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Abstract

Computerized classification of surface spikes in three-dimensional electron

microscopic reconstructions of viruses

by

Younes Benkarroum

Adviser: Gabor T. Herman

The purpose of this research is to develop computer techniques for improved

three-dimensional (3D) reconstruction of viruses from electron microscopic images

of them and for the subsequent improved classification of the surface spikes in the

resulting reconstruction. The broader impact of such work is the following.

Influenza is an infectious disease caused by rapidly-changing viruses that ap-

pear seasonally in the human population. New strains of influenza viruses appear

every year, with the potential to cause a serious global pandemic. Two kinds of

spikes – hemagglutinin (HA) and neuraminidase (NA) – decorate the surface of the

virus particles and these proteins are primarily responsible for the antigenic changes

observed in influenza viruses. Identification of the locations of the surface spikes

of both kinds in a new strain of influenza virus can be of critical importance for the

development of a vaccine that protects against such a virus.

Two major categories of reconstruction techniques are transform methods such

as weighted backprojection (WBP) and series expansion methods such as the alge-

braic reconstruction techniques (ART) and the simultaneous iterative reconstruction

technique (SIRT). Series expansion methods aim at estimating the object to be re-

constructed by a linear combination of some fixed basis functions and they typically
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estimate the coefficients in such an expansion by an iterative algorithm. The choice

of the set of basis functions greatly influences the efficacy of the output of a se-

ries expansion method. It has been demonstrated that using spherically symmetric

basis functions (blobs), instead of the more traditional voxels, results in reconstruc-

tions of superior quality. Our own research shows that, with the recommended

data-processing steps performed on the projection images prior to reconstruction,

ART (with its free parameters appropriately tuned) provides 3D reconstructions of

viruses from tomographic tilt series that allow reliable quantification of the sur-

face proteins and that the same is not achieved using WBP or SIRT, which are the

methods that have been routinely applied by practicing electron microscopists.

Image segmentation is the process of recognizing different objects in an image.

Segmenting an object from a background is not a trivial task, especially when the

image is corrupted by noise and/or shading. One concept that has been successfully

used to achieve segmentation in such corrupted images is fuzzy connectedness. This

technique assigns to each element in an image a grade of membership in an object.

Classifications methods use set of relevant features to identify the objects of

each class. To distinguish between HA and NA spikes in this research, discussions

with biologists suggest that there may be a single feature that can be used reliably

for the classification process. The result of the fuzzy connectedness technique we

conducted to segment spikes from the background confirms the correctness of the

biologists’ assumption. The single feature we used is the ratio of the width of the

spike’s head to the width of its stem in 3D space; the ratio appears to be greater

for NA than it is for HA. The proposed classifier is tested on different types of

3D reconstructions derived from simulated data. A statistical hypothesis testing

based methodology allowed us to evaluate the relative suitability of reconstruction

methods for the given classification task.
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Introduction

Influenza is a rapidly changing virus that manifests itself seasonally in the human

population. Every few years a new strain of the influenza virus appears and causes

a serious global pandemic. Knowledge of the structure and density of the virus

surface proteins is of critical importance in a vaccine candidate [9, 50, 51]. Each

season, the vaccine must be re-engineered to match the current influenza strains

with rapid production capability.

In this computer science dissertation, we will be working with digital represen-

tations of the underlying biological objects, as discussed, for example, in Subsec-

tion 1.1.4 of [56]. This means that the biological object is virtually partitioned into

small abutting cuboidal volume elements, referred to as voxels. The 2D analog of a

voxel is a pixel (abbreviation for picture element). A 3D scene of an object is a 3D

rectangular array of voxels together with a value assigned to each voxel in the array.

The digital representations mentioned at the beginning of this paragraph will be 3D

scenes in the just-defined sense. We will adopt the terminology of Subsection 1.1.4

of [56] in a similar fashion in all our discussions related to digital imaging.

Electron microscopy (EM) is an important method for determining the three-

dimensional (3D) structure of biological specimens; it allows the 3D reconstruc-

tion of an object (a specimen) by gathering the two-dimensional (2D) information

present in projection images taken of the specimen at different orientations with an

electron microscope [22, 23]. The reconstructions that are produced are 3D scenes

1



2

in the sense of the previous paragraph, with the value assigned to a voxel related to

the average value of the physical parameter called Coulomb potential of the mat-

ter occupying that voxel. Projections are obtained using beams of electrons that

are accelerated toward the specimen using a positive electrical potential. Scattering

occurs inside the irradiated sample, affecting the electron beam; these interactions

and effects are detected and spatially mapped into an image, the values in which are

related to the line integrals of the Coulomb potential values in the biological object

to be reconstructed. Since the biological tissues react very sensitively to electron

beams, data are collected using low electron current resulting in a poor signal-to-

noise ratio (SNR).

Influenza is pleomorphic (i.e., the shape and size is subject to environmental

conditions), Thus, 3D reconstruction techniques that assume the availability of

multiple identical copies of the object to be reconstructed (such as single parti-

cle reconstruction [43] or tomogram averaging [8]) cannot be employed to achieve

our aim. Electron tomography (ET) [22] is a suitable approach, since it creates its

reconstructions from multiple projections of just one copy of the object to be re-

constructed. However, there are undesirable consequences of this method of data

collection: namely, the limited angular range, the small number and the low SNR

of the projections. These interfere with our ability to produce high quality recon-

structions of the viruses, which makes it difficult to reliably analyze the structure

of the virus surface proteins. Therefore, our first task is to develop a reconstruction

procedure that can produce high quality reconstructions of viruses from ET data.

Our second task is to develop a classification procedure that can be applied to such

reconstructions to provide a reliable classification of the surface proteins.

The two major categories of reconstruction techniques in ET are transform

methods such as weighted backprojection (WBP) and series expansion methods

such as the algebraic reconstruction techniques (ART); see, for example, [31]. The
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former methods have been widely used because of their fast speed and simplicity

of implementation, while the latter methods have a significant capability to provide

greater detail with incomplete and/or noisy data [45]. Series expansion methods aim

at estimating the object to be reconstructed by a linear combination of some fixed

basis functions and they typically estimate the coefficients in such an expansion by

an iterative algorithm. The choice of the set of basis functions greatly influences

the result of a series expansion method. It has been demonstrated repeatedly that

using spherically symmetric basis functions (blobs), instead of the more traditional

voxel-based basis functions, results in reconstructions of superior quality, provided

that the free parameters that occur in the definition of the family of blobs are appro-

priately tuned. This general statement is indeed borne out below by the application

of ART using blobs to the influenza virus.

The chapters of this dissertation are organized as follows. Chapter 1 describes

the structure of the virus and reveals the method we used for the 3D reconstruc-

tion. In Chapter 2, a technique for the determination of good parameters for image

representation using blob basis functions is presented and demonstrated. Chapter

3 exhibits the data-processing steps performed on the projection images prior to

the virus reconstruction. Chapter 4 lists the steps we considered to build the protein

classifier and Chapter 5 describes the evaluation methodology for the efficacy of the

protein classifier. A discussion of what has been done, including its significance, is

provided in Chapter 6.



Chapter 1

Background

Influenza causes acute respiratory disease in humans and animals. Due to the anti-

genic diversity that is seen in influenza viruses, new vaccines must be reformulated

on an annual schedule. The considerable variation in year-to-year efficiency of vac-

cine production can lead to significant vaccine shortages such as occurred during

the H1N1 pandemic in 2009 [21]. The surface glycoprotein antigens are significant

immunogens that contribute to the development of an anti-influenza response [6].

Understanding basic virus structure and properties of these viruses would aid in de-

termining the best candidate for maximal antigen yield during vaccine production.

Furthermore, the quantities and relative amounts of the types of the virus surface

proteins will affect efficacy of the vaccine in producing an immunogenic response.

In this chapter we describe the structure of the virus and discuss background

information necessary for iterative reconstruction methods using two types of basis

functions: the traditional rectangular voxels and the spherically symmetric blobs;

then we discuss the importance of the choice of the spatial arrangement of the set of

points where those basis functions are placed in order to obtain image reconstruc-

tions of superior quality.

4
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1.1 Virus Structure

Influenza viruses are members of the orthomyxoviridae virus family; they are di-

vided into three types, A, B and C, which are determined by their internal proteins

and are antigenically distinct (i.e., they stimulate the production of different anti-

bodies). Types A and B cause annual epidemics of respiratory disease and novel

type A influenza virus may cause pandemics such as in 1918.

Influenza contains a lipid bilayer envelope surrounding a protein matrix. In-

side the matrix is the genome consisting of distinct segments of negative polarity

(non-protein coding) RNA that form complex helical structures, termed ribonucle-

oproteins (RNPs). Types A and B viruses have eight RNPs and type C has seven

RNPs. Each RNP segment encodes at least one viral protein. Influenza A viruses

are further divided into subtypes based on the amino acid sequences of the spikes

projecting from the envelope surface. Influenza virions have variable morphology

ranging from spherical to filamentous. Shape variation often affects growth charac-

teristics in cell cultures.

Virus strain identification is based on several factors: initial animal host, geo-

graphical origin, strain isolate, and the year of isolation. A high density of two types

of glycoprotein spikes (each composed of a protein and a carbohydrate), hemag-

glutinin (HA) and neuraminidase (NA), are observed projecting from the envelope

surface in what appears to be random placement. HA spikes are responsible for

viral attachment to the host cell and are the major antigenic determinant (i.e., they

are the parts that are recognized by the immune system). NA spikes are responsible

for viral exit from the infected host. There are sixteen HA (H1-H16) and nine NA

(N1-9) influenza A subtypes (it is the combination of these that leads to designa-

tions such as H5N1). X-ray crystallography has revealed the atomic structure of

the entire HA [15, 58, 59, 62] and the top segment of the NA [10, 57]. HA are

trimers (compounds of three macromolecules) with a cell-receptor-binding domain
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HA

NA

RNPs

Matrix

Figure 1.1: Schematic of influenza virus.

that binds the virus to its host cell, and an elongated fusion domain that fuses the

viral envelope to the cell envelope [19]. NA are club-shaped tetrameres (proteins

with four subunits) with a protein conformation described as anti-parallel β -sheets

arranged in a propeller blade conformation [2]. A schematic of a spherical influenza

virus is shown in figure 1.1.

Cryogenic electron microscopic tomography (cryo-EM tomography) [22] has

been employed to study the two influenza surface proteins and their distribution on

the viral surface. Harris et al. [29] visualized the 3D structure of a type A H3N2

strain X 31 virus using cryo-EM tomography and determined that a typical 120 nm

diameter type A influenza virion can contain up to 375 surface spikes, but the actual

count could be lower due to bare spots. The shapes of the HA and NA spikes and

how they are located relative to the lipid bilayer envelope surrounding the protein

matrix are indicated in figure 1.2. In the gray-value images in this figure, the darker

values indicate higher Coulomb potentials at the corresponding locations of the

reconstructed 3D scenes. Visualization of the spikes is possible due to the fact that

the Coulomb potential is higher for protein than for the ice into which the virus is

embedded for the purpose of cryogenic electron microscopy. Note the shortness of
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Figure 1.2: Distributions and shape-based differentiation of HA and NA spikes. (a)
HA cluster (left); single NA (marked) in a cluster of HAs (center); and cluster of
mainly NA spikes (right) (scale bar, 50 nm). (b) HA and (c) NA stems (scale bar,
5 nm). (d) Patches of glycoprotein spikes depicted in tangential sections; triangular
HA spikes (e.g., white arrowhead) are distinguishable from square NA spikes (e.g.,
white arrowhead with black border). Images are reproduced from [29].

the stems of the HA spikes relative to those of the NA spikes.

Calder et al. [12] employed cryo-EM tomography to study the structural or-

ganization of filamentous influenza A and observed that the interaction between

the M1 protein (a matrix protein of the influenza virus) and surrounding envelope

determines the morphology of the virion. Giocondi et al. [27] used atomic force

microscopy to study the 3D topography of H1N1 influenza and a lateral hetero-

geneity of the HA and NA spikes was observed for virions at neutral pH and after

treatment at pH 5. The distributions of surface glycoproteins on two type A virus

particles (A/Udorn/72 and A/Aichi/68 X-31) have recently been determined [61].

Influenza-laboratory-adapted strains are typically ellipsoidal with diameters rang-

ing from approximately 100 to 130 nm. However, the virions also can exist as larger
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Figure 1.3: An aligned micrograph of influenza B/Lee/40 virions.

ellipsoids or filamentous particles that can extend several microns in length and the

virus particle morphology often influences growth characteristics [12, 50].

Figure 1.3 shows an aligned projection image of influenza type B/Lee/40; the

tilt axis and a red box enclosing the virus we reconstructed for this research are

displayed. (The nature of the alignment is explained near the beginning of Chapter

3 below.) Note the variation in size and shape of the virions in the micrograph.

The HA and NA surface spikes are visible in the images, but the resolution is not

adequate to accurately classify the protein spike type.
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1.2 Iterative Reconstruction Methods and Their

Implementation

As mentioned earlier, series expansion methods assume that the 3D object f to be

reconstructed can be approximated by a linear combination of a finite set of known

and fixed basis functions. More precisely, let {~xn}N
n=1 be a set (called a grid) of N

points in 3D space and let b be a fixed function (called the basic basis function).

These together can be used to specify a function f ∗, which is constructed as a linear

combination of the basis functions, bn, that are shifted versions of b, as follows:

f ∗(~x) =
N

∑
n=1

cnbn(~x), (1.1)

where {cn}N
n=1 is the set of coefficients of the specification and

bn (~x) = b(~x−~xn). (1.2)

For a fixed grid and b, various functions over 3D space (which we often refer to as

3D images) can be approximated by an appropriate choice of the coefficients.

Projections are acquired measurements. Each (of a total number M) measure-

ment provides an approximation to the integral along a straight line of the unknown

spatial distribution of the physical parameter to be reconstructed. Let p∗i denote the

line integral of f ∗ along the straight line of index i (1≤ i≤M). Then

p∗i =
N

∑
n=1

ai,ncn, (1.3)

where ai,n is the line integral, along the straight line i, of the shifted basis function

centered at~xn.

In order to estimate the coefficients for the 3D object based on the projection
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measurements, typically an iterative method is used; it produces a sequence of vec-

tors c(0), c(1), · · · that is supposed to converge. The kth iterate determines, accord-

ing to (1.1), an image f (k) from the set of coefficients
{

c(k)n

}N

n=1
. The algorithm

attempts to find a vector of coefficients c(k)n such that the line integrals of f
(k)

are

good approximations of the measured data. Let {pi}M
i=1 be the measured vector

that has already been processed to comprise (approximations) of line integrals of

the function f to be reconstructed. Based on the expression (1.3), the algorithm

attempts to find a vector c (having components cn) that is an approximate solution

to the linear system p = Ac, where p is the measured data vector and A is the system

matrix of size MN having elements ai,n. We refer to A as the projection matrix.

If the size of the projection matrix A were small, conventional matrix theory

methods could be used to invert the system of equations in (1.3). However, in

practice the system matrix is often huge; it can have as many as 1013 elements

for the fully 3D reconstruction case, which inhibits direct matrix inversion. (The

number 1013 is derived as follows. A single projection image is 200× 200 pixels.

There are 61 such images. The reconstruction region is 200×200×200 voxels. For

an iterative reconstruction technique using voxels, the size of the system matrix is

the product of these numbers, roughly 2×1013.) For that reason iterative methods

are used, the coefficient values cn are iteratively corrected so that the calculated

projections p∗i approach the recorded measurements pi. This iterative correction

forms the basis of the algebraic reconstruction algorithms, however the nature and

implementation of this correction can vary significantly, and subsequently effect the

convergence and quality of the reconstruction. Details of an ART implementation

are presented in the following subsection.
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(a) (b)

Figure 5.1: Ellipsoids simulating (a) HA spike’s head with semi-axes u = 3.5σ ,
v = 3.5σ and w = 6σ and (b) NA spike’s head with semi-axes u = 6σ , v = 6σ and
w = 3σ .

(a) (b)

Figure 5.2: Spike distribution: (a) Lateral views of 3 slices where spikes are equidis-
tantly placed and (b) 3D locations of random spikes in an illustrative example. The
locations of HA and NA spikes are colored with yellow and red, respectively.
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that for the central slice). This concept is illustrated in figure 5.2(a); the red line is a

lateral view of the central slice and the blue lines are the locations of slices at polar

angles ±θ . The spikes we used were placed in 11 slices; their locations are θ = 0º,

θ =±15º, θ =±30º, θ =±45º, θ =±60º, and θ =±75º. Figure 5.2(b) displays

the exact 3D locations of the random spikes in each slice of an illustrative example;

the locations of HA and NA spikes are colored with yellow and red, respectively.

After that, the same software package jSNARK was used to generate projection

images from the phantoms that are similar to the kind of projection images that are

obtained in practice by the data collection and data processing mechanisms used

prior to 3D reconstruction, as described in Sections 3.1 and 3.2. In particular, spec-

imen angles ranged between −60º and +60º with 2º steps, producing 61 projection

images of 200× 200 pixels each (as intimated in Section 1.2). Gaussian noise of

mean 0 and variance 1.1 was added to the purely mathematical projections in or-

der to make the quality of the spike reconstructions from the simulated noisy data

(figure 5.3) resemble that from real data (figure 3.7).

5.1.2 Reconstructions by the Algorithms to be Compared

We used the software package Xmipp to calculate 3D reconstructions from the data

so generated by each of the following algorithms: ART using blobs with the de-

sirable parameters as discussed in Chapter 2, ART using blobs with the standard

parameters, SIRT using blobs with desirable parameters, ART using voxels, and

WBP using the default parameters provided by Xmipp. A sample of a random

phantom along with its 3D reconstructions are is illustrated in figure 5.3. (Three of

these algorithms were compared on real data of similar nature in Section 3.3, see

figure 3.7.)
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Central slices of (a) a phantom and its 3D reconstructions: (b) ART us-
ing blobs with desirable parameters, (c) ART using blobs with standard parameters,
(d) SIRT using blobs with desirable parameters, (e) ART using voxels, and (f) WBP
using the default parameters.

5.1.3 Assignment of an FOM to Each Reconstruction

It is, of course, possible to apply the virus spikes classification procedure of Chapter

4 to the outputs of each of the reconstruction algorithms; that will result in classi-

fying the spike structures in the reconstructions as belonging to either class c1 or

c2. Intuitively, we see that each of the spike structures in the reconstruction “come

from” a spike of the test phantom that was created by us, and thus we can label it

either as an HA spike or as an NA spike; this labeling provides us with the ground

truth for the evaluation methodology.

Technically, the labeling of a spike structure in the reconstruction as HA or

NA can be done as follows. The spike structure is one of the components of the

foreground object (using face-adjacency) that was obtained by the segmentation
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c1 c2
HA 32 2
NA 3 8

Table 5.1: Example of an array created to calculate the classification purity of a
reconstruction.

method described in Section 4.2. Consider now all the voxels of the 3D scene that

belong to this component and look at the phantom definition; if more of those voxels

are defined to be within an HA spike than within a NA spike, then we label the spike

structure in the reconstruction HA, otherwise we label it NA.

The FOM we assign to each reconstruction is called classification purity (CP)

[55]. Based on the description in [33], this evaluation measure is computed as

follows. For every reconstruction, we create a 2× 2 array of numbers, see Table

5.1, whose rows correspond to the two kinds of spikes (HA and NA) and whose

columns (c1 and c2) correspond to the classes produced by the classifier, as de-

scribed in Subsection 4.3.3. The numbers in the table are the number of spikes that

have both properties (indicated by the row and the column) simultaneously. Table

5.1 summarizes the results of the classification applied to the output of the WBP

algorithm that appears in figure 5.3(f).

Ideally, all elements of a class should come from the same kind of spike. We

therefore define the classification purity CP in % as: 100 times the sum over columns

of the maximum of the entries in each column, divided by the sum of all the entries

in the array. A more efficacious classification procedure should result in a higher

value of classification purity. For the array in Table 5.1, the classification purity is

CP = 100×(32+8)
32+2+3+8 %, that is 88.89 %.

5.1.4 Calculation of Statistical Significance

In order to obtain statistically significant results, we sampled the ensemble of phan-

toms and the generated projection data a number of (namely, C) times. For the
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Reconstruction CP
ART using blobs with desirable parameters (ARTOPT ) 97.48%
ART using blobs with standard parameters (ARTST D) 97.04%
SIRT using blobs with desirable parameters (SIRTOPT ) 94.07%
ART using voxels (ARTV XL) 92.07%
WBP using the default parameters (WBPDFLT ) 83.93%

Table 5.2: Average values of the classification purity over 30 data sets.

experiments reported here, we used C = 30. We applied each of the five reconstruc-

tion algorithms that we listed in Subsection 5.1.2 to the same 30 data sets. For each

reconstruction we calculated its classification purity and then, for each reconstruc-

tion algorithm, we averaged the 30 classification purity values provided by the 30

data sets. We report on the average values of this FOM over all phantoms and asso-

ciated noisy projection data in Table 5.2. This table suggests that from the point of

view of their efficacy for classifying surface spikes of viruses, the five algorithms

may be rank-ordered as follows:

1. ART using blobs with desirable parameters;

2. ART using blobs with standard parameters;

3. SIRT using blobs with desirable parameters;

4. ART using voxels;

5. WBP using the default parameters.

A side observation here is that the high (such as 97.48 %) classification pu-

rity values in Table 5.2 of the virus spikes classification procedure we applied to

the outputs of reconstruction algorithms strengthens the claim we made at the end

of Subsection 4.3.3 (namely that the classes c1 and c2 correspond to HA and NA

spikes, respectively).

We have not yet come to the main point of this subsection, which is the statistical

significance of the results. The 30 data sets that were generated in order to produce
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Table 5.2 were random: both in the choice of HA vs NA spikes and the noise in the

simulated projections. The question arises: how confident are we that the reported

relative ranking of two of the algorithms is in their essential nature (and thus very

likely be observed over repeated experiments of the same kind) rather than just some

accidental choice in the random data set used for the experiment. The following is a

standard method for answering this question in a statistically rigorous fashion; see,

for example, [31, Section 5.2].

Suppose that we wish to compare the performance of two (of the five) recon-

struction algorithms from the point of view of their efficacy for spike classification.

Let us assume, that the average classification purity value (call it CP1) in Table

5.2 for the first algorithm is higher than that (call it CP2) for the second algorithm.

For 1 ≤ c ≤ C, let CP1 (c) and CP2 (c) denote the values of the classification pu-

rity of the reconstructions by the first and second algorithms, respectively, from the

cth data set. The null hypothesis that the two reconstruction methods are equally

good for the task at hand translates into the statistical statement that each value of

CP1 (c)−CP2 (c) is a sample of a continuous random variable whose mean is 0 and

whose probability density function is unknown. However, the central limit theorem

tells us that, for a sufficiently large C (and 30 is generally considered large enough),

s =
C

∑
c=1

(
CP1 (c)−CP2 (c)

)
=C

(
CP1−CP2) , (5.1)

can be assumed to be a sample from a Gaussian random variable S with mean µS = 0

and variance

VS =
C

∑
c=1

(
CP1 (c)−CP2 (c)

)2
. (5.2)

It is a consequence of the null hypothesis that s is a sample from a zero-mean

random variable. Recalling our assumption that CP1 > CP2, we have that s > 0.
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This makes us suspect that in fact the first algorithm is better than the second one

for the task at hand and so the null hypothesis may be false. The question is: how

significantly large is the observed value s for rejecting the null hypothesis? To

answer this question we consider the so-called P-value, which is defined to be

PS(s,∞] =

∞∫
s

pS (x)dx, (5.3)

where pS is the probability density function of the Gaussian random variable S

pS (x) =
1√

2πVS
exp
(
− x2

2VS

)
. (5.4)

The P-value is the probability of a sample of S being as large or larger than s.

If the null hypothesis were correct, we would not expect to come across an s

defined by (5.1) for which the P-value is very small. Thus, the smallness of the

P-value is a measure of significance by which we can reject the null hypothesis

that the two reconstruction algorithms are equally good for our task in favor of the

alternative hypothesis that the first one is better than the second one.

5.2 Comparisons of Algorithm Efficacy for Spike

Classification

Table 5.3 provides the P-values for pairwise comparisons algorithms in Subsection

5.1.4 measuring the significance by which we can reject the null hypothesis that

the two reconstruction algorithms are equally good for classification in favor of the

alternative hypothesis that the one with higher ranking is better.

Nearly all the P values in the table are very small, which means that the observed

results are very significant because they are extremely unlikely to occur by chance

if the null hypothesis were true. In particular, there is no question that one should
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ARTST D SIRTOPT ARTV XL WBPDFLT

ARTOPT 1.4441×10−1 5.0598×10−5 1.1678×10−6 8.9435×10−8

ARTST D 1.3036×10−4 8.0137×10−7 1.7856×10−7

SIRTOPT 5.5433×10−3 7.5194×10−7

ARTV XL 4.3642×10−6

Table 5.3: P-values for pairwise comparisons of reconstruction algorithms.

choose ARTOPT rather than ARTV XL, SIRTOPT or WBPDFLT , since in all three cases

the P-values for rejecting the null-hypothesis of equally good performance (in favor

of the alternative hypothesis of ARTOPT being superior) are all less than 10−4.

On the other hand, the reported results for the ARTOPT and ARTST D recon-

structions are not statistically significant. The P-value is 0.1444, which means that

even if the null hypothesis that the two reconstructions are equally good were cor-

rect, there would be a 14.4% chance of observing ARTOPT performing better than

ARTST D. However, there is no reason for not using ARTOPT as opposed to ARTST D

and so, at least for now, ARTOPT is our recommended algorithm for the purpose of

computerized classification of surface spikes in three-dimensional electron micro-

scopic reconstructions of viruses.



Chapter 6

Discussion

In this final chapter we discuss the work that has been done for this dissertation,

including indications of its significance.

6.1 Printed Publications Based on Work for This

Dissertation

• Y. Benkarroum, G. T. Herman, and S. W. Rowland. Blob parameter selection

for image representation. J. Opt. Soc. Am. A, 32:1898–1915, 2015.

• Y. Benkarroum, P. Gottlieb, A. Katz, S. W. Rowland, D. Bucher, and G. T.

Herman. Computational methods for electron tomography of influenza virus.

In G. T. Herman and J. Frank, editors, Computational Methods for Three-

Dimensional Microscopy Reconstruction, pages 133–156. Birkhäuser, 2014.

• G. Katz, Y. Benkarroum, H. Wei, W. J. Rice, D. Bucher, A. Alimova, A.

Katz, J. Klukowska, G. T. Herman, and P. Gottlieb. Morphology of influenza

B/Lee/40 determined by cryo-electron microscopy. PLoS One, 2:e88288,

2014.

98
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6.2 Workshop Presentations Based on Work for This

Dissertation

• Y. Benkarroum, The effect of basis functions on 3D-EM reconstructions,

Minisymposium on Computational Methods for Three-Dimensional Microscopy

Reconstruction1, CUNY Graduate Center, New York, NY, August 7, 2014.

• Y. Benkarroum, Electron tomography of influenza virus by algebraic recon-

struction (ART) with optimized blobs, Minisymposium on Computational

Methods for Three-Dimensional Microscopy Reconstruction2, CUNY Grad-

uate Center, New York, NY, June 15, 2012.

• Y. Benkarroum, H. Wei, G. Katz, A. Alimova, W. J. Rice, A. Katz, D. Bucher,

J. Klukowska, G. T. Herman, P. Gottlieb, Influenza B Structure Analyzed

by Cryo-Electron Microscopy, CUNY Structural Biology Workshop3, CUNY

Graduate Center, New York, NY, June 6, 2011.

6.3 Summary of the Contributions of this

Dissertation

Influenza is a rapidly changing virus that manifests itself seasonally in the human

population. Every few years a new strain of the influenza virus appears and causes

a serious global pandemic. Knowledge of the structure and density of the virus

surface proteins is of critical importance in a vaccine candidate. Each season, the

1http://www.dig.cs.gc.cuny.edu/workshops/Minisymposium_revised_
JF1.pdf

2http://www.dig.cs.gc.cuny.edu/workshops/Mini_Symposium_2012.
html

3http://www.cuny.edu/research/news-events/StructuralBiologyWorkshop.
html
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vaccine must be re-engineered to match the current influenza strains with rapid

production capability.

The purpose of this research is to develop computer techniques for improved

3D reconstruction of viruses from electron microscopic images of them and for the

subsequent improved classification of the surface spikes in the resulting reconstruc-

tion. Therefore, our first task was to develop a reconstruction procedure that can

produce high quality reconstructions of viruses from electron-tomographic data and

our second task was to develop a classification procedure that can be applied to such

reconstructions to provide a reliable classification of the surface spikes.

With respect to the first task, we demonstrated in our research the usefulness of

blobs in 3D reconstructions of viruses from electron microscopic images. We inves-

tigated the selection of blob parameters using an extra degree of freedom that has

been ignored previously. Using that extra degree of freedom, we produced a family

of blob parameters for accurate representation of images. We then investigated how

well the various members of this family can be utilized for representing the image

of a ball. We showed that there is a trade-off between the blurring of the edge of the

ball and the magnitude of local oscillations in the representation. We generalized

this approach to representation by blobs first piecewise-constant and then arbitrary

3D images. Based on a deeper mathematical analysis and experimental demonstra-

tions of various choices we ended up with providing a new technique for optimizing

parameters for 3D image representation and reconstruction using blob basis func-

tions. It has been demonstrated that, with the recommended data-processing steps

performed on the projection images prior to reconstruction, the reconstruction algo-

rithm ART with the blobs that we advocate provides 3D reconstructions of viruses

from tomographic tilt series that allow reliable quantification and identification of

the surface proteins, which is a valuable tool for the selection of useful viral strains

for successful manufacture of vaccines.
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Regarding the classification aspect, the process we built assigns a category to

a protein spike on the basis of its shape. The objectives of automating the clas-

sification are to make the process more reliable and reproducible by making the

same choices under the same conditions. The quantification of the influenza sur-

face spikes was made using a fuzzy connectedness technique; this sophisticated

technique has been successfully used to segment an object from a background espe-

cially when the image is corrupted by noise and/or shading. Individual spike struc-

tures were extracted by partitioning the segmented object into components using

face-adjacency; then reoriented to settle all of them into the same framework. The

differentiation between the two types of surface spikes, HA and NA, was achieved

by using a single feature; which is the ratio of the width of the spike’s head to the

width of its stem in 3D space; the ratio appears to be greater for NA than it is for

HA. The proposed classifier was tested on different types of 3D reconstructions

derived from simulated data. A statistical hypothesis testing based methodology al-

lowed us to evaluate the relative suitability of reconstruction methods for the given

classification task.

We note that in this research we limited the 3D scene of the region that contains

spikes (to be classified) to the central slices only. A direction for further investiga-

tion is to extend the region of interest to include slices that are far from the central

ones.

In this dissertation, we brought together several tasks related to image process-

ing and the computational aspects of electron microscopy; these tasks include im-

age representation, reconstruction from projection images, data alignment, segmen-

tation, feature extraction, classification and algorithm evaluation. Major contribu-

tions of the thesis are (1) a new approach to how blob parameters should be selected

for both 3D image representation and reconstruction and (2) a complete set of pro-

grams to get us from electron-microscopic projections of a virus to a classification
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of its surface spikes.
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