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Abstract

We propose an approximate methodology for estimating the overall level of
immunity against COVID-19 in a population that has been affected by the recent
epidemic. The methodology relies on the currently available mortality data and uti-
lizes the properties of the SIR model. We illustrate the application of the method by
estimating the recent levels of immunity in 10 US states with highest case numbers
of COVID-19.

The purpose of this brief note is to propose an approximate methodology for deter-
mining the level of immunity in a population affected by (an infectious disease such as)
COVID-19. In the absence of reliable, large scale testing, paucity and spotty character
of case data, our approach relies on the mortality data.

The proposed methodology is predicated on the following simplifying assumptions.

(i) The deterministic SIR model [1] is an adequate mathematical specification of
the COVID-19 epidemic. In particular, we assume that individuals who have
recovered from an infection develop a long lasting immunity against reinfection.

(ii) The basic reproduction ratio has the value given by

R0 = 2.28. (1)

This value was found to be the midpoint of the range estimated by means of
MLE in [8], see also [5].

(iii) The infection rate parameter of the SIR model is given by

β = 25. (2)

This choice is motivated by the fact that τ = 1/β is the characteristic time scale
(in the units of a year) of the spread of the epidemic. Given that the length
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2 A. Lesniewski

of the full cycle of COVID-19 appears to be about 6 months, we believe that
any choice in the range of 20 to 30 would be appropriate. The choice above is
probably conservative. The above values ofR0 and β dictate the following value
of the recovery rate parameter γ = β/R0 of the SIR model:

γ = 10.96. (3)

(iv) The reliance on the mortality data introduces a lag of l days between the date
when an individual contracts the disease and the date they die. For the estimates
below we assume

l = 20. (4)

This choice is justified by a number of studies, see e.g. [2] and references therein:
“The symptoms of COVID-19 infection appear after an incubation period of
approximately 5.2 days. The period from the onset of COVID-19 symptoms
to death ranged from 6 to 41 days with a median of 14 days”.

(v) The infection fatality rate (IFR) is given by the value

µ = 0.005. (5)

There is a wide spectrum of estimates of µ in the literature, see e.g. [3], [4],
[6], based on complete tests conducted on small closed populations exposed to
COVID-19, but there appears to be a consensus that the actual range should be
between 0.1% and 1.0%. The difficulty lies of course in the fact that the IFR is
based not only on the observed cases, but also on undiagnosed and asymptomatic
cases. It also shows a strong dependence on other factors such as the patient’s
age.

Notice that all parameter values selected above are population averages. Assuming
distributions of values across risk factors such as incubation length, age group, geogra-
phy, etc. could conceivably lead to more refined forecasts.

Our algorithm relies on the following properties of the SIR model. Let S(t), I(t),
and R(t) denote the population fractions of susceptible, infected, and removed at time
t, respectively. Note that, in this model, R(t) includes the individuals who have left the
population through mortality at the rate µ. Then:

(i) S(t), I(t), and R(t) add up to 1, for all t:

S(t) + I(t) +R(t) = 1. (6)

(ii) The following conservation law holds for all t:

S(t) + I(t)−R−10 logS(t) = 1. (7)

(iii) The following relation holds:∫ T

T0

I(t)dt = − 1

β
log

S(T )

S(T0)
, (8)

where T0 < T .
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We now proceed as follows. We replace the continuous time variable t with daily
samplings tn = nδ, n = 0, 1, . . . , n, where δ = 1/365, and denoteRn ≡ R(tn). Here,
tn = T corresponds to the latest observation, and tn−l = Tl corresponds to the lagged
date Tl = T− l days. We estimate Rn−l, the removed fraction on the date n− l, as

Rn−l =
Fn

µN
, (9)

where N is the population size, and Fn is the total number of fatalities up to date n.
Properties (i) and (ii) above imply that −R−10 logSn = Rn, i.e.

Sn−l = e−R0Rn−l . (10)

This implies that
In−l = 1− Sn−l −Rn−l. (11)

Now, from the third property we conclude that

logS(T ) = logS(Tl)− β
∫ T

Tl

I(s)ds

≈ logS(Tl)− βlδIn−l,

i.e.
Sn ≈ Sn−l exp(−βlδIn−l). (12)

Similarly,

R(T ) = R(Tl) + γ

∫ T

Tl

I(s)ds,

i.e.
Rn ≈ Rn−l + γlδIn−l. (13)

Also,
In ≈ 1− Sn −Rn. (14)

The approximations used in the calculation above are reasonable, but it is impossible
to give an a priori estimate of the error made: they may equally well overshoot or
undershoot the actual value of the integral

∫ T

Tl
I(s)ds. We should also point out that

the algorithm is extremely easy to implement in computer code.
Assuming that all individuals who have recovered from the infection develop a

long lasting immunity to the disease, we are thus led to the following estimator of the
percentage of individuals with immunity:

Percentage of individuals with immunity = (1− µ)Rn. (15)

We have used the estimator (15) for the recent data of the 10 US states with the
largest numbers on COVID-19 cases. The results, using the data taken from [7] as
of April 20, April 21, and April 22 of 2020, are summarized in Table 1. Each of
the columns contains the estimated percentages of immune individuals for the date
indicated.
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4 A. Lesniewski

State % Imm 04-20 % Imm 04-21 % Imm 04-22
NY 29.16 30.15 31.00
NJ 15.95 17.20 18.22

MA 8.76 9.46 10.47
PA 3.64 4.34 4.60
CA 1.08 1.15 1.26
MI 8.33 9.08 9.44
IL 3.68 4.00 4.26
FL 1.34 1.41 1.51
LA 9.57 10.09 10.56
TX 0.61 0.64 0.67

Table 1: Estimated percentages of populations immune against COVID-19

It is possible that our estimates, due to the conservative assumptions made, might
actually somewhat underestimate the actual levels of immunity. They do, however,
show enough variability among the states that they might be of interest as rough esti-
mates of the current levels of immunity against COVID-19.
Acknowledgement. I would like to thank Margaret MacNeil and Nicholas Lesniewski
for discussions.
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