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Abstract

One of the most critical challenges in managing complex diseases like COVID-19
is to establish an intelligent triage system that can optimize the clinical decision-
making at the time of a global pandemic. The clinical presentation and patients’ char-
acteristics are usually utilized to identify those patients who need more critical care.
However, the clinical evidence shows an unmet need to determine more accurate and
optimal clinical biomarkers to triage patients under a condition like the COVID-19
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crisis. Here we have presented a machine learning approach to find a group of clinical
indicators from the blood tests of a set of COVID-19 patients that are predictive of
poor prognosis and morbidity. Our approach consists of two interconnected schemes:
Feature Selection and Prognosis Classification. The former is based on different Ma-
trix Factorization (MF)-based methods, and the latter is performed using Random
Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O2 Saturation
and C-Reactive Protein (CRP) are the most important clinical biomarkers determin-
ing the poor prognosis in these patients. Our approach paves the path of building
quantitative and optimized clinical management systems for COVID-19 and similar
diseases.

Keywords: Clinical Biomarker, COVID-19, Feature Selection, Manifold Learning,
Matrix Factorization, Sparse Representation, Subspace Learning.

1 Introduction

Upon the emergence of Coronavirus Disease 2019 (COVID-19), clinical-decision mak-
ing to provide the best possible care to patients with this disease became an important
issue. So far, more than 180 million cases of COVID-19 and 3,900,000 deaths due to
it has been reported globally [1]. COVID-19 is a complex disease that affects differ-
ent organ systems, and its clinical manifestations include a wide range of symptoms
and signs [2, 3]. On the other hand, the clinical course of the disease is a complex
phenomenon that can lead to death in some patients even when they do not have any
comorbidity. Older age, accompanying chronic diseases, and imaging findings have
been considered to worsen the prognosis, but they cannot predict the course of the dis-
ease and prognosis by themselves based on clinical observations in different patients’
populations [4, 5, 6, 7, 8, 9, 10]. The disease can cause a spectrum of acute or chronic
complications that can perturb the trajectory of the disease progression and outcome
[3, 4, 11].

In the era of systems medicine, Machine-Learning (ML) and Artificial Intelligence
(AI) methods can be implemented to address clinical decision-making [12]. Big data
analytics in systems medicine for this aim faces two major problems. The first issue is to
preserve the geometric properties of the original data during the process of reducing the
dimension of the data. While the original data are assumed to be sampled on a manifold
of high-dimension and the function of reduction techniques is considered as mapping
these data to a submanifold of a lower dimension in a way that the local geometry of
the whole data is still included in the reduced data. The second problem is related to
the noises and outliers in most clinical data which their negative impacts on the data
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analysis should be reduced or controlled effectively. There have been attempts to solve
these problems in systems pharmacology using feature selection methods based on the
Matrix Factorization (MF) [13].

To tackle the problem of missing geometric properties during reduction of the di-
mension and to soften the destructive influence of outliers and noises on data, many
reduction techniques and tools have been offered so far. As a notable example, the
category of subspace learning methods has received a significant attention due to the
remarkable ability of such techniques to deal with the datasets of high-dimension, such
as gene expression datasets. Subspace learning is a dimensionality reduction method
that can produce a low-dimensional representation from the initial high-dimensional
data. This method can be mixed with other techniques such as MF, manifold learning,
and correlation analysis to perform both feature extraction and feature selection with
excellent performance.

A successful example of the idea of subspace learning in unsupervised feature se-
lection is Matrix Factorization Feature Selection (MFFS) method [14]. It carries out
the feature selection in an iterative fashion using an algorithm based on non-negative
matrix factorization and a subspace distance. Although MFFS was successful in bring-
ing the matrix factorization from the world of feature extraction to the feature selection
universe, it failed to consider the correlations among features. The latter leads to a
feature subset with redundancy. Qi et al. [15] resolved the redundancy issue by in-
troducing a new unsupervised feature selection method called the Regularized Matrix
Factorization Feature Selection (RMFFS). RMFFS uses a regularization term, which
is a combination of L1-norm and L2-norm, in optimizing the objective function of the
matrix factorization. This approach results in a feature subset with low redundancy
(i.e., linear independence) and a good representation of the original high-dimensional
data. Alternatively, Wang et al. [16] introduced Maximum Projection and Minimum
Redundancy (MPMR) as another unsupervised subspace learning method to reduce the
redundancy in the selected features. MPMR formalizes the feature selection as a map-
ping from the feature space to the feature subspace using a projection matrix with the
constraint of the minimum reconstruction error. Then, finding the projection matrix is
reformulated as a matrix factorization problem that is solved using a greedy algorithm.
To select low redundancy of the feature subset, a regularization term is added, which in-
corporates the Pearson correlation coefficient between features. None of the mentioned
methods preserves the geometric structure of the features. To solve this issue, Shang
et al. [17] presented the Subspace Learning-Based Graph Regularized Feature Selec-
tion (SGFS) method. SGFS incorporates graph regularization into subspace learning by
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constructing a feature map on the feature space. However, this method only preserves
the geometry structure of the feature manifold. To preserve the geometric structures of
both the feature and the data manifolds, Shang et al. [18] developed a new feature se-
lection method called Sparse and Low-redundant Subspace learning-based Dual-graph
Regularized Robust (SLSDR). SLSDR incorporates both feature and data graphs (dual
graph) into subspace learning to select the feature subset that best preserves the geo-
metric structures of both feature and data manifolds. The representativeness and low
redundancy of the feature subset are guaranteed in SLSDR through the inner product
regularization term. This is implemented in the feature selection matrix, which leads
to sparse rows and the correlations between features being considered. Furthermore,
SLSDR is robust against outliers, which is achieved by imposing L2,1-norm on the
residual matrix of subspace learning.

This paper aims to revisit MFFS, MPMR, SGFS, RMFFS, and SLSDR, and to study
their applications in two biomarkers and clinical data categories. First, to analyze
ten gene expression datasets for the gene selection techniques. Second, to examine
a COVID-19 clinical dataset by extracting its predictive features and to present a model
to discover clinical signatures of poor prognosis in COVID-19. The main aim to use
the techniques mentioned above is their significant performance in handling feature se-
lection problems. To be specific, the feature selection mechanism developed for MFFS
has been demonstrated to be highly efficient and productive, so that a broad category
of techniques has been founded on the MFFS framework. MPMR, SGFS, RMFFS and
SLSDR fall in this category and they improve the performance of MFFS from different
perspectives using different tools. These powerful tools to develop feature selection
methods include subspace learning, non-negative matrix factorization, manifold learn-
ing, and correlation analysis. A chronological and detailed illustration of the framework
for the methods MFFS MPMR, SGFS, RMFFS, and SLSDR is shown in Figure 1.

The organization of the subsequent sections is as follows. Section 2 provides de-
scriptions regarding the taxonomy and the different insights utilized in this study. In
Section 3, a detailed description of the mechanisms of MFFS, MPMR, SGFS, RMFFS
and SLSDR is provided and the benefits and drawbacks of each of these techniques are
studied. In Sections 4 and 5, several experiments are conducted on a set of benchmark
gene expression datasets and a COVID-19 clinical dataset. Moreover, a comprehensive
analysis of the obtained results is carried out. Finally, Section 6 concludes the paper.
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Figure 1: Chronological and detailed illustration of the basic framework for the methods MFFS MPMR, SGFS,
RMFFS and SLSDR.

2 Taxonomy

This section presents an explication of the taxonomy of our work and describes the
perspectives on the feature selection techniques.

2.1 Dimensionality Reduction

Massive datasets that are composed of features of high-dimension and include rela-
tively low number of patterns pose critical challenges to machine learning techniques
[19]. Dimensionality reduction is an important problem in machine learning applica-
tions in high-dimensional datasets. Specifically, when there are a number of redundant
or irrelevant features in an initial feature set [20], reducing the dimensionality of high-
dimensional data is often necessary for two main reasons. Firstly, it helps reduce the
computational complexity and memory usage. Secondly, high-dimensional datasets
have some redundant and noisy features that can negatively impact the performance of
machine learning models. Therefore, selecting a subset of relevant features can reduce
the computational cost and lead to models that generalize better.

Two main categories of dimensionality reduction techniques have been introduced
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[21, 22]: Feature Selection and Feature Extraction. The former includes methods that
select a subset of relevant features that represent the original data, whereas the latter
is focused on the transformation or projection of the original data that approximate all
features. Feature extraction incorporates the original features to make new features with
lower dimension that contain all or at least the major pieces of the information included
in the initial features. Feature selection aims to select a subset of the original features by
removing the irrelevant and redundant features. As a result, while the feature selection
methods only need collecting selected features, feature extractions require all features
for dimensionality reduction.

Feature selection methods can be supervised, unsupervised and semi-supervised, de-
pending on whether the dataset has label information or not [21, 22, 23, 24]. Supervised
learning methods select relevant features by evaluating the correlation between the fea-
tures and their corresponding label. Fisher score [25], Hilbert Schmidt Independence
Criterion (HSIC) [21], trace ratio criterion, and mutual information [26] are among
the most common supervised feature selection methods. Discriminative information
inherent in the label data facilitates selecting discriminant features from the original
ones. When the dataset is partially labeled, semi-supervised methods are used to handle
feature selection. These methods evaluate the feature relevance based on both the dis-
criminative information of labels and the information embedded in the local structure
of the whole dataset. However, there are situations where obtaining sufficient labeled
data is hard. To deal with unlabeled datasets, a variety of unsupervised feature selection
techniques such as MF have been developed [14, 27]. In contrast to two previous meth-
ods, the unsupervised techniques do not have access to the discriminative information
inherent in the labeled data. In this case, the feature selection from unlabeled data is
challenging. We introduce various unsupervised feature selection methods applied to
analyze some unlabeled datasets.

Based on the searching algorithm for selecting relevant features, the feature selection
methods can be categorized into four groups: Filter, Wrapper, Embedded and Hybrid
methods [21, 28]. Filter methods use the inherent properties of the data to evaluate the
feature importance and to assess the appropriateness of features without using any ma-
chine learning algorithm. For this aim, filter methods use some ranking metrics such as
Laplacian score, feature similarity, and trace ratio. On the other hand, wrapper methods
applies specific learning algorithms like classification or clustering to select the most
relevant feature subset that results in better performance of the utilized learning algo-
rithm. In this type of feature selection, a search technique is employed to find the best
feature subset. At each iteration, this technique produces a number of candidate feature
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subsets and evaluates the usefulness of each generated subset using a classification or a
clustering algorithm. The subset assessed as the most efficient is considered as the final
feature set [23, 29]. The advantages of filter methods compared to wrapper methods are
higher scalability and lower computational cost [30, 31, 32]. Embedded methods carry
out the feature selection during the model construction process. Since embedded meth-
ods often consider various characteristics of data such as the local manifold structure,
they provide better performance in feature selection compared to the filter and wrapper
methods [33]. Hybrid models are constructed by the incorporation of the filter-based
techniques into wrapper-based methods aiming to use the advantages of both models
[34, 35].

2.2 Matrix Factorization

Matrix factorization (MF) is a well-known mathematical scheme that has recently been
applied to a range of complex problems in the numerical linear algebra, machine learn-
ing and computational biology. Some notable examples include Eigendecomposition of
a matrix [36], Data Compression [37], Recommender Systems [38], Spectral Clustering
[24], and gene expression analysis [39]. Some of the MF-based techniques that have
been used widely are Singular Value Decomposition (SVD) [40], Principle Component
Analysis (PCA) [41], and Probabilistic Matrix Factorization (PMF) [42]. The focus
of the latest lines of ML research is to utlize those MF methods that are particularly
capable of finding patterns appropriate for data interpretability using some essential
properties of data. Especifically, non-negative matrix factorization (NMF) [27] is used
to analyze matrices of data with non-negative entries. These matrices and decomposing
them are common in the context of image and text datasets analysis.

Let X ∈ Rn×d be a non-negative data matrix. The NMF technique, seeks a parts-
based representation of X in terms of two low-rank non-negative matrices. The general
formulation of the NMF can be expressed as X ≈ PQ in which the two non-negative
matrix factors P ∈ Rn×k and Q ∈ Rk×d, called the basis and the coefficient matrix
respectively, represent X. Furthermore, it is recently proven that from a theoretical
perspective, NMF is closely connected to the k-means clustering algorithm. For this
reason, NMF is noted as one of the best unsupervised learning methods in identify-
ing the latent subspace of data and is particularly appropriate in data clustering [43].
Over the past decades, many techniques have been founded on the mechanism of NMF
including the conventional NMF [27], the convex NMF (CNMF) [44], the orthogonal
NMF (ONMF) [45] and the semi-NMF (SNMF) [44]. Accordingly, the constraint of
nonnegativity imposed on the data and the basis matrix in NMF is relaxed in the frame-
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work of SNMF, the elements of the basis in CNMF are assumed to have a representation
in the form of a convex combination of the input data vectors, and the factor matrices
in ONMF are constrained by the orthogonality condition to guarantee the interpretation
of the clustering.

It should be pointed out that the NMF-based methods achieve strong and economic
performance which is a leading factor in the widespread use of these techniques in many
research fields, and particularly in computational biology [46, 47, 48]. A large number
of studies in physiology and neuropsychology have presented evidence to propose that
representing a non-negative matrix corresponding to a dataset by parts-based factors
should be a proper approach to analyze the recognition system of the human brain [43].
NMF-based methods can be used for mathematical models of diseases to find and fine-
tune the parameters of the models using experimental or clinical data [49].

2.3 Subspace Learning

Subspace learning is another way of dimensionality reduction that assumes the input
data lies on some intrinsic lower dimensional space to which the original features are
mapped. Specifically, subspace learning can be considered as a powerful tool to repre-
sent a space of a higher dimension by a subspace of a lower dimension using a learning
technique. Principal Component Analysis (PCA) [41, 50], Linear Discriminant Analy-
sis (LDA) [51, 52], Locality Preserving Projection (LPP) [53], and Neighborhood Pre-
serving Embedding (NPE) [54] are among the most common subspace learning meth-
ods. All of these techniques can be considered as a variant of manifold learning that
linearly projects the input data into a subspace embedded in the ambient space. The lin-
ear mapping of these methods makes them faster than non-linear variants of manifold
learning such as Locally Linear Embedding (LLE) [55]. Unlike PCA that preserves the
global euclidean structure of the input data, the neighborhood structure of each data
point is preserved in NPE. This feature of NPE is similar to LPP, although their objec-
tive functions are different from each other.

The reduction techniques described in this section are not proper to deal with feature
selection tasks since their mechanisms are developed only to handle feature extrac-
tion problems. It seems likely that the representation provided by the features in the
subspace of a lower dimension would not be well interpretable. To overcome this limi-
tation, MF, NMF and other subspace learning conceptions have been merged to develop
a broad category of novel and effective feature selection techniques. Some significant
methods introduced recently in this category include SL-IGO [56], MFFS [14], MPMR
[16], NSSLFS [57], SGFS [17], GLOPSL [58], LSS-FS [59], RMFFS [15], SFS-BMF
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[60], RNE [61], SLSDR [18], and SLASR [62].

2.4 Manifold Learning

Manifold learning uncovers low-dimensional manifolds (constraint surfaces) that are
embedded in the high-dimensional space of the input data in an unsupervised manner.
Thus, a manifold learning method leads to a non-linear dimensionality reduction in the
input data with high dimensionality such as medical images or high-spectral remote
sensing data. The resulting low-dimensional embedding best preserves the manifold
structure of the original data. To verify this condition, some statistical measures such
as variance or reconstruction error is usually used. Depending on the type of the statis-
tical measure being utilized, various manifold learning methods have been developed.
Some early examples include Isometric Feature Mapping (Isomap) [63], Locally Linear
Embedding (LLE) [55], Laplacian Eigenmaps [64], Laplacian Score [65], and Multi-
Cluster Feature Selection (MCFS) [66]. These methods take into account the manifold
structure of the data through either their explicit formulation and/or some sort of regu-
larization. All of these methods only consider the manifold structure of the samples.

Dual-manifold learning approaches have been also used recently. The focus of dual-
manifold learning approaches is to use the samples and features duality connection to
exploit the manifold structures of both samples and features of the original data. The
idea behind the manifold learning and dual-manifold learning approaches is to include
the samples and/or features geometric structure in the reduced data obtained as a result
of the feature selection technique used. For the samples and/or features, an affinity
graph is constructed which models their local geometric properties during the process
of selecting features. Recently, many new and efficient feature selection methods have
been founded on manifold learning and dual-manifold learning including SGFS [17],
GLOPSL [58], RGNMF [67], DSNMF [68], DSRMR [69], DGRCFR [70], DGSPSFS
[71], DMvNMF [72], LRLMR [73], SLSDR [18], MRC-DNN [74], RML-RBF-DM
[75], and EGCFS [76].

2.5 Correlation Analysis

As a statistical tool, the correlation analysis examines two variables to determine the
possible relationships between them. These variables may be both dependent or both
independent. It is also possible that only one variable is dependent and the other is
independent [77]. This analysis evaluates the variables connection making use of a cri-
terion called the correlation coefficient. A positive or a negative value of this criterion
indicates that a positive or a negative correlation exists between the two corresponding
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variables, respectively. Moreover, a greater or a smaller value of the correlation coef-
ficient shows that a stronger or a weaker correlation exists between the corresponding
variables, respectively [78, 79].

The information that the correlation of a feature set reveals has played a pivotal role
in the framework of newly established feature selection techniques. It is demonstrated
that this issue reflects new aspects of the original data which enhances the learning
performance [21, 22]. The correlation-based feature selection approaches aim to ex-
plore the level of correlation among features to decide which features are connected
and should be eliminated. The learning process is guided to minimize the correlation
among the original data. The correlation corresponding to a set of features can not only
determine the relevant features, but detect the feature redundancy [80]. In the selection
process of the supervised techniques, the connection that every input feature may have
with the target variable is investigated. For this purpose, some tools from statistics are
applied including the mutual information [26], Pearson correlation coefficient [79], and
Fisher score [25]. Using these notions, the selection of the input features is guided so
that the most correlated features to the target are chosen. Regarding the unsupervised
techniques, the selection process can be rested on two major frameworks that aim to
compute the feature redundancy for an especial subset. The first framework applies
some tools developed in information theory or statistics to calculate the level of pair-
wise correlation, similarity and dependence of features. Some notable techniques that
fit this framework can be found in [81, 82, 83, 84, 85, 86, 87]. The other framework uses
a notion that is able to identify the features redundancy to calculate the features connec-
tions. TAn objective function is formed to assess the features in a jointly manner. The
optimization task is regularized subject to a sparsity constraint. A number of important
methods that fall into this category can be found in [15, 16, 18, 87, 88, 89, 90, 91].
Table 1 summarizes the different categories studied in this section.

3 Background and Methods

In this section, five feature selection methods founded on a set of different concepts
including the matrix factorization technique, the feature redundancy, the feature corre-
lation, the data manifold and the feature manifold are described. These methods are
compared and theoretical insights on their applications are described.

3.1 Notations

The data matrix X is described as X = [x1;x2; . . . ;xn] = [f1, f2, . . . , fd] ∈ Rn×d

in which n and d denote the number of samples and that of features, respectively. The
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Table 1: A summary of the taxonomy and references related to the feature selection methods revisited in
this paper.

Category Description References
Matrix Factorization

or
(Non-Negative Matrix

Factorization)

To decompose a given
(non-negative) matrix into the
product of two low-rank
(non-negative) matrices

[24, 27, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48]

Subspace Learning
To learn a low dimensional
representation of a
high-dimensional space

[13, 14, 15, 16, 17, 18, 41, 50,
51, 53, 54, 55, 56, 57, 58, 59,

60, 61, 62, 92]

Manifold Learning

To uncover low-dimensional
manifolds that are embedded in the
high-dimensional space of the
input data

[17, 55, 58, 63, 64, 65, 66, 67,
73, 74, 76, 93]

Dual-Manifold Learning

To take into account the duality
between samples and features and
exploit the manifold structures of
both samples and features of the
original data

[18, 68, 69, 70, 71, 72, 75, 94,
95, 96, 97, 98]

Correlation Analysis To identify the relationships
between two variables

[15, 16, 18, 25, 26, 78, 79, 81,
82, 83, 84, 85, 86, 87, 88, 89,

90, 91]

notation Ik indicates the identity matrix of size k, and 1k denotes a square matrix of size
k whose entries are all one. For any matrix Z ∈ Rm×n, the transpose of Z is denoted by
Tr(Z). Moreover, the Frobenius norm and the L2,1-norm of Z are defined as ‖Z‖2F =∑m

i=1

∑n
j=1Z

2
ij, and ‖Z‖2,1 =

∑n
j=1

√∑m
i=1Z

2
ij, respectively. The Euclidean inner

product of the two matrices S,Z ∈ Rm×n is also presented by 〈S,Z〉 =
m∑
i=1

n∑
j=1

SijZij.

3.2 MFFS

Two well-known techniques, MF and NMF, have been proven to be able to handle the
clustering task and large-scale data processing in an efficient and productive manner.
The mechanism of NMF, which is founded on the framework of MF, is to decompose
a nonnegative matrix into two nonnegative matrices. Specifically, the nonnegativity
condition effectively constrains MF so that only a part of the data representation is
applied to handle the learning process. Recently, many innovative modifications, rested
on MF and NMF, have been incorporated into the feature selection framework. Wang et
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al. proposed “Matrix Factorization based Feature Selection” (MFFS) as a new selection
method by applying the matrix factorization to a subspace distance measure [14]. The
MFFS technique helps to solving the minimization problem given as follows:

argmin
W∈Rd×k,H∈Rk×d

‖X−XWH‖2F , s.t. W ≥ 0,H ≥ 0,WTW = Ik. (1)

The feature selection mechanism in MFFS is in fact the MF process in which the
corresponding optimization framework is constrained by orthogonality condition. Since
solving Problem (1) is a challenging task, the term WTW = Ik is constrained by
including a penalty term in the problem presented by Eq. (1). Therefore, Problem (1) is
modified as follows:

argmin
W∈Rd×k,H∈Rk×d

‖X−XWH‖2F + ρ‖WTW − Ik‖2F , s.t. W ≥ 0,H ≥ 0, (2)

in which ρ denotes the balancing coefficient for the penalty term. A major difficulty in
dealing with Problem 2 is that while the objective function given in Eq. (2) separately
satisfies the convexity condition with respect to W or H when H or W is fixed respec-
tively, it does not fulfill that condition for both W and H simultaneously. In order to
solve Problem (2), the Lagrange multiplier method is incorporated into the optimization
framework used. Particularly, all the variables are taken to be constant except for the
one that is optimized. The optimization process is established on an iterative algorithm
for which there is a convergence criterion to determine when the algorithm should stop.
Algorithm 1 summarizes the MFFS framework.

Algorithm 1 The MFFS method.

Input: Data matrix X = [f1, f2, . . . , fd] ∈ Rn×d; the penalty parameter ρ; the number of selected
features k.

1: Initialize W ∈ Rd×k and H ∈ Rk×d.
2: while not converged do

3: Fix H and obtain W according to Wij ←−Wij

(XTXHT+ρW)
ij

(XTXWHHT+ρWWTW)ij
.

4: Fix W and obtain H according to Hij ←− Hij

(WTXTX)
ij

(WTXTXWH)ij
.

5: end while
Output: Sort the values of ‖Wi‖2 in a descending order and put the rows of W in an order according to

the order induced by the values of ‖Wi‖2, where i = 1, . . . , d. Next, from {f1, f2, . . . , fd}, select k
features whose corresponding rows in W are evaluated as the top score rows according to the norm
function.
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3.3 MPMR

A major traditional function of feature selection is to remove those features that are
irrelevant in a given dataset. However, handling mining processes by feature selection
techniques is a complex problem when the data are of a high-dimension. Such datasets
can be noisy and include a large number of features that are redundant or irrelevant. To
overcome this problem in mining performance, strategies to minimize the data redun-
dancy can be incorporated into feature selection for the high dimensionality case. Wang
et al. [16] introduced “feature selection based on Maximum Projection and Minimum
Redundancy” (MPMR) as a new and efficient selection technique rested on evaluation
of features redundancy. This technique detects how much a given feature is relevant to
a subset of features. MPMR modifies the objective function of MFFS presented by Eq.
(1) in Section 3.2 to develop a feature selection framework based on minimization of
the redundancy between the selected features. The optimization problem of MPMR is:

argmin
W∈Rd×k,H∈Rk×d

‖X−XWH‖2F + αTr(WTXTXW1k), s.t. W ≥ 0,WTW = Ik,

(3)
where α provides an appropriate balance between the degrees of approximation and
redundancy, k is the number of the selected features, and the redundancy rate for the
selected features is represented by the term Tr(WTXTXW1k) in which 1k denotes a
square matrix of size k whose entries are all one. An interesting issue is that Problem
3 is free from the constraint H ≥ 0 imposed on Problem 2. The objective function
given in Eq. (3) is handled in an iterative manner through two steps. First, H is taken
to be constant while W is updated to be optimized. Next, the optimal W is applied to
optimize H. In Algorithm 2, the framework for minimizing the objective function of
MPMR is presented.

3.4 SGFS

An important property common among many datasets of high-dimension is being lo-
cally structured. It is demonstrated that the local geometry of such data has profound
and constructive impacts on enhancement of the learning techniques performance. To
work with high-dimensional data, one needs to reduce the dimension while preserving
the local structure. To this aim, high dimensional data are mapped into a subspace of
lower dimension of the original data space so that the projected data still contain the
local properties of the original data. A majority of feature selection techniques use
the geometry preservation task by the Laplacian graph. As an example, the “Subspace
Learning-Based Graph Regularized Feature Selection” (SGFS) technique newly pro-
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Algorithm 2 The MPMR method.

Input: Data matrix X = [f1, f2, . . . , fd] ∈ Rn×d; the regularization parameter α; the penalty parameter
ρ; the number of selected features k.

1: Initialize W ∈ Rd×k and H ∈ Rk×d.
2: while not converged do

3: Fix H and obtain W according to Wij ←−Wij

(XTXHT+ρW)
ij

(XTXWHHT+αXTXW1k+ρWWTW)ij
.

4: Fix W and obtain H by solving WTXTXWH = WTXTX.
5: end while

Output: Sort the values of ‖Wi‖2 in a descending order and put the rows of W in an order according to
the order induced by the values of ‖Wi‖2, where i = 1, . . . , d. Next, from {f1, f2, . . . , fd}, select k
features whose corresponding rows in W are evaluated as the top score rows according to the norm
function.

posed by Shang et al. [17] applies the feature manifold conception to the MFFS frame-
work discussed in Section 3.2. It is remarkable that representing the feature manifold by
a feature graph, SGFS effectively addresses the problem of missing local geometrical
structure in the frameworks of MFFS and MPMR.

• Feature Graph. Suppose that GF is a feature graph whose set of vertices corre-
sponds to the original features set {f1, f2, . . . , fd}. Moreover, let for 1 ≤ i, j ≤ d, the
feature similarity values, denoted by AF

ij, are calculated as:

AF
ij =

{
e−
‖fi−fj‖22

σ2 , if f i ∈ Nk(f
j) or f j ∈ Nk(f

i),

0 otherwise,
(4)

where σ, known as the Gaussian parameter, is a neighborhood size controlling parame-
ter, and Nk(f

i) is a set called the k-nearest neighbor of f i. Each AF
ij is considered as a

weight for an edgeGF and indicates how similar two features f i and f j are. In particular,
the larger AF

ij is, the more similar the features f i and f j will be. In the next step, for the
feature manifold, the graph Laplacian matrix LF is constructed making use of the simi-
larity matrix AF = [AF

ij]i,j=1,2,...,d. The Laplacian matrix is defined as LF = DF −AF

in which DF is a diagonal matrix whose diagonal entries are DF
ii =

∑d
j=1A

F
ij for

1 ≤ i ≤ d.
It should be noted that the matrix H given in Eq. (1) provides a practical criterion

to assess the features similarity so that a high level of similarity between the features f i

and f j implies more similarity between the columns hi and hj which represent f i and
f j, respectively [17]. Incorporation of a feature graph into the framework of feature
selection that uses the mentioned fact to guide the construction process of H can be
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formulated as:

Tr(HLFHT ) =
1

2

d∑
i=1

d∑
j=1

‖hi − hj‖22AF
ij. (5)

The optimization problem for SGFS is obtained by introducing the feature graph
term presented in Eq. (5) to Problem (1) as:

argmin
W∈Rd×k,H∈Rk×d

α‖X−XWH‖2F + Tr(HLFHT ) + β‖W‖2,1, (6)

s.t. W ≥ 0,H ≥ 0,WTW = Ik,

where the nonnegative parameters α and β provide a trade-off between the terms, and
the sparsity of the matrix W is ensured by placing the L2,1-norm as a constraint on W.
To deal with this constraint in the calculations, the formula ‖W‖2,1 = Tr(WTPW)
can be applied in which the diagonal matrix P is defined in terms of its diagonal entries
Pii =

1
2‖Wi‖2 , where 1 ≤ i ≤ d. Based on Algorithm 3, Problem (6) is solved separately

for each variable assuming that the rest of variables are taken to be fixed.

Algorithm 3 The SGFS method.

Input: Data matrix X = [f1, f2, . . . , fd] ∈ Rn×d; the regularization parameters α and β; the penalty
parameter ρ; the number of selected features k.

1: Compute the feature Laplacian matrix LF corresponding to the feature graph, and set LF = DF −
AF .

2: Initialize W ∈ Rd×k and H ∈ Rk×d.
3: while not converged do

4: Fix H and obtain W according to Wij ←−Wij

(αXTXHT+ρW)
ij

(αXTXWHHT+βPW+ρWWTW)ij
.

5: Fix W and obtain H according to Hij ←− Hij

(αWTXTX+HAF )
ij

(αWTXTXWH+HDF )
ij

.

6: Update the diagonal matrix P according to Pii =
1

2‖Wi‖2 , for 1 ≤ i ≤ d.
7: end while

Output: Sort the values of ‖Wi‖2 in a descending order and put the rows of W in an order according to
the order induced by the values of ‖Wi‖2, where i = 1, . . . , d. Next, from {f1, f2, . . . , fd}, select k
features whose corresponding rows in W are evaluated as the top score rows according to the norm
function.

3.5 RMFFS

As discussed before, the feature selection frameworks for MFFS, MPMR and SGFS
were developed based on imposing an orthogonality constraint on the feature weight
matrix W. In practice, this constraint is hardly fulfilled since orthogonality is nor-
mally too strict. Furthermore, there are more drawbacks regarding the framework of
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the mentioned techniques. A major downside of MFFS and SGFS is that the correla-
tions among the features are disregarded in MFFS and SGFS frameworks and this issue
can negatively affect the process of selecting discriminative features. Another drawback
of SGFS is the ignorance of redundancy caused by the L2,1-norm which constrains the
feature weight matrix to regularized it so that the feature selection is performed in a
more efficient way. Several nformative features that are redundant may be disregarded
by SGFS since the measurement of redundancy is neglected by the L2,1-norm.

These problems are solved in the framework of “Unsupervised Feature Selection by
Regularized Matrix Factorization” (RMFFS) [15]. This method uses the non-negative
matrix factorization structure used by MFFS, MPMR and SGFS to propose a novel fea-
ture selection technique in which an inner product regularization term associated with
the feature weight matrix is exerted into the objective function of RMFFS. The major
contribution of RMFFS is that the sparsity of the feature weight matrix and the low re-
dundancy among the selected features is guaranteed at the same time. The optimization
problem for RMFFS is constructed as:

argmin
W∈Rd×k,H∈Rk×d

‖X−XWH‖2F +α

d∑
i=1

d∑
j=1,j 6=i

|〈wi,wj〉|, s.t. W ≥ 0,H ≥ 0, (7)

in which α is a trade-off parameter. By a simple calculation, Problem (7) is expressed
as:

argmin
W∈Rd×k,H∈Rk×d

‖X−XWH‖2F + α
(
Tr(1dWWT )− Tr(WTW)

)
, (8)

s.t. W ≥ 0,H ≥ 0,

which is more straightforward to be calculated. In Eq. (8), 1d represents a square matrix
of size d with one as its entries everywhere.

Problem (8) can be solved by updating a single variable until convergence takes place
while the rest of the variables are taken to be fixed. convergence is repeated. Algorithm
4 summarizes the RMMFS framework.

3.6 SLSDR

The geometric information locally embedded in both the data and feature manifolds can
play important roles in the improvement of dimensionality reduction performance [99,
100]. Despite of this fact, there are only a handful of methods that apply both feature
and data geometries into the feature selection. Sparse and Low-redundant Subspace
Learning-based Dual-graph Regularized Robust Feature Selection, “SLSDR” [18], was
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Algorithm 4 The RMFFS method.

Input: Data matrix X = [f1, f2, . . . , fd] ∈ Rn×d; the regularization parameter α; the number of selected
features k.

1: Initialize W ∈ Rd×k and H ∈ Rk×d.
2: while not converged do

3: Fix H and obtain W according to Wij ←−Wij

(XTXHT+αW)
ij

(XTXWHHT+α1dW)ij
.

4: Fix W and obtain H according to Hij ←− Hij

(WTXTX)
ij

(WTXTXWH)ij
.

5: end while
Output: Sort the values of ‖Wi‖2 in a descending order and put the rows of W in an order according to

the order induced by the values of ‖Wi‖2, where i = 1, . . . , d. Next, from {f1, f2, . . . , fd}, select k
features whose corresponding rows in W are evaluated as the top score rows according to the norm
function.

proposed by making an extension on the MFFS and SGFS techniques [14, 17] so that
the data and feature manifolds, represented by dual-graph regularization terms, were
included in the formulation of SLSDR at the same time. This way, SLSDR selects
those features that can best represent the geometric aspects of the whole data.

It is apparent that in SLSDR, both graphs of samples and features are built to detect
the geometry of samples and features, respectively. SLSDR utilizes the same feature
graph construction strategy as the one discussed for SGFS in Subsection 3.4. The data
graph construction strategy used by SLSDR is described in details as follows.

• Data Graph. Similar to the MFFS feature selection framework, the matrix of
feature selection, W ∈ Rd×k, is employed in SLSDR in order to include the local geo-
metric information of data in the selection algorithm. To be more specific, assume that
the graph of the k-nearest neighbor, applied to create the manifold of data in an efficient
manner, is represented by G̃ in which the set of vertices is identified as {x1,x2, . . . ,xn}
so that each vertex of the graph corresponds to a sample xi, for 1 ≤ i ≤ n. In the same
way as the feature graph was constructed, the data similarity weights can be introduced.
In particular, for 1 ≤ i, j ≤ n, these weights are associated to each edge, which links
two vertices xi and xj, to compute the similarity between xi and xj as:

Ãij =

e−
‖xi−xj‖

2
2

σ2 , if xi ∈ Nk(xj) or xj ∈ Nk(xi),

0 otherwise,
(9)

where σ denotes the Gaussian parameter which determines the neighborhoods length,
and Nk(xi) is the k-nearest neighbor set of xi. It should be pointed out that Ãij is
utilized to compute the similarity between xi and xj. In other words, a higher value
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of Ãij implies a greater similarity between xi and xj. Then, for the data manifold,
the Laplacian matrix, L̃ = D̃ − Ã, is calculated in which D̃ is diagonal with D̃ii =∑n

j=1 D̃ij as its diagonal entries, and Ã = [Ãij].
As the data manifold assumption [18] states, for two samples xi and xj whose similarity
is high, the linear mappings xiW and xjW correspond to xi and xj, respectively, share
strong similarity. The data graph in terms of the matrix W is formulated by:

Tr(WTXT L̃XW) =
1

2

n∑
i=1

n∑
j=1

‖xiW − xjW‖22Ãij. (10)

Furthermore, motivated by the benefits that the regularization technique provided
for RMFFS, a term for regularizing the selection matrix is added to the feature selection
model of SLSDR in the form an inner product. This new term aims to determine the
most representative features whose redundancy is low, and as a consequence, both the
rows sparsity and the correlations between the features are promisingly included in the
selection process. In summary, the objective function of SLSDR is given by:

argmin
W∈Rd×k,H∈Rk×d

‖X−XWH‖2,1 + α
(
Tr(WTXT L̃XW) + Tr(HLFHT )

)
+ β

(
Tr(1dWWT )− Tr(WWT )

)
(11)

s.t. W ≥ 0,H ≥ 0,WTW = Ik,

in which α and β are two balance parameters, 1d indicates a square matrix of dimension
d with one as its entries everywhere, and the L2,1-norm is utilized to guarantee the in-
tensity of the subspace learning residual matrix against outliers. Moreover, LF denotes
the Laplacian matrix associated with the manifold of features described in Subsection
3.4 by the feature graph.

Problem (11) is handled using the framework presented by Algorithm 5. As dis-
cussed in the former subsections, the optimization process is rested on updating only
one variable while the other variables are fixed until a convergence criterion is satisfied.

4 Experimental results

In this section, we present the experimental results to evaluate the efficiency and effi-
cacy of five different feature selection algorithms which include MFFS, MPMR, SGFS,
RMFFS, and SLSDR. These algorithms have been applied to ten publicly available gene
expression datasets that are summarized in Table 2. Some of these results are taken from
our previous work [13].
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Algorithm 5 The SLSDR method.

Input: Data matrix X = [x1;x2; . . . ;xd] = [f1, f2, . . . , fd] ∈ Rn×d; the regularization parameters α and
β; the penalty parameter ρ; the number of selected features k.

1: Compute the feature Laplacian matrix LF corresponding to the feature graph, and set LF = DF −
AF .

2: Compute the data Laplacian matrix L̃ corresponding to the data graph, and set L̃ = D̃− Ã.
3: Initialize W ∈ Rd×k and H ∈ Rk×d.
4: while not converged do

5: Fix H and obtain W according to Wij ←−Wij

(XTUXHT+(αXT ÃX+(β+ρ)Id)W)
ij

(XTUXWHHT+(αXT D̃X+β1d+ρWWT )W)
ij

.

6: Fix W and obtain H according to Hij ←− Hij

(WTXTUX+αHAF )
ij

(WTXTUXWH+αHDF )
ij

.

7: Update the diagonal matrix U according to Uii =
1

2‖(X−XWH)i‖2 , for 1 ≤ i ≤ n.
8: end while

Output: Sort the values of ‖Wi‖2 in a descending order and put the rows of W in an order according to
the order induced by the values of ‖Wi‖2, where i = 1, . . . , d. Next, from {f1, f2, . . . , fd}, select k
features whose corresponding rows in W are evaluated as the top score rows according to the norm
function.

4.1 Description of Datasets

Below, the datasets that we have used in our experiments are briefly described. It should
also be noted that these datasets are accessible in the Repositories [101, 102, 103].

1. Embryonal Tumors of CNS (CNS) dataset [104] contains 60 records for the out-
come prediction of patients dealing with central nervous system embryonal tumor
and includes 7129 gene expressions as features for each patient. 21 of the records
correspond to survivors and the rest are cases of morbidity.

2. Colon Cancer gene expression dataset [105] includes 62 biopsies taken from pa-
tients with colon cancer. Each record in the dataset, which has 2000 gene expres-
sions as features, is labeled as either “negative” or “positive”. The former corre-
sponds to biopsies taken from tumors, while the latter indicates normal biopsies
taken from the normal tumor tissue.

3. Diffuse Large B-Cell Lymphoma (DLBCL) [106] is a gene expression dataset,
including 4026 gene expressions as features, for distinct types of DLBCL. The
dataset is made up of 47 samples out of which 24 are from ”germinal center B-
like” group while the rest are ”activated B-like” group.

4. GLIOMA [107] is a dataset of four classes labels and 50 samples with 4433 gene
expressions as features. The four class labels are: cancer glioblastomas (CG),
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non-cancer glioblastomas (NG), cancer oligodendrogliomas (CO), and non-cancer
oligodendrogliomas (NO). The number of samples corresponding to these class
labels are 14, 14, 7, and 15, respectively. Thus, this dataset is relatively balanced
with respect to the number of data points for each class.

5. Leukemia dataset [108] is collected from 72 bone marrow samples of 47 Acute
Lymphoblastic Leukemia (ALL) patients and 25 Acute myeloid Leukemia (AML)
patients. It is a binary dataset in which each sample has 7070 gene expressions as
features.

6. Lung Cancer [109] is also a gene expression, multi-class dataset of 203 samples,
3312 gene expressions as features, and five distinct class labels. The classes la-
bels are adenocarcinomas, squamous cell lung carcinomas, pulmonary carcinoids,
small-cell lung carcinomas and normal lung, with 139, 21, 20, 6, 17 samples, re-
spectively.

7. Lymphoma [110] is a multi-class dataset containing 96 samples with 4026 gene
expressions as features. The gene expression profiles correspond to the three most
prevalent adult lymphoid malignancies: Diffuse Large B-Cell Lymphoma (DL-
BCL), Follicular Lymphoma (FL), and B-Cell Chronic Lymphocytic Leukemia
(B-CLL).

8. Prostate Tumor dataset [111] is collected from 52 tumor samples and 50 normal
samples (i.e., 102 samples in total), where each sample has 10509 gene expressions
as features.

9. Small Round Blue Cell Tumors (SRBCT) dataset [112] is a multi-category, gene
expression dataset of 83 samples, 2308 gene expressions as features, and four
class labels. 8) Prostate Cancer dataset is collected from 52 tumor samples and
50 normal samples (i.e., 102 samples in total), where each sample has 10509 gene
expressions as features.

10. TOX-171 [21] is a gene expression dataset with 5748 gene expressions as features
in 171 patients with various skin conditions. There are four categories of patients
in the dataset: suffered radiation-therapy (RadS) patients, controlled radiation-
therapy (RadC) patients, patients with skin cancer (SkCa), and patients with no
cancer (NoCa).
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Table 2: Details of ten gene expression datasets used in the experiments.

Dataset # Samples # Features # Classes Reference
Embryonal Tumors of CNS (CNS) 60 7129 2 [104]
Colon Cancer 62 2000 2 [105]
Diffuse Large B-Cell Lymphoma (DLBCL) 47 4026 2 [106]
GLIOMA 50 4434 4 [107]
Leukemia 72 7070 2 [108]
Lung Cancer 203 3312 5 [109]
Lymphoma 96 4026 9 [110]
Prostate Tumor 102 10509 2 [111]
Small Round Blue Cell Tumors (SRBCT) 83 2328 4 [112]
TOX-171 171 5748 4 [21]

4.2 Experimental Setting

To run our experiments, we created a pipeline that consisted of two components: feature
selection and clustering. Each dataset was passed through the first component to select
a subset of the initial features by using a feature selection algorithm. Then, we ran the
dataset with selected features through a k-means clustering model as the downstream
task [113] to evaluate the effectiveness of the feature selection algorithm in separating
samples. We needed to specify some parameters in order to run the feature selection
algorithms and also the k-means model as the downstream task. For all feature selection
algorithms and all datasets, we searched the number of the selected features k from the
set {10t | t = 1, . . . , 10}. Furthermore, we fixed the number of maximum iterations as
30 for the feature selection models. The penalty parameter ρ for the methods MFFS,
MPMR, SGFS and SLSDR was searched in {10t | t = −3, . . . , 8}. Additionally, the
redundancy parameter for MPMR was set to 1. The sparsity regularization parameter
for RMFFS and SLSDR was chosen from {10t | t = 0, . . . , 8}. Finally, the other reg-
ularization parameters for SGFS and SLSDR were tuned from {10t | t = −8, . . . , 8}.
For SGFS and SLSDR, the k-nearest neighborhood method was utilized to construct
the weighted matrix in which the size of neighbors was set from {3, 5, 10}. More-
over, the bandwidth parameter σ in the Gaussian kernel was selected within the range
{10t | t = 0, . . . , 6}.

Since k-means clustering is sensitive to the initial random values of the centroids,
we repeated the clustering task on all gene expression datasets 20 times. Then, we
calculated some statistics, as explained below, to evaluate the clustering performance.
We tuned the parameters of the feature selection algorithms to obtain the best clustering
metrics. We should note that we set the number of clusters in k-means clustering to be
the number of class labels in the datasets.
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4.3 Evaluation Metrics for Comparison

We selected the Clustering Accuracy (ACC) and Normalized Mutual Information (NMI)
as the evaluation metrics for the clustering model [22]. These evaluation metrics are de-
fined below:

• ACC: It gives us the percentage of ground truth labels that are correctly predicted
by the clustering algorithm and is calculated as

ACC =
1

n

n∑
i=1

δ
(
l
(g)
i ,map

(
l
(c)
i

))
,

where l(g)i and l(c)i are the ground truth and clustering labels for the ith data point
and n is the total number of data points. The δ(·, ·) function is an indicator function
which evaluates to one for identical inputs to the function and is equal to zero
otherwise. The map(·) function maps the clustering label l(c)i to the corresponding
label of the dataset.

• NMI: This metric is defined for two random variables p and q as

NMI(p, q) =
I(p; q)√
H(p)H(q)

,

where I(·) and H(·) represent the mutual information and the entropy of the input
data, respectively. We use NMI to measure the quality of clustering, where the
higher values of NMI implies the better clustering performance. If we consider the
predicted labels by clustering model as C̃ = {C̃j}c̃j=1 and the true labels of clusters
as C = {Ci}ci=1, then NMI can be expressed as follows:

NMI(C, C̃) =

∑c
i=1

∑c̃
j=1

∣∣∣Ci ∩ C̃j

∣∣∣ logn|Ci∩C̃j|
|Ci||C̃j |√∑c

i=1 |Ci| log |Ci|n
∑c̃

j=1

∣∣∣C̃j

∣∣∣ log |C̃j|n .

4.4 Results and Discussion

We analyze the performance of the feature selection algorithms in this section based on
the performance of clustering models applied to the gene expression datasets with the
selected subset of features.

All feature selection techniques are compared to each other in Figure 2 and Figure
3 based on ACC and NMI clustering metrics, respectively. The numerical values of the
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metrics are also presented in Tables 3 and 4, respectively. The Baseline in these figures
and tables corresponds to the case where the k-means clustering was applied to datasets
with their original features.

Figure 2: The ACC average values (the y-axis) versus the seven datasets (the x-axis). (A bigger value of ACC
indicates a better clustering performance.)

Table 3: The results of clustering accuracy (ACC±STD%) corresponding to five feature selection tech-
niques computed on seven datasets. In every row, the first and the second best outcomes are boldfaced
and are underscored, respectively. The number of the selected features for the best clustering outcomes
is shown in parentheses. (A bigger value of ACC indicates a better clustering performance.)

Dataset Baseline MFFS MPMR SGFS RMFFS SLSDR
CNS 53.33 ± 1.45 61.75 ± 2.78 (50) 61.66 ± 0.00 (70) 63.33 ± 0.00 (60) 63.33 ± 0.00 (60) 68.00 ± 0.68 (100)
Colon Cancer 78.54 ± 6.95 74.19 ± 0.29 (10) 74.21 ± 2.91 (90) 79.41 ± 1.45 (40) 83.87 ± 0.43 (40) 85.48 ± 0.00 (40)
DLBCL 59.57 ± 1.23 85.10 ± 0.14 (40) 87.23 ± 0.14 (70) 87.76 ± 2.57 (70) 89.36 ± 0.00 (30) 90.27 ± 8.03 (60)
GLIOMA 44.00 ± 0.00 48.50 ± 2.66 (80) 46.40 ± 0.97 (30) 47.50 ± 2.89 (40) 49.80 ± 5.30 (30) 52.20 ± 3.10 (60)
Leukemia 31.94 ± 0.01 25.00 ± 0.00 (80) 23.61 ± 0.01 (30) 31.94 ± 0.02 (30) 31.94 ± 0.02 (20) 31.94 ± 0.01 (10)
Lung Cancer 83.10 ± 0.94 69.72 ± 7.63 (100) 69.70 ± 2.45 (20) 75.07 ± 5.64 (80) 73.39 ± 0.22 (90) 84.28 ± 0.63 (80)
Lymphoma 57.96 ± 4.55 56.19 ± 2.77 (90) 57.81 ± 3.53 (90) 58.56 ± 2.77 (60) 57.34 ± 3.99 (70) 60.26 ± 2.93 (80)
Prostate Tumor 31.37 ± 0.36 31.37 ± 3.64 (20) 30.39 ± 0.72 (30) 48.03 ± 0.41 (20) 47.05 ± 2.18 (60) 49.23 ± 0.01 (30)
SRBCT 25.66 ± 2.82 43.97 ± 2.15 (60) 37.77 ± 5.14 (90) 45.27 ± 3.18 (100) 48.97 ± 4.67 (90) 51.87 ± 1.95 (50)
TOX-171 41.25 ± 0.72 42.13 ± 0.13 (90) 41.49 ± 1.65 (60) 42.26 ± 0.87 (100) 49.64 ± 1.59 (20) 51.02 ± 0.03 (40)

Both ACC and NMI results in Figure 2 and Figure 3 clearly show the superiority
of SLSDR feature selection algorithm over other algorithms in separating data points
into distinct clusters for the majority of datasets. However, a closer inspection of Fig-
ure 2 and Figure 3 reveal that the influence of the selected features by SLSDR on the
clustering performance differ across different datasets.

Based on the difference between SLSDR and Baseline ACCs, we can categorize
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Figure 3: The NMI average values (the y-axis) versus the seven datasets (the x-axis). (A bigger value of NMI
indicates a better clustering performance.)

Table 4: The results of Normalized mutual information (NMI±STD%) corresponding to five feature
selection techniques computed on seven datasets. In every row, the first and the second best outcomes are
boldfaced and are underscored, respectively. The number of the selected features for the best clustering
outcomes is shown in parentheses. (A bigger value of NMI indicates a better clustering performance.)

Dataset Baseline MFFS MPMR SGFS RMFFS SLSDR
CNS 1.17 ± 0.00 2.93 ± 0.45 (100) 1.60 ± 0.80 (30) 8.79 ± 0.00 (30) 9.35 ± 0.08 (50) 9.94 ± 3.66 (100)
Colon Cancer 27.35 ± 9.96 24.30 ± 0.14 (100) 21.08 ± 0.54 (40) 30.03 ± 0.00 (10) 33.55 ± 0.04 (60) 41.58 ± 0.03 (40)
DLBCL 2.93 ± 1.09 39.45 ± 0.00 (40) 48.46 ± 0.72 (70) 49.51 ± 0.72 (70) 55.50 ± 0.65 (30) 60.70 ± 1.24 (60)
GLIOMA 17.94 ± 0.69 23.69 ± 2.07 (80) 25.24 ± 2.08 (30) 27.59 ± 6.86 (90) 29.81 ± 1.46 (30) 32.42 ± 3.01 (100)
Leukemia 21.47 ± 0.00 66.56 ± 0.06 (80) 62.07 ± 0.03 (30) 72.87 ± 0.00 (30) 80.05 ± 0.01 (70) 83.78 ± 0.03 (30)
Lung Cancer 68.12 ± 0.56 55.61 ± 6.88 (100) 55.77 ± 2.11 (70) 65.71 ± 6.39 (100) 59.71 ± 2.31 (70) 69.48 ± 0.48 (70)
Lymphoma 69.55 ± 3.41 63.47 ± 3.03 (60) 67.13 ± 3.12 (90) 68.93 ± 3.12 (60) 65.19 ± 2.29 (80) 69.50 ± 1.90 (80)
Prostate Tumor 8.56 ± 0.21 6.09 ± 0.91 (60) 8.83 ± 0.95 (20) 9.45 ± 0.03 (80) 11.50 ± 0.08 (40) 12.83 ± 0.02 (30)
SRBCT 11.55 ± 3.47 38.41 ± 7.38 (50) 24.27 ± 5.26 (40) 48.37 ± 1.21 (10) 47.82 ± 4.13 (90) 50.33 ± 2.72 (50)
TOX-171 13.54 ± 0.23 12.82 ± 1.52 (80) 16.22 ± 1.89 (60) 13.96 ± 1.02 (100) 24.60 ± 0.41 (20) 29.90 ± 0.69 (10)

the effect of feature selection by SLSDR on the clustering quality of various datasets
into three levels: weak, intermediate, and strong levels. Leukemia, Lung Cancer, and
Lymphoma datasets belong to the weak influence level, since the mentioned difference
in ACC of clustering of these datasets is below 5%. We observe an intermediate positive
effect of SLSDR on the clustering quality of Colon Cancer, GLIOMA, and TOX-171
datasets. For these datasets, the difference between ACC of SLDR and the Baseline is
in the range of 5%-15%. Finally, the strong level constitutes CNS, DLBCL, Prostate
Tumor, and SRBCT datasets of which the difference between ACC of SLSDR and the
Baseline are above 15%. In particular, applying SLSDR to the initial feature set of
DLBCL and SRBCT datasets leads to roughly 30% and 26% higher clustering ACC
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with respect to the Baseline feature set.
For the Leukemia dataset, neither SLSDR nor other feature selection algorithms

could find features that would result in a higher clustering ACC with respect to the
Baseline (i.e., clustering based on the original feature set). On the contrary, NMI value
corresponding to SLSDR is almost four times larger than that of the Baseline for the
Leukemia dataset.

In contrast to the Leukemia dataset, neither Lung Cancer nor Lymphoma datasets
benefited from any of the feature selection schemes in terms of the clustering perfor-
mance. Although SLSDR resulted in better ACC and NMI scores compared with other
feature selection methods, those scores were almost identical or close to corresponding
values of the Baseline.

The superior performance of SLSDR over other feature selection methods in ef-
fective clustering of some datasets can be explained by the dual-manifold aspect of
SLSDR. That is, the information extracted from the geometry structures of the feature
and the data manifolds at the same time enables SLSDR to obtain a rich knowledge
about the local neighborhood of features. This in turn leads to a more efficient elimina-
tion of redundant features from the original dataset by SLSDR.

Considering other feature selection methods, the performance of SGFS and RMFFS
is much better than that of MFFS and MPMR with respect to both clustering ACC and
NMI metrics in almost all cases. For this reason, it can be deduced that the inner prod-
uct regularization used in RMFFS leads to better performance in the feature selection
process compared to the redundancy term used in MPMR and the orthogonality con-
straint used in MMFS and MPMR. Moreover, the use of the manifold regularization
based on the feature space seems remarkably beneficial to raise the effectiveness level
of the SGFS method.

Despite the points made about SGFS and RMFFS above, the experimental results do
not support the absolute superiority of one method over another. For example, in terms
of ACC, these two methods work almost identically in some cases such as CNS and
Leukemia. However, in most cases, the RMFFS method outperforms SGFS which can
be explained as follows. Thus, it can be inferred that the inner product regularization in
RMFFS versus the feature manifold regularization in SGFS can have a better effect to
eliminate redundant features in favor of the informative ones.

In Figure 4, we have presented the average clustering’s ACC and NMI scores over
all gene expression datasets for different methods of feature selection methods. On
average, all feature selection methods select a subset of features that results in a bet-
ter clustering performance compared with the Baseline case. The clustering metrics
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Figure 4: The ACC and NMI average values (the y-axis) versus six feature selection methods (the x-axis). (A
bigger value of ACC or NMI indicates that the corresponding method has a better performance.)

slightly decrease when we switch from MFFS to MPMR. Then, it increases again by
changing the feature selection method from MPMR to SGFS. The increasing trend in
clustering performance continues as we move towards RMFFS and then SLSDR.

4.5 Statistical Analysis

In the previous sub-section, we showed that SLSDR has superior average ACC and NMI
scores compared with other feature selection techniques. In this sub-section, we try to
show how statistically significant the mentioned differences are. We first consider the
non-parametric Friedman test applied to the average values of ACC and NMI metrics
over all datasets. This test provides a ranking of all feature selection methods based
on a null hypothesis that states all of these methods lead to similar results without any
significant differences. We used the Holm’s procedure as a post-hoc analysis in order
to verify the differences observed among these methods.

We have demonstrated the average rankings of various feature selection methods in
Figure 5 that are obtained by the Friedman test based on the average ACC and NMI
scores. Methods with lower ranks possess higher performance. Therefore, SLSDR
and RMFFS have, respectively, the first- and second-best performance in terms of both
clustering ACC and NMI scores. The ACC ranking of MPMR is a bit higher than that
of the Baseline, which indicates that a dataset whose feature set is selected by MPMR
would potentially have lower clustering ACC score compared to the Baseline. The ACC
results in Figure 2 for the Colon Cancer, Leukemia, Lung Cancer, and Prostate Tumor
datasets agree well with the this conclusion.

We also performed the Holm’s procedure to do pairwise comparisons between meth-
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Figure 5: Average ranks obtained by the Friedman test for each method with respect to the different
evaluation metrics on the datasets. (The lower rank of the evaluation metrics, the better the performance
of the methods.)

Table 5: Post hoc comparisons on the ACC metric by using the significance level α = 0.05. Here, the
control method is SLSDR, and the Holm’s procedure rejects a null hypothesis when the Holm’s p-value
of a pairwise comparison ≤ 0.025.

Method Holm’s p-value Reject
MPMR 0.01 Yes
Baseline 0.0125 Yes
MFFS 0.016667 Yes
SGFS 0.025 Yes
RMFFS 0.05 No

Table 6: Post hoc comparisons on the NMI metric by using the significance level α = 0.05. Here, the
control method is SLSDR, and the Holm’s procedure rejects a null hypothesis when the Holm’s p-value
of a pairwise comparison ≤ 0.05.

Method Holm’s p-value Reject
MFFS 0.01 Yes
Baseline 0.0125 Yes
MPMR 0.016667 Yes
SGFS 0.025 Yes
RMFFS 0.05 Yes

ods to infer any statistically significant difference between them in terms of clustering
metrics. The results are presented in Table 5 and Table 6 for ACC and NMI metrics
respectively. We have set SLSDR as the control method and the significance level α to
be 0.05. For ACC and NMI cases, if the Holm’s p-value of a pairwise comparison is
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less than or equal to 0.025, the Holm’s procedure rejects the null hypothesis. Table 5
clearly shows that the difference between the clustering ACC of SLSDR method on the
one hand and that of the Baseline, MPMR, MFFS, and SGFS on the other hand is sta-
tistically significant. A similar conclusion can be drawn from Table 6 based on the NMI
metric. Because the Holm’s p-values of these four methods are <= 0.025 for both ACC
and NMI cases. However, the Holm’s procedure fails to reject the null hypothesis for
RMFFS method, since its corresponding Holm’s p-value is greater than 0.025. In other
words, it is safe to infer from the Holm’s procedure results that there is no statistically
significant difference between SLSDR and RMFFS methods from either of clustering
ACC or NMI perspectives.

4.6 Computational Complexity Analysis

The superior feature selection performance of SLSDR comes at a high computational
cost compared to other methods. Table 7 compares the per-iteration computational
complexity of different feature selection algorithms in this work. The SLSDR’s com-
putational complexity, θSLSDR, is different from that of other methods in two ways.
First, θSLSDR is a quadratic function of number of samples (n), whereas the computa-
tional complexities of MFFS, MPMR, and RMFFS are independent of n. The SGFS’s
computational complexity is also a function of n, yet it is a linear dependency. Thus,
in the worst-case scenario, when n is on the same order of the number of features, d,
the time complexity of SLSDR becomes cubic (O(n3)) in a large, high dimensional
dataset. Second, as opposed to other methods, θSLSDR is also a function of the number
of selected features (k). Figure 6 illustrates the runtime of various feature selection
methods for different gene expression datasets as a function of k, where the value of
k is selected from the set {10, 40, 80, 100}. It is evident from Figure 6 that SLSDR
has substantially longer runtime than other methods. Further, as the number of selected
features increases from 10 to 100, so does the runtime.

Table 7: The per-iteration computational complexity comparison among different feature selection meth-
ods. Note that n is the number of samples, d is the number of features, and k is the number of selected
features.

Method Computational complexity
MFFS O(d2)
MPMR O(d2)
SGFS O(d2) +O(nd2)
RMFFS O(d2)
SLSDR O((k + d)(n2 + nd+ kd)) +O(nd2 + dn2)
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Figure 6: The runtime of various feature selection methods for different gene expression datasets as a function of
k, where the value of k ∈ {10, 40, 80, 100}.

5 Application to a COVID-19 clinical dataset

In this section, we evaluate the performance of the feature selection algorithms on clas-
sifying whether patients who have COVID-19 survive or not. The COVID-19 clinical
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dataset was collected at Birjand University of Medical Sciences from March 2020 to
August 2020 and includes clinical data from 500 patients and 66 blood clinical mark-
ers. The COVID-19 diagnosis in these patients was confirmed by a positive PCR-based
clinical laboratory testing for SARS-CoV-2*.

Due to the relatively small number of samples in the COVID-19 clinical dataset, any
machine learning model that is trained on the full set of features is prone to overfit-
ting. To resolve this issue, we trained the classifier on a subset of features that are less
correlated with each other and more predictive of the class labels.

Since Random Forest algorithm is generally robust against overfitting [114], we de-
cided to use it to train a classification model on the COVID-19 dataset. To control for
overfitting and generalizability to unseen data, we adapted a special training scheme
that involved two nested cross-validation (CV) procedures. The outer CV uses 10 folds
where the whole data is randomly partitioned to 10 subsets (folds). One subset is held
out for testing and the remaining 9 subsets are joined and passed along to the inner CV.
This process is repeated 10 times, each time a distinct subset is selected for testing until
all 10 folds are exhausted. We used a 5-fold inner CV for training the feature selection
algorithms and hyperparameter tuning.

The outcome of the inner CV is the feature selection model with optimum hyperpa-
rameters that gives us the best subset of features that can be used to effectively separate
samples with different class labels. In each outer CV iteration, the Random Forest clas-
sifier is trained based on the subset of features selected by the inner CV. After the last
iteration of the outer CV, the overall classification metric is obtained by averaging the
performance metrics of each of the 10 Random Forest classifiers. The feature selection
algorithms and their hyperparameters are the same as those mentioned in in Subsection
4.2. To investigate the effect of number of features on the classifier’s performance, we
trained different classifiers for different number of features which assumed values in the
range of 2, 4, 6, 8, and 10.

We employed five different metrics to evaluate the classification performance of the
Random Forest model including Classification Accuracy (ACC), True Positive Rate
(TPR), True Negative Rate (TNR), Positive Predictive Value (PPV), and Negative Pre-
dictive Value (NPV) [115]. The description of these classification metrics is given in
the Supplementary Material. Here, it should be mentioned that when a binary classifier
predicts the class label of an observation to be “Positive” or “Negative”, the predicted
label can be “True” or “False” with respect to the actual (ground-truth) label of the ob-

*Anonymised clinical data of all patients with COVID-19 who had been admitted in clinical centers of Birjand University
of Medical Sciences during the mentioned time were used according to the Institutional Review Board (IRB) permission.
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servation. In our COVID-19 dataset, positive and negative labels correspond to death
and survival conditions, respectively.

Figure 7 shows the classification metrics of the Random Forest classifier for different
feature selection algorithms and different number of selected subset of features k =
{2, 4, 6, 8, 10}. The numerical values of the metrics are also presented in Table S.1 of
the Supplementary Material.

A common theme can be readily identified in all plots of Figure 7. As k increases
beyond 4 and more features are involved, SLSDR outperforms other feature selection
algorithms in selecting a subset of features that lead to better classification metrics. We
ascribe this behavior of SLSDR to its dual-manifold nature, which other methods lack.
In other words, SLDR uses the geometry structures of the feature and the data manifolds
at the same time such that this rich geometry information of the dataset makes SLSDR
superior in comparison to the other methods. Indeed, the underlying graph network of
SLSDR, which connects features, and its associated graph Laplacian matrix facilitate
the search for the least redundant features that can effectively represent the original
dataset.

Considering four other methods (i.e., MFFS, MPMR, SGFS and RMFFS), it is hard
to assert the absolute superiority of one method over another. For example, in terms of
the classification ACC in Figure 7a, these four methods result in almost similar classi-
fication performance. In terms of TPR (see Figure 7b), the MFFS method works better
than the others for k = 2 and 8, whereas the RMFFS method outperforms the other
methods for k = 6. In terms of TNR (see Figure 7c), except for k = 8, the SGFS
method performs relatively better than other methods.

It is worth analyzing how feature selection algorithms play out with False Positive
(FP) results in predicting COVID-19 survival. When the Random Forest classifier is
trained on only two features, as Figure 7c shows, the maximum TNR of 61.09% is
achieved when the features are selected by SGFS method. However, when the number
of selected features increases, SLSDR surpasses SGFS in boosting the TNR so that it
attains 91.22% at k = 10 which is around 4% higher than the corresponding value of
SGFS. Similarly, Figure 7d shows that SGFS method leads to the highest average value
of 70.11% for PPV at k = 2, whereas SLSDR outperforms SGFS for k ≥ 6 and results
in a classifier with the maximum average PPV of 93.07% at k = 10. Considering TNR
and PPV, it is clear that FPs play an important role in the variation of these two metrics.
We can infer from these results that the classifier trained on two features has a relatively
large number of FPs. In particular, even the best PPV value of 70.11% at k = 2 in our
analysis implies that around 30 out of 100 COVID-19 patients are falsely predicted that
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(a) Classification ACC (b) TPR

(c) TNR (d) PPV

(e) NPV

Figure 7: Performance metrics of the Random Forest classifier: (a) Classification ACC, (b) TPR, (c) TNR, (d)
PPV, and (e) NPV.

they would not survive. However, the number of FPs decreases as k increases so that
only 7 out of 10 COVID-19 patients would be falsely predicted to not survive. This is
the case when 10 features are selected by SLSDR.

It is even more important to investigate how the classifier deals with False Negative
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(FN) results, because it would determine the response time and the strategy to save the
lives of those who would likely die due to COVID-19. In this case, the TPR (sensitivity)
results in Figure 7b and NPV values in Figure 7e can help us. On the one hand, when
the Random Forest classifier is trained on 2 and 8 features that are selected by SLSDR,
the average TPR values are 86.79% and 95.13%, respectively. The latter is much higher
compared with the values corresponding to other feature selection methods. Even 2 out
of 20 features from the COVID-19 dataset, which are selected by SLSDR, enable the
classifier to achieve an average NPV of 77.16%. That is, out of 100 patients that are
predicted to survive from COVID-19, 78 patients will actually survive. When 8 features
are selected by SLSDR, the average NPV of the classifier reaches to 93.79%. It implies
that the classifier tends to predict fewer false negatives when it is trained with 8 features
selected by SLSDR. At k = 10, the TPR and NPV average values corresponding to all
feature selection methods are almost identical, except for SGFS whose TPR and NPV
avearge values are roughly 2% lower than those of other methods.

These selected features and results are important for strategic and clinical decision
making in centers of COVID-19 care. While ICU beds and other critical resources are
limited, focusing on narrow clinical findings (2 or 8) will optimize the medical care
management since patients with risk of death can be on a priority of getting critical
care. The model we introduced here, especially when it is trained on 8 features selected
by SLSDR, can equip the caregivers to reliably rule out the need to assign resources to
COVID-19 patients who would likely survive.

While a positive PCR test of COVID-19 confirms the infection in a patient and some
clinical manifestations and characteristics like age and radiological imaging can guide
a clinician on decision-making but the prediction of clinical course of the disease is a
complex challenge. Data from COVID-19 patients have been used to find such clinical
predictors [116, 117, 118, 119].

Figure 8 illustrates the frequency of two features that are selected by five feature
selection algorithms at each iteration of the outer 10-fold CV during the training of the
Random Forest classifier. Interestingly, RMFFS (see Figure 8c) and SGFS (see Figure
8d) methods have the least and the most variations across different pair of selected fea-
tures. Furthermore, except for SGFS, other methods have selected (O2 Saturation, CRP)
pair of features more often compared with other pairs. In the extreme case, RMFFS has
selected the (O2 Saturation, CRP) pair of features in all 10 iterations of the 10-fold CV.
Hypoxia (Low O2 Saturation on ABG) and higher abnormal levels of CRP have been
reported to be associated with poor prognosis of COVID-19 disease and are shown to
be correlated with higher mortality rates [120, 121, 122, 123, 124, 125]. In addition,
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(a) MFFS (b) MPMR

(c) SGFS

(d) RMMFS (e) SLSDR

Figure 8: Frequency of pair of features (biomarkers) that are selected by various feature selection methods at
each iteration of the 10-fold CV of the Random Forest classifier. The feature selections methods are (a) MFFS,
(b) MPMR, (c) RMFSS, (d) SGFS, and (e) SLSDR.(ALT: Alanine Aminotransferase, AST: Aspartate Aminotrans-
ferase, CRP:C-Reactive Protein, K: Potassium, Lymph: Lymphocyte Count, Na: Sodium,O2 Sat:O2 Saturation on
ABG, PLT: Platelet Count, PMH: Past Medical History (Cancer, Diabetes, Ischemic Heart Disease, Renal Failure,
Immunodeficiency), PTT: Partial Thromboplastin Time, WBC: White Blood Cells count)
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the frequency of each individual feature, that is found in Figure 8, is added up across all
five feature selection methods, and the result is demonstrated in Figure 9. Apart from
CRP (frequency = 39) and O2 Saturation (frequency = 34), Platelet Count, Creatine, and
Lymphocyte Count have also been selected, however, at much lower frequencies. These
last three features have also been reported as predictive markers of poor prognosis and
mortality in COVID-19 patients [126, 127, 128, 129, 130, 131].

Figure 9: Aggregate frequency of features (biomarkers) that are selected by all feature selection methods together
at all iterations of the 10-fold CV of the Random Forest classifier, where at each iteration only two features (k =
2) are selected. (ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, CRP:C-Reactive Protein, K:
Potassium, Lymph: Lymphocyte Count, Na: Sodium,O2 Sat:O2 Saturation on ABG, PLT: Platelet Count, PMH:
Past Medical History (Cancer, Diabetes, Ischemic Heart Disease, Renal Failure, Immunodeficiency), PTT: Partial
Thromboplastin Time, WBC: White Blood Cells count)

6 Conclusion

Complex diseases like COVID-19, when they appear as a pandemic, have drastic effects
on the health care systems. To overcome the complications of COVID-19 on individual
patients and healthcare systems, it is vital to develop advanced quantitative digital health
platforms to assign the optimized clinical-decision making to each patient. To predict
the prognosis of COVID-19 in a personalized approach, we need to explore the high-
dimensional clinical and biomarker space of this disease to select a set of clinical and
biomarker signatures. The size and content of these signatures need to be efficient in
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both cost and time. Although mechanistic and phenomenological predictive models in
systems biomedicine [132, 133, 134, 135] are used, due to the complexity of COVID-
19 and being a multi-organ disease, we need to use machine learning methodologies to
reduce the high-dimensional space of clinical and biomarker spaces [13].

Using systems medicine approaches to find differentially expressed biomarkers helps
explore different biomarker signatures [136]. However, essential features can be miss-
ing when applied to a clinical and biomarker space of a disease such as COVID-19. Our
methodology in this paper indicates how we can discover clinical prognostic indicators
for COVID-19 by reducing the high dimensionality of clinical feature space. Future
clinical cohorts and systematic studies on COVID-19 can use our findings to prove
the efficacy of quantitative machine learning-based clinical decision-making because is
necessary to be ready for the emergence or re-emergence of other infectious diseases
like COVID-19.
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