus Ternate Wild 
MJV419 Pteropus hypomelanus Philippines Wild 
MJV420 Pteropus vampyrus Philippines Wild 
MJV435 Pteropus vampyrus Philippines Wild 
MJV436 Pteropus vampyrus Philippines Wild 
MJV504 Pteropus vampyrus Philippines Wild 
MJV505 Pteropus vampyrus Philippines Wild 
MJV451 Pteropus dasymallus Philippines Wild 
MJV458 Pteropus dasymallus Philippines Wild 
SMT214 Pteropus pumilus Philippines Wild 
SMT207 Acerodon jubatus Philippines Wild 
SMT208 Pteropus vampyrus Philippines Wild 
SMT209 Pteropus hypomelanus Philippines Wild 
SMT210 Pteropus vampyrus Philippines Wild 
SMT211 Pteropus vampyrus Philippines Wild 
SMT212 Pteropus vampyrus Philippines Wild 
SMT213 Pteropus vampyrus Philippines Wild 
PD-3542 Pteropus dasymallus Japan Wild 
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PD-3543 Pteropus dasymallus Japan Wild 
Pp010-Ppse Pteropus pselaphon Japan Wild 
Pp009-Ppse Pteropus pselaphon Japan Wild 
PV-904502 Pteropus vampyrus Java LBC 
PV-904503 Pteropus vampyrus Java LBC 
PV-930088 Pteropus vampyrus Sumatra LBC 
PV-930089 Pteropus vampyrus Sumatra LBC 
PV-930091 Pteropus vampyrus Sumatra LBC 
PV-930092 Pteropus vampyrus Sumatra LBC 
PV-930093 Pteropus vampyrus Sumatra LBC 
PH-904525 Pteropus hypomelanus Java LBC 
PH-904528 Pteropus hypomelanus Java LBC 
PH-904529 Pteropus hypomelanus Java LBC 
PH-904530 Pteropus hypomelanus Java LBC 
PH-904540 Pteropus hypomelanus Java LBC 
PP-929212 Pteropus pumilus Philippines LBC 
PP-929213 Pteropus pumilus Philippines LBC 
PA-30431 Pteropus alecto Sumba, Lesser Sundas WAM 
PA-30434 Pteropus alecto Sumba, Lesser Sundas WAM 
PA-30435 Pteropus alecto Sumba, Lesser Sundas WAM 
PA-30436 Pteropus alecto Sumba, Lesser Sundas WAM 
PL-32153 Pteropus lombocensis Lomblen, Lesser Sundas WAM 
PL-32154 Pteropus lombocensis Lomblen, Lesser Sundas WAM 
PL-37757 Pteropus lombocensis Alor, Lesser Sundas WAM 
PL-37758 Pteropus lombocensis Alor, Lesser Sundas WAM 
PG-35398 Pteropus griseus Roti, Lesser Sundas WAM 
PG-35400 Pteropus griseus Roti, Lesser Sundas WAM 
PG-42026 Pteropus griseus Banda Islands WAM 
PG-42047 Pteropus griseus Banda Islands WAM 
G1339 Pteropus vampyrus Singapore RMBR 
CM-NK10524 Pteropus giganteus India CMNH 
CM-NK10523 Pteropus giganteus India CMNH 
ROM-110948 Pteropus vampyrus Vietnam ROM 
ROM-110949 Pteropus vampyrus Vietnam ROM 
ROM-44269 Pteropus lylei Vietnam ROM 
ROM-44270 Pteropus lylei Vietnam ROM 
FMNH-LRH4261 Pteropus pumilus Philippines FMNH 
FMNH-SMG2872 Pteropus pumilus Philippines FMNH 
MVZ-185262 Pteropus mariannus yapensis Caroline Islands MVZ 
MVZ-140201 Pteropus conspicillatus Papua New Guinea MVZ 
AMNH-124961 Pteropus neohibernicus Papua New Guinea AMNH 
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AMNH-124962 Pteropus tonganus Vanuatu AMNH 
AMNH-124963 Pteropus anetianus Vanuatu AMNH 
AMNH-124964 Pteropus woodfordi Solomon Islands AMNH 
AMNH-124965 Pteropus samoensis Samoa Islands AMNH 
AMS-M19905 Pteropus admiralitatum Papua New Guinea AMS 
AMS-M20916 Pteropus admiralitatum Papua New Guinea AMS 
AMS-M21582 Pteropus conspicillatus Papua New Guinea AMS 
AMS-M21583 Pteropus conspicillatus Papua New Guinea AMS 
AMS-M22336 Pteropus rayneri Solomon Islands AMS 
AMS-M22337 Pteropus rayneri Solomon Islands AMS 
AMS-M23590 Pteropus niger Mauritius AMS 
AMS-M23778 Pteropus vetulus New Caledonia AMS 
AMS-M24451 Pteropus vetulus New Caledonia AMS 
AMS-M32409 Pteropus alecto Australia AMS 
AMS-M32440 Pteropus scapulatus Australia AMS 
AMS-M32441 Pteropus scapulatus Australia AMS 
AMS-M32564 Pteropus alecto Australia AMS 
AMS-M35495 Pteropus poliocephalus Australia AMS 
AMS-M35496 Pteropus poliocephalus Australia AMS 
LACM-74688 Pteropus scapulatus Australia LACM 
LACM-91177 Pteropus anetianus Vanuatu LACM 
LACM-91178 Pteropus anetianus Vanuatu LACM 
LACM-91182 Pteropus anetianus Vanuatu LACM 
LACM-91185 Pteropus tonganus Vanuatu LACM 
LACM-91186 Pteropus tonganus Vanuatu LACM 
UAM-104219 Pteropus lylei Cambodia UAM 
UAM-104235 Pteropus lylei Cambodia UAM 
UAM-104237 Pteropus lylei Cambodia UAM 
UAM-104238 Pteropus lylei Cambodia UAM 
UWMZ-M27499 Pteropus rufus Madagascar UWMZ 
UWMZ-M27533 Pteropus rufus Madagascar UWMZ 
UWMZ-M27989 Pteropus capistratus Papua New Guinea UWMZ 
UWMZ-M27990 Pteropus neohibernicus Papua New Guinea UWMZ 
USMN-566567 Pteropus molossinus Caroline Islands USNM 
USNM-566565 Pteropus molossinus Caroline Islands USNM 
USNM-566568 Pteropus molossinus Caroline Islands USNM 
USNM-566587 Pteropus pelewensis Palau USNM 
USNM-566588 Pteropus pelewensis Palau USNM 
USNM-566597 Pteropus tonganus Samoa Islands USNM 
USNM-566599 Pteropus tonganus Samoa Islands USNM 
USNM-566601 Pteropus tonganus Samoa Islands USNM 



	  

	  

113	  

USNM-566803 Pteropus tonganus Samoa Islands USNM 
USNM-567239 Pteropus pelewensis Palau USNM 
USNM-580018 Pteropus capistratus ennisae Papua New Guinea USNM 
USNM-580021 Pteropus gilliardorum Papua New Guinea USNM 
USNM-LHE1043 Pteropus gilliardorum Papua New Guinea USNM 
USNM-LHE1009 Pteropus capistratus ennisae Papua New Guinea USNM 
Outgroup taxa 
SS025 Macroglossus minimus Sulawesi Wild 
SS026 Rousettus celebensis Sulawesi Wild 
SS027 Chironax melanocephalus Sulawesi Wild 
SS028 Rousettus linduensis Sulawesi Wild 
SS029 Macroglossus minimus Sulawesi Wild 
SS030 Acerodon celebensis Sulawesi Wild 
SS031 Acerodon celebensis Sulawesi Wild 
SS032 Acerodon celebensis Sulawesi Wild 
SS064 Nyctimene cephalotes Seram, Maluku Wild 
SS065 Nyctimene cephalotes Seram, Maluku Wild 
SS066 Syconycteris australis Seram, Maluku Wild 
SS067 Syconycteris australis Seram, Maluku Wild 
SS068 Dobsonia viridis Seram, Maluku Wild 
SS069 Macroglossus minimus Seram, Maluku Wild 
SS070 Dobsonia viridis Seram, Maluku Wild 
SW125 Rousettus amplexicaudatus Seram, Maluku Wild 
SW146 Acerodon sp. Lombok Lombok Wild 
JBS111 Acerodon jubatus Philippines Wild 
MJV418 Acerodon jubatus Philippines Wild 
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APPENDIX 2.2  
 
Topologies of all mitochondrial and nuclear gene trees. Asterisks indicate posterior 
probabilities above 0.9. Outgroups, except for Acerodon species, were excised for easier viewing 
since genetic distances were quite large in some cases. Not all individuals were sequenced at 
every gene. Discordance between nuclear and mitochondrial signals are in part due to incomplete 
lineage sorting. However, in some cases where multiple sympatric congeners occur, there was 
weak evidence for hybridization. 
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APPENDIX 3.1 

List of islands used for species-area comparison in Fig. 3.1. Only major islands and 
archipelagoes were included. Categories correspond to biogeographic areas defined in Chapter 3. 
Number of Pteropus species derived from Mickelburgh et al. (1992), Corbet and Hill (1992), 
Simmons (2005), and Helgen (2009). 
 

Island 
Area 
(km2) log(area) 

# of 
species Category 

Comoros 785 2.894870 2 African 
Madagascar 587040 5.768668 1 African 
Maldives 300 2.477121 2 African 
Mauritius 2040 3.309630 3 African 
Pemba 984 2.992995 1 African 
Reunion 2512 3.400020 2 African 
Rodrigues 108 2.033424 1 African 
Seychelles 455 2.658011 2 African 
Bonin 104 2.017033 1 Micronesian 
Guam 549 2.739572 2 Micronesian 
Mariana Islands 477 2.678518 1 Micronesian 
Micronesia 702 2.846337 5 Micronesian 
Palau 458 2.660865 2 Micronesian 
Ryukyu Islands 1792 3.253338 2 Micronesian 
Admiralty Islands 2100 3.322219 3 Pacific 
Biak 2455 3.390051 2 Pacific 
Bismarck Islands 49700 4.696356 5 Pacific 
Bougainville 9318 3.969323 2 Pacific 
Cook Islands 237 2.374748 1 Pacific 
Fiji 18270 4.261739 2 Pacific 
Guadalcanal 5336 3.727216 3 Pacific 
New Britain 36514 4.562459 5 Pacific 
New Caledonia 18575 4.268929 3 Pacific 
New Georgia 5061 3.704236 2 Pacific 
New Guinea 786000 5.895423 7 Pacific 
New Ireland 2859 3.456214 2 Pacific 
Samoan Islands 3030 3.481443 4 Pacific 
Tonga 748 2.873902 1 Pacific 
Trobriand Islands 415 2.618048 2 Pacific 
Vanuatu 12200 4.086360 3 Pacific 
Basilan 1145 3.058805 2 Philippines 
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Bohol 4821 3.683137 1 Philippines 
Cagayan Sulu 181 2.257679 1 Philippines 
Camiguin 238 2.376577 2 Philippines 
Cebu 4933 3.693111 2 Philippines 
Dinagat 1036 3.015360 2 Philippines 
Leyte 7368 3.867350 3 Philippines 
Luzon 104688 5.019897 2 Philippines 
Maripipi 28 1.447158 2 Philippines 
Mindanao 97530 4.989138 3 Philippines 
Mindoro 10572 4.024157 2 Philippines 
Negros 12706 4.104009 3 Philippines 
Palawan 14650 4.165838 1 Philippines 
Panay 12011 4.079579 1 Philippines 
Samar 6048 3.781612 1 Philippines 
Sarangani 3601 3.556423 1 Philippines 
Taiwan 36193 4.558625 1 Philippines 
Anamba Islands 637 2.804139 2 Sundaic 
Andaman & Nicobar Islands 8073 3.907035 3 Sundaic 
Bali 5780 3.761928 1 Sundaic 
Bangka 11910 4.075912 1 Sundaic 
Bawean 76 1.880814 1 Sundaic 
Borneo 743339 5.871187 2 Sundaic 
Enganno 403 2.605305 2 Sundaic 
Java 128297 5.108217 2 Sundaic 
Kangean Islands 490 2.690196 1 Sundaic 
Ko Samui 229 2.359835 1 Sundaic 
Madura 4250 3.628389 1 Sundaic 
Masalembu 41 1.612784 1 Sundaic 
Mentawai Islands 6011 3.778947 2 Sundaic 
Natuna 1993 3.299507 2 Sundaic 
Nias 4771 3.678609 1 Sundaic 
Riau Islands 8202 3.913920 1 Sundaic 
Simeulue 2310 3.363612 1 Sundaic 
Singapore 716 2.854913 1 Sundaic 
Sumatra 473481 5.675303 1 Sundaic 
Tioman 136 2.133539 1 Sundaic 
Ambon 377 2.576341 4 Wallacean 
Aru Islands 8563 3.932626 2 Wallacean 
Bacan 734 2.865696 3 Wallacean 
Banda Islands 180 2.255273 2 Wallacean 
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Bonerate 5307 3.724849 1 Wallacean 
Buru 9505 3.977952 4 Wallacean 
Flores 13540 4.131619 2 Wallacean 
Gebe 224 2.350248 2 Wallacean 
Halmahera 17780 4.249932 3 Wallacean 
Kai Islands 1438 3.157759 1 Wallacean 
Lombok 4725 3.674402 3 Wallacean 
Misool 2034 3.308351 1 Wallacean 
Obi 3948 3.596377 3 Wallacean 
Sangihe Islands 813 2.910091 1 Wallacean 
Selayar Islands 10504 4.021355 2 Wallacean 
Seram 17100 4.232996 4 Wallacean 
Sula Islands 9632 3.983716 1 Wallacean 
Sumba 11153 4.047392 1 Wallacean 
Sumbawa 15448 4.188872 1 Wallacean 
Talaud Islands 1281 3.107549 1 Wallacean 
Tanimbar Islands 2100 3.322219 1 Wallacean 
Ternate 76 1.880814 4 Wallacean 
Timor 15850 4.200029 2 Wallacean 
Sulawesi 174600 5.242044 4 Wallcean 
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APPENDIX 4.1 
 
Skyline plots of migration rates through time in P. vampyrus populations. Populations are: 1) 
Sumatra, 2) Java, 3) Borneo, 4) Bali, 5) the Lesser Sundas, 6) Malaysia, 7) Vietnam, and 8) the 
Philippines. Time is scaled by coalescent units on the X-axis and M is the migration rate on the 
Y-axis. The results indicate constant migration between populations through time and no single 
source population. Frequency of migration also does not remain consistent through time, likely 
reflecting the tendency for P. vampyrus colonies to migrate where food resources are available 
(e.g., during masting events).  
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