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ABSTRACT 

 

Probing the Structure and Photophysics of Porphyrinoid Systems for Functional Materials 

by 

Christopher Farley 

 

Advisor: Charles Michael Drain 

 

Porphyrins (Pors) and their many cousins, including phthalocyanines (Pcs), corroles 

(Cors), subphthalocyanines (SubPcs), porphyrazines (Pzs), and naphthalocyanines (NPcs), play 

amazingly diverse roles in biological and non-biological systems because of their unique and 

tunable physical and chemical properties. These compounds, collectively known as porphyrinoids, 

can be employed in any number of functional devices that have the potential to address the 

challenges of modern society. Their incorporation into such devices, however, depends on many 

structural factors that must be well understood and carefully controlled in order to achieve the 

desired behavior. Self-assembly and self-organization are key processes for developing these new 

technologies, as they will allow for inexpensive, efficient, and scalable designs. The overall goal 

of this dissertation is to elucidate and ultimately control the interplay between the hierarchical 

structure and the photophysical properties of these kinds of systems. This includes several case 

studies concerning the design and spectroscopic analysis of supramolecular systems formed 

through simple, scalable synthetic methods. We also present detailed experimental and 

computational studies on some porphyrin and phthalocyanine compounds that provide evidence 

for fundamental changes in their molecular structure. In addition to their impact on the 



vi 

photophysics, these changes also have implications for the organization of these molecules into 

higher order materials and devices. It is our hope that these findings will help to drive chemists 

and engineers to look more closely at every level of hierarchical structure in the search for the next 

generation of advanced materials. 
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Chapter 1. Porphyrinoid Systems as Functional Materials§[1,2]1 

1.1. Introduction 

Porphyrins (Pors) and their many cousins, including phthalocyanines (Pcs), corroles 

(Cors), subphthalocyanines (SubPcs), porphyrazines (Pzs), and naphthalocyanines (NPcs), play 

amazingly diverse roles in biological and non-biological systems because of their unique and 

tunable physical and chemical properties. Porphyrinoids and metalloporphyrinoids can have 

functions that go beyond mimicking biological processes such as the redox catalysis of cytochrome 

P450 or the photonic properties of photosynthetic pigments. For instance, they may be used as 

catalytic materials to destroy environmental pollutants for bioremediation, as robust light 

absorbing materials for solar energy harvesting, or as sensors, imaging agents, or therapeutics. 

Materials and multichromophoric arrays composed of Pors and related compounds have received 

considerable attention over the last few decades due to their useful spectroscopic, photophysical 

and redox properties. 

Multichromophoric systems may be linked covalently or self-assembled via weak 

intermolecular forces, with important consequences for the relevant properties. Most studies and 

applications of porphyrinoid materials focus on systems containing one type of chromophore, but 

heterochromophoric or heteroporphyrinoid systems combining different kinds of dyes can be 

exploited to further enhance the photonic and functional properties beyond what can be achieved 

by a single dye. One advantage of making such heteroporphyrinoid systems is the potential to 

molecularly engineer a strong, broad absorption spectra that can range from the near UV to the 

                                                 
§ This chapter is adapted from publications in Energy & Environmental Science,[1] and The Handbook of Porphyrin 

Science, Vol. 41. (in press)[2] 
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near IR. Thus, heterochromophoric systems can cover a broader swath of the solar spectrum in 

order to harvest the maximum amount of sunlight and convert it into electrical or chemical energy. 

Because of the tunable and overlapping band gaps, de novo design of materials with vectorial 

electron and energy transfer is now routine. The photonic properties of porphyrinoids can be 

exploited for high sensitivity chemical sensing, nonlinear optics, improved photodynamic activity 

for therapeutics and diagnostics, and many other functional materials. 

Self-assembly and self-organization have the potential to play pivotal roles in addressing 

some of the great challenges in science today. They can aid in the development of cost-effective 

solar energy harvesting systems and devices with lower power consumption in order to meet the 

ever increasing energy requirements of the world in an environmentally responsible way.[3] The 

continued development of concepts in supramolecular chemistry will also have an impact on many 

other important applications, e.g. sensors, smart materials, nanoelectronics and theranostics. For 

example, the manufacturing costs for organic and hybrid devices can be quite competitive 

compared to silicon-based standards.[4] 

One of the first reports of functional supramolecular materials, concerning multiporphyrin 

arrays acting as ionic photo-gated transistors, was published in 1989 by Drain and coworkers.[5] 

Since that time, multichromophoric porphyrinoid systems have proven to be a solid experimental 

and theoretical basis for understanding the photonic properties of a wide variety of functional 

materials. In order for functional organic materials to be commercially viable into the future, these 

supramolecular strategies will need be employed to ensure scalability and cost effectiveness. In 

this spirit, the overarching theme of this thesis is an exploration of the complex role that 

hierarchical structure plays in determining the properties of various functional porphyrinoid 
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materials. We begin here with a brief introduction to the language of supramolecular chemistry, 

followed by a broad overview of the landscape of potential applications. 

1.2. Self-Assembly vs. Self-Organization 

The organization of molecules into macro-scale devices, whether spontaneous or 

controlled, can be described in terms of a hierarchy of interactions. Broadly speaking, there are 

four levels of structure to be considered: molecular (primary), supramolecular (secondary), the 

organization of supramolecular systems into functional materials (tertiary), and the arrangement 

of materials into devices (quaternary).[6] At each level, strategies of self-assembly and self-

organization can be employed to achieve the desired structure and function. In organic 

photovoltaics, for instance, they may be combined to aid in the formation of active layers with 

several spectrally complementary chromophores in pre-specified geometries to more effectively 

harvest and convert solar radiation. Robust but reversible intermolecular interactions, such as 

metal ion coordination,[7-12] can realize complex supramolecular architectures in which the 

chromophores are arranged in a manner that promotes electron or energy transfer in predictable 

directions. Conversely, self-organized nanoparticles (NP aggregates) of Por[13-15] or Pc[16,17] 

will have much less structural order, but can manifest significantly enhanced or modulated 

photonic properties because of quantum mechanical effects at this scale.[16,18] 

Self-assembly generally encompasses those processes that result in discrete 

supramolecular systems.[6] These systems are usually topologically closed because the component 

molecules are carefully designed with complementary recognition groups and geometries to 

maximize specific intermolecular interactions. This strategy allows the predictable formation of 

nano-architectures, such as squares and rosettes, with a degree of predictability in their 

supramolecular properties. Self-organization, on the other hand, utilizes non-specific 
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intermolecular interactions to create non-discrete systems with a lower level of order than self-

assembly. Self-organized systems generally require less complex molecular structures and can be 

more robust against defects than self-assembled ones, but it can also be more difficult to tune their 

properties with the same level of precision. Since each approach has its own benefits and 

drawbacks, and since there is a great deal of overlap or gray-area between them, both are expected 

to be important in future technologies. 

1.3. Applications and Properties of Porphyrinoid Systems 

Solar energy is the most important source of free energy on our planet Earth. The solar 

spectrum contains a continuum of light energy from ca. 350 nm to 2.5 µm, although the irradiance 

depends on the wavelength. In terms of capturing solar energy and driving photocatalysis, the 

visible region from 400-800 nm contains the most useful part of the spectrum because of its photon 

energy and flux. Most dye-based solar energy harvesting systems available can convert only a few 

percent of solar energy into chemical or electrical energy, primarily because molecular systems 

have narrow absorption bands in the visible region of the spectrum. Significant research focuses 

on the development of systems and materials that can absorb a broader range of the solar spectrum 

to maximize the amount of energy harvested. Organic photonic materials can be robust and are 

generally less toxic than many inorganic materials such as quantum dots and perovskites. 

Porphyrinoid dyes, for example, possess tunable chemical and photophysical properties and can 

be readily processed into nanometer thick active layers. Though chlorophylls and pheophytins are 

the primary dyes in photosynthesis responsible for most of the transduction of solar energy into 

biochemical energy on Earth, they are not robust in most materials applications. Similarly, the 

catalytic activity of cytochrome P450 enzymes is difficult to exploit in large, commercial 

applications. Thus, synthetic porphyrinoids are likely some of the best dyes available to develop 
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materials for photovoltaics, as well as for organic optoelectronic devices such as organic light 

emitting diodes, sensors, photocatalysts, electrocatalysts, photodynamic therapy (PDT) agents, and 

biomimetic models of photosynthesis. 

Pors and related porphyrinoid compounds are at the forefront of organic photonics research 

because of their strong absorption in the visible to near IR region, tunable optical properties, and 

robustness. While discrete synthetic systems containing several different chromophores are 

possible, these are rarely commercially viable because of the synthetic complexity arising from 

the need to generate low symmetry porphyrinoids as building blocks. On the other hand, systems 

containing different porphyrinoids stitched together by high-yield polymerization reactions and 

click chemistry are more feasible avenues to new polymeric photonic materials. In addition, 

supramolecular chemistry can be used to create multichromophoric systems by self-assembly or 

self-organization. In all cases, the goal is to make materials that exhibit optimal photophysical 

properties: light absorption, luminescence, photothermal yield, photocatalytic activity, etc. In 

porphyrin-phthalocyanine (Por–Pc) systems, for instance, the strong absorption band of Pcs around 

650-750 nm has some overlap with the emission spectra of Pors in the same region. Thus, Por 

excitation energy can be efficiently transferred to the Pc in a directed manner. Similar processes 

can be expected for other heteroporphyrinoid systems, and these behaviors can be independently 

optimized for a given application. 

Typical UV-Vis absorption and fluorescence emission spectra of some representative 

macrocycles can be seen in Figure 1.1, demonstrating how they span the electromagnetic 

spectrum. Many multicomponent systems are reported wherein the various chromophores are 

either covalently linked, directly or with spacers, or else held together via supramolecular 

chemistry. Examples of these systems include Por–Pcs, porphyrin-corroles (Por–Cors), and 
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phthalocyanine-

subphthalocyanines (Pc–

SubPcs). Different 

porphyrinoids have been 

prepared and studied by 

numerous research groups 

because of their broad 

biological and technological 

applications.[20-22] Their 

photonic properties, such as 

strong absorbance in the 

visible region of the 

electromagnetic spectrum, 

enable applications in light 

harvesting systems,[23-34] 

photochemical sensors,[35-

41] catalysis,[42-49] nonlinear optics,[50-53] and PDT.[54-60] While there is significant literature 

concerning the applications of multichromophoric arrangements of multiple copies of the same 

dye, there are fewer examples of heteroporphyrinoid systems. Combining together different 

chromophores can lead to emergent, system-level properties that can be further optimized to meet 

the requirements of all the applications mentioned above, and more. 

Figure 1.1. UV-Vis absorbance (solid lines) and fluorescence 
emission (dashed lines) spectra of (a) tetraphenylporphyrin, (b) zinc 
tetraphenylporphyrin, (c) phthalocyanine, (d) octaethylporphyrin, (e) 
zinc octaethylporphyrin, and (f) triphenylcorrole. All data was taken 
from the PhotochemCAD 2.1 software package, developed by 
Lindsey and coworkers.[19] 
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1.3.1. Artificial Photosynthesis and Solar Energy Harvesting 

Pors are generally poor solar energy harvesting candidates because the intense but narrow 

Soret absorption band near 400 nm and the ca. 15-fold weaker Q bands between 500-650 nm 

capture only a small fraction of the incident light. Pcs weakly absorb 400-600 nm light, but are 

characterized by strong Q bands from 650-750 nm[21,22] and are gaining interest for applications 

such as PDT.[54-57] In contrast, Por–Pc hybrid materials[31-34,51,61-115] exhibit unique and 

interesting optical phenomena that neither type of dye possesses. Therefore, one obvious means to 

improve organic photovoltaic efficiency is to harvest a larger fraction of the solar spectrum using 

heteroporphyrinoid systems. 

In natural photosynthetic systems, sunlight is collected by the primary pigments of the 

antenna complexes, e.g. chlorophyll and carotenoids. This captured energy is then funneled via 

excitation energy transfer (EET) to the reaction center where it initiates a series of electron transfer 

(ET) reactions. For over three decades, a tremendous effort has focused on construction of artificial 

antenna complexes in which the dyes are covalently linked. In general, however, the syntheses of 

covalently linked systems are tedious and have low yields of the final product. In addition, the 

degree of electronic communication amongst the dyes depends both on the linker chemistry and 

on the relative orientation of the macrocycles and their respective dipoles. While covalent systems 

have generated a wealth of information on the fundamental mechanisms of EET and ET, these are 

unsuitable for commercialization.[1] 

Natural photosynthetic systems exhibit many of the hallmarks of both self-assembly and 

self-organization processes in achieving their remarkable quantum efficiency. The very existence 

of life on earth is therefore a proof-of-concept argument for the bottom-up construction of systems 

that can capture and convert solar energy with near unit efficiency. In pursuit of this goal, various 
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self-assembly strategies, such as electrostatic interaction, - stacking, hydrogen bonding, 

dispersion forces, and metal-ion coordination, have been explored to produce a wide range of 

supramolecular porphyrinoid systems.[35,116] These systems are employed especially as a means 

to create novel artificial antenna complexes and reaction centers that can mimic the primary events 

of natural photosynthesis. Supramolecular chemistry has been employed more recently to fabricate 

heteroporphyrinoid assemblies, with Por–Pc systems dominating the literature.[33,61,62,66-83] 

1.3.2. Photodynamic Therapy (PDT) 

PDT has existed in some form or another for over a century,[117] and has become a widely 

accepted treatment for a range of maladies from acne to cancer. In PDT, a photoactive chemical 

agent is introduced into the target site and activated by the application of light, usually of a specific 

wavelength. The activated photosensitizer then undergoes either ET reactions to produce free 

radicals (Type I mechanism) or EET to molecular oxygen to produce highly reactive singlet 

oxygen (Type II mechanism). Porphyrinoid compounds have been known to act as PDT agents 

since at least the early 1900s, and their development took off in the 1970s with the creation of the 

so-called “hematoporphyrin derivative” which ultimately led to the production of Photofrin®, the 

most commonly used PDT sensitizer. Further research led to the discovery of aluminum Pc 

sulfonates, tetra-(meta-hydroxyphenyl)chlorin, and many others.[117,118] Several porphyrinoids 

have even been approved for commercial clinical use in the United States, Europe or Russia, 

including Chlorin-e6®, Photosan-3®, Visudyne®, Foscan®, Photogem®, and Photofrin®. These 

last two are actually mixtures of covalently attached Por oligomers, further suggesting the 

usefulness of multichromophoric systems for this application.[56,91,118] 

There are several factors that must be balanced against one another in designing a 

photosensitizer for PDT. Among the most important are: (1) good absorbance in the so-called 
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therapeutic window from 650-1350 nm, (2) high singlet oxygen quantum yield, (3) low dark-

toxicity, (4) high selectivity for cancer cells or other targeted tissues or diseases, (5) water 

solubility for biological compatibility, and (6) short biological half-life for rapid elimination from 

the body. Other properties can impart additional benefits, such as good fluorescence quantum yield 

for concomitant in situ imaging, but these may come at the cost of compromising the primary 

factors. 

Multichromophoric systems may be able to address these challenges by bringing together 

different dyes that separately meet the necessary requirements without having to make the same 

tradeoffs.[66] Many of these constructs are reported to have broad absorbance in the near-IR, good 

singlet oxygen quantum yield,[27,52,61,91,92,119] or increased water solubility,[66,119-122] all 

of which are highly desirable for PDT. It is also worth pointing out that the most common 

mechanism of PDT is the generation of singlet oxygen by the interaction of ground-state molecular 

oxygen with the excited triplet state of the sensitizer. Intersystem crossing from the excited singlet 

state of the PDT agent to the triplet state is promoted by the presence of heavy atoms. Thus, many 

supramolecular metal-ion coordination or sandwich complexes may potentially have a “built-in” 

mechanism for populating the triplet state and enhancing the singlet oxygen quantum yield. 

1.3.3. Molecular Electronics 

Self-assembly and self-organization of Pors with different chromophores, e.g. Cors, Pcs, 

SubPcs, NPcs, are relevant to light harvesting systems, but the multiple redox states can also be 

exploited in potential molecular electronics devices.[6,116,123-130] Many of these materials, 

especially including heteroleptic sandwich compounds and the metal-ion coordination complexes, 

are proposed to be viable components of hybrid organic-inorganic electronics, optoelectronics, and 
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other photonics because of their reversible redox states, tunable band gaps, and electronic 

spectra.[114,116,131-135] 

While the supramolecular chemistry of Pors has been extensively reviewed,[35,116,120] 

there are far fewer reports on the photophysical, ET, and EET properties of self-assembled 

multichromophore systems. As in the covalent systems, the mode of assembly, the supramolecular 

architecture, and the supramolecular dynamics dictate the degree of electronic communication 

between the dyes. Additionally, the supramolecular dynamics, in terms of intermolecular bond 

formation convoluted with the complex equilibria that are exploited in self-assembly, can be a 

liability that diminishes interactions between the chromophores.[6,116] These considerations also 

complicate probing the mechanisms of both molecular electronics and light harvesting. Here again, 

complexes involving Pors and Pcs are the most studied,[6,35,63-66,114-116,120,121,127-142] 

with relatively few other porphyrinoid assemblies appearing in the molecular electronics 

literature.[116,143] 

1.3.4. Catalysis and Photocatalysis 

Porphyrinoids such as heme and chlorophyll are present in nearly all forms of life and are 

responsible for a vast array of metabolic processes. Their diverse enzymatic activity makes them 

an important paradigm for catalysis in synthetic chemistry. Indeed, many articles are published 

regarding the catalytic and photocatalytic activity of porphyrinoid based materials.[45,46,119,144-

147] Most biological porphyrinoids exist in a larger protein matrix, indicating the particular 

importance of structure and conformation to these chemical reactions. Thus, it is reasonable to 

expect that the catalytic action of these macrocycles could be tuned or improved by rational 

incorporation into larger, multichromophoric arrays or supramolecular assemblies in which the 

hierarchical structure is carefully controlled. Many such systems have in fact been reported.[44-
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49,144,145,148] Again, the inclusion of disparate porphyrinoid types with complementary 

properties presents another pathway to engineer and optimize this function.[42,43,47,48,149] 

Besides simply combining the different redox properties of the constituent compounds, these kinds 

of systems can also display molecular recognition and enhanced selectivity for certain substrates 

or reactions.[66,119,150] 

1.3.5. Other Applications 

There are more potential applications for porphyrinoids and porphyrinoid systems than can 

be comprehensively addressed in one chapter. However, most, if not all, of these rely on the same 

suite of photophysical and chemical properties discussed. Each of these functions has the potential 

to be greatly enhanced by the synergistic cooperation of heteroporphyrinoid systems. For example, 

such systems have shown the potential to play novel roles as chemical sensors[37,40] and non-

linear optical materials.[50,65] 

1.4. Themes and Future Directions 

The importance of Pors and related macrocycles, such as chlorins, to biological systems 

has been recognized for well over a century, and Pcs have been known and employed for almost 

as long. Thus, the potential to use porphyrinoids as photonic materials has a long history. Improved 

higher yield synthetic methods for functionalized Pors, Cors, Pcs, SubPcs, and related dyes have 

opened the door for many researchers to design new porphyrinoids with different photonic or 

chemical properties. There are a variety of synthetic strategies that yield photonic materials based 

on porphyrinoids. Self-assembled and self-organized constructs have the benefits of simpler 

molecular components and high yield supramolecular chemistry, whereas covalent, discrete 

multichromophoric arrays offer more robust molecular architectures. Covalent and supramolecular 

systems of dyes each have advantages and disadvantages and both strategies have their place in 
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the design of functional materials. It may also be that some of the more demanding requirements 

for new functional materials will necessitate the incorporation of both covalent and supramolecular 

motifs. 

In Chapters 2 and 3 of this thesis, we discuss two approaches that highlight this interplay 

between organic synthesis and supramolecular chemistry. The first method utilizes a high-yield 

synthesis of a Por tecton bearing a uracyl moiety at the meso position. In turn, these uracyls impart 

a specific pattern of hydrogen bond donors and acceptors that mediate the self-assembly of the dye 

into discrete, robust cage-like structures that persist even into the solid state. In Chapter 3, a 

different “click-chemistry” type reaction is utilized to covalently join two pre-fabricated 

asymmetric Pors into a flexible dimer. This dimer is then found to exhibit enhanced π-π 

interactions with unfunctionalized fullerene (C60 and C70) electron acceptors, allowing the two 

components to self-organize into donor-acceptor pairs with a reasonably high binding constant. 

Chemical modification of a molecular component is almost always necessary in the design 

and fabrication of supramolecular systems. Thus, it is imperative to understand how these 

modifications will influence the properties of the individual molecules themselves. To this end, 

Chapters 4 and 5 will focus on the structures and photophysics of individual dye components that 

have been modified with typical substituents of the type that might be employed in tectons for self-

organized or functional materials. In both cases we find evidence that the influence of these groups 

is not strictly confined to electronic effects, but also results in dramatic and unexpected changes 

to the molecular structure. These changes in the geometry can potentially have enormous effects 

that will ripple through all of the levels of hierarchical structure, and therefore must be accounted 

for in any attempt at rational device design. Finally, this thesis will conclude in Chapter 6 with a 
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description of the design and preliminary investigation into the synthesis of porphyrinoid materials 

that purport to take advantage of some of the supramolecular motifs discussed herein. 

The yearly number of citations for published papers related to supramolecular and self-

assembled Por or Pc systems (between 1985 and 2014) is shown in Figure 1.2. Data for the actual 

number of publications related to these topics (not shown) demonstrates similar trends, but speaks 

more towards the supply of papers within this research subject. The number of citations, on the 

other hand, may be more correlated to demand for research within this subject, and thus more 

important in considering its prospects for the future. It is clear from the chart that the field 

experienced a dramatic growth beginning in the 1990s and extending into the new millennium. In 

addition, a more recent expansion into the design of materials containing more than one type of 

porphyrinoid has opened new 

vistas to photonics that exploit the 

photophysical and architectural 

features of the components. This 

is reflected in the late arrival and 

growth of results for the 

composite “porphyrin AND 

phthalocyanine” search terms, 

which can be regarded as 

representative of the trends in the 

area of mixed chromophore 

systems. Despite this 

development, however, it appears 

Figure 1.2. Stacked bar graph showing the number of citations 
of the papers meeting the relevant search terms given in the 
legends for every year from 1985 to 2014. The metadata was 
derived from the Thomson Reuters Web of Science™ online 
database.[151] 
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from the chart that the growth of the field as a whole has significantly slowed and ultimately 

leveled off in recent years. 

For over 25 years, interesting covalent and supramolecular systems have been reported, 

along with comprehensive photophysical studies of many of these systems. Thus, both the 

synthesis and photophysics of multichromophoric systems are very well established. Novel 

materials that are chemically and visually quite appealing, but which utilize components arising 

from low yield syntheses, will contribute little towards the development of realistic materials 

unless they can exhibit new and/or unexpected photonic properties. Given the incredible versatility 

of porphyrinoid and heteroporphyrinoid systems, it is likely that they will continue to play 

important roles in every aspect of chemistry and materials science. In the end, however, 

commercialization of the materials will dictate the specific dyes used and the approach taken for a 

given application. 

1.5. References 

1. Radivojevic, I.; Varotto, A.; Farley, C.; Drain, C. M. Commercially viable porphyrinoid dyes 
for solar cells. Energy Environ. Sci. 2010, 3, 1897. 

2. Farley, C.; Ferreira, J. T.; Aggarwal, A.; Bhupathiraju, N. V. S. D. K.; Singh, S.; Drain, C. 
M.; Tomé, J. P. C. In Handbook of Porphyrin Science; Kadish, K. M., Smith, K. M., Guilard, 
R., Eds.; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2016; Vol. 41 (forthcoming). 

3. Service, R. F. Solar energy. Is it time to shoot for the sun? Science 2005, 309, 548. 

4. Kalowekamo, J.; Baker, E. Estimating the manufacturing cost of purely organic solar cells. 
Solar Energy 2009, 83, 1224. 

5. Drain, C. M.; Christensen, B.; Mauzerall, D. Photogating of ionic currents across a lipid 
bilayer. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 6959. 

6. Drain, C. M. Self-organization of self-assembled photonic materials into functional devices: 
photo-switched conductors. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5178. 

7. Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Porphyrin Tessellation by Design: 
Metal-Mediated Self-Assembly of Large Arrays and Tapes. Angew. Chem. Int. Ed. 1998, 37, 
2344. 



15 

8. Drain, C. M.; Varotto, A.; Radivojevic, I. Self-organized porphyrinic materials. Chem. Rev. 
2009, 109, 1630. 

9. Drain, C. M.; Hupp, J. T.; Suslick, K. S.; Wasielewski, M. R.; Chen, X. A perspective on 
four new porphyrin-based functional materials and devices. J. Porphyrins Phthalocyanines 
2002, 06, 243. 

10. Ariga, K.; Hill, J. P.; Wakayama, Y.; Akada, M.; Barrena, E.; de Oteyza, D. G. New aspects 
of porphyrins and related compounds: self-assembled structures in two-dimensional 
molecular arrays. J. Porphyrins Phthalocyanines 2009, 13, 22. 

11. Cheng, K. F.; Thai, N. A.; Teague, L. C.; Grohmann, K.; Drain, C. M. Supramolecular 
squares of porphyrazines. Chem. Commun. 2005, 4678. 

12. Lee, S. J.; Hupp, J. T. Porphyrin-containing molecular squares: Design and applications. 
Coord. Chem. Rev. 2006, 250, 1710. 

13. Drain, C. M.; Smeureanu, G.; Patel, S.; Gong, X.; Garno, J.; Arijeloye, J. Porphyrin 
nanoparticles as supramolecular systems. New J. Chem. 2006, 30, 1834. 

14. Gong, X.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. Preparation and Characterization of 
Porphyrin Nanoparticles. J. Am. Chem. Soc. 2002, 124, 14290. 

15. Smeureanu, G.; Aggarwal, A.; Soll, C. E.; Arijeloye, J.; Malave, E.; Drain, C. M. Enhanced 
catalytic activity and unexpected products from the oxidation of cyclohexene by organic 
nanoparticles of 5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)porphyrinatoiron(III) in 
water by using O2. Chem. Eur. J. 2009, 15, 12133. 

16. Nitschke, C.; O’Flaherty, S. M.; Kröll, M.; Doyle, J. J.; Blau, W. J. Optical properties of zinc 
phthalocyanine nanoparticle dispersions. Chem. Phys. Lett. 2004, 383, 555. 

17. Van Keuren, E.; Bone, A.; Ma, C. Phthalocyanine nanoparticle formation in supersaturated 
solutions. Langmuir 2008, 24, 6079. 

18. Rangel-Rojo, R.; Matsuda, H.; Kasai, H.; Nakanishi, H. Irradiance dependence of the 
resonant nonlinearities in an organic material. Journal of the Optical Society of America B 
2000, 17, 1376. 

19. Dixon, J. M.; Taniguchi, M.; Lindsey, J. S. PhotochemCAD 2: A Refined Program with 
Accompanying Spectral Databases for Photochemical Calculations. Photochem. Photobiol. 
2007, 81, 212. 

20. Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.; Handbook of Porphyrin Science, Academic 
Press: San Diego, CA, 2010-2011; Vol. 1-15. 

21. de la Torre, G.; Claessens, C. G.; Torres, T. Phthalocyanines: old dyes, new materials. Putting 
color in nanotechnology. Chem. Commun. 2007, 2000. 

22. Claessens, C. G.; Hahn, U.; Torres, T. Phthalocyanines: from outstanding electronic 
properties to emerging applications. Chem. Rec. 2008, 8, 75. 

23. Gust, D.; Moore, T. A.; Moore, A. L. Mimicking photosynthetic solar energy transduction. 
Acc. Chem. Res. 2001, 34, 40. 

24. Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center 
models. Chem. Soc. Rev. 2002, 31, 22. 



16 

25. Li, X.; Sinks, L. E.; Rybtchinski, B.; Wasielewski, M. R. Ultrafast aggregate-to-aggregate 
energy transfer within self-assembled light-harvesting columns of zinc phthalocyanine 
tetrakis(perylenediimide). J. Am. Chem. Soc. 2004, 126, 10810. 

26. Vail, S. A.; Krawczuk, P. J.; Guldi, D. M.; Palkar, A.; Echegoyen, L.; Tomé, J. P. C.; Fazio, 
M. A.; Schuster, D. I. Energy and electron transfer in polyacetylene-linked zinc-porphyrin-
[60]fullerene molecular wires. Chem. Eur. J. 2005, 11, 3375. 

27. Gonzalez-Rodriguez, D.; Claessens, C. G.; Torres, T.; Liu, S.; Echegoyen, L.; Vila, N.; 
Nonell, S. Tuning photoinduced energy- and electron-transfer events in subphthalocyanine-
phthalocyanine dyads. Chem. Eur. J. 2005, 11, 3881. 

28. Wasielewski, M. R. Energy, charge, and spin transport in molecules and self-assembled 
nanostructures inspired by photosynthesis. J. Org. Chem. 2006, 71, 5051. 

29. El-Khouly, M. E.; Ju, D. K.; Kay, K. Y.; D'Souza, F.; Fukuzumi, S. Supramolecular tetrad of 
subphthalocyanine-triphenylamine-zinc porphyrin coordinated to fullerene as an "antenna-
reaction-center" mimic: formation of a long-lived charge-separated state in nonpolar solvent. 
Chem. Eur. J. 2010, 16, 6193. 

30. Bottari, G.; Trukhina, O.; Ince, M.; Torres, T. Towards artificial photosynthesis: 
Supramolecular, donor–acceptor, porphyrin- and phthalocyanine/carbon nanostructure 
ensembles. Coord. Chem. Rev. 2012, 256, 2453. 

31. Li, J.; Diers, J. R.; Seth, J.; Yang, S. I.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis 
and Properties of Star-Shaped Multiporphyrin−Phthalocyanine Light-Harvesting Arrays. J. 
Org. Chem. 1999, 64, 9090. 

32. Miller, M. A.; Lammi, R. K.; Prathapan, S.; Holten, D.; Lindsey, J. S. A tightly coupled linear 
array of perylene, bis(porphyrin), and phthalocyanine units that functions as a photoinduced 
energy-transfer cascade. J. Org. Chem. 2000, 65, 6634. 

33. Jacobs, R.; Stranius, K.; Maligaspe, E.; Lemmetyinen, H.; Tkachenko, N. V.; Zandler, M. E.; 
D'Souza, F. Syntheses and excitation transfer studies of near-orthogonal free-base porphyrin-
ruthenium phthalocyanine dyads and pentad. Inorg. Chem. 2012, 51, 3656. 

34. KC, C. B.; Ohkubo, K.; Karr, P. A.; Fukuzumi, S.; D'Souza, F. A 'two-point' bound zinc 
porphyrin-zinc phthalocyanine-fullerene supramolecular triad for sequential energy and 
electron transfer. Chem. Commun. 2013, 49, 7614. 

35. Beletskaya, I.; Tyurin, V. S.; Tsivadze, A. Y.; Guilard, R.; Stern, C. Supramolecular 
chemistry of metalloporphyrins. Chem. Rev. 2009, 109, 1659. 

36. Ozoemena, K. I.; Zhao, Z.; Nyokong, T. Immobilized cobalt(II) phthalocyanine–cobalt(II) 
porphyrin pentamer at a glassy carbon electrode: Applications to efficient amperometric 
sensing of hydrogen peroxide in neutral and basic media. Electrochem. Commun. 2005, 7, 
679. 

37. Purrello, R.; Gurrieri, S.; Lauceri, R. Porphyrin assemblies as chemical sensors. Coord. 
Chem. Rev. 1999, 190-192, 683. 

38. Souto, J.; RodrÍGuez, M. L.; Desaja, J. A.; Aroca, R. Langmuir-Blodgett films of lanthanide 
bysphthalocyanines: applications as gas sensors. Int. J. Electron. 1994, 76, 763. 



17 

39. Bassoul, P.; Toupance, T.; Simon, J. Semiconductivity and gas-sensing properties of crown-
ether-substituted lutetium bisphthalocyanines. Sens. Actuators, B Chem. 1995, 26, 150. 

40. Álvarez, J.; Souto, J.; Rodrı́guez-Méndez, M. L.; de Saja, J. A. Response of a sensor based 
on ytterbium bisphthalocyanine Langmuir–Blodgett films to selected herbicides. Sens. 
Actuators, B Chem. 1998, 48, 339. 

41. Amao, Y.; Asai, K.; Miyakawa, K.; Okura, I. Oxygen sensing using palladium porphyrin 
with long alkyl chain self-assembled film. J. Porphyrins Phthalocyanines 2000, 04, 19. 

42. Kadish, K. M.; Fremond, L.; Shen, J.; Chen, P.; Ohkubo, K.; Fukuzumi, S.; El Ojaimi, M.; 
Gros, C. P.; Barbe, J. M.; Guilard, R. Catalytic activity of biscobalt porphyrin-corrole dyads 
toward the reduction of dioxygen. Inorg. Chem. 2009, 48, 2571. 

43. Kadish, K. M.; Fremond, L.; Ou, Z.; Shao, J.; Shi, C.; Anson, F. C.; Burdet, F.; Gros, C. P.; 
Barbe, J. M.; Guilard, R. Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: 
reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads. J. Am. Chem. Soc. 
2005, 127, 5625. 

44. Oliveri, C. G.; Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A.; Stern, C. L.; Wawrzak, Z.; 
Pink, M. Supramolecular allosteric cofacial porphyrin complexes. J. Am. Chem. Soc. 2006, 
128, 16286. 

45. Lee, S. J.; Cho, S. H.; Mulfort, K. L.; Tiede, D. M.; Hupp, J. T.; Nguyen, S. T. Cavity-tailored, 
self-sorting supramolecular catalytic boxes for selective oxidation. J. Am. Chem. Soc. 2008, 
130, 16828. 

46. Fruhbeisser, S.; Grohn, F. Catalytic activity of macroion-porphyrin nanoassemblies. J. Am. 
Chem. Soc. 2012, 134, 14267. 

47. Jérôme, F.; Gros, C. P.; Tardieux, C.; Barbe, J.-M.; Guilard, R. Synthesis of a ‘face-to-face’ 
porphyrin-corrole. A potential precursor of a catalyst for the four-electron reduction of 
dioxygen. New J. Chem. 1998, 22, 1327. 

48. Kadish, K. M.; Fremond, L.; Burdet, F.; Barbe, J. M.; Gros, C. P.; Guilard, R. Cobalt(IV) 
corroles as catalysts for the electroreduction of O2: reactions of heterobimetallic dyads 
containing a face-to-face linked Fe(III) or Mn(III) porphyrin. J. Inorg. Biochem. 2006, 100, 
858. 

49. Slagt, V. F.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Multicomponent Porphyrin 
Assemblies as Functional Bidentate Phosphite Ligands for Regioselective Rhodium-
Catalyzed Hydroformylation. Angew. Chem. 2003, 115, 5777. 

50. de la Torre, G.; Vazquez, P.; Agullo-Lopez, F.; Torres, T. Role of structural factors in the 
nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 2004, 
104, 3723. 

51. Chen, L.; Hu, R.; Xu, J.; Wang, S.; Li, X.; Li, S.; Yang, G. Third-order nonlinear optical 
properties of a series of porphyrin-appended europium(III) bis(phthalocyaninato) complexes. 
Spectrochim. Acta A Mol. Biomol. Spec. 2013, 105, 577. 

52. Ke, H.; Li, W.; Zhang, T.; Zhu, X.; Tam, H. L.; Hou, A.; Kwong, D. W. J.; Wong, W. K. 
Acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids with strong two-
photon absorption and high singlet oxygen quantum yield. Dalton Trans. 2012, 41, 4536. 



18 

53. Morisue, M.; Ogawa, K.; Kamada, K.; Ohta, K.; Kobuke, Y. Strong two-photon and three-
photon absorptions in the antiparallel dimer of a porphyrin-phthalocyanine tandem. Chem. 
Commun. 2010, 46, 2121. 

54. Soares, A. R. M.; Tomé, J. P. C.; Neves, M. G. P. M. S.; Tomé, A. C.; Cavaleiro, J. A. S.; 
Torres, T. Synthesis of water-soluble phthalocyanines bearing four or eight D-galactose units. 
Carbohydr. Res. 2009, 344, 507. 

55. Silva, S.; Pereira, P. M. R.; Silva, P.; Paz, F. A. A.; Faustino, M. A. F.; Cavaleiro, J. A. S.; 
Tomé, J. P. C. Porphyrin and phthalocyanine glycodendritic conjugates: synthesis, 
photophysical and photochemical properties. Chem. Commun. 2012, 48, 3608. 

56. Bonnett, R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic 
therapy. Chem. Soc. Rev. 1995, 24, 19. 

57. Pereira, J. B.; Carvalho, E. F. A.; Faustino, M. A. F.; Fernandes, R.; Neves, M. G. P. M. S.; 
Cavaleiro, J. A. S.; Gomes, N. C. M.; Cunha, A.; Almeida, A.; Tomé, J. P. C. Phthalocyanine 
thio-pyridinium derivatives as antibacterial photosensitizers. Photochem. Photobiol. 2012, 
88, 537. 

58. Gomes, M. C.; Woranovicz-Barreira, S. M.; Faustino, M. A. F.; Fernandes, R.; Neves, M. G. 
P. M. S.; Tomé, A. C.; Gomes, N. C. M.; Almeida, A.; Cavaleiro, J. A. S.; Cunha, A.; Tomé, 
J. P. C. Photodynamic inactivation of Penicillium chrysogenum conidia by cationic 
porphyrins. Photochem. Photobiol. Sci. 2011, 10, 1735. 

59. Tavares, A.; Dias, S. R. S.; Carvalho, C. M. B.; Faustino, M. A. F.; Tomé, J. P. C.; Neves, 
M. G. P. M. S.; Tomé, A. C.; Cavaleiro, J. A. S.; Cunha, A.; Gomes, N. C. M.; Alves, E.; 
Almeida, A. Mechanisms of photodynamic inactivation of a gram-negative recombinant 
bioluminescent bacterium by cationic porphyrins. Photochem. Photobiol. Sci. 2011, 10, 1659. 

60. Silva, J. N.; Bosca, F.; Tomé, J. P. C.; Silva, E. M. P.; Neves, M. G. P. M. S.; Cavaleiro, J. 
A. S.; Patterson, L. K.; Filipe, P.; Maziere, J. C.; Santus, R.; Morliere, P. Tricationic 
porphyrin conjugates: evidence for chain-structure-dependent relaxation of excited singlet 
and triplet States. J. Phys. Chem. B 2009, 113, 16695. 

61. Agirtas, S.; Ion, R. M.; Bekaroglu, O. Spectral study of the supramolecular assemblies 
porphyrins-phthalocyanines. Mater. Sci. Eng., C 2000, 7, 105. 

62. Bao, G.; Wang, W.; Mao, Y.; Lu, F. Raman spectroscopic characteristics of phthalocyanine 
in mixed [5-(4-hydroxyphenyl)-10,15,20-tris(4-octyloxyphenyl)porphyrinato]-
(phthalocyaninato) rare earth triple-deckers. Spectrochim. Acta A Mol. Biomol. Spec. 2013, 
102, 275. 

63. Bian, Y.; Chen, X.; Wang, D.; Choi, C. F.; Zhou, Y.; Zhu, P.; Ng, D. K. P.; Jiang, J.; Weng, 
Y.; Li, X. Porphyrin-appended europium(III) bis(phthalocyaninato) complexes: synthesis, 
characterization, and photophysical properties. Chem. Eur. J. 2007, 13, 4169. 

64. Zhao, Z.; Ozoemena, K. I.; Maree, D. M.; Nyokong, T. Synthesis and electrochemical studies 
of a covalently linked cobalt(II) phthalocyanine-cobalt(II) porphyrin conjugate. Dalton 
Trans. 2005, 1241. 

65. Zhao, Z.; Poon, C.-T.; Wong, W.-K.; Wong, W.-Y.; Tam, H.-L.; Cheah, K.-W.; Xie, T.; 
Wang, D. Synthesis, Photophysical Characterization, and Surface Photovoltage Spectra of 



19 

Windmill-Shaped Phthalocyanine–Porphyrin Heterodimers and Heteropentamers. Eur. J. 
Inorg. Chem. 2008, 2008, 119. 

66. Leng, X.; Choi, C. F.; Lo, P. C.; Ng, D. K. P. Assembling a mixed phthalocyanine-porphyrin 
array in aqueous media through host-guest interactions. Org. Lett. 2007, 9, 231. 

67. Berber, G.; Cammidge, A. N.; Chambrier, I.; Cook, M. J.; Hough, P. W. Controlled synthesis 
of ruthenium phthalocyanines and their use in the construction of supramolecular arrays. 
Tetrahedron Lett. 2003, 44, 5527. 

68. Cammidge, A. N.; Berber, G.; Chambrier, I.; Hough, P. W.; Cook, M. J. 
Octaalkylphthalocyaninato ruthenium(II) complexes with mixed axial ligands and 
supramolecular porphyrin : phthalocyanine structures derived from them. Tetrahedron 2005, 
61, 4067. 

69. Chabach, D.; DeCian, A.; Fischer, J.; Weiss, R.; Bibout, M. E. M. induce. Angew. Chem. Int. 
Ed. 1996, 35, 898. 

70. Chabach, D.; Tahiri, M.; DeCian, A.; Fischer, J.; Weiss, R.; Bibout, M. E. M. Tervalent-
Metal Porphyrin-Phthalocyanine Heteroleptic Sandwich-Type Complexes - Synthesis, 
Structure, and Spectroscopic Characterization of Their Neutral, Singly-Oxidized, and Singly-
Reduced States. J. Am. Chem. Soc. 1995, 117, 8548. 

71. Gusev, A. V.; Danilov, E. O.; Rodgers, M. A. J. Association Complexes between Cationic 
Metallophthalocyanines and Anionic Metalloporphyrins II:  Ultrafast Studies of Excited 
State Dynamics. J. Phys. Chem. A 2002, 106, 1993. 

72. Gusev, A. V.; Rodgers, M. A. J. Association Complexes between Cationic 
Metallophthalocyanines and Anionic Metalloporphyrins I:  Spectrometric Studies of 
Electronic Interactions. J. Phys. Chem. A 2002, 106, 1985. 

73. Jiang, J. Z.; Lau, R. L. C.; Chan, T. W. D.; Mak, T. C. W.; Ng, D. K. P. Synthesis and 
spectroscopic properties of heteroleptic sandwich-type (phthalocyaninato) 
(porphyrinato)lanthanide(III) complexes. Inorg. Chim. Acta 1997, 255, 59. 

74. Jiang, J. Z.; Liu, W.; Law, W. F.; Ng, D. K. P. Heteroleptic triple-decker 
(phthalocyaninato)(porphyrinato)europium(III) complexes: synthesis and electrochemical 
study. Inorg. Chim. Acta 1998, 268, 49. 

75. Jiang, J.; Xie, J.; Choi, M. T. M.; Yan, Y.; Sun, S.; Ng, D. K. P. Double-decker Yttrium(III) 
Complexes with Phthalocyaninato and Porphyrinato Ligands. J. Porphyrins Phthalocyanines 
1999, 03, 322. 

76. Kandhadi, J.; Kanaparthi, R. K.; Giribabu, L. Germanium(IV) phthalocyanine-porphyrin 
based hetero trimers: synthesis, spectroscopy and photochemistry. J. Porphyrins 
Phthalocyanines 2012, 16, 282. 

77. Kwag, G.; Park, E.; Kim, S. Self-assembled and alternative porphyrin-phthalocyanine array. 
Bull. Korean Chem. Soc. 2004, 25, 298. 

78. Li, X. Y.; Ng, D. K. P. Self-assembly of meso-pyridylporphyrins and zinc phthalocyanines 
through axial coordination. Eur. J. Inorg. Chem. 2000, 2000, 1845. 



20 

79. Liu, J. X.; Xu, L. G.; Shen, S. Y.; Zhou, Q. F.; Li, T. K.; Xu, H. J. Novel Langmuir-Blodgett-
Films, Consisting of Amphiphilic Zinc Phthalocyanine and Hydrophobic Porphyrin. J. 
Photochem. Photobiol., A Chem. 1993, 71, 275. 

80. Maligaspe, E.; Kumpulainen, T.; Lemmetyinen, H.; Tkachenko, N. V.; Subbaiyan, N. K.; 
Zandler, M. E.; D'Souza, F. Ultrafast singlet-singlet energy transfer in self-assembled via 
metal-ligand axial coordination of free-base porphyrin-zinc phthalocyanine and free-base 
porphyrin-zinc naphthalocyanine dyads. J. Phys. Chem. A 2010, 114, 268. 

81. Morisue, M.; Kobuke, Y. Tandem cofacial stacks of porphyrin-phthalocyanine dyads through 
complementary coordination. Chem. Eur. J. 2008, 14, 4993. 

82. Pereira, A. M. V. M.; Hausmann, A.; Tomé, J. P. C.; Trukhina, O.; Urbani, M.; Neves, M. G. 
P. M. S.; Cavaleiro, J. A. S.; Guldi, D. M.; Torres, T. Porphyrin-
phthalocyanine/pyridylfullerene supramolecular assemblies. Chem. Eur. J. 2012, 18, 3210. 

83. Sun, Y. P.; Zhang, X.; Sun, C. Q.; Wang, Z. Q.; Shen, J. C.; Wang, D. J.; Li, T. J. 
Supramolecular assembly of alternating porphyrin and phthalocyanine layers based on 
electrostatic interactions. Chem. Commun. 1996, 2379. 

84. Ali, H.; van Lier, J. E. An efficient method for the synthesis of C–C connected 
phthalocyanine–porphyrin oligomers. Tetrahedron Lett. 2009, 50, 1113. 

85. Bartelmess, J.; Soares, A. R. M.; Martinez-Diaz, M. V.; Neves, M. G. P. M. S.; Tomé, A. C.; 
Cavaleiro, J. A. S.; Torres, T.; Guldi, D. M. Panchromatic light harvesting in single wall 
carbon nanotube hybrids-immobilization of porphyrin-phthalocyanine conjugates. Chem. 
Commun. 2011, 47, 3490. 

86. Calvete, M. J. F.; Tomé, J. P. C.; Cavaleiro, J. A. S. Synthesis and Characterization of New 
Cross-like Porphyrin-Naphthalocyanine and Porphyrin-Phthalocyanine Pentads. J. 
Heterocycl. Chem. 2014, 51, E202. 

87. Enes, R. F.; Cid, J. J.; Hausmann, A.; Trukhina, O.; Gouloumis, A.; Vazquez, P.; Cavaleiro, 
J. A. S.; Tomé, A. C.; Guldi, D. M.; Torres, T. Synthesis and photophysical properties of 
fullerene-phthalocyanine-porphyrin triads and pentads. Chem. Eur. J. 2012, 18, 1727. 

88. Ermilov, E. A.; Leng, X.; Roder, B.; Ng, D. K. P. Preparation and photophysical properties 
of a tetraethylene glycol-linked phthalocyanine-porphyrin dyad and triad. New J. Chem. 
2013, 37, 1746. 

89. Ermilov, E. A.; Tannert, S.; Werncke, T.; Choi, M. T. M.; Ng, D. K. P.; Röder, B. 
Photoinduced electron and energy transfer in a new porphyrin–phthalocyanine triad. Chem. 
Phys. 2006, 328, 428. 

90. Fortage, J.; Goransson, E.; Blart, E.; Becker, H. C.; Hammarstrom, L.; Odobel, F. Strongly 
coupled zinc phthalocyanine-tin porphyrin dyad performing ultra-fast single step charge 
separation over a 34 A distance. Chem. Commun. 2007, 4629. 

91. Fournier, T.; Liu, Z.; Tran-Thi, T. H.; Houde, D.; Brasseur, N.; La Madeleine, C.; Langlois, 
R.; van Lier, J. E.; Lexa, D. Influence of molecular oxygen on the charge transfer properties 
of a Co(II)porphyrin-Al(III)phthalocyanine aggregate. Excited states dynamics and 
photobiological activities. J. Phys. Chem. A 1999, 103, 1179. 



21 

92. Gaspard, S.; Giannotti, C.; Maillard, P.; Schaeffer, C.; Tran-Thi, T.-H. The first synthesis of 
covalently linked mixed dimer complexes containing phthalocyanine and porphyrin. J. Chem. 
Soc., Chem. Commun. 1986, 1239. 

93. Hausmann, A.; Soares, A. R. M.; Martinez-Diaz, M. V.; Neves, M. G. P. M. S.; Tomé, A. C.; 
Cavaleiro, J. A. S.; Torres, T.; Guldi, D. M. Transduction of excited state energy between 
covalently linked porphyrins and phthalocyanines. Photochem. Photobiol. Sci. 2010, 9, 1027. 

94. Yang, S. I.; Li, J.; Cho, H. S.; Kim, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis 
and excited‐state photodynamics of phenylethyne‐linked porphyrin–phthalocyanine dyads. J. 
Mater. Chem. 2000, 10, 283. 

95. Kameyama, K.; Satake, A.; Kobuke, Y. Light-harvesting composites of directly connected 
porphyrin–phthalocyanine dyads and their coordination dimers. Tetrahedron Lett. 2004, 45, 
7617. 

96. Ito, F.; Ishibashi, Y.; Khan, S. R.; Miyasaka, H.; Kameyama, K.; Morisue, M.; Satake, A.; 
Ogawa, K.; Kobuke, Y. Photoinduced electron transfer and excitation energy transfer in 
directly linked zinc porphyrin/zinc phthalocyanine composite. J. Phys. Chem. A 2006, 110, 
12734. 

97. KC, C. B.; Stranius, K.; D'Souza, P.; Subbaiyan, N. K.; Lemmetyinen, H.; Tkachenko, N. V.; 
D'Souza, F. Sequential Photoinduced Energy and Electron Transfer Directed Improved 
Performance of the Supramolecular Solar Cell of a Zinc Porphyrin-Zinc Phthalocyanine 
Conjugate Modified TiO2 Surface. J. Phys. Chem. C 2013, 117, 763. 

98. Li, J. Z.; Lindsey, J. S. Efficient synthesis of light-harvesting arrays composed of eight 
porphyrins and one phthalocyanine. J. Org. Chem. 1999, 64, 9101. 

99. Li, L.; Shen, S. Y.; Yu, Q.; Zhou, Q. F.; Xu, H. J. Photoinduced Electron-Transfer and Charge 
Separation in Anthraquinone-Substituted Porphyrin Phthalocyanine Heterodimer. J. Chem. 
Soc., Chem. Commun. 1991, 619. 

100. Li, X. Y.; Zhou, Q. F.; Tian, H. J.; Xu, H. J. Synthesis and photophysical properties of 
porphyrin-phthalocyanine heterodimer linked by piperazine. Chin. J. Chem . 1998, 16, 97. 

101. Liu, M. O.; Hu, A. T. Microwave-assisted synthesis of phthalocyanine–porphyrin complex 
and its photoelectric conversion properties. J. Organomet. Chem. 2004, 689, 2450. 

102. Osati, S.; Safari, N.; Jamaat, P. R. Synthesis and characterization of three covalently linked 
porphyrin-phthalocyanine pentamers with nucleophilic substitution. Inorg. Chim. Acta 2010, 
363, 2180. 

103. Pereira, A. M. V. M.; Soares, A. R. M.; Hausmann, A.; Neves, M. G. P. M. S.; Tomé, A. C.; 
Silva, A. M. S.; Cavaleiro, J. A. S.; Guldi, D. M.; Torres, T. Distorted fused porphyrin-
phthalocyanine conjugates: synthesis and photophysics of supramolecular assembled systems 
with a pyridylfullerene. Phys. Chem. Chem. Phys. 2011, 13, 11858. 

104. Soares, A. R. M.; Martinez-Diaz, M. V.; Bruckner, A.; Pereira, A. M. V. M.; Tomé, J. P. C.; 
Alonso, C. M. A.; Faustino, M. A. F.; Neves, M. G. P. M. S.; Tomé, A. C.; Silva, A. M. S.; 
Cavaleiro, J. A. S.; Torres, T.; Guldi, D. M. Synthesis of novel N-linked porphyrin-
phthalocyanine dyads. Org. Lett. 2007, 9, 1557. 



22 

105. Sutton, J. M.; Boyle, R. W. First synthesis of porphyrin-phthalocyanine heterodimers with a 
direct ethynyl linkage. Chem. Commun. 2001, 2014. 

106. Tannert, S.; Ermilov, E. A.; Vogel, J. O.; Choi, M. T. M.; Ng, D. K. P.; Roder, B. The 
influence of solvent polarity and metalation on energy and electron transfer in porphyrin-
phthalocyanine heterotrimers. J. Phys. Chem. B 2007, 111, 8053. 

107. Tasso, T. T.; Moreira, W. C. Heteroarray of cobalt(II) tetrasulfophthalocyanine and cobalt(II) 
tetrakis(N-methyl-4-pyridyl)porphyrin: synthesis, isolation and electronic properties. J. 
Porphyrins Phthalocyanines 2012, 16, 244. 

108. Tomé, J. P. C.; Pereira, A. M. V. M.; Alonso, C. M. A.; Neves, M. G. P. M. S.; Tomé, A. C.; 
Silva, A. M. S.; Cavaleiro, J. A. S.; Martínez-Díaz, M. V.; Torres, T.; Rahman, G. M. A.; 
Ramey, J.; Guldi, D. M. Synthesis and Photophysical Studies of New Porphyrin-
Phthalocyanine Dyads with Hindered Rotation. Eur. J. Org. Chem. 2006, 2006, 257. 

109. Tran-Thi, T. H.; Lipskier, J. F.; Simoes, M.; Palacin, S. Photoinduced charge transfer in semi-
amphiphilic porphyrin-phthalocyanine mixed dimers. Thin Solid Films 1992, 210-211, 150. 

110. Zhao, Z.; Cammidge, A. N.; Cook, M. J. Towards black chromophores: mu-oxo linked 
phthalocyanine-porphyrin dyads and phthalocyanine-subphthalocyanine dyad and triad 
arrays. Chem. Commun. 2009, 7530. 

111. Zhao, Z.; Cammidge, A. N.; Hughes, D. L.; Cook, M. J. Modular face-to-face assembly of 
multichromophore arrays that absorb across the complete UV-visible spectrum and into the 
near-IR. Org. Lett. 2010, 12, 5138. 

112. Zhao, Z.; Nyokong, T.; Maree, M. D. Synthesis and photochemical characterization of a zinc 
phthalocyanine-zinc porphyrin heterotrimer and heterononamer. Dalton Trans. 2005, 3732. 

113. Zhao, Z. X.; Ogunsipe, A. O.; Maree, M. D.; Nyokong, T. Synthesis and photophysical 
properties of a covalently linked porphyrin-phthalocyanine conjugate. J. Porphyrins 
Phthalocyanines 2005, 9, 186. 

114. Wei, L.; Padmaja, K.; Youngblood, W. J.; Lysenko, A. B.; Lindsey, J. S.; Bocian, D. F. 
Diverse redox-active molecules bearing identical thiol-terminated tripodal tethers for studies 
of molecular information storage. J. Org. Chem. 2004, 69, 1461. 

115. Yamada, Y.; Okamoto, M.; Furukawa, K.; Kato, T.; Tanaka, K. Switchable intermolecular 
communication in a four-fold rotaxane. Angew. Chem. Int. Ed. 2012, 51, 709. 

116. Drain, C. M.; Varotto, A.; Radivojevic, I. Self-organized porphyrinic materials. Chem. Rev. 
2009, 109, 1630. 

117. Moan, J.; Peng, Q. An Outline of the History of PDT. Photodynamic Therapy 2006, 2, 1. 

118. Ormond, A. B.; Freeman, H. Dye Sensitizers for Photodynamic Therapy. Materials 2013, 6, 
817. 

119. Vinodh, M.; Alipour, F. H.; Mohamod, A. A.; Al-Azemi, T. F. Molecular assemblies of 
porphyrins and macrocyclic receptors: recent developments in their synthesis and 
applications. Molecules 2012, 17, 11763. 

120. Lo, P. C.; Leng, X. B.; Ng, D. K. P. Hetero-arrays of porphyrins and phthalocyanines. Coord. 
Chem. Rev. 2007, 251, 2334. 



23 

121. Lu, G. F.; Ou, Z. P.; Jiang, J. Z.; Bian, Y. Z. Nanoscale Hollow Spheres of an Amphiphilic 
Mixed (Phthalocyaninato)(porphyrinato)europium Double-Decker Complex. Eur. J. Inorg. 
Chem. 2010, 2010, 753. 

122. Lipskier, J. F.; Tran-Thi, T. H. Supramolecular assemblies of porphyrins and phthalocyanines 
bearing oppositely charged substituents. First evidence of heterotrimer formation. Inorg. 
Chem. 1993, 32, 722. 

123. Radivojevic, I.; Bazzan, G.; Burton-Pye, B. P.; Ithisuphalap, K.; Saleh, R.; Durstock, M. F.; 
Francesconi, L. C.; Drain, C. M. Zirconium((IV)) and Hafnium((IV)) Porphyrin and 
Phthalocyanine Complexes as New Dyes for Solar Cell Devices. J. Phys. Chem. C 2012, 116, 
15867. 

124. Milic, T.; Garno, J. C.; Batteas, J. D.; Smeureanu, G.; Drain, C. M. Self-organization of self-
assembled tetrameric porphyrin arrays on surfaces. Langmuir 2004, 20, 3974. 

125. Jurow, M.; Varotto, A.; Manichev, V.; Travlou, N. A.; Giannakoudakis, D. A.; Drain, C. M. 
Self-organized nanostructured materials of alkylated phthalocyanines and underivatized C60 
on ITO. RSC Advances 2013, 3, 21360. 

126. Singh, S.; Aggarwal, A.; Farley, C.; Hageman, B. A.; Batteas, J. D.; Drain, C. M. Hierarchical 
organization of a robust porphyrin cage self-assembled by hydrogen bonds. Chem. Commun. 
2011, 47, 7134. 

127. Chan, Y. H.; Schuckman, A. E.; Perez, L. M.; Vinodu, M.; Drain, C. M.; Batteas, J. D. 
Synthesis and characterization of a thiol-tethered tripyridyl porphyrin on Au(111). J. Phys. 
Chem. C 2008, 112, 6110. 

128. Jurow, M.; Schuckman, A. E.; Batteas, J. D.; Drain, C. M. Porphyrins as Molecular Electronic 
Components of Functional Devices. Coord. Chem. Rev. 2010, 254, 2297. 

129. Garno, J. C.; Xu, C.; Bazzan, G.; Batteas, J. D.; Drain, C. M. In Metal-Containing and 
Metallosupramolecular Polymers and Materials; American Chemical Society: 2006; Vol. 
928, p 168. 

130. Schuckman, A. E.; Ewers, B. W.; Yu, L. H.; Tomé, J. P. C.; Pérez, L. M.; Drain, C. M.; 
Kushmerick, J. G.; Batteas, J. D. Utilizing Nearest-Neighbor Interactions To Alter Charge 
Transport Mechanisms in Molecular Assemblies of Porphyrins on Surfaces. J. Phys. Chem. 
C 2015, 119, 13569. 

131. Gryko, D.; Li, J. Z.; Diers, J. R.; Roth, K. M.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. 
Studies related to the design and synthesis of a molecular octal counter. J. Mater. Chem. 
2001, 11, 1162. 

132. Lysenko, A. B.; Malinovskii, V. L.; Padmaja, K.; Wei, L. Y.; Diers, J. R.; Bocian, D. F.; 
Lindsey, J. S. Multistate molecular information storage using S-acetylthio-derivatized dyads 
of triple-decker sandwich coordination compounds. J. Porphyrins Phthalocyanines 2005, 9, 
491. 

133. Padmaja, K.; Youngblood, W. J.; Wei, L.; Bocian, D. F.; Lindsey, J. S. Triple-decker 
sandwich compounds bearing compact triallyl tripods for molecular information storage 
applications. Inorg. Chem. 2006, 45, 5479. 



24 

134. Schweikart, K. H.; Malinovskii, V. L.; Diers, J. R.; Yasseri, A. A.; Bocian, D. F.; Kuhr, W. 
G.; Lindsey, J. S. Design, synthesis, and characterization of prototypical multistate counters 
in three distinct architectures. J. Mater. Chem. 2002, 12, 808. 

135. Schweikart, K. H.; Malinovskii, V. L.; Yasseri, A. A.; Li, J.; Lysenko, A. B.; Bocian, D. F.; 
Lindsey, J. S. Synthesis and characterization of bis(S-acetylthio)-derivatized europium triple-
decker monomers and oligomers. Inorg. Chem. 2003, 42, 7431. 

136. Ambroise, A.; Wagner, R. W.; Rao, P. D.; Riggs, J. A.; Hascoat, P.; Diers, J. R.; Seth, J.; 
Lammi, R. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Design and synthesis of porphyrin-
based optoelectronic gates. Chem. Mater. 2001, 13, 1023. 

137. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. Self-assembly of disk-shaped molecules to 
coiled-coil aggregates with tunable helicity. Science 1999, 284, 785. 

138. Gao, J.; Li, D.; Chen, Y. Controllable Self-assembly of Sandwich-type Mixed 
(phthalocyaninato)(porphyrinato) Rare Earth Triple-Decker Complexes. J. Inorg. 
Organomet. P. 2011, 21, 876. 

139. Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology controlled self-
assembled nanostructures of sandwich mixed (phthalocyaninato)(porphyrinato) europium 
triple-deckers. Effect of hydrogen bonding on tuning the intermolecular interaction. J. Am. 
Chem. Soc. 2008, 130, 11623. 

140. Balakumar, A.; Lysenko, A. B.; Carcel, C.; Malinovskii, V. L.; Gryko, D. T.; Schweikart, K. 
H.; Loewe, R. S.; Yasseri, A. A.; Liu, Z.; Bocian, D. F.; Lindsey, J. S. Diverse redox-active 
molecules bearing O-, S-, or Se-terminated tethers for attachment to silicon in studies of 
molecular information storage. J. Org. Chem. 2004, 69, 1435. 

141. Goransson, E.; Boixel, J.; Fortage, J.; Jacquemin, D.; Becker, H. C.; Blart, E.; Hammarstrom, 
L.; Odobel, F. Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-
ethynylene)-based donor-bridge-acceptor dyads. Inorg. Chem. 2012, 51, 11500. 

142. Zhu, P.; Zhang, X.; Wang, H.; Zhang, Y.; Bian, Y.; Jiang, J. Ferrocene-decorated 
(phthalocyaninato)(porphyrinato) double- and triple-decker rare earth complexes: synthesis, 
structure, and electrochemical properties. Inorg. Chem. 2012, 51, 5651. 

143. Cheng, K. F.; Thai, N. A.; Grohmann, K.; Teague, L. C.; Drain, C. M. Tessellation of 
porphyrazines with porphyrins by design. Inorg. Chem. 2006, 45, 6928. 

144. Smeureanu, G.; Aggarwal, A.; Soll, C. E.; Arijeloye, J.; Malave, E.; Drain, C. M. Enhanced 
catalytic activity and unexpected products from the oxidation of cyclohexene by organic 
nanoparticles of 5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)porphyrinatoiron(III) in 
water by using O2. Chem. Eur. J. 2009, 15, 12133. 

145. Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative 
DNA cleavage. Chem. Rev. 1992, 92, 1411. 

146. Nam, W.; Lim, M. H.; Oh, S.-Y.; Lee, J. H.; Lee, H. J.; Woo, S. K.; Kim, C.; Shin, W. 
Remarkable Anionic Axial Ligand Effects of Iron(III) Porphyrin Complexes on the Catalytic 
Oxygenations of Hydrocarbons by H2O2 and the Formation of Oxoiron(IV) Porphyrin 
Intermediates bym-Chloroperoxybenzoic Acid. Angew. Chem. Int. Ed. 2000, 39, 3646. 



25 

147. Sheldon, R. A., Ed.; Metalloporphyrins in Catalytic Oxidations, Marcel Dekker: New York, 
NY, 1994. 

148. Collman, J. P.; Wagenknecht, P. S.; Hutchison, J. E. Molecular Catalysts for Multielectron 
Redox Reactions of Small Molecules: The“Cofacial Metallodiporphyrin” Approach. Angew. 
Chem. Int. Ed. 1994, 33, 1537. 

149. Kadish, K. M.; Shao, J.; Ou, Z.; Fremond, L.; Zhan, R.; Burdet, F.; Barbe, J. M.; Gros, C. P.; 
Guilard, R. Electrochemistry, spectroelectrochemistry, chloride binding, and O2 catalytic 
reactions of free-base porphyrin-cobalt corrole dyads. Inorg. Chem. 2005, 44, 6744. 

150. Menting, R.; Lau, J. T. F.; Xu, H.; Ng, D. K. P.; Roder, B.; Ermilov, E. A. Formation and 
photoinduced processes of a self-assembled subphthalocyanine-porphyrin-phthalocyanine 
supramolecular complex. Chem. Commun. 2012, 48, 4597. 

151. Web of Science; Thomson Reuters: New York, NY, 2015; http://www.webofknowledge.com. 

 

 

 

 

 

 

 

 

 

 

 

 



26 

Chapter 2. Synthesis and Characterization of a Self-Assembled Porphyrin Cage§[1] 

2.1. Introduction. 

Given that the spontaneous assembly of molecular units into higher order systems is so 

crucial to the development of advanced materials and devices, it is important to explore compounds 

that can satisfy the relevant design criteria at every level of hierarchical structure. Specific 

interactions between molecules can offer the ability to fine-tune processes such as electron and 

energy transport, but may have little influence over longer-range order. Other motifs must then be 

incorporated which will govern the tertiary structure in predictable ways. The study described here 

represents one attempt at simultaneously addressing these competing design challenges. 

Porphyrinoids appended with H-bond motifs have been designed to assemble into diverse 

arrangements such as rosettes, squares, tapes, and nanoparticles, yielding materials for solar energy 

harvesting, photonic devices, sensors, catalysts, and biomimetic electron transport models.[2-8] In 

addition to directing supramolecular architectures, the functional groups on the macrocycle and 

the mode of assembly can modulate the photophysical and chemical properties of the arrays. It is 

also possible to construct responsive H-bond materials, in which environmental conditions such 

as temperature and solvent can modulate the supramolecular structure, the catalytic host-guest 

chemistry, or the electronic communication between subunits.[9-12] While functional materials of 

H-bond assembled porphyrins have demonstrated utility,[2] dyes bearing rigidly attached 

hydrogen bonding motifs can be difficult to synthesize.[6-8] 

                                                 

§ This chapter is adapted from an article published in Chemical Communications.[1] 
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In this chapter we describe the synthesis of porphyrins appended with four rigid hydrogen 

bonding motifs on the meso positions and their subsequent self-assembly into cofacial cages via 

bis(decyl)melamine mediators. The cages assembled in this manner are then drop cast onto a mica 

surface, where the hydrocarbon chains on the melamine regulate the formation of thin films. These 

steps thus span the first three levels of hierarchical structure, from porphyrin design and synthesis 

(primary), to cage formation through hydrogen bonding (secondary), and finally to thin film 

deposition and organization (tertiary). 

2.2. Materials and Methods 

All reagents were obtained from commercial sources and used without purification. 5-

Formyl-6-methyluracil and 1-ethoxymethyl-5-formyl-6-methyluracil were synthesized according 

to previous literature procedures.[3,4,13] NMR (1H and 13C) Spectra were recorded on a Brüker 

Avance 500 MHz spectrometer. Variable temperature NMR measurements were performed from 

the range 279 K to 323 K. Mass spectrometry analyses were performed at the CUNY Mass 

Spectrometry Facility at Hunter College by electrospray ionization on an Agilent Technologies 

G6520 Q-TOF instrument and Agilent 1200 HPLC system. The electrospray ionization was done 

in methanol, with 0.1% formic acid. 

UV-visible spectra were recorded on a Varian Bio3 spectrophotometer. Steady-state 

fluorescence spectra and fluorescence lifetimes were measured with a Fluorolog τ3 TCSPC (time 

correlated single photon counting) from Jobin-SPEX Instrument S. A., (Horiba Scientific. Inc.) 

TCSPC fluorescence lifetime measurements used a 405 nm NanoLED laser for excitation, with a 

2nm bandpass, an average power of 13.6 pJ/pulse, and a pulse width 200 ps to excite the 

molecules. The data was fit to a multiexponential decay equation using the Decay Analysis 

Software package (v. 6.4) bundled with the instrument. The fluorescence signal was recorded at 
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651 nm. Dynamic light scattering (DLS) used a Precision Detector PD2000DLS Cool-Batch 

instrument in batch mode at 25 oC to determine size of the aggregates and the cages. 

Samples for AFM were prepared in the following manner: freshly cleaved sheets of mica, 

approximately 2.5×2.5 cm, were placed in a clean Petri dish on a flat surface.  For each sample, 

the given solution was drawn up into a pipette, and then a single drop was drop cast onto a mica 

square.  In the voids between the samples, dry THF was deposited via pipette, taking care that the 

THF did not contact any of the samples.  A watch glass was then placed over the Petri dish, sealing 

the environment so the evaporating THF could not escape. The samples were allowed to sit for 24 

hrs, and then examined using an Asylum Research MFP-3D™ Stand Alone AFM in contact mode 

under ambient conditions. Images collected from the AFM were analyzed using a program called 

"WSxM 4.0 Develop 11.4", developed by Nanotec Electronica S.L. All samples were imaged with 

a Park 0.1 silicon nitride tip (nominal k = 0.1 N m-1) in contact mode. 

2.2.1. Porphyrin Synthesis 

Uracylporphyrin 1b and N-alkyluracyl porphyrin 2b were synthesized from 5-formyl-6-

methyluracil[14] and 1-ethoxymethyl-5-formyl-6-methyluracil[3-5,9-12,15] under Adler 

conditions with Zn(OAc)2 (Scheme 2.1). N-alkylation of the uracil inhibits tautomerization at this 

position, diminishes unproductive H-bond formation, and improves solubility.  The free bases, 1a 

and 2a, were obtained by demetallation of the zinc complex. The bis(decyl)melamine (IUPAC 

name: 2,4-di(n-decylamino)-6-amino-1,3,5-triazine) was prepared similarly to previous 

reports.[16,17] 
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2.2.2. Cage Assembly 

Solutions of each of the porphyrins (1a, 1b, 2a, and 2b) with bis(decyl)melamine in dry 

THF were made at concentrations around 38-42 µM. The alkoxy-substituted compounds (2a and 

2b) exhibited much greater solubility in this solvent, and we primarily focus on those systems here. 

To accelerate the dissolution and H-bond formation with bis(decyl)melamine, the solutions were 

sonicated for ca. five minutes and then transferred to 3.5 mL quartz cuvettes. Nitrogen gas was 

then purged through the solution for ca. 10 minutes to ensure the complete removal of oxygen. 

The 1.0 cm pathlength cuvette was then sealed with a Teflon cap and wrapped with Parafilm to 

make sure the system remained closed. The solutions were kept and monitored spectroscopically 

for several days, first being held at room temperature to ensure equilibrium, and then being heated 

continuously at 45-50 °C to overcome the barrier to atropisomer interconversion (vide infra) and 

aid in the formation of the thermodynamically stable cage structures (Scheme 2.2). Solutions 

without any bis(decyl)melamine were also observed under nearly identical conditions as a control. 

Scheme 2.1. Synthesis of uracylporphyrin. (i) reflux 10 h in 10% nitrobenzene in 
acetic acid with 0.05 M Zn(OAc)2. The porphyrin is prepared as a mixture of the four 
atropisomers (αααα, αααβ, ααββ, αβαβ) since the uracyl moieties are nominally 
orthogonal to the macrocycle plane. 
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2.3. Results and Discussion 

There are two notable features of this methodology: (1) the porphyrins are made in one 

step, and (2) the supramolecular dynamics are significantly reduced because all four meso-uracyls 

participate cooperatively in the assembly process.[2-8] Each cage is formed from the co-facial 

arrangement of two porphyrins held together by four bis(decyl)melamine units as intermediates 

(Scheme 2.2). NMR, DLS, and photophysical spectroscopy in solution all point to the formation 

of the cages, and AFM studies elucidate the self-organization of the materials cast onto mica. 

2.3.1. Atropisomers 

Both porphyrins 1 and 2 show atropisomerism due to steric hindrance to rotation of the 

uracyl group created by interactions between the uracyl 2-carbonyl and 6-methyl groups and the 

pyrrole βH. The most stable self-assembled cage structure requires both porphyrins to be in the 

αααα arrangement. The thermodynamics of atropisomerization were determined for 2b in 

deuterated methanol. The 1H NMR spectra of porphyrin 2 has distinct resonances for the uracyl 6-

Scheme 2.2. Prolonged heating of two equivalents of a uracylporphyrin 
with four equivalents of the complementary bis(decyl)melamine (left) 
results in formation of the αααα atropisomer and its self-assembly into 
the cage in solution. The decyl groups on the melamine derivative 
mediate formation of monolayer films of the cage on mica (right). 
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methyl due to ring current effects and the 1-N methylene groups. There should be six resonances 

for both the 6-methyl near 2 ppm, and the 1-N methylene group, observed as complex multiplets 

near 5 ppm. The ratio of the resonances for the 6-methyl group was used to determine the ratio of 

the four atropisomers, which in the initially prepared porphyrin was approximately the expected 

1:4:2:1 for αααα:αααβ:ααββ:αβαβ. The rotational barrier was determined for porphyrin 2b by 

performing variable temperature NMR from 5 °C to 50 °C in MeOD-d4.[18] The value of K was 

determined by shift in the (N-CH2-O) protons of the alkoxy group. The equilibrium constant was 

determined  by a Van ’t Hoff plot (ln K vs. 1/T) and the ΔG‡ was found to be about 123 kJ/mol for 

2b.[19,20] The ΔG‡ for the free base is typically less by about 20 kJ/mol because the 

metalloporphyrin is more rigid.[21-23] The poor solubility of porphyrins 1a and 1b made similar 

analysis difficult, but the barriers should be about the same. 

The porphyrins are poorly soluble in dry THF but slowly become more soluble upon 

addition of the melamine and heating between 40-50 °C for more than four days for 1a and 1b, 

and for two days for 2a and 2b. The formation of the cage effectively removes the αααα 

atropisomer from the solution, shifting the equilibrium and driving the continued self-

assembly.[24] The self-assembled cage is characterized by the NMR chemical shifts of both the 

uracil and melamine NH protons within the H-bonds. Once the cages are formed, only one 

resonance, instead of six, for the uracyl methyl group is observed, confirming the presence of only 

one atropisoner (αααα). 

2.3.2. Photophysical Analysis 

The UV-visible absorption spectra, fluorescence emission spectra, and lifetime 

measurements were first recorded at room temperature for a few days until an equilibrium was 

observed. To drive the equilibrium towards the cages, the solutions were then heated and stirred 
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continuously for several days with continued monitoring. Heating at 45-47 °C for 2 days caused 

an increase in the UV-visible band intensities, indicating increased solubility and a shift in the 

equilibrium towards formation of the αααα atropisomer and assembly of the cages (Figure 2.1). 

The emission spectra of the 2a:2a and 2b:2b cage solutions, excited in either the Soret or Q bands, 

are in agreement with the UV-visible results. An initial small decrease in the fluorescence intensity 

due to porphyrin aggregation is followed by an increase upon formation of the more soluble cages 

(Figure 2.1). For the 1a:1a and 1b:1b porphyrins, the Soret band near 420 nm redshifts by about 

4 nm with a small decrease in intensity, indicating the formation of amorphous aggregates. The 

UV-visible and emission spectra of all the control solutions (without melamine) exhibit 

aggregation but do not change after one day. 

Time correlated single photon counting experiments on these self-assembled cages were 

carried out in dry THF under N2 at the same concentration used for the UV-visible studies (Table 

2.1). Incomplete demetallation of the Zn2+ complexes to form the free bases results in some 

contamination by residual metalloporphyrin present in samples of 1a and 2a. The lifetimes for 1a, 

Figure 2.1 . Absorbance (A) and fluorescence emission (B) spectra of the 2b:2b 
cage formation over time. The absorbance in the Q band region from 475-700 nm 
has been scaled up ten times. The solution concentrations are 39 μM. The 
excitation wavelength for the emission was λex = 516 nm. 
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2a, 1b, 2b are somewhat shorter than 

standard tetraphenylporphyrin (TPP, 

11 ns) and ZnTPP (2.7 ns) under 

similar conditions[25,26] because of 

some aggregation. However, the 

solutions of cages, in which 

aggregation is reduced by the 

assembly process, generally display 

lifetimes closer to those for other 

meso-aryl porphyrins. This is also 

consistent with a static binding mechanism for cage formation, as dynamic association processes 

would tend to decrease the lifetimes. 

A one-to-one mixture of free base and Zn2+ macrocycles, cage 2a:2b (and 1a:1b), was also 

examined. At equilibrium, if the intermolecular forces that mediate the assembly are equivalent, 

there should be a 1:2:1 mixture of cages 2a:2a, 2a:2b, and 2b:2b, respectively. The UV-visible 

spectra for this mixture shows similar trends as the above cages; the initial formation of amorphous 

aggregates and the more soluble cage after heating at 45-47 °C for a few days. The fluorescence 

spectra of cage 2a:2b evolve in a complex manner. Initially, in the aggregation stage of the self-

assembly process, some energy transfer from the metalloporphyrins to the free bases is observed. 

The solution may contain more aggregates of the Zn2+ complexes because they are less soluble. 

After heating the solution, only a small amount of energy transfer is observed, which is consistent 

with separation of the porphyrins in the cage structure. Thus, after about three days UV-visible, 

fluorescence, and NMR all indicate that the system has reached equilibrium. 

Table 2.1. Fluorescence lifetimes of porphyrins and cages. 

Compound τ1 (ns) τ2 (ns) 

1a 2.20 (19%)a 8.80 (81%) 

1b 2.50 – 

2a 1.80 (5%)a 8.60 (95%) 

2b 3.76 – 

1a:1a cage 2.80 (20%)a 10.2 (80%) 

1b:1b cage 2.90 – 

1a:1b mixed cage 3.10 (58%)a 8.60 (42%) 

2a:2a cage 3.64 (11%)a 9.60 (89%) 

2b:2b cage 2.40 – 

2a:2b mixed cage 3.50 (60%)a 9.70 (40%) 

a some residual metalloporphyrins present 



34 

2.3.3. NMR Diffusion Ordered Spectroscopy 

Diffusion ordered spectroscopy (DOSY) allows the molecular weights of the assemblies to 

be determined.[3-5,9-12,27-30] For DOSY experiments on a Bruker 500 MHz instrument, the 

normalized diffusion coefficient (Dnorm) was measured as the ratio of the observed value (Dobs) to 

Dβ-CD, where Dβ-CD is the diffusion coefficient for the internal standard, heptakis(2,3,6-tri-O-

methyl)-β-cyclodextrin (β-CD). A calibration curve of Dnorm vs. molecular weight could then be 

constructed using a series of polystyrene standards. The value of Dnorm for Por 1b + melamine was 

found to be 0.64, which indicates a 1b:1b cage with a molecular weight of 3360 amu (calculated 

3295 amu), while Dnorm for Por 2b + melamine was 0.60, correlating to a molecular weight of 3820 

amu (calculated 3717 amu). 

2.3.4. Dynamic Light Scattering 

Dynamic light scattering (DLS) data reveals the hydrodynamic radius of the initially 

formed aggregates of 2a:2a, 2b:2b, and 2a:2b cages is about 42 nm. After heating, the average 

particle size is between 7-9 nm. There is a broad distribution of sizes for the aggregates of 1a:1a, 

1b:1b, and 1a:1b centered at about 420 nm, while the cages are found to be about 9-13 nm. 

Assuming extended decyl groups, the cage dimensions estimated using ChemBio3D© are about 

5.2 nm from terminal methyl to terminal methyl on opposite sides of the cage, and about 2 nm 

perpendicular to the porphyrin planes. 

2.3.5. Atomic Force Microscopy 

Since self-assembled materials must interact with surfaces when incorporated into devices, 

we also examined the self-organization of the cages into films. The supramolecular cage was drop 

cast from the above 30-40 μM THF solutions onto freshly cleaved mica and imaged with AFM.  

When the 2a:2a was cast onto the mica, a film corresponding to a single layer of the cage 
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structures, approximately 

2.8 nm thick, was observed 

(Figure 2.2).[3-5] In the 

film, the self-assembled 

cage is hierarchically 

organized by interactions 

between the protruding 

hydrocarbon chains on the 

four bis(decyl)melamine units.[31] Friction images show no indication of separation of the 

porphyrin and the melamine components. When the 2b:2b cage is cast onto mica, somewhat 

thicker 12 nm films are observed, with root-mean-square roughness of about 4 nm. The three 

different cages resulting from the mixture of 2a and 2b apparently yield more complex patterns on 

the surface. This hierarchical self-organization into films is analogous to those observed for 

squares of porphyrins self-assembled by coordination chemistry.[32] 

2.4. Conclusion 

The synthesis of the porphyrins and aldehydes described here is straightforward. The 

cooperative self-assembly of the porphyrin cages mediated by four rigid meso-uracyl groups and 

the bis(decyl)melamine forms a stiff cage robust enough to allow organization on surfaces driven 

by the long hydrocarbon chains into nm thick films on mica. All of the spectroscopic and 

photophysical evidence supports this explanation. In addition, we attempted to probe the dynamics 

of energy exchange between the free base and metallated porphyrins in the 2a:2b mixed cages. 

Exciting the cages into an absorption band of either the free base or zinc component resulted in 

some observed fluorescence from the other component, suggesting a weak excitation energy 

Figure 2.2. Contact mode AFM topography image of the 2a:2a cage 
on mica (left) and height profile (right). 
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transfer mechanism. Unfortunately, due to both aggregation effects and the presence of residual 

metallated porphyrin in the free base samples, these results were not fully conclusive. It may also 

be the case that the assembly process holds the porphyrin units far enough apart to effectively turn 

off electronic communication between the chromophores. 
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Chapter 3. Synthesis of a Flexible Porphyrin Dimer for Fullerene Complexation§[1] 

3.1. Introduction 

Energy and electron transfer are fundamental processes critical to virtually every aspect of 

both nature and technology. Achieving reliable control over these mechanisms at the molecular 

level is a prerequisite to making advancements in any number of areas, from biomedical 

therapeutics to nanoelectronics to emerging energy technologies. To this end, the donor-acceptor 

paradigm of material and molecular design has proven fruitful in many areas of basic research and 

applied science for decades.[2-10] Porphyrins, phthalocyanines, and other related macrocycles all 

possess excellent photophysical characteristics that make them suitable as donors. On the other 

hand, fullerenes are known to be remarkably efficient electron acceptors,[12] and thus are also a 

natural fit in these kinds of systems. Thus, the chemical stability and tuneable photonic properties 

of the p-type porphyrins couple well with the electronic properties of the n-type fullerenes to form 

ideal donor acceptor systems.[11,13-23] Interestingly, it has also been found that there are 

enhanced π-π interactions between the aromatic ring of a porphyrinoid and the fullerene 

surface.[11,15] 

Many porphyrin dimer systems have been devised to take advantage of these favorable 

interactions,[14,17-30] but the synthetic methods employed have been limited by factors of ease, 

yield, and scalability.[24,27] Keeping in mind the principles of supramolecular design that we 

have been advocating, we sought to design a more synthetically facile alternative. Using a simple, 

high yield, two-step procedure we have fabricated a thiol tethered porphyrin dimer which 

                                                 

§ This chapter is adapted from an article published in Chemical Communications.[1] 
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preferentially binds C70 over C60, both in toluene solution and when deposited on glass. The same 

synthetic platform will also allow for easy incorporation of a wide variety of alkyl linkers to 

accommodate different fullerenes and fullerene-like structures. 

3.2. Materials and Methods 

NMR (1H and 13C) spectra were recorded on a Bruker 500 MHz spectrometer. Electrospray 

ionization mass spectrometric analyses were performed at the CUNY Mass Spectrometry Facility 

at Hunter College using an Agilent Technologies HP-1100 LCMSD instrument. MALDI-MS 

spectra were recorded as a service by the University of Illinois with a Bruker UltrafleXtreme 

MALDI-TOF mass spectrometer purchased in part with a grant from the National Center for 

Research Resources, National Institutes of Health (S10 RR027109 A). All reagents were obtained 

from commercial sources and used without further purification. Atomic force microscopy (AFM) 

measurements were conducted with an Asylum AFM (MFP-3D, Asylum Research Corp.) on 

organic thin films drop cast onto ozone cleaned glass. 

3.2.1 Synthesis 

The synthesis is outlined in Scheme 3.1. First, a mixed aldehyde condensation in propionic 

acid, using one equivalent of pentafluorobenzaldehyde, three equivalents of benzaldehyde, and 

four equivalents of pyrrole, yielded a statistical mixture of compounds which were separated by 

flash chromatography. The target isomer (5,10,15-triphenyl-20-pentafluorophenylporphyrin, 

TPPF5) was isolated and metallated with zinc acetate, and the metallated product was allowed to 

react with 1,5-dithiopentane in DMF. This crude mixture was purified by column to give the dimer 

1Zn in 79% yield, and could be subsequently demetallated with HCl to give 1H2. 
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Metallation/demetallation can be carried out at any step, but the presence of the zinc ion helps to 

activate the para-fluorine of TPPF5 for substitution. Detailed procedures are as follows. 

3.2.1.1. 5,10,15-triphenyl-20-pentafluorophenylporphyrin (TPPF5) 

To a mixture of propionic acid (0.6 L) and nitrobenzene (6 ml) was added benzaldehyde 

(21.34 mmol, 2.17 mL) and pentafluorobenzaldehyde (7.0 mmol, 0.875 mL) with stirring. The 

mixture was heated to 100 ºC and pyrrole (28.3 mmol, 1.94 mL) was added slowly. The reaction 

was refluxed for three hours in the dark and allowed to cool. Silica gel (300 mL) was added to the 

reaction flask and the propionic acid was evaporated. The silica gel was washed with 

Scheme 3.1. (i) Reflux in propionic acid, separate isomers; (ii) metallation with Zn(OAc)2 in 
CHCl3/CH3OH followed by addition of pentane-1,5-dithiol in DMF. 
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dichloromethane and acetone until no more color eluted. The solution was evaporated to 100 mL 

and washed with sodium bicarbonate and water, dried over anhydrous sodium sulfate, and 

evaporated to dryness. This organic product was then recrystallized from hexanes to yield a purple 

powder. The porphyrin mixture was filtered, dissolved in dichloromethane, loaded onto a 600 mL 

silica gel column and separated with an eluent of 30:70 toluene:petroleum ether (v/v). The fifth of 

the six bands was collected, evaporated and recrystallized from hexanes to yield 360 mg (0.511 

mmol, 7.22% yield) of product TPPF5. 

3.2.1.2. Zinc (II) 5,10,15-triphenyl-20-pentafluorophenylporphyrin (ZnTPPF5) 

To stirring chloroform (20 mL) was added TPPF5 (0.511 mmol, 0.360 g). To stirring 

methanol (8 mL) was added zinc acetate dihydrate (4.09 mmol, 0.897 g). The zinc acetate solution 

was added to the chloroform solution of TPPF5 and the mixture was refluxed for three hours. The 

mixture was then washed with water, extracted into dichloromethane, dried over sodium sulfate, 

and evaporated to dryness, yielding 276 mg of ZnTPPF5 (70.4% yield). 

3.2.1.3. Bis-[zinc (II) 5,10,15-triphenyl-20-pentafluorophenylporphyrin] (1Zn) 

To stirring dry DMF (16.6 mL) was added ZnTPPF5 (116 mg, 0.151 mmol) under nitrogen 

atmosphere. To this solution 1,5-pentane-dithiol (0.23 ml, 1.7 mmol) was added, followed by 

diisopropylethylamine (DIPEA, 2.914 ml, 16.73 mmol). The reaction mixture was stirred at 80 ºC 

for 12 hours and then cooled to room temperature, washed with water, extracted into 

dichloromethane, dried over sodium sulfate, and evaporated to dryness under reduced pressure. 

The crude product was purified by column chromatography to remove starting materials and 

recrystallized from hexanes to give 95.37 mg of product 1Zn (82.19% yield) 
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3.2.1.4. Bis-[5,10,15-triphenyl-20-pentafluorophenylporphyrin] (1H2) 

To stirring dry chloroform (5 mL) was added 1Zn (80 mg, 0.091 mmol) under nitrogen 

atmosphere. To this solution concentrated HCl (0.5 ml, 20.43 mmol) was added dropwise. The 

mixture was stirred at room temperature for 3 hours. The reaction mixture was then washed with 

water, extracted into dichloromethane, dried over sodium sulfate, and evaporated to dryness under 

reduced pressure. The crude product was recrystallized from hexanes to give 75 mg of product 

1H2 (93.8% yield). MALDI: calculated 1505.6423; found 1505.4. NMR (500 MHz, CDCl3): 

9.02(d), 4H, β pyrrole; 9.96(m), 12H, β pyrrole; 8.20(m), 12H, ortho-phenyl; 7.77(m), 18H, 

meta/para-phenyl; 3.39(t), 2H, S-tether; 3.15(m), 2H, tether; 2.05(m), 2H, tether; 1.86(m), 4H, 

tether. 

3.2.2 Photophysics 

UV-Visible absorption spectroscopy was performed on a Cary 1-Bio UV-Visible 

spectrometer. Steady state fluorescence spectra were obtained on a HORIBA Jobin-Yvon 

FluoroLog-3 spectrometer, and singlet state lifetimes were taken using the FluoroHub Tau-3 

TCSPC add-on component to the same system, with a pulsed NanoLED laser as the excitation 

source. In order to minimize secondary absorption and re-emission, 1.0 mm pathlength quartz or 

optical glass cuvettes were used for all spectroscopic studies. The emission spectra and lifetimes 

were taken using a front-face configuration, which also helped to minimize these inner-filter 

effects. All photophysical studies were carried out in spectrophotometric grade 99.99% toluene, 

used as purchased. Solutions of the porphyrin dimer species were prepared at one half the molar 

concentrations of the monomer controls in order to yield the equivalent macrocycle concentration 

for comparison. 
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For each of the porphyrins investigated, including the monomeric control TPPF5, solutions 

of the desired concentration were prepared first and split into two portions. Fullerene (either C60 

or C70) was then added to one of the portions to create a stock solution. This ensured that aliquots 

of the fullerene stock could be titrated into the dimer solutions under study without changing the 

porphyrin concentration. Absorbance, fluorescence, and fluorescence lifetime measurements were 

performed on each porphyrin solution as the fullerenes were titrated into the cuvettes in this way. 

3.3. Results 

Figure 3.1 shows the UV-visible absorption spectra for the titration of C60 and C70 into the 

zinc dimer 1Zn. There is a small ground state interaction with C70 evident from the UV-visible 

absorption, demonstrated by the difference between the expected and observed Soret peaks of the 

porphyrin + fullerene solutions (Figure 3.1, inset). No such trend is observed for the titration with 

C60. Similar spectra for the other compounds are shown in Appendix B (Figures B1-B4). 

Figure 3.1. UV-Visible absorbances of a titration of C60 (left) or C70 (right) into 10.0 μM solutions of 1Zn. 
The inset shows the difference between the calculated sum of the absorbance of the two components (at 
419 nm) and the experimentally observed absorbance for the mixed solutions, as function of the quencher 
concentration. 
 

[C60] = 0.33 mM 
 
 

[C60] = 0 mM 

[C70] = 0.33 mM 
 
 

[C70] = 0 mM 
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Steady-state fluorescence spectra of these same titration experiments are shown in Figure 

3.2. Both fullerenes quench the porphyrin fluorescence, although the effect is much larger for C70 

than for C60, indicating an enhanced excited state interaction with the former. Stern-Volmer plots 

of this quenching process are shown in Figure 3.3. The slopes of the best fit lines to these plots 

are the binding constants collected in Table 3.1. Similar binding constants were obtained from 

fluorescence data corresponding to two different excitation wavelengths. No change was observed 

in the fluorescence lifetimes of any of the porphyrins with the addition of the fullerenes. 

3.4. Discussion 

Steady-state fluorescence measurements demonstrated quenching of the porphyrin excited 

state, as is clearly shown in Figure 3.2 and in Appendix B (Figures B3 and B4). The Stern-Volmer 

plots (Figure 3.3) show greater quenching by C70 than by C60 for all species studied. At the same 

time, the porphyrin fluorescence lifetimes show virtually no change, indicating a static quenching 

mechanism. Assuming there is no significant difference in the nature of energy or electron transfer 

from the various fluorophore species, and expecting that the complexation behavior is driven by 

Figure 3.2. Fluorescence emission spectra of a titration of (left) C60 and (right) C70 into 10.0 μM solutions 
of 1Zn. Both graphs show quenching of the porphyrin excited state, but the effect due to C70 is much more 
significant. The solutions were excited at 417 nm. 

[C60] = 0 mM 

 

[C60] = 0.33 mM 

[C60] = 0 mM 

 

 

 

[C60] = 0.33 mM 
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van der Waals forces with small contributions from electrostatics and coordinate bonding, we 

conclude that the greater quenching observed in the case of the C70 can be attributed to a stronger 

interaction due to the larger, flatter surface in the equatorial region of the prolate molecule.[31] 

All of the solution phase experiments were done in toluene in order to compare to literature 

results, but the extreme affinity of both molecules for this solvent likely competes with the 

chromophore/fullerene association. While this offers a suitable environment for examining the 

attractions between the donor and acceptor, a more polar solvent could be chosen for solution 

processing in order to drive the equilibrium towards complexation.[15] Porphyrins 1H2 and 1Zn 

was designed with a flexible thiol terminated linker to allow for a sandwich type binding of 

fullerene C60 or C70. The length of the linker can be easily modulated by substituting pentane-

dithiol with any of the numerous commercially available dithioalkanes, thus broadening the range 

of potential guests for the inclusion complex. 

Figure 3.3. Stern-Volmer plots for each species discussed. The ratio of unquenched to quenched 
fluorescence (F0/F) is plotted as a function of quencher concentration as C60 (left) or C70 (right) are titrated 
into solutions of 1Zn (○), 1H2 (■) and TPPF5 (▲). Note the difference in scale between the left and right 
graphs. 
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 The inclusion of the pentafluorophenyl moiety into the porphyrin allows for easy 

dimerization by simple click-chemistry type substitution with thioalkanes or other nucleophiles, 

but it may help promote interaction with the conjugated π-system of the chosen fullerene molecule 

as well.[32] 

Metallation and 

demetallation are 

simple and proceed 

in excellent yield, 

but the subtle 

effects of the metal 

ion on the 

complexation have 

yet to be fully 

revealed. Table 3.1 shows the binding constants calculated from Stern-Volmer plots and compares 

them with values from the literature. Bis-porphyrin 1Zn demonstrated a binding constant of 

1.1×104 M-1 which is competitive with the much more synthetically demanding molecules. 

Structures for the jaws, and calixarene porphyrin dimers are given in Appendix B (Figure B12). 

To study this system in the solid state, films were prepared on ozone cleaned glass by drop 

casting from toluene solutions of either fullerene, fullerene and porphyrin (1H2 or 1Zn), or pure 

porphyrin, and were examined by atomic force microscopy (AFM). Height and friction images of 

the films are available in Appendix B, Figures B7-B11. Monomeric porphyrins form simple 

aggregates on the glass surface. Pure C70 solutions form large nanoaggregates as compared to the 

long narrow rods which form from solutions of pure C60. When combined with either porphyrin 

Table 3.1. Binding constants for species discussed as well as literature 
compounds. Values calculated from slope of Stern-Volmer plots. 

Host[1] KC60 (M-1) KC70 (M-1) KC70/KC60 Ref. 

TPPF5 (control) 5.0×102 3.7×103 7.4 this work 

1H2 7.1×102 8.9×103 12.5 this work 

cyclic H2Por  7.94×105 1.58×107 19.9 [11]a 

jaws H2Por  5.20×103 - - [11]a 

calix. H2Por 4.92×103 2.11×104 4.29 [24] 

1Zn 8.0×102 1.1×104 13.8 this work 

cyclic ZnPor 6.31×105 2.00×107 31.7 [11]a 

jaws ZnPor 1.95×103 - - [11]a 

calix. ZnPor 8.6×103 2.80×104 3.26 [24] 
a And references therein. 



48 

dimer, the dimensions of the C60 aggregates remain constant but are more uniformly dispersed. 

When mixed with C70 however, dimers form similarly sized nanoaggregates which exhibit 

smoother shells and are surrounded by a region of porphyrin film, as depicted in Figure B11. These 

self-assembled aggregation patterns further demonstrate the increased affinity of 1H2 and 1Zn for 

C70.  

Carbon nanotubes share many of the interesting properties of fullerenes and have also been 

extensively used in porphyrin based D/A systems.[17,25,29,33-36] When DMF solutions of 1Zn 

were incubated with a large excess of single walled carbon nanotubes (SWCNT), and then 

sonicated (20 min.) and centrifuged (8,000 RPM for 10 min.), the supernatant demonstrated 

fluorescence quenching and UV spectral changes similar to the experiments with the fullerene C70. 

This indicates that the dimer interacts favorably with the larger aspect ratio of the SWCNT. The 

precipitate, which is likely a complex of the SWCNT and the dimer species, has not yet been 

characterized. Future studies will include synthesis of differently linked dimers, full 

characterization of the molecular interaction with SWCNT, and experiments employing the system 

as a technique for purifying crude fullerene mixtures. 

3.5. Conclusions 

We have demonstrated the synthesis of a porphyrin dimer by high yield click chemistry, 

using a fluorous linker and a commercially available thioalkane. The resulting species was 

observed to preferentially bind fullerene C70 in solution, forming a ground state complex with 

significantly quenched fluorescence. While we have not conclusively determined the mechanism 

of quenching, the nature of the components suggests that there is an electron transfer from the local 

singlet state of the porphyrin dimer to the fullerene. The supramolecular structure also persists into 

the solid state when the nanoaggregates are cast onto glass. 
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Chapter 4. Tuning the Structure and Photophysics of a Fluorous Phthalocyanine 

Platform§[1]§ 

4.1. Introduction 

Phthalocyanines (Pc) have been an important class of industrial dyes since their 

serendipitous discovery in the early 20th century.[3,4] In addition to accounting for a large 

percentage of organic dyes currently in production,[6] Pcs are also routinely investigated for 

applications ranging from solar energy conversion[7-12] to thin film electronics[13-18] to 

photodynamic therapy.[19-24] The chemical and thermal stability of these compounds are 

augmented by diverse photonic properties, including remarkably high molar extinction 

coefficients and fluorescence efficiencies. It has been known since their inception that 

functionalizing the Pc core allows for increased solubility and ease of processing, while 

simultaneously allowing the aforementioned photonic properties to be systematically tuned 

because the substituents are directly appended to the macrocycle. 

Many research groups are interested in 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-

hexadecafluorophthalocyanine (F16Pc), and its metal-complexes (MF16Pc).[7,9,13-16,21-28] The 

electron-withdrawing fluorine substituents slightly perturb the molecular orbitals causing a small 

bathochromic shift in the absorbance and fluorescence peaks, as well as an enhanced tendency 

towards aggregation.[29] Moreover, the increased dipole moment of the carbon-fluorine bond and 

the electron-deficient nature of the fused benzenes make this molecule an ideal substrate for attack 

via nucleophilic aromatic substitution (SNAr).[7,9,25,27,28,30,31] This synthetic strategy has 

proven extremely versatile, allowing the creation of a large variety of substituted Pcs that might 

                                                 
§ This chapter is adapted from a forthcoming article in the Journal of Physical Chemistry, Part A.[1] 
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not be otherwise accessible via traditional synthetic methods.[32] Thiol, amine, and alcohol 

nucleophiles bearing a range of functional groups can be employed, and the extent of substitution 

can be carefully controlled by adjusting the reaction conditions. 

We previously demonstrated[7] an improved photovoltaic efficiency in bulk heterojunction 

solar cells fabricated from blends of ZnPcs appended with varying numbers of thioalkane chains. 

It was shown that successive substitution of the F atoms with these –SR groups on the ZnF16Pc 

platform causes a red-shift in the absorbance Q band, allowing a mixture of different dyes to cover 

a much broader range of the solar spectrum. Solar cells utilizing Pc dye-blends were compared 

with cells made from only one dye component, and were found to have a power conversion 

efficiency (PCE) greater than that predicted from summing the corresponding single-component 

device efficiencies. Surprisingly, this synergistic enhancement was achieved without the need to 

engineer the dyes into an energetically stepwise hierarchical structure at the molecular level. Using 

grazing incidence small angle x-ray scattering, Jurow et al.[9] found that the presence of the 

exocyclic thioalkane chains on the ZnPcs induced liquid crystal like behavior, resulting in an 

undesirable homogenous alignment of aggregates parallel to the electrode surface. Further, they 

showed that incorporating zinc tetra-tert-butylphthalocyanine (Zn(tBu)4Pc) into the active layer 

increased the cell efficiencies by frustrating this unfavorable packing. It is possible that dye-blends 

with widely varying numbers of thioalkyl substituents could produce the same effect without the 

need for Zn(tBu)4Pc.  

While molecular structure and packing order are clearly important in determining the PCE, 

there are many other factors such as photophysical properties to consider in engineering Pcs for 

solar energy conversion and other photonic applications. Herein we assess the photophysical 

properties through a rigorous spectroscopic study of the ZnF16-x(SR)xPc series of dyes (where x = 
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0–16). The photophysical properties of the molecules, including absorbance, fluorescence 

emission, and excited state lifetime, are measured as a function of the number of thioalkyl 

substituents, wherein the specific substitution pattern is discussed below. We use density 

functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations to 

help support and explain the conclusions regarding the excited state and structural dynamics. A 

single chain length was used since the number of substituents is the relevant variable for these 

studies, but the trends observed will map onto other derivatives based on the ZnF16Pc platform 

under the same conditions. Using n-octylthio groups imparts the desired degree of solubility and 

processability without resulting in undesirable liquid crystalline behavior. For the theoretical 

calculations we have modeled the compounds with shorter n-butylthio chains to significantly 

reduce the computational time required, while still obtaining useful information regarding the 

electronic and molecular structure. Neither previous reports[9,33] nor our own investigations show 

any difference in the inductive effects of substituents with different carbon chain lengths. 

There are diverse applications for materials that harness the excited state energy of efficient 

light absorbers such as Pcs, so a detailed understanding of the excited state dynamics will be 

beneficial for areas such as solar energy conversion, photocatalysis, biomedical imaging, 

photoacoustic spectroscopy, and photodynamic and photothermal therapies.[24] The results 

presented are thus broadly applicable to the development of Pc systems wherein the substituent is 

appended to the conjugated macrocycle. For ZnF16Pc, the absorbance, fluorescence quantum 

yields, and excited state lifetimes can all be systematically tuned by serial substitution of the F 

atoms on the macrocycle.[7] We demonstrate for the first time that the molecular structure of a 

pre-formed Pc core can be significantly distorted by simple substitution chemistry. Disrupting the 

normally planar aromatic system induces drastic changes in the photophysics, with important 
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consequences for potential applications. To date, syntheses of structurally distorted Pcs have only 

been accomplished through the cyclotetramerization of phthalonitriles or similar precursors 

already bearing bulky groups in the α position,[34-40] thereby limiting the scope of this approach. 

In this context, exploiting the synthetic versatility of the ZnF16Pc platform is an important part of 

the rapid design and testing of Pc compounds for commercially viable applications. 

4.2. Experimental 

4.2.1. Materials, Instruments, and Methods 

1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluorophthalocyaninato zinc (II) 

(ZnF16Pc), 2,9,16,23-tetra-(tert-butyl)phthalocyaninato zinc (II) (Zn(tBu)4Pc), tetrahydrofuran 

(THF), dichloromethane (DCM), acetone, ethyl acetate, petroleum ether, 1-octanethiol, potassium 

carbonate (K2CO3), sodium hydride (NaH) and anhydrous sodium sulfate (Na2SO4) were 

purchased from Sigma-Aldrich, Fisher Scientific or Acros Organics. Most reagents were used 

without further purification. 1-octanethiol was dried over basic alumina immediately prior to use. 

THF was freshly distilled over sodium and benzophenone before use to eliminate water, peroxides 

and butylated hydroxytoluene (BHT), a commercial stabilizer that has a pronounced fluorescence 

in the ultraviolet. Analytical thin-layer chromatography (TLC) was performed on polyester-backed 

TLC plates 254 (precoated, 200 μm, Sorbent Technologies). Preparative scale TLC was performed 

on glass-backed silica gel TLC plates (precoated, 1000 μm, Analtech). Silica gel 60 (70−230 mesh, 

Merck) was used for column chromatography. 

1H NMR and 19F NMR spectra were recorded at the Hunter College NMR facility on a 500 

MHz Bruker Avance and 400 MHz Bruker Avance III spectrometers, respectively. The 19F nucleus 

resonates at 376.5 MHz on the latter instrument. Proton chemical shifts are expressed in ppm 
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relative to the residual peak of the solvent used – either CDCl3 (7.26 ppm, 1H) or (CD3)2CO (2.05 

ppm, 1H). Fluorine chemical shifts are reported relative to trichlorofluoromethane (CCl3F, 0.00 

ppm, 19F). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrometry was performed at the Shared Instrument Facility at New York University using a 

Bruker UltrafleXtreme MALDI-TOF acquired through the support of the National Science 

Foundation under Award Number CHE-0958457. The matrix used was a 20 mg·mL-1 solution of 

2,5-dihydroxy benzoic acid (DHB, Sigma) in a 30:70 v/v ratio mixture of THF to 0.1% 

trifluoroacetic acid (TFA) in water. For each sample, this matrix solution was used to make a sub-

millimolar Pc solution, and subsequently spotted onto a ground steel target plate and allowed to 

air dry. The instrument was operated in reflectance mode with positive ion detection. For the 

starting material of our compounds, ZnF16Pc, the intact molecular ion was observed and used as 

an external single-point calibration reference for all subsequent samples. 

UV-visible absorbance spectra were obtained with a Lambda 35 UV-Vis 

spectrophotometer from Perkin-Elmer. Calibration curves were generated from dilute solutions 

with absorbance less than approximately 0.1 at the λmaz, as detailed in Appendix C. Steady-state 

fluorescence spectra were acquired on a HORIBA Scientific FluoroLog-3 fluorescence 

spectrometer. Quantum yields were also calculated from series of dilute solutions using the relative 

gradient method described in Appendix C, with Zn(tBu)4Pc in deaerated toluene as a standard. 

Fluorescence lifetimes were recorded using the FluoroHub Tau-3 time-correlated single photon 

counting (TCSPC) module for the same instrument. Excitation for TCSPC was provided by a 

pulsed diode laser source with a peak wavelength of either 653 nm (NanoLED-650L, HORIBA) 

or 667 nm (NanoLED-670L, HORIBA), each with a pulse duration of less than 200 ps. The data 
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collected in this manner were subjected to standard multi-exponential fitting using the Decay 

Analysis Software package (v. 6.4) bundled with the instrument.  

DFT and TD-DFT calculations were performed with the Gaussian 09 software package 

using the resources of the City University of New York High Performance Computing Center 

based at the College of Staten Island and supported under National Science Foundation Grants 

CNS-0958379, CNS-0855217, ACI-1126113. Avogadro 1.1.1 was used to construct the models, 

generate the input files, and process and visualize the orbital surfaces. All DFT and TD-DFT 

calculations were performed using the B3LYP hybrid exchange-correlation functional and the 6-

31G(d,p) basis set. The THF solvent contribution was simulated using the Polarizable Continuum 

Model (PCM). Ground state optimizations were performed with equilibrium PCM solvation and 

accompanied by frequency calculations to ensure the absence of imaginary frequency modes 

which would indicate a transition state. Vertical excitation (i.e. absorption) energies were obtained 

by performing single-point TD-DFT calculations of the excited electronic states at the ground state 

optimized nuclear geometry under non-equilibrium, state-specific PCM solvation conditions. 

4.2.2. Synthesis 

The synthesis for most of the compounds in the series largely follows the procedure 

previously reported.[7] In short, solid ZnF16Pc was added to dry THF under N2 along with either 

K2CO3 or NaH as a base. Then, 1-octanethiol was injected into the reaction vessel and brought to 

temperature for the specified time. The extent of substitution was controlled through a combination 

of stoichiometry, heat, and reaction duration, with higher thiol:Pc ratios, higher temperatures, and 

longer times producing more substituted products. For the most highly substituted products, 

sodium metal was used instead of base to generate the thiolate nucleophile in situ, as described 

below. 
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After the reaction was stopped, the THF was evaporated and the crude mixture was washed 

with deionized water and extracted into ethyl acetate. The organic layer was dried over Na2SO4 

and filtered, and the ethyl acetate removed under reduced pressure at low temperature to prevent 

oxidation of the sulfides to sulfoxides or sulfones. This was then passed through a silica column, 

first with hexanes to remove the unreacted thiol, followed by ethyl acetate to obtain a mixture of 

substituted phthalocyanines. The individual products were separated from this mixture by silica 

gel preparative scale TLC using a combination of ethyl acetate and hexanes as the eluent. The 

separated TLC bands were then scraped off and filtered through hydrophobic 0.20 μm PTFE 

syringe filter tips (Millipore) using ethyl acetate. See Appendix C for spectroscopic and mass 

spectrometry characterization. 

4.3. Results & Discussion 

4.3.1. Synthesis & Characterization 

This series of Pcs was synthesized via nucleophilic substitution on the ZnF16Pc platform, 

as shown in Scheme 4.1. Considering only the number of substituents on the macrocycle, there 

are 16 possible products from the reaction described. For brevity, we refer to these as ZnF16-

x(SR)xPc where x = 0 to 16, indicating the number of appended thioalkyl chains. This synthetic 

route is remarkably robust to variations in the reaction conditions, with virtually any base and any 

polar aprotic solvent being suitable. NaH greatly accelerated the reaction, reducing both the time 

and heat required for extensive substitution. The reaction is easily monitored by UV-Vis 

absorbance spectroscopy, since there is a red-shift in the absorbance peak of about 6 nm as each F 

atom is exchanged for a thioalkane group. 
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The starting ZnF16Pc material is a turquoise blue powder which becomes a brilliant green, 

sticky solid upon substitution. Eventually, after about 10 thiols have been added, the green color 

fades to a yellowish 

brown and the products 

become a thick, viscous 

oil. The addition of the 

long chain hydrocarbons 

at random positions 

frustrates the crystal 

packing of the material, 

which also prevents aggregation in solution and greatly enhances the solubility. The most highly 

substituted products are fully soluble even in nonpolar hexanes. However, extensive substitution 

is accompanied by its own set of issues, including more difficult separation and a decreased 

stability towards oxidation.[41] 

4.3.2. Statistical Analysis 

Given the nature of the reaction, discussion of the combinatorial statistics is warranted. The 

problem of analyzing the isomeric products of porphyrin and phthalocyanine condensation or 

substitution has been addressed.[42-51] One approach to drug development is to generate large 

libraries of porphyrinoid products which are then tested and optimized for some desired 

application. For materials, however, mixtures of these dyes may have superior properties. Lindsey 

et al. presented a detailed discussion of this problem accompanied by a custom program 

(PorphyrinViLiGe©) designed to generate a list of the potential products based on a statistical 

analysis.[42-45] Although capable of handling complex reactions involving multiple substituents 

Scheme 4.1. Control of reaction conditions and stoichiometry of the 
nucleophilic aromatic substitution of the fluorine groups on ZnF16Pc by 
thiols results in a number of different substituted products and isomers. 
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or precursors, Lindsey’s program has some limitations that prevent a direct analysis of the situation 

discussed here. Specifically, the simulated reaction types only allow for the derivatization of at 

most eight equivalent positions of the macrocycle, corresponding to either all β or all α substitution 

in the case of a Pc. The ZnF16Pc platform utilized may be substituted at any of the 16 fluorine 

positions, and in order to fully characterize the series of products, it is important to understand the 

distribution of isomers among them. 

It is trivial to calculate the number of permutations of a given number of substituents 

around the 16 possible positions of the ZnF16Pc macrocycle. Given n substituents, there are ܥଵ଺
 

௡ =

16!/ሾ݊! (16 − ݊)!ሿ such combinations. However, not all of these arrangements correspond to 

physically distinct molecules. Many of them are merely rotations of one another under the proper 

symmetry subgroup of the D4h point group of the parent molecule. While Pólya’s enumeration 

theorem[52-54] may be used to count the true number of unique isomers under this symmetry 

group, it does not provide a detailed listing of the individual microstructures. To that end, we have 

written a program that takes the number of substitutions as an input and steps through every 

possible permutation according to a previously published algorithm.[55] After this enumeration, 

the rotational transformations of the proper symmetry subgroup are applied to each permutation to 

compare it to the others, eliminate the duplicates, and count the remaining isomers. 

The program code is given in Appendix C along with a more detailed description and plots 

(Figure C1) of the number of permutations and distinct isomers as a function of the number of 

substituents. The two plots shown in Figure C1 correspond to two different assumptions regarding 

the nature of the reaction. For the unrestricted plot (A), we assume that all sixteen positions have 

an equal probability of being substituted during the reaction, and we therefore see a maximum 

number of isomers for ZnF8(SR)8Pc. In the restricted plot (B), we assume that the more kinetically 



61 

available β positions must all react first, with equal probability, before any α position is substituted. 

This condition, which is more representative of the actual reaction products, means that 

ZnF8(SR)8Pc will be nearly isomerically pure, while ZnF12(SR)4Pc and ZnF4(SR)12Pc have the 

largest number of possible isomers. It is impractical to separate all of the positional isomers, and 

for materials this is not a priori necessary. Thus, the macroscopic materials properties and 

spectroscopic data of any given Pc in this family actually represent a weighted statistical average 

of the ensemble of isomers. 

4.3.3. UV-Vis Spectroscopy 

The photophysical data is given in Table 4.1, and the UV-Vis absorbance spectra are 

shown in Figure 4.1. Calibration curves of absorbance vs. molar concentration (see Appendix C, 

Figures C3 and C4) demonstrate excellent linearity within the observed concentration range for all 

samples, confirming the applicability of the Beer-Lambert law and the absence of significant 

aggregation effects. 

The intense color of Pcs is due mainly to the strong absorbance peak in the red region, the 

Q band, and its higher energy vibronic satellite. As seen in Table 4.1 and Figure 4.1, these bands 

shift approximately 6 nm to the red for each appended thioalkane chain. Pcs also have a higher 

energy B band, which can be seen in the expanded UV-visible plots given in Appendix C (Figure 

C2). The B band falls mainly in the ultraviolet for the unsubstituted starting material, but grows 

slightly in the visible as more thioalkane groups are added to the macrocycle. In addition to the 

approximately linear increase in the absorbance λmax, there is also an increase in the full width at 

half-max (FWHM, Figure 4.1-C). The FWHM increases slightly at first, and then discontinuously 

jumps by about 15 nm after eight thioalkyl substituents have been added to the core, followed by 

only slight increases thereafter. 
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There are a few possible explanations for this broadening. First, the chromatographic 

separation becomes more difficult with increased substitution. As more thioalkanes are added, the 

preparative TLC bands become very close with even the most nonpolar eluents. While this does 

lead to traces of other compounds with x ± 1 for the more substituted compounds, this does not 

Table 4.1. Photophysical parameters for all standards and compounds studied, in dilute THF solution. 

Compound 
Abs. λmax 

(nm) 
log ε 

Fluor. λmax 
(nm) 

 Stokes Shift ࢌࣘ
(nm) 

࣎ (ns) ࢌ࢑ (ns-1) ࢘࢔࢑ (ns-1) 

ZnPc 666 5.48a 671 0.100b 5 3.38 0.030 0.266 

Zn(tBu)4Pc 672 5.43c 676 0.081d 4 3.28 0.025 0.280 

ZnF16Pc 672 5.24e 678 0.057 6 2.75 0.021 0.343 

ZnF15(SR)Pc 679 5.32 685 0.061 6 2.64 0.023 0.356 

ZnF14(SR)2Pc 686 -- 693 0.046 7 2.73 0.017 0.349 

ZnF13(SR)3Pc 692 5.08 701 0.037 9 2.52 0.015 0.382 

ZnF12(SR)4Pc 698 5.44 707 0.042 9 2.53 0.017 0.379 

ZnF11(SR)5Pc 704 5.36 713 0.033 9 2.27 0.015 0.426 

ZnF10(SR)6Pc 708 5.29 718 0.034 10 2.20 0.015 0.439 

ZnF9(SR)7Pc 716 5.46 724 0.030 8 2.15 0.014 0.451 

ZnF8(SR)8Pc 720 5.47 729 0.025 9 2.08 0.012 0.469 

ZnF7(SR)9Pc 727 -- 743 -- 16 -- -- -- 

ZnF6(SR)10Pc 731 -- 748 0.006 17 1.67f 0.004 0.595 

ZnF5(SR)11Pc 733 4.97 753 0.009 20 1.59 0.006 0.623 

ZnF4(SR)12Pc 740 4.89 761 0.005 21 1.33 0.004 0.748 

ZnF3(SR)13Pc 749 5.12 771 0.005 22 1.29 0.004 0.771 

ZnF2(SR)14Pc 755 -- 778 0.004 23 1.30f 0.003 0.766 

ZnF(SR)15Pc 768 -- 796 -- 28 -- -- -- 

Zn(SR)16Pc 777 5.16 802 0.003 25 1.38 0.002 0.722 

a The extinction coefficient (log ε) of ZnPc in THF taken from reference [2]. b Quantum yield of ZnPc in 
toluene calculated as the average of the values in references [5] and [2]. c The extinction coefficient (log 
ε) obtained for Zn(tBu)4Pc in THF matches reference [2] to within less than 0.2%. d Quantum yield of 
Zn(tBu)4Pc standard in toluene, taken directly from reference [2]. e The extinction coefficient (log ε) 
obtained for ZnF16Pc in THF matches reference [19] to within less than 1.3%. f The decay required fitting 
with a second lifetime, close to the IRF width (<300 ps), as a minor component (<20%). 
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cause the observed broadening and cannot account for the discontinuity. The broadening could 

also be the result of contributions from different positional isomers with slightly different 

absorption properties arising from small differences in the HOMO-LUMO gaps. However, if 

isomers were the primary cause of the Q band broadening, the trends in the FWHW would be 

expected to generally correlate with the calculated distributions of isomers (Figure C1). For the 

case in which the β positions react first, ZnF12(SR)4Pc and ZnF4(SR)12Pc would have the broadest 

peaks, while ZnF8(SR)8Pc would have the broadest spectrum if the reaction were completely 

random. Since the observed changes in the peak widths do not correlate to either of these cases, 

the mixture of isomers is unlikely to be a dominant cause of the broadening. 

Figure 4.1. (A) Normalized absorbance spectra of compounds ZnF16-x(SR)xPc (x = 0 to 
16). (B) Wavelength of maximum absorbance (λmax) as a function of the number of 
thioalkane substituents. (C) Peak widths as a function of the number of thioalkane 
substituents, as measured by the full-width at half maximum (FWHM). 
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A third potential explanation is that the broadening is due to fundamental changes in the 

electronic structure of the molecules as substituents are added. Breaking the symmetry of the 

degenerate LUMO orbitals, for instance, could cause the Q band transitions to become non-

degenerate.[56] An extreme case of this is seen in free-base Pcs, in which the D4h symmetry has 

been completely broken to D2h, resulting in the Q band splitting into two distinct peaks. An 

intermediate case might produce some of the broadening observed, as well as the asymmetry seen 

in some of the absorbance bands. It was reported that the asymmetry found in absorbance bands 

due to splitting is not mirrored in the emission band shape.[56] This is an example of Kasha’s rule, 

which states that the initially formed excited state internally converts to the lower excited state 

before fluorescing. Several of the less substituted Pcs exhibit an asymmetry in their absorbance 

bands while all of the emission bands are nearly symmetrical. However, the emission does retain 

the broadness of the absorption bands (vide infra), indicating that Kasha’s rule is not relevant. 

Orbital splitting is therefore unlikely to cause all of the observed band broadening. 

Since the width of the absorbance spectra is related to the vibrational structure of the 

ground and excited electronic states, the sharp increase in the FWHMs after eight substitutions is 

best explained by a change in the conformational dynamics of the molecule. Substitution of the β 

positions is kinetically favored, and thus the first eight substitutions do not greatly alter the 

structure of the planar macrocycle. Upon substitution of the remaining α positions, however, steric 

interactions begin to either lower the energy barrier to non-planar vibrations or force non-planar 

distortions (vide infra).[33-40,57-61] 

4.3.4. Steady-State Fluorescence Spectroscopy 

Fluorescence emission spectra of all of the compounds, including ZnF16Pc, are shown in 

Figure 4.2. The peaks of the spectra are scaled to the experimental quantum yield values to 
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highlight the quenching that occurs upon substitution. Like the absorbance spectra, the 

fluorescence bands also broaden as they shift towards the red. The quantum yields and Stokes 

shifts are plotted vs. the number of substituents in Figure 4.2. 

Accurate values for fluorescence quantum yields can be difficult to obtain experimentally, 

so there is a large range of literature values for any ostensible standard. It is often impossible to 

ascertain from the detail given whether these discrepancies arise from aggregation effects, the 

presence of molecular oxygen, inner filter effects, or other unknown causes. Pcs are especially 

vexing in this regard due to their well-documented tendency to aggregate. For instance, addition 

Figure 4.2. (A) Fluorescence emission spectra labelled by the number of thioalkane 
substituents, ZnF16-x(SR)xPc (x = 0 to 16). The peak heights are scaled to match the 
quantum yield of the compound. (B) Quantum yields as a function of the number of 
thioalkane substituents. (C) Stokes shifts as a function of the number of thioalkane 
substituents. 
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of 1% pyridine to coordinate the zinc and frustrate π-stacking apparently increases the solubility 

and quantum yields.[62] However, we have preferred pure solvents for comparative purposes. As 

one example of the spread of literature values, Nyokong gives a ߶௙ value of 0.07 for ZnPc in 

deaerated toluene,[5] but then reports a value of 0.13 for the same compound relative to the same 

standard (chlorophyll a in ether) in a subsequent paper.[2] Therefore, Zn(tBu)4Pc in toluene, with 

߶௙ = 0.081,[2] was chosen as a more reliable standard to generate an internally consistent set of 

quantum yields for this series.  

Although the quantum yield of ZnF16Pc in THF can also be found in the literature (߶௙ = 

0.15),[29] the value was calculated from a solution with relatively high absorbance near 630 nm, 

indicating significant formation of dimers and aggregates that do not contribute to fluorescence. 

We calculated ߶௙ = 0.057 for ZnF16Pc (Table 4.1), which is almost three times less than theirs 

(see Appendix C). The decrease in fluorescence emission between ZnPc and ZnF16Pc is best 

explained by the heavy atom effect[63-67] and the electron withdrawing effects caused by 

replacing hydrogens with fluorines. 

The steady-state fluorescence data mirrors the absorbance data, showing a systematic red-

shift in the emission λmax with increasing number of thioalkane substituents (Figure 4.2-A). The 

FWHM of the fluorescence peaks slightly increases for the first eight substitutions, followed by a 

discontinuous jump of about 20 nm. While there is no obvious relationship between the extent of 

substitution and the extinction coefficients or oscillator strengths, there is a clear correlation with 

the fluorescence quantum yield. Figure 4.2-B shows how ߶௙ decreases with each additional 

octylthio group until it is almost completely quenched by about the eighth or ninth substitution. 

This is consistent with the work of Kobayashi et al.,[68] who showed that the fluorescence is 
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quenched for compounds with an emission λmax greater than about 740 nm. The authors explain 

this relationship in terms of the Energy Gap Law,[69] which predicts an exponential increase in 

the rate of radiationless transitions between two electronic states as the energetic separation 

between them decreases. 

The Stokes shift also correlates to the number of thioalkanes (Figure 4.2-C), with a slight 

increase observed over the first 8 substitutions, followed by a jump around the 11th substitution 

and a steeper increase thereafter. The Stokes shift is a measure of the difference between the 

excitation and emission energies, which arises from differences in the nuclear configurations of 

the ground and excited states. The range of values for Pcs is generally around 5–10 nm.[40] 

Increased Stokes shifts and broadened, asymmetric peak shapes are characteristic of non-planar 

porphyrins and Pcs.[40,70] The Stokes shifts for the most substituted compounds in this study are 

almost 30 nm. These are among some of the highest reported for Pc compounds in the literature, 

indicating that substantial conformational changes are induced upon substitution at the α position. 

4.3.5. Lifetimes and Rate Constants 

The fluorescence lifetimes are also given in Table 4.1 and plotted vs. the number of 

appended thioalkyl chains in Figure 4.3. A general decrease in the lifetime with substitution is 

observed, tracking the decrease in quantum yield. The lifetime and the quantum yield allow 

determination of the fluorescent radiative rate constant using Eq. 4.1. 

߶௙ =  
݇௙

݇௙ + ݇௡௥
= ݇௙߬ (4.1) 

Here, ݇௙ is the natural fluorescence rate constant, and ߬ is the observed fluorescence 

lifetime. In the absence of other non-radiative deactivation pathways, the observed lifetime would 
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approach the natural fluorescent 

lifetime, 1/݇௙, and the quantum yield 

would approach unity. The ݇௡௥ term 

accounts for all of the non-radiative 

excited state energy, and can be 

calculated through the complement to 

the fluorescence quantum yield using 

Eq. 4.2. 

1 −  ߶௙ =
݇௡௥

݇௙ + ݇௡௥
= ݇௡௥߬ (4.2) 

These photophysical parameters are plotted as a function of substitution number in Figure 

C6. In the absence of quenching, excited state reactions, or other competing pathways, ݇௡௥ only 

includes contributions from intersystem crossing to the triplet state and internal conversion. The 

fluorescence rate constant ݇௙ decreases with the quantum yield and lifetime, reaching an apparent 

minimum by the 10th substitution. The non-radiative rate constant ݇௡௥ steadily increases and then 

jumps up at the 10th substitution. Both trends are consistent with the observations regarding the 

FWHM and the Stokes shift.  

Intersystem crossing to the triplet state generally takes place through spin-orbit coupling, 

and is enhanced by the presence of atoms with greater atomic numbers. This heavy atom effect is 

known to be promoted by sulfur atoms.[71-74] At the same time, thermal relaxation can be 

enhanced through the addition of thioalkyl groups. First, the addition of long chain alkanes will 

introduce new vibrational modes that help to dissipate heat.[75] The contribution of this “loose-

bolt effect”[76] depends on the coupling between the substituents and the core macrocycle. 

Figure 4.3. Fluorescence lifetimes as a function of the 
number of thioalkane substituents. 
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Another mechanism is the aforementioned Energy Gap Law.[69] When there is a small energy 

difference between the ground and excited states, and correspondingly similar molecular 

geometries, there will be a large overlap in the Franck-Condon factors determining vibronic 

coupling between them. This leads to an approximately exponential increase in the strength of 

radiationless transitions from S1 to S0 as the energy gap decreases upon substitution. In addition to 

these internal conversion processes, there are also external conversion mechanisms that transfer 

excess energy as heat to another particle, such as a solvent molecule. Attaching thioalkyl chains to 

the Pc core changes the size, weight, aggregation, and polarity of the molecule, all of which will 

affect how it interacts with solvent molecules to dissipate energy. 

In addition to these factors, there are also literature reports that describe an enhancement 

of non-radiative relaxation due to the distortion of the macrocycle. The photophysical 

consequences of non-planar distortions are reported for porphyrins,[77-85] but are much less well 

understood in Pcs.[58,61,70] Distorted or non-planar Pcs have been reported, but the 

accompanying photophysical studies focus on the electronic and emission spectra.[33-39,59,60] 

Conversely, detailed photophysical studies of Pcs often neglect considering the possibility of 

structural distortions.[68] In porphyrins, distortion is known to cause broadened, red-shifted 

absorption and emission bands, increased Stokes shifts, lower fluorescence quantum yields and 

lifetimes, and even higher rates of intersystem crossing.[86-88] All of these characteristics were 

unexpectedly observed in our series of Pcs, lending credibility to the hypothesis that the more 

highly substituted members adopt non-planar conformations. Our assumption that the β position 

reacts first is also consistent with the trends in the photophysical data, since the distortion is 

induced by steric crowding of the α substituents after the 8th addition, with this effect being further 

exacerbated after the 11th substitution. 
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It is important to note that the nuclear potential energy surfaces will be more complex for 

a distorted Pc than a planar one. The former will have multiple local minima separated by barriers 

to interconversion, and these barriers may be lower in the excited states. Upon light absorption, 

the initially formed excited state will internally convert to the lowest excited state S1, imparting a 

significant amount of energy into the macrocycle. This energy can be enough to overcome the 

barriers in the potential energy surface and open up new conformational dynamics.[89]  

4.3.6. DFT and TD-DFT 

Many authors explain the photophysical properties in terms of the electronic effects of 

electron withdrawing and releasing groups, with mixed success. It is generally agreed[68,90-93] 

that the HOMO is more sensitive to substituent effects than the LUMO, and that α substitution has 

a larger effect on the size of the HOMO-LUMO gap than β substitution. In turn, these observations 

are justified by noting the relative size of the orbital coefficients at the α and β positions of the 

HOMO. However, octa-α substituted Pcs can be as much as three times more red-shifted than their 

tetra-α substituted counterparts, and the red-shift induced by octa-α substitution is nearly 20 times 

larger than that caused by octa-β substitution, despite there being only small differences in the α 

and β orbital coefficients.[68] Thus, inductive electronic effects cannot account for all of the 

photophysics. To further clarify these electronic and structural factors, we performed quantum 

chemical calculations on a series of model compounds. 

Representative compounds from this series were analyzed using Density Functional 

Theory (DFT) and Time-Dependent DFT (TD-DFT). Given computational limitations, it was 

necessary to choose a handful of compounds spanning the series of products. To fully elucidate 

both structural and electronic inductive effects, this analysis was undertaken in three parts. First, a 

series of compounds in which the β positions have been substituted first were studied. The 
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particular isomers are depicted in the first row of Figure 4.4. These structures were optimized to 

find the minimum energy conformations, ground state energy levels, and molecular orbital 

surfaces by DFT. Subsequent to this, TD-DFT was used to find all of the excited states with 

energies below about 3.5 eV, including the transition energies, oscillator strengths, and the 

Configuration Interaction (CI) expansions of the excited state wavefunctions. 

A second series of compounds was also generated in which the α positions were substituted 

first. This series is seen in the second row of Figure 4.4. While these α isomers are probably only 

a very minor component of the overall ensembles to which they belong, they are nevertheless 

physically realistic. They can be taken to provide a rough estimate of the range of HOMO and 

LUMO energies expected within the isomeric ensembles, and provide some insight into how 

substitution can distort the Pc core. As with the first series, the structures were optimized by DFT, 

and the orbital energies and surfaces were calculated. 

For the final series, seen in the last row of Figure 4.4, we wished to investigate the effects 

of structural distortions on the core macrocycle. Several compounds were constructed and 

analyzed with fixed, non-equilibrium geometries in order to compare them to their optimized 

counterparts. For ZnF16Pc-d, ZnF12(SR)4Pc-β-d, ZnF12(SR)4Pc-α-d, and ZnF8(SR)8Pc-β-d, the 

molecules were constructed with a distorted conformation by taking the optimized Zn(SR)16Pc 

result from the first series and modifying the substituents appropriately. On the other hand, the 

core macrocycles for ZnF8(SR)8Pc-α-p and Zn(SR)16Pc-p were frozen into a planar structure taken 

from the optimized ZnF16Pc result from the first series. The structures for this series were not 

optimized, so as to preserve the artificially imposed conformations chosen. Instead, single-point 

energy calculations were performed by DFT to find the MO levels and surfaces. 
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For the compounds in the first series, isosurfaces of the two eg LUMOs and the a1u HOMO 

are depicted in Figure 4.5 along with an edge-on perspective of the molecular structure to help 

visualize deviations from planarity. It should be noted that while ZnF4(SR)12Pc-β is designated as 

nominally planar in Figure 4.5, there is some distortion despite it being the least sterically hindered 

12-substituted isomer possible. It is clear from the figure that the overall shapes of the relevant 

frontier orbitals are not dramatically changed by the addition of the thioalkyls. Interestingly, this 

is even true for the most highly substituted compounds, despite significantly distorted geometries. 

The underlying symmetry of the parent molecule is largely preserved, with only small 

perturbations depending on the substitution pattern. 

ZnF16Pc ZnF12(SR)4Pc- ZnF8(SR)8Pc- ZnF4(SR)12Pc- Zn(SR)16Pc

ZnF12(SR)4Pc- ZnF8(SR)8Pc- ZnF4(SR)12Pc-

ZnF16Pc-d ZnF12(SR)4Pc- -d ZnF12(SR)4Pc- -d ZnF8(SR)8Pc- -d ZnF8(SR)8Pc- -p Zn(SR)16Pc-p

Figure 4.4. Schematic diagram of the specific compounds studied by DFT. Open circles (○) represent 
fluorine atoms and closed circles (●) represent n-butylthio substituents. Structures drawn in black are 
nominally planar, while those drawn in red are distorted. The first row, enclosed in a solid rectangle, includes 
isomers in which the β positions have been substituted first. The second row, enclosed in a dashed 
rectangle, includes isomers in which the α positions have been substituted first. The last row includes some 
of the same positional isomers, but with the core macrocycle artificially “frozen” into either a distorted or 
planar geometry, indicated by the suffix “-d” or “-p”, respectively. For this row, geometry optimization was 
only performed on the substituent chains, and then a single-point energy calculation was done to find the 
orbital energies. 
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In Gouterman’s four-orbital model for metalloporphyrins,[94,95] the two LUMOs are a set 

of degenerate eg orbitals, while the two HOMOs are “accidentally” degenerate, with a1u and a2u 

symmetry designations. Configuration interaction between these four states results in a pair of 

pseudo-parity forbidden, low energy transitions (the Q bands) and a pair of fully allowed, high 

energy transitions (the B or Soret bands). In Pcs, the near-degeneracy of the HOMO levels is 

broken by the presence of the aza-bridge nitrogens and the fused benzene rings.[90,91,96] The a2u 

orbital, having significant electron density on the more electronegative aza bridges, is lowered in 

energy by several electron volts relative to the a1u orbital. This electronic structure is essentially 

the same in ZnF16Pc, despite the overall energies being slightly lowered by the presence of the 

fluorine atoms.[97] From the DFT results we have obtained for ZnF16Pc, it is actually the HOMO-

9 level (i.e. the 10th highest MO, see Figure 4.6) which corresponds to the a2u HOMO found in 

metalloporphyrins. With the a1u/a2u degeneracy removed, the low energy transition no longer 

cancels, and the Q band becomes fully allowed. The eg LUMOs retain their degeneracy but are 

slightly stabilized, red-shifting the Pc peak relative to porphyrin. 

The energies of these frontier orbitals are shown in Figure 4.6, along with some other 

lower lying occupied MOs that are involved in transitions in the UV-visible region. From the 

diagram it is clear that the orbitals are generally destabilized as electron releasing thioalkane 

groups are introduced. This effect is greater for the HOMO, which has significant probability 

density around all sixteen reactive positions, than for the LUMOs, which have density on only 

eight of these positions each. This leads to the red-shift observed in the Q band, and is also 

consistent with cyclic voltammetry studies carried out by Varotto et al., which show the HOMO 

is raised relative to the LUMO.[7] Furthermore, the addition of various thioalkyl chains introduces 

many new orbitals at energies between the original Gouterman a1u and a2u HOMOs. These new 
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orbitals are likely to play some part in the band broadening, and could also have an effect on the 

peak position as they begin to mix with the HOMO-LUMO transition. 

The DFT results shown in Figure 4.6 predict that the additive electronic effect of the 

substituents will only be approximately linear through the first eight substitutions, after which it 

becomes smaller and even reverses by the time all sixteen fluorines have been replaced. It appears 

that at some point after the first eight thioalkanes have been added, further destabilization of the 

HOMO is offset by a corresponding destabilization of the LUMOs. In fact, this data suggests that 

Figure 4.5. Frontier molecular orbitals (bottom rows) and edge-on views (top row) of the optimized 
molecular structures for representative (alkylthio)-Zn(II)Pcs. Gray atoms are carbon, dark blue are nitrogen, 
light blue are fluorine, and yellow are sulfur. Structures were optimized with n-butylthio groups in place to 
reduce computation time. For visual clarity, the hydrocarbon chains have been deleted from the images, 
along with some small regions of electron density associated with them. 
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the fully substituted Zn(SR)16Pc should actually be blue-shifted relative to ZnF8(SR)8Pc, a 

prediction that is reinforced by the TD-DFT transitions calculated for these compounds. 

The TD-DFT calculated oscillator strengths of these transitions are plotted vs. wavelength 

in Figure 4.7. This data is also presented in Table 4.2, along with the weights and characters of 

the singly-excited configurations contributing to each transition. The decomposition of the excited-

state wavefunctions shows that, in all cases, the observed Q bands arise almost exclusively from 

HOMO→LUMO transitions. This also yields a double-band structure due to the LUMO and 

Figure 4.6. Energies for the frontier molecular orbitals of ZnF16Pc, ZnF12(SR)4Pc-β, ZnF8(SR)8Pc-β, 
ZnF4(SR)12Pc-β, and Zn(SR)16Pc between -2.0 and -8.0 eV, as calculated by DFT using the B3LYP hybrid 
functional and the 6-31G(d,p) basis set. The highest occupied orbitals are shown as blue lines, and the 
lowest unoccupied virtual orbitals are shown as red lines. There are two LUMOs shown for every compound, 
though they appear as a single line when the energies are degenerate or nearly so. Purple diamonds (◊) 
mark the orbitals associated with Gouterman’s original model. The HOMO-LUMO energy gaps are also 
shown in both electron volts and nanometers. 
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LUMO+1 levels, which are degenerate or nearly degenerate. The degeneracy is broken by the 

addition of the thioalkyl chains, which leads to a splitting of the transitions associated with the Q 

bands. Again, the splitting is not resolved in the experimental UV-visible spectra, but it is likely 

to be at least partially responsible for the broadening of the bands observed in more substituted 

compounds. 

The simulated TD-DFT spectra also predicts the appearance of a very broad, shallow 

absorbance in the region between the Q and B bands as the Pc is progressively substituted. This 

feature is, in fact, observed in the experimentally observed UV-visible spectra shown in Figure 

C2. The decomposition of the wavefunctions for these transitions show that they arise due to the 

Figure 4.7. Electronic transitions between 350 and 750 nm for compounds ZnF16Pc, ZnF12(SR)4Pc-β, 
ZnF8(SR)8Pc-β, ZnF4(SR)12Pc-β, and Zn(SR)16Pc. Only transitions with oscillator strengths above 0.01 are 
included. 
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manifold of new energy levels introduced between the two original Gouterman HOMOs, marked 

with purple diamonds in the chart. Inspection of the orbital surfaces for these new levels shows 

that they are primarily associated with the sulfur atoms introduced around the periphery. Many of 

them also appear to be hybridized with the core macrocycle orbitals, breaking the symmetry 

enough to relax the Laporte selection rules. 

Table 4.2. Electronic transitions for ZnF16Pc, ZnF12(SR)4Pc-β, ZnF8(SR)8Pc-β, ZnF4(SR)12Pc-β, and 
Zn(SR)16Pc, calculated by TD-DFT using the B3LYP hybrid exchange-correlation functional and the 6-
31G(d,p) basis set. 

λ (nm)a f b Wavefunctionc 

ZnF16Pc 

616 0.442 95% (H→L) + … 

613 0.444 95% (H→L+1) + … 

374 0.019 61% (H–5→L+1) + 34% (H–3→L) + … 

367 0.107 5% (H–9→L+1) + 30% (H–5→L+1) + 63% (H–3→L) + … 

366 0.144 6% (H–9→L) + 21% (H–5→L) + 67% (H–3→L+1) + … 

ZnF12(SR)4Pc–β 

644 0.562 96% (H→L) + … 

641 0.586 96% (H→L+1) + … 

458 0.044 10% (H–2→L) + 84% (H–2→L+1) + … 

456 0.093 7% (H–4→L) + 72% (H–2→L) + 9% (H–2→L+1) + 10% (H–1→L) + … 

441 0.110 88% (H–4→L) + 7% (H–2→L) + … 

436 0.119 94% (H–4→L+1) + …  

401 0.014 93% (H–8→L+1) + … 

383 0.164 93% (H–6→L) + … 

382 0.155 93% (H–6→L+1) + … 

ZnF8(SR)8Pc–β 

674 0.608 96% (H→L) + … 

661 0.641 95% (H→L+1) + … 

558 0.034 6% (H–1→L) + 92% (H–1→L+1) + … 

553 0.076 92% (H–1→L) + 6% (H–1→L+1) + … 

505 0.063 8% (H–4→L) + 87% (H–2→L) + … 
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496 0.024 5% (H–2→L) + 87% (H–2→L+1) + … 

490 0.013 84% (H–4→L) + 6% (H–2→L) + 5% (H–2→L+1) + … 

479 0.017 97% (H–3→L+1) + … 

478 0.040 94% (H–4→L+1) + … 

454 0.014 21% (H–5→L) + 72% (H–5→L+1) + … 

453 0.011 44% (H–6→L) + 30% (H–5→L) + 21% (H–5→L+1) + … 

451 0.093 44% (H–6→L) + 46% (H–5→L) + … 

440 0.053 6% (H–8→L) + 85% (H–7→L) + … 

436 0.055 92% (H–6→L+1) + … 

428 0.062 6% (H–11→L+1) + 7% (H–8→L) + 80% (H–7→L+1) + … 

427 0.063 81% (H–8→L) + 7% (H–7→L) + 5% (H–7→L+1) + … 

413 0.015 6% (H–11→L) + 77% (H–8→L+1) + … 

382 0.089 12% (H-15→L) + 22% (H-10→L) + 51% (H-9→L) + 10% (H-9→L+1) + … 

381 0.012 83% (H-15→L) + 6% (H-9→L) + … 

378 0.017 22% (H-10→L) + 64% (H-9→L+1) + … 

376 0.049 30% (H-10→L) + 29% (H-10→L+1) + 25% (H-9→L) + … 

373 0.083 14% (H-10→L) + 62% (H-10→L+1) + 5% (H-9→L) + 10% (H-9→L+1) + … 

361 0.037 36% (H-14→L) + 14% (H-13→L) + 37% (H-12→L) + … 

354 0.187 
6% (H-18→L) + 36% (H-14→L) + 25% (H-13→L) + 14% (H-13→L+1) + 
6% (H-12→L+1) + … 

351 0.108 10% (H-13→L) + 31% (H-13→L+1) + 13% (H-12→L) + 29% (H-12→L+1) + … 

ZnF4(SR)12Pc–β 

705 0.492 95% (H→L) + … 

698 0.542 95% (H→L+1) + … 

605 0.020 8% (H–2→L) + 79% (H–1→L) + 10% (H–1→L+1) + … 

601 0.032 11% (H–2→L) + 79% (H–1→L+1) + … 

583 0.013 29% (H–3→L+1) + 13% (H–2→L) + 50% (H–2→L+1) + … 

536 0.066 94% (H–4→L) + … 

526 0.083 92% (H–4→L+1) + …` 

484 0.021 94% (H–5→L) + … 

475 0.097 89% (H–5→L+1) + … 

469 0.034 12% (H–8→L) + 75% (H–6→L) + … 

459 0.024 28% (H–7→L) + 32% (H–7→L+1) + 26% (H–6→L+1) + … 

456 0.019 
7% (H–9→L+1) + 33% (H–8→L) + 14% (H–8→L+1) + 28% (H–7→L) + 
6% (H–6→L) + … 
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454 0.021 13% (H–9→L) + 61% (H–8→L+1) + 6% (H–7→L+1) + 8% (H–6→L) + … 

452 0.032 
12% (H–9→L) + 19% (H–9→L+1) + 18% (H–8→L) + 7% (H–8→L+1) + 
9% (H–7→L) + 27% (H–7→L+1) + … 

449 0.063 
6% (H–11→L) + 47% (H–9→L) + 9% (H–8→L) + 5% (H–8→L+1) + 
16% (H–7→L) + 6% (H–7→L+1) + … 

444 0.046 6% (H–10→L+1) + 17% (H–9→L) + 49% (H–9→L+1) + 13% (H–8→L) + … 

442 0.033 33% (H-11→L) + 58% (H-10→L) + … 

441 0.033 19% (H-11→L) + 59% (H-10→L+1) + 9% (H-9→L+1) + … 

438 0.024 32% (H-11→L) + 25% (H-10→L) + 24% (H-10→L+1) + … 

429 0.030 88% (H-11→L+1) + … 

427 0.019 78% (H-12→L) + … 

416 0.016 18% (H-13→L+1) + 71% (H-12→L+1) + … 

402 0.016 8% (H-14→L+1) + 63% (H-13→L+1) + 23% (H-12→L+1) + … 

373 0.067 
17% (H-19→L) + 9% (H-17→L) + 8% (H-16→L) + 11% (H-15→L) + 
41% (H-14→L) + … 

362 0.042 8% (H-14→L) + 55% (H→L+5) + … 

Zn (SR)16Pc 

700 0.476 93% (H→L) + … 

688 0.522 92% (H→L+1) + … 

615 0.025 48% (H–2→L) + 44% (H–1→L) + … 

604 0.022 
9% (H–3→L) + 21% (H–2→L) + 16% (H–2→L+1) + 23% (H–1→L) + 
26% (H–1→L+1) + … 

595 0.013 6% (H–3→L) + 69% (H–2→L+1) + 15% (H–1→L+1) + … 

593 0.017 77% (H–3→L) + 5% (H–2→L) + 11% (H–1→L+1) + … 

582 0.010 86% (H–3→L+1) + … 

575 0.010 85% (H–4→L) + 6% (H–3→L+1) + … 

557 0.028 5% (H–5→L) + 13% (H–5→L+1) + 80% (H–4→L+1) + … 

545 0.021 87% (H–5→L) + 6% (H–4→L+1) + … 

530 0.027 82% (H–5→L+1) + 11% (H–4→L+1) + … 

485 0.017 7% (H–9→L) + 5% (H–9→L+1) + 40% (H–7→L) + 36% (H–7→L+1) + … 

483 0.011 
12% (H–10→L) + 17% (H–9→L+1) + 7% (H–8→L) + 7% (H–8→L+1) + 
22% (H–7→L) + 6% (H–7→L+1) + 21% (H–6→L+1) + … 

481 0.024 24% (H–9→L) + 11% (H–8→L+1) + 40% (H–7→L+1) + 7% (H–6→L+1) + … 

476 0.023 19% (H–8→L) + 10% (H–8→L+1) + 51% (H–6→L+1) + … 

472 0.036 
12% (H–10→L) + 28% (H–9→L) + 6% (H–9→L+1) + 21% (H–8→L) + 
21% (H–7→L) + … 
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460 0.055 
6% (H-11→L+1) + 39% (H-10→L) + 7% (H-10→L+1) + 10% (H-9→L) + 
6% (H-9→L+1) + 14% (H-8→L) + 7% (H-8→L+1) + … 

455 0.032 50% (H-11→L) + 37% (H-10→L+1) + … 

453 0.052 17% (H-11→L) + 38% (H-11→L+1) + 33% (H-10→L+1) + … 

438 0.017 8% (H-17→L) + 11% (H-14→L) + 8% (H-13→L) + 57% (H-12→L) + … 

431 0.022 12% (H-14→L+1) + 24% (H-13→L) + 42% (H-12→L+1) + … 

422 0.019 9% (H-14→L+1) + 41% (H-13→L+1) + 14% (H-12→L+1) + 23% (H→L+2) + … 

421 0.031 14% (H-13→L+1) + 7% (H-12→L) + 62% (H→L+2) + … 

a Transition wavelengths in nanometers. Only transitions with energies below ~3.5 eV (>350 nm) are given. b

Calculated oscillator strengths. Only transitions with oscillator strengths greater than 0.01 are given. c Excited state 
wavefunction, in terms of the contributions of single-excitations of the ground state Slater determinant. Only single-
excitations with contributions greater than 5% are given. The HOMO is designated “H”, the second HOMO is “H-1”, 
etc. The LUMO is designated “L”, the second LUMO is “L+1”, etc. 

It is perhaps more interesting to note the predictive failures of these calculations. In 

particular, the reversal of the peak wavelength on going from ZnF8(SR)8Pc-β to ZnF4(SR)12Pc-β 

to Zn(SR)16Pc is not observed in the UV-visible data for the series. While the absolute energies of 

DFT calculations for porphyrinoids are known to be overestimated by several tenths of an electron 

volt,[98-100] we would expect the relative energies to be more consistent with observations. 

Considering the possibility that this deviation is an artifact of using single isomers to 

represent large ensembles, we next calculated energy levels for the α substituted compounds shown 

in the second row of Figure 4.4. While the α and β isomers may not strictly bound the range of 

energies of all possible isomers for a given Pc, they will give a general idea of the magnitude of 

that range. The difference in the effects of α and β substitution can be seen in Figure 4.8-A. It is 

clear from the trends in the energy gaps that the β series more accurately predicts the red-shift up 

until at least ZnF8(SR)8Pc-β, after which both the α and β models begin to deviate significantly 

from observation.  
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Since conformational dynamics are 

likely the next most important factors in 

determining the energy levels, we went on to 

study the artificially manipulated structures 

shown in the last line of Figure 4.4. The 

HOMO-LUMO gaps for planar and non-

planar geometries of the α and β Pcs are 

depicted in Figure 4.8-B and C. The 

experimental gaps are gaps calculated by 

converting the peak absorbance wavelengths 

to eV and adding a constant factor of 0.260 

eV. This factor is an ad hoc correction which 

represents the difference between the 

calculated and observed energy gaps for 

ZnF16Pc. It is again clear from these two 

panels that the β series is in better agreement 

with the experimental values. It is also 

interesting to note that, for both α and β Pcs, 

the planar geometries display a much steeper 

slope and more variation than the distorted 

geometries, indicating a greater red-shift 

over the series. This is expected since the 

distorted geometry will tend to disrupt the 

Figure 4.8. Calculated and experimental HOMO-
LUMO energy gaps of various model Pc compounds. 
In all three panels, the open triangles (Δ) indicate the 
experimentally observed energy gaps. The top panel 
(A) shows a comparison of gap energies for α (filled 
circles: ●) and β (open circles: ○) substituted Pcs. The 
middle and bottom panels show comparisons of gap 
energies for planar (filled squares: ■) and distorted 
(open squares: □) geometries for α (middle panel, B) 
and β (bottom panel, C) substituted compounds. 
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conjugation of the macrocycle and thus reduce the electronic influence of the substituents. 

However, it is surprising for two reasons. First, it predicts that distorted Pcs will sometimes be 

blue-shifted relative to their planar counterparts, by as much as 40 nm or more. In fact, these 

calculations predict that a distorted Zn(SR)16Pc should have approximately the same energy gap 

as a ZnF8(SR)8Pc in any conformation, with any substitution pattern. This is, of course, in sharp 

contrast to the observed UV-Vis spectra, and therefore requires some explanation. Second, it is the 

series of Pcs with planar geometries that most accurately matches the observed red-shifts, even for 

the most highly substituted compounds, which we expect to be severely distorted. 

There are a few possible reasons for the above discrepancies between calculated and 

observed spectra. First, it may be that the DFT calculations are simply inaccurate, most likely due 

to limitations in the 6-31G(d,p) basis set used. This basis in particular gives acceptable accuracy 

for planar chromophores, but is known to break down for more polarizable, non-planar systems 

that require better descriptions of the diffuse states. Similar issues can arise from our choice of the 

B3LYP exchange-correlation functional, which may fail to accurately capture long-range electron 

correlations as the macrocyclic distortion becomes more significant. A second possible issue with 

the calculations themselves could be that the energy levels are accurate for the structures found, 

but that the optimization procedure has generated incorrect structures. For instance, the planar 

structures could be the true minimum conformations, despite the distortion ostensibly found by 

DFT optimization. However, this would contradict a great deal of the literature, especially 

concerning α-thioalkyl substituted Pcs. Unfortunately we were unable to obtain crystals of these 

more substituted compounds in order to conclusively determine their structure by X-ray 

diffraction. 
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It may also be that there is no significant deficiency in the computation at all, but rather 

that the model compounds we have chosen do not faithfully represent the compounds actually 

present in solution. Non-planar porphyrinoids are known to twist or “flap” from one conformation 

to another,[61] most likely through a planar or nearly planar transition state. It is unclear how the 

transient appearance of these planar states would affect the observed spectra, if at all, but it may 

serve to shift the absorbance of a molecule with a distorted minimum closer to that expected for a 

planar structure. Lastly, there has been some debate[101-107] in the literature over the nature of 

distorted porphyrins and the photophysical implications thereof. While the controversy has not 

explicitly involved Pcs, there is no reason that the arguments presented on either side would not 

apply equally well to them. In short, some groups have attributed the observed red-shift in distorted 

porphyrins to the accompanying in-plane nuclear reorganizations (IPNRs) rather than to the out-

of-plane distortion per se. These IPNRs consist of changes in the nuclear coordinates, bond 

lengths, bond angles, etc. Our method, which freezes the nuclear positions of the artificially 

flattened or distorted Pcs during the calculations, would not be able to account for these changes 

and thus could be introducing substantial error. Detailed photophysical and dynamic NMR studies 

versus temperature and solvent may shed light on these issues for Pcs. 

4.4. Conclusion 

We have presented a comprehensive study of a family of substituted Pcs, including their 

photophysical and structural characteristics. As electron releasing thioalkanes are appended to the 

core macrocycle, the absorbance band is red-shifted due to the inductive effect. However, while 

the literature reports typically show a larger red-shift for α substituents than for β, our experimental 

spectroscopy indicates that the change remains mostly linear. This may be a consequence of the 

fluorine atoms around the periphery strongly counterbalancing the electron donating thioalkanes. 
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We have also shown that the red-shift is accompanied by some strongly non-linear effects, 

including broadening of the absorbance and emission bands, increase in the Stokes shift, and 

decreases in the fluorescence quantum yields and lifetimes. All of these results point towards 

distortion of the planar macrocycle caused by extensive substitution. DFT calculations further 

support this interpretation, although there still remain some unresolved discrepancies between the 

theory and experiment. 

One of the most important outcomes of this study is the development of a facile, flexible 

method for rapidly generating Pcs with tunable properties, using only inexpensive, commodity 

reagents. Investigating the structure-function relationships in Pcs and other photoactive 

macrocycles is an active area of research,[24] and our results offer a new perspective on the 

competing mechanisms at play. In particular, we have highlighted a distinct approach to easily 

manipulating these properties through distortion of the planar Pc structure. These kinds of non-

planar chromophores have found use in a variety of applications such as organic photovoltaics, 

photodynamic therapy, non-linear optics, and photoacoustic spectroscopy, all of which 

underscores the importance of further exploring this pathway. For instance, correlating molecular 

properties (e.g. solubility, cell permeability, tumor uptake, phototoxicity, singlet oxygen yield, 

etc.) to spectroscopic signatures for aromatic distortion (e.g. FWHM or Stokes shift) could lead to 

new insights for the development of the next generation of phototherapeutics. 
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Chapter 5. Bistable Photophysics in a Series of Nitro-Porphyrin Dyes§ 

5.1 Introduction 

Functionalized porphyrins (Pors) and other tetrapyrrole derivatives have been studied 

extensively for decades, primarily due to their importance in biological, chemical, and optical 

systems.[1] These compounds possess enhanced photonic and electrochemical properties that can 

be finely tuned by grafting a variety of substituents to their peripheral positions,[2-4] making them 

very attractive as components for advanced materials and devices. In particular, nitro substituted 

porphyrinoids have been investigated as reduction/oxidation catalysts,[5-11] nonlinear optical 

materials,[4,12-15] biomedical theranostics,[14,16,17] and artificial solar energy harvesting 

devices.[15,18-20] 

Nitro groups drastically affect the electronic properties of the Por when attached to the β-

pyrrole position or even to the meso-phenyl rings. The strong electron withdrawing nature of the 

NO2 can polarize the Por macrocycle, changing its physical and chemical properties.[4-16,22-27] 

On the other hand, nitro groups can also mediate the assembly of supramolecular systems by 

directly participating in hydrogen bonding with groups such as imidazole[29] or modulating the 

complexation of the Por with other species in solution.[31-35] These groups are also widely used 

in Por chemistry as precursors to amino groups because the latter tend to diminish the synthetic 

yield of the macrocycle.[36-40] 

Significant attention has been paid to the excited state dynamics of Por compounds, but 

accurate measurement still presents a substantial challenge.[1,41,42] There are numerous reports 

of Pors showing appreciable aggregation in solution, which makes it difficult to extract the 

                                                 
§ This chapter is adapted from a manuscript in preparation. 
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photophysical properties of the monomeric species vs. the aggregates.[2,44,45] The extent of 

aggregation depends on the nature of the substituents attached to the macrocycle core, the 

coordinated metal ion, and external conditions such as the temperature, concentration, and solvent. 

As mentioned, all of these factors also exert an influence on the photophysical characteristics of 

the molecule itself, as well as on its conformational dynamics,[47] further complicating the 

analysis. 

The aggregation and organization of nitroporphyrins can also provide a useful strategy for 

making supramolecular arrays via self-assembly.[29,45] Por arrays are particularly appealing due 

to their rich photochemistry and ability to support electron and energy transfer 

processes.[28,30,34,46,48-51] Self-assembly provides efficient access to ordered architectures of 

Por units by a variety of mechanisms, including hydrogen bond molecular recognition, 

electrostatic interactions, and transition metal ion coordination, among others. Since the 

hierarchical structure of these assemblies will obviously depend on the number and placement of 

the relevant functional groups on the Por, it is important to understand how these affect the intrinsic 

photophysical properties of the molecules as well. For example, it has been shown that 

tetraphenylporphyrin (TPP) compounds with nitro groups in the para phenyl position have 

markedly different stabilities and catalytic activities from those with nitro groups in the ortho 

position.[7] 

As a part of this effort to understand the role of strong electron withdrawing groups 

(EWGs) on Por chemistry, we present here a combined experimental and theoretical analysis of 

the photophysics of a series of nitroporphyrins (see Figure 5.1). These compounds were chosen 

to minimize other factors, such as conformational dynamics, different substituent group effects, 

and electroactivity of the central metal. We discuss the absorption and emission properties of the 
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Pors in polar and non-polar solvents (DMSO and toluene, respectively), especially in light of the 

electron withdrawing nature of the nitro group and its effects on the molecular orbitals and the 

excited state polarity. 

In analyzing these compounds, we are faced with a significant body of 

literature[6,8,10,17,24,27,31-33,37,40,42,44,45,49-56] offering a range of descriptive frameworks 

that must be reconciled. These reports all describe several characteristics common to these kinds 

of compounds, including broad and redshifted absorbance and emission spectra, quenched 

fluorescence quantum yield, shortened singlet lifetimes, and strong solvent dependence. Some 

sources also report biexponential fluorescence decays and excitation dependent emission spectra. 

These observations are typically explained by invoking one of three mechanisms – (1) tautomers 

with distinct photophysics, (2) rotation of the nitro group modulating its conjugation into the 

macrocycle, or (3) interaction with a low-lying charge transfer (CT) state. To clarify the excited 

state dynamics and the nature of the emissive state in these porphyrins, we performed an extensive 

Figure 5.1. Structures of the Por compounds studied in this paper. The shorthand names 
indicate the total number of nitro groups, but do not explicitly specify their locations. 
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series of DFT and TD-DFT calculations. These results are discussed in terms of the energy levels, 

electronic transitions and, most importantly, molecular structure. Our findings suggest that none 

of the three mechanisms put forth in the literature can satisfactorily explain the experimental 

observations. Instead, we propose that molecular distortion due to steric hindrance is the prevailing 

cause behind all of the unusual photophysics. 

5.2 Experimental 

5.2.1. Materials, Instruments, and Methods 

Zinc (II) 5,10,15,20-tetraphenyl-21H,23H-porphyrin (ZnTPP) and 5,10,15,20-tetraphenyl-

21H,23H-porphyrin (H2TPP), toluene, and dimethylsulfoxide (DMSO) were purchased from 

commercial sources and used without further purification. The nitrated derivatives, 2-nitro-

5,10,15,20-tetraphenylporphyrin (H2(NO)2TPP), zinc (II) 2-nitro-5,10,15,20-

tetraphenylporphyrinato (Zn(NO)2TPP), 2-nitro-5,10,15,20-tetrakis(2-nitrophenyl)porphyrin 

(H2(NO2)5TPP), zinc (II) 2-nitro-5,10,15,20-tetrakis(2-nitrophenyl)porphyrinato (Zn(NO2)5TPP), 

and 2,7-dinitro-5,10,15,20-tetrakis(2-nitrophenyl)porphyrinaato zinc(II) (Zn(NO2)6TPP), were 

synthesized and characterized by Dr. Alexander Falber. 

Mass spectrometry analyses were performed at the CUNY Mass Spectrometry Facility at 

Hunter College by electrospray ionization on an Agilent Technologies G6520 Q-TOF instrument 

and Agilent 1200 HPLC system. UV-visible absorbance spectra were obtained on a Varian Bio3 

spectrophotometer. The solutions were prepared at a concentration less than 1.0 μM, and no 

aggregation effects were observed. Steady-state fluorescence spectra were acquired on a HORIBA 

Scientific FluoroLog-3 fluorescence spectrometer. The excitation wavelength (λex) was 412 nm 

for DMSO solutions and 414 nm for toluene, and the emission was collected from 550 to 800 nm 
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for both. The excitation and emission monochromator bandwidths were both set to 2 nm. The 

absorbance of the solutions was 0.09 at 412 nm for DMSO solutions, and 0.10 at 414 nm for 

toluene solutions. For deaerated samples, the solutions were purged with N2 for approximately 10 

min. Fluorescence lifetimes were recorded using the FluoroHub Tau-3 time-correlated single 

photon counting (TCSPC) module for the same instrument. Excitation for TCSPC was provided 

by a pulsed diode laser source (NanoLED-405L) with a pulse duration less than 200 ps. The 

excitation wavelength was 405 nm, and emission was detected at 651 nm, with both 

monochromators set to a 2 nm bandwidth. The data collected in this manner was subjected to 

standard multi-exponential fitting using the Decay Analysis Software package (v. 6.4) bundled 

with the instrument.  

DFT and TD-DFT calculations were performed with the Gaussian 09 software package 

using the resources of the City University of New York High Performance Computing Center 

based at the College of Staten Island and supported under National Science Foundation Grants 

CNS-0958379, CNS-0855217, ACI-1126113. Avogadro 1.1.1 was used to construct the models, 

generate the input files, and process and visualize the orbital surfaces. All DFT and TD-DFT 

calculations were performed using the B3LYP hybrid exchange-correlation functional and the 6-

31G(d,p) basis set. DMSO solvent was simulated using the Polarizable Continuum Model (PCM). 

Ground state (GS) optimizations were performed with equilibrium PCM solvation and 

accompanied by frequency calculations to ensure the absence of imaginary frequency modes 

which would indicate a transition state. Vertical excitation (i.e. absorption) energies were obtained 

by performing single-point TD-DFT calculations of the excited electronic states (ES) at the GS 

optimized nuclear geometry under non-equilibrium, state-specific PCM solvation conditions. 
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5.3. Results & Discussion 

5.3.1. UV-Vis Spectroscopy 

Normalized UV-Vis absorption spectra for the compounds in DMSO and toluene are given 

in Figure 5.2, and the data is summarized in Table 5.1. All of the absorbance bands generally 

redshift with the addition of nitro groups to the molecule, similar to other reports,[23,49-52] with 

this effect being much more pronounced for the zinc compounds.[53]  This is expected based on 

the electron-withdrawing nature of the nitro group, which serves to stabilize the LUMO energies 

relative to the HOMOs. 

Looking first at the free base compounds, it is clear that the magnitude of MO stabilization 

is very different for nitro groups directly attached to the macrocycle at the β position and those on 

the meso-phenyl rings, consistent with other reports.[4] The absorbance data for tetrakis(ortho-

nitrophenyl)Por, H2(NO2)4TPP, shows only a minimal shift of at most 4 nm in the λmax values from 

H2TPP (Table 5.1, data from reference [42]). The values for the para isomer (not shown, data in 

references [57] and [55]) are nearly identical to the ortho isomer. However, the addition of just 

one nitro group to the β position instead, as in H2(NO2)TPP, induces a shift of 7-8 nm, depending 

on the solvent. This is often ascribed to conjugation between the nitro group and the aromatic core, 

which is also a function of the rotational angle of the C–N bond. In fact, early reports on β nitrated 

Pors[23] predicted a strong λmax dependence on the solvent polarity, with more polar solvents 

promoting more planar conformations of the nitro group with respect to the macrocycle. This effect 

is not observed in our data for the free base compounds, probably because the meso-phenyl groups 

shield the NO2 from the solvent molecules, and more strongly influence the nitro C–N bond 

rotational position through steric interactions (vide infra).[52,53] When both β and phenyl nitro 

groups are present, as in H2(NO2)5TPP, the total shift is not just a linear combination of the two 
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contributions, being greater than the sum for the Soret, Qx(1,0), Qy(1,0) and Qy(0,0) bands, but less 

for the Qx(0,0) band (see toluene data in Table 5.1). This suggests more complicated mixing of 

the orbitals due to interactions of the nitro groups at different positions. 

Table 5.1. UV-vis absorption peaks and extinction coefficients for Por compounds in polar vs. non-polar 
solvents. 

 Absorption peaks, λmax/nm (log ε) 

Compound B(0,0) FWHMa Qx(1,0) Qx(0,0) Qy(1,0) Qy(0,0) 

Free Base Porphyrins in Tolueneb 

H2TPP 418 (5.19) 13 513 (3.85) 547 (3.47) 592 (3.31) 648 (3.15) 

H2(NO2)TPP 426 (5.53) 28 525 (4.36) 564 (3.73)c 601 (3.76) 661 (4.03) 

H2(NO2)4TPPd 422 (5.36) – 516 (4.15) 550 (3.64) 593 (3.61) 652 (3.12) 

H2(NO2)5TPP 434 (5.70) 38 531 (4.59) 564 (4.33) 603 (4.32) 676 (4.18) 

Free Base Porphyrins in DMSOe 

H2TPP 418 (6.39) 13 514 (5.00) 548 (4.63) 589 (4.43) 645 (4.37) 

H2(NO2)TPP 425 (6.56) 32 527 (5.51) 565 (5.14)c 603 (5.05) 663 (5.20) 

H2(NO2)4TPP –polar solvent data not available– 

H2(NO2)5TPP 431 (5.70) 37 529 (4.58) 564 (4.29) 608 (4.26) 667 (4.25) 

Zinc Porphyrins in Tolueneb 

ZnTPPf 423 (5.76) 13 550 (4.46) 588 (3.74) n/a n/a 

Zn(NO2)TPP 432 (5.66) ‘25 558 (4.50) 602 (4.31) n/a n/a 

Zn(NO2)5TPP 446 (5.67) 43 575 (4.54) 628 (4.50) n/a n/a 

Zn(NO2)6TPP 449 (5.33) 45 573 (4.25) 623 (4.05)c n/a n/a 

Zinc Porphyrins in DMSOe 

ZnTPPg 428 (5.79) 9 558 (4.49) 599 (3.77) n/a n/a 

Zn(NO2)TPP 432 (5.67) 31 568 (4.56) 614 (4.52) n/a n/a 

Zn(NO2)5TPP 434 (5.09) 43 574 (3.89) 629 (3.86) n/a n/a 

Zn(NO2)6TPP 449 (5.40) 42 574 (4.30) 619 (4.16) n/a n/a 
a Full-width at half-max for the Soret transition, measured in nm. b Toluene solvent parameters at 25 °C: η = 
0.560 cP; μ = 0.36 D; εr = 2.4; ET(30) = 33.9; DN = 0.1 kcal/mol. c Transition appears as a shoulder. d Data 
taken from reference [21] in benzene (solvent parameters at 25 °C: η = 0.603 cP; μ = 0.00 D; εr = 2.3; ET(30) = 
34.3; DN = 0.1 kcal/mol). e DMSO solvent parameters 25 °C: η = 1.996 cP; μ =3.96 D; εr = 48.9; ET(30) = 45.1; 
DN = 29.8 kcal/mol. f Data estimated from references [28] and [43]. g Log(ε) values estimated from reference 
[46]. 
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The trends in the zinc compounds are slightly more complicated. Although there is no data 

available for the ortho isomer of Zn(NO2)4TPP, Wrobel et al. report a value of 429 nm for the 

Soret peak of zinc(II) tetrakis(4-nitrophenyl)porphyrin (the “para” isomer) in a nematic liquid 

crystal solution.[58] Comparing this to the λmax values for ZnTPP suggests that there is also only 

a small effect for the phenyl nitro groups in these compounds as well. A similar conclusion can be 

drawn by comparing Zn(NO2)6TPP in toluene (λmax = 449 nm) to the literature reports of zinc(II) 

2,7-dinitro-tetraphenylporphyrin in toluene (λmax  = 446 nm).[52] On the other hand, the Soret is 

shifted 9 nm for Zn(NO2)TPP in toluene, and 23 nm for Zn(NO2)5TPP, in which both the β and 

phenyl nitro groups are present. The DMSO data appears to exhibit more moderate shifts across 

this same series, but the spectra themselves display a drastic solvent dependence, particularly for 

the asymmetric Soret peak of 

Zn(NO2)5TPP (Figure 5.2-D). Since the 

phenyl groups will still shield the β nitro 

groups for the reasons discussed 

previously, this solvatochromism is 

likely a consequence of axial 

coordination of DMSO to the zinc 

center. There are many reports relating 

the magnitude of the Soret redshift to 

solvent parameters such as charge, 

polarity, polarizability, and donor 

number, with the latter being particularly 

important.[59-63] In addition to the 

Figure 5.2. Normalized UV-Vis absorbance spectra of the 
free base (left column) and metallated (right column) 
nitroporphyrins in DMSO (black lines) and toluene (red 
lines). The Q band regions (from 500–750 nm) have been 
scaled by a factor of 10, as indicated in the graphs. (A) 
H2(NO2)TPP; (B) Zn(NO2)TPP; (C) H2(NO2)5TPP; (D) 
Zn(NO2)5TPP; (E) Zn(NO2)6TPP. 
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redshift, DMSO ligands have been reported to induce an increase in the Qx(0,0)/Qx(1,0) intensity 

ratio,[61] and the development of a slight shoulder on the low-energy edge of the Soret peak,[60] 

both of which are observed in the spectra for Zn(NO2)TPP and Zn(NO2)5TPP.  

5.3.2. Steady-State Fluorescence Spectroscopy 

Normalized fluorescence emission spectra are shown in Figure 5.3, and the data is 

summarized in Table 5.2. Unsubstituted H2TPP and ZnTPP show only slight differences between 

emission in the non-polar, non-coordinating toluene solvent and the polar, coordinating DMSO, 

while the nitrated derivatives are much more solvent-dependent. The toluene solutions tend to have 

broad, featureless emissions while the DMSO solutions exhibit narrower, more well-defined 

bands. While these differences could be 

the result of different tendencies towards 

aggregation in the two solvents, we find 

no evidence of this under the conditions 

used. Although the nitro groups are 

known to reduce solubility and mediate 

intermolecular interactions,[44] we do 

not observe any straightforward 

relationship between the number of nitro 

groups and the shapes of the emission 

bands for these compounds. 

Furthermore, it has been reported that β-

nitro-Pors exhibit a “broad and 

Figure 5.3. Normalized fluorescence emission spectra of 
the free base (left column) and metallated (right column) 
nitroporphyrins in DMSO (black lines) and toluene (red 
lines). Deaerated solutions under N2 are denoted by solid 
lines, and those under ambient atmosphere are denoted 
by dashed lines, although they largely overlap due to 
normalization. (A) H2(NO2)TPP; (B) Zn(NO2)TPP; (C) 
H2(NO2)5TPP; (D) Zn(NO2)5TPP; (E) Zn(NO2)6TPP. 
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structureless”[51] fluorescence, while tetra(nitrophenyl)-Pors retain the spectral shape of the 

parent molecule.[51] 

The strongly electron withdrawing nitro groups polarize the molecule in the GS, with this 

effect being even stronger in the ES. While there is some controversy over the nature and charge-

transfer (CT) character of the emissive S1 state of a nitro-Por, there is little doubt that it has a 

substantial dipole moment.[42,49-53,55] A more polar solvent like DMSO should stabilize this 

Table 5.2. Steady state fluorescence emission and lifetime data for the Por compounds in toluene and 
DMSO. The steady-state excitation wavelength was λex = 414 nm for toluene and λex = 412 nm for 

DMSO. For lifetimes, excitation was at λex = 405 nm and emission was detected at λem = 651 nm. 

 Emission  Quantum Yield (ࣘࡲ)  Lifetimes under Air  Lifetimes under N2 

Compound (λmax/nm)  Air N2  ࣎૚/ns (%) ࣎૛/ns (%)  ࣎૚/ns (%) ࣎૛/ns (%) 

Free Base Porphyrins in Toluene 

H2TPP 653, 719  0.110 0.110  9.53 n/a  10.9 n/a 

H2(NO2)TPP 690  0.050 0.060  2.76 (76%) 6.14 (24%)  2.86 (82%) 7.25 (18%) 

H2(NO2)5TPP 660, 698  0.043 0.048  2.87 (32%) 7.22 (68%)  2.96 (29%) 8.22 (71%) 

Free Base Porphyrins in DMSO 

H2TPP 650, 716  0.110 0.110  11.2 n/a  11.1 n/a 

H2(NO2)TPP 609, 649, 714  0.030 0.030  0.62 (1%) 11.3 (99%)  0.47 (2%) 11.5 (98%) 

H2(NO2)5TPP 685  0.010 0.010  0.89 (38%) 3.49 (62%)  0.77 (33%) 3.39 (67%) 

Zinc Porphyrins in Toluene 

ZnTPP 596, 645a  – 0.030a,b  – n/a  2.04b n/a 

Zn(NO2)TPP 641  0.056 0.061  1.03 (76%) 6.63 (24%)  1.09 (73%) 6.90 (27%) 

Zn(NO2)5TPP 667  0.020 0.030  1.09 (79%) 4.13 (21%)  1.18 (83%) 5.83 (17%) 

Zn(NO2)6TPP 655, 716  0.001 0.002  0.45 (2%) 8.57 (98%)  1.25 (4%) 10.3 (96%) 

Zinc Porphyrins in DMSO 

ZnTPP 607, 660  – 0.033b  – n/a  1.93b n/a 

Zn(NO2)TPP 609, 699  0.012 0.012  0.82 (87%) 4.40 (13%)  0.85 (88%) 6.72 (12%) 

Zn(NO2)5TPP 695  0.003 0.003  0.25 (33%) 6.11 (67%)  0.31 (20%) 7.54 (80%) 

Zn(NO2)6TPP 648, 708  0.002 0.002  1.17 (6%) 6.90 (94%)  1.06 (5%) 7.33 (95%) 

a Data from reference [28]. b Data from reference [30]. 
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kind of polar excited state, red-shifting the emission relative to toluene. While this effect is 

observed for Zn(NO2)TPP and Zn(NO2)5TPP, it is much harder to see for the other compounds 

due to the poor resolution of the individual bands. However, it is interesting to note that there does 

not seem to be a redshift for Zn(NO2)6TPP in DMSO vs. toluene, indicating that the electronic 

communication between the nitro groups and the macrocycle is somehow frustrated. The last point 

to note about the spectral shapes is the appearance of a third band in H2(NO2)TPP in DMSO, which 

could indicate the presence of at least two separate emissive states. 

The data in Table 5.2 shows that adding nitro substituents at any position on H2TPP or 

ZnTPP quenches the fluorescence, consistent with a broad swath of literature.[18,23,42,49-

51,54,55] This quenching has been attributed to multiple, potentially concurrent mechanisms, 

including mixing between S1 and CT states,[49,51-53] spin-orbit coupling,[51] and enhanced 

vibrational or rotational relaxation. The absence of aggregation in these solutions allows us to 

discount collisional or static quenching mechanisms. The introduction of one nitro group on a β 

pyrrole position causes an approximately 50% decrease in the fluorescence quantum yield, ߶ி, for 

both the free base and zinc Pors in toluene. The effect is slightly greater for solutions under ambient 

atmosphere than for those under N2, likely due to an enhanced association between the nitro groups 

and molecular oxygen in solution. For the penta-nitro derivatives in toluene, the total quenching 

is about 60% for the free base and 70-80% for the zinc compounds, depending on the presence of 

oxygen. This demonstrates that the nitro groups on the meso-phenyl rings are less efficient at 

depopulating the emissive S1 state. The sixth nitro substituent, also attached at the β position, 

almost completely eliminates the remaining fluorescence in both solvents. 

In more polar solvents, the quenching by the NO2 substituents is much more effective. The 

first β nitro quenches the free base Por more than 70% and the zinc Por almost 90% in DMSO. 
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The additional phenyl nitro groups quench these by more than 90% and 97%, respectively. This 

could indicate that some of the quenching is due to S1 mixing with or being in equilibrium with a 

highly polar state that is stabilized in polar solvents, and thus more energetically accessible.[49-

54,64] 

5.3.3. Fluorescence Lifetimes 

The most salient fact about the time-resolved emission data is the appearance of two 

fluorescence lifetimes in each of the nitrated Pors. Similar dynamics have previously been reported 

for β-nitro Pors and attributed either to the slowed interconversion of tautomers with different 

photophysics,[24,42] or to a distribution of conformers with respect to the dihedral angle of the 

nitro group.[52,53] In any case, there is no reason to expect emission from higher Sn states, so the 

two lifetimes must correspond to distinct molecular structures, whether they are tautomers, 

atropisomers, or some other kind of conformers. Perhaps more confounding is the fact that one of 

the lifetimes in each of the nitrated zinc compounds is longer than the unperturbed ZnTPP lifetime. 

Similar observations have been reported in the literature without explanation.[52,65] 

Overall, the fluorescence lifetimes shown in Table 5.2 are shorter under ambient 

conditions than under an inert N2 atmosphere, with only a few exceptions close to the time 

resolution of the instrument (~200 ps). This is expected for a dynamic quenching mechanism 

between the dye and dissolved molecular oxygen. For the shorter lifetimes (߬ ≲ 4 ns) of all of the 

compounds, there is only a very slight difference between the air and N2 saturated solutions, 

indicating that the radiative rate constant for this state is substantially larger than the diffusion rate 

constant for either solvent. For the longer lifetime components of the free base dyes (including 

TPP), the oxygen quenching effect is large in toluene but almost absent in DMSO. The lower 

viscosity of the former solvent (0.59 cP vs. 1.996 cP) allows for better diffusion of both species, 
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and thus an increased likelihood for a quenching event to occur over the life of the excited 

fluorophore. The longer lifetimes of the zinc compounds show more sensitivity to oxygen, even in 

DMSO. This is likely due to an enhanced association between the dioxygen quencher and the zinc 

center, which would effectively increase the encounter radius and quenching efficiency of the pair. 

The solvent has almost no effect on the lifetime of H2TPP when oxygen is excluded, while 

the lifetimes of the nitrated derivatives all vary dramatically with the solvent, even under N2. Since 

oxygen quenching is negligible, these changes can only be explained by the presence of the nitro 

group. The effects of the nitro group are typically attributed to the enhancement of either internal 

conversion (IC) or intersystem crossing (ISC), but the appearance of a separate CT interacting with 

S1 has also been proposed.[42,49-53] There are two opposing solvent effects which dictate the 

singlet lifetime: (1) Solvent viscosity will make IC more important in toluene than DMSO; and (2) 

Solvent polarity will cause polar states to be stabilized more in DMSO than toluene, increasing 

non-radiative deactivation due to the Energy Gap Law. The competition between these two effects 

is evident in the variations of the lifetimes seen in Table 5.2. Most of the lifetimes are shorter in 

DMSO, suggesting that they have some polar or “CT-like” character, but there are a few exceptions 

where the other factors apparently become more important. It is important to point out that the 

percent contributions of each lifetime to the overall fluorescence signal cannot be directly 

correlated to the fractional abundances of the different structures, because there may be intrinsic 

differences in their emissive properties. 

5.3.4. DFT and TD-DFT 

In order to elucidate the structural factors governing the photodynamics, quantum 

mechanical calculations were performed on several different conformations of the compounds 

studied. All of the relevant nuclear geometries were optimized using DFT, and TD-DFT was used 
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to generate the vertical excitation energies at the fixed nuclear ground state geometry, as well as 

the relaxed S1 geometries. TPP and ZnTPP are both known to be essentially planar macrocycles 

with almost perpendicular phenyl groups, and our calculations confirm this, with each phenyl 

group found to be at an angle of 71° ±1° with respect to the flat aromatic plane. The z-coordinate 

plots (i.e. the vertical displacements of the core atoms from the average molecular plane) for these 

two compounds are shown in Appendix D (Figure D1), revealing the almost perfect planarity of 

the macrocycles. 

5.3.4.1. Tautomers 

In their photophysical studies of H2(NO2)TPP, Chirvony et al.[42] found three unusual 

characteristics – (1) emission spectra that depend on λex, (2) biexponential fluorescence decay, and 

(3) inhomogeneous broadening of the absorbance even down to 77 K. These features, which are 

consistent with our own 

experiments, were attributed to the 

coexistence of two tautomers (see 

Figure 5.4) with different excited 

state dynamics due to the different 

position of the nitro group with 

respect to the aromatic conjugation 

pathway. We therefore constructed 

these tautomers and optimized them 

with DFT to examine their properties. Our calculations confirmed that the “orthogonal” tautomer 

is more stable than the “collinear” form by almost 3 kcal/mol, indicating that the orthogonal form 

should predominate by more than 97% at room temperature equilibrium. As Chirvony points out, 

NH

N HN

N

Ph

Ph Ph

Ph

NO2

N

NH N

HN

Ph

Ph Ph

Ph

NO2

"Collinear" "Orthogonal"

Figure 5.4. Inequivalent tautomers of a free base β-nitro-Por. 
The blue double bonds highlight the aromatic conjugation 
pathway. 
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however, NMR studies of this compound predicts a similar distribution at cryogenic 

temperatures.[24] Therefore the real value of ΔGtaut must be smaller, yielding substantial 

proportions of both tautomers at room temperature. In addition, TD-DFT results also indicate that 

the wavelength of the lowest energy transition in the orthogonal form is about 11 nm redshifted 

from the collinear. 

However, thermodynamic considerations don’t provide all of the information needed to 

conclusively make this case. The rate of proton exchange, in both the ground and the excited states, 

will determine whether or not the absorbance, emission, and lifetimes of the different tautomers 

can actually be kinetically resolved.[66] Since excited state proton transfer reactions can occur on 

the picosecond timescale and below,[67-69] the dual lifetimes cannot be unambiguously ascribed 

to the tautomers without independent kinetic information. Moreover, the inhomogeneous 

broadening of the absorbance is not due to the superposition of the two tautomers, but rather is 

intrinsic to each[42] and thus requires further explanation. Finally, the observation of a 

biexpoential decay in the metallated species suggests that tautomerism cannot fully account for 

these dynamics. We have restricted the following analysis of the other compounds to the 

predominant orthogonal tautomer, but when collinear tautomers were briefly investigated, similar 

descriptions were always found to apply. 

5.3.4.2. Dihedral Angle of the Nitro Group 

When relatively bulky groups like NO2 are added at either the ortho-phenyl or β-pyrrole 

positions, steric hindrance will cause the phenyl angles to change, and can also distort the 

macrocycle itself. Many different combinations of these nitro and phenyl angles were used as 

starting structures for the optimization of the β-nitro-Por ground states. The ground state structural 

data for a selection of these conformers is presented in Table 5.3. In each case, the final dihedral 
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angle of the nitro group (ߠ) lies between 37° and 42° with respect to the macrocycle plane. This 

Table 5.3. DFT calculated ground state structural data for β-nitro-Por conformers. 

Conformera 
Phenyl Group Anglesb Nitro Angleb Energyc 

(kcal/mol) 
Dipole 

Momentd (D) ࣘ૚ ࣘ૛ ࣘ૜ ࣘ૝ ࣂ 

H2(NO2)TPP 

Ruffle n/a n/a n/a n/a n/a n/a n/a 

Int. 1 61° 76° 66° 76° 42° 1.397 7.85 

Int. 2 60° 75° 69° 65° 41° 1.024 7.82 

Int. 3 58° 64° 70° 75° 40° 0.929 7.75 

Saddle 57° 61° 63° 61° 37° 0.000 7.83 

H2(NO2)5TPP 

ββββ 68° 84° 80° 77° 39° 1.619 19.88 

βββα 67° 84° 79° 78° 38° 1.419 12.716 

ββαα 68° 84° 80° 77° 39° 1.261 9.40 

βααβ 67° 79° 83° 78° 38° 1.163 7.61 

βαβα 68° 86° 80° 77° 40° 1.466 10.11 

αααα 70° 80° 80° 78° 37° 0.337 22.90 

αααβ 70° 81° 80° 78° 37° 0.223 13.89 

ααββ 71° 81° 80° 77° 39° 0.325 7.55 

αββα 71° 83° 80° 80° 38° 0.185 8.46 

αβαβ 71° 84° 81° 77° 37° 0.000 6.84 

H2(NO2)6TPP 

ββββ (Int.) 82° 67° 77° 81° 38°/39° 3.576 21.77 

αβββ (Saddle) 66° 66° 78° 79° 35°/37° 2.259 17.13 

βαβα (Int.) 75° 73° 79° 80° 42°/41° 2.373 14.63 

αβαβ (Int.) 76° 70° 80° 81° 41°/44° 2.111 8.40 

ββαα (Saddle) 70° 68° 79° 79° 34°/39° 1.098 6.70 

βααα (Saddle) 69° 71° 79° 79° 33°/37° 0.000 12.55 
a The conformation of the structure after optimization (Int. 1-3 are three different intermediate structures). b

Angles measured with respect to the macrocycle plane. The first column (߶ଵ) is the angle of the phenyl 
closest to the nitro group. For H2(NO2)6TPP, the first two columns (߶ଵ and ߶ଶ) are the phenyls nearest the 
two nitro groups. c Ground state energy measured relative to the most stable conformer found for that 
particular compound, which is assigned an energy of 0.000 kcal/mol and also highlighted in bold. d

Calculated dipole moment, in units of Debye (D) 
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angle also forces the nitro and the nearest phenyl group into a nominally coplanar arrangement, 

with the latter adopting a shallower angle of about ߶ଵ = 59° ±2° with respect to the macrocycle 

plane. At the same time, the nitro-bearing pyrrole itself is tilted (or “pitched”) upwards out of the 

plane by the more acute angle of ߶ଵ, significantly distorting the macrocycle. In their analysis of 

the tautomers, Chirvony et al.[42] also looked at the effect of ߠ on the transition energies calculated 

by ZINDO/S. However, these calculations began with a large initial nitro angle of 80° = ߠ, and left 

the core macrocycle geometry frozen as ߠ was decreased. Obviously, our results undercut the 

validity of that approach and the conclusions thereof. 

5.3.4.3. Macrocycle Distortion 

Depending on the dispositions of the other phenyl groups around the ring, this distortion 

caused by the β-nitro group can be either enhanced or ameliorated. When the phenyls are all 

nominally parallel, i.e. tilting in the same direction, each pyrrole unit experiences repulsive forces 

from above and below. Since these forces are nearly balanced, there is little saddling of the Por 

structure, but the pyrroles will experience some twisting (or “roll”), becoming more parallel to the 

adjacent phenyls and resulting in a “ruffled” macrocycle. On the other hand, when the phenyls are 

arranged in a zig-zag pattern, the forces in the z-direction are reinforced, tilting (or “pitching”) the 

pyrroles further out of the plane to produce a “saddled” structure. There are also conformations 

intermediate between these two cases, in which different pyrroles experience different 

environments that result in complex superpositions of saddling and ruffling distortions. Figure 5.5 

shows the intermediate and saddled H2(NO2)TPP structures superimposed, and Figure 5.6 shows 

plots of the z-coordinates for all of the optimized conformations found. These observations apply 

to both the free base and zinc nitro-Pors (see Appendix D, Figure D2). While the ruffled and 

saddled structures are uniquely determined by the orientation and position of the β-nitro group (see 
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Figure 5.5), there are obviously many different kinds of intermediate structures with slightly 

different properties. 

Interestingly, no set of initial geometries for H2(NO2)TPP resulted in a purely ruffled 

optimized structure. In other words, even when the molecular structure was initially constructed 

with all of the phenyl groups tilting in the same direction, which should produce a ruffled core, the 

final structure always had at least some of the phenyls oblique to one another, giving an 

intermediate or saddle type core. This 

suggests that a local configuration with 

parallel adjacent phenyls is 

thermodynamically disfavored. Indeed, the 

saddled conformation, in which no two 

adjacent phenyls are parallel, is calculated to 

be the most stable conformer by 1 kcal/mol 

or more (see Table 5.3), despite the dramatic 

effect it has on the planarity (see Figure 

5.6). The nitro group, a π-acceptor, 

apparently draws enough electron density 

from the aromatic ring to cause it to violate 

Hückel’s 4n+2 rule, thus destabilizing the 

planar conformation relative to the others. 

The energy differences between the conformations of Zn(NO2)TPP are all slightly less, and thus a 

stable ruffled structure was found (see Figure D2 in Appendix D). Otherwise, the results are largely 

the same for the free base and zinc compounds. 

Figure 5.5. The two principle conformations of 
H2(NO2)TPP superimposed on one another to show 
the deviations. The opaque structure is the saddled 
conformation, and the transparent structure is an 
intermediate conformation. The nitro group and the 
nearest phenyl are locked into essentially the same 
position in all conformations, while rotation of the 
other phenyls pushes the other pyrrole groups above 
or below the plane. 
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This analysis leads to the conclusion that the mono-β-nitro-Pors exist in multiple locally 

stable conformations subject to thermal equilibrium. The various intermediate conformations all 

fall within an energy range of about 0.5 kcal/mol, which is less thank kBT at room temperate. We 

thus hypothesize that they are all in rapid equilibrium with one another due to low interconversion 

barriers. Collectively, they represent a single “upper state” with dynamics that cannot be resolved 

on the timescale studied at room temperature. The saddled conformation, being ca. 1.0 kcal/mol 

below the average intermediate state, accounts for about 80% of the molecular conformations 

according to a classical Boltzmann distribution. A significant kinetic barrier between the 

intermediate and saddle conformers could make interconversion between them slow on the 

timescale studied. Thus, if these or similar conformations persist into the excited state, they could 

explain both an excitation dependent emission spectrum and the dual lifetimes observed. 

Figure 5.6. Z-coordinates of the core atoms for the various optimized conformations of 
H2(NO2)TPP. Carbon atoms are black and nitrogen atoms are blue. The red arrow points 
to the nitro-bearing pyrrole carbon. The horizontal axis is arbitrary. There is significantly 
more planar deviation throughout the entire ring for the saddle conformation. 
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Moreover, this description naturally accounts for the inhomogeneous broadening of the absorbance 

spectra, since the macrocycle geometry is more flexible and sensitive to the phenyl positions in 

both conformations. 

To further test this hypothesis we used another TD-DFT optimization to follow the nuclear 

relaxation of the two different conformations in the first excited state. These results confirm the 

existence of two distinct conformations, similar to the ground state, with transition wavelengths 

separated by about 11 nm. A schematic of these energy levels for H2(NO2)TPP are given in Figure 

5.7. Excitation of either ground state conformation leads to an unstable excited state geometry that 

can relax into either of the two local minima in the S1 potential energy surface. While the higher 

energy conformation in the excited state would not normally be populated at room temperature 

under equilibrium conditions, a kinetic barrier to interconversion could make the rate of thermal 

equilibration slow enough for fluorescence decay to become competitive. This would result in 

observable fluorescence from both states, with distinct Stokes shifts, lifetimes, etc. for each. The 

differences in the dipole moments and conformational dynamics of each state could also account 

for the different solvent-dependent behavior observed for the two lifetimes. Since we cannot 

accurately account for all of the deactivation processes from the relaxed excited states, we cannot 

use the TD-DFT results to quantitatively predict the quantum yields or lifetimes. In particular, 

intersystem crossing has been shown to be an important factor in depopulating S1 for nitro-Pors, 

and has also been shown to increase with distortion of the macrocycle.[70-72] 

In contrast to the β substituted nitro-Pors, all of the surveyed initial structures for 

H2(NO2)4TPP converged to a very slight saddle conformation but remained almost completely 

planar (see Appendix D, Figures D3 and D4). Steric repulsion between the electron rich nitro 

groups and the aromatic π-system forces the phenyls into a more perpendicular orientation (߶௡ = 
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78° ±1°, for all n). At the same time, this 

creates a significant barrier to rotation, 

giving rise to four distinct atropisomers, 

designated αααα, αααβ, ααββ, and αβαβ. 

While the dipole moments of these vary 

by about 20 D due to the orientation of 

the ortho-nitro groups, the ground state 

energies are all within about 0.3 

kcal/mol of one another, with αβαβ 

being the most stable. The TD-DFT 

transition energies and compositions of 

the various atropisomers are also nearly 

identical, as are the relaxed excited state 

geometries. While there are reports of CT states in tetra(nitrophenyl)porphyrins, to our knowledge 

multiexponential fluorescence decay has not been observed, consistent with these results. 

When we performed a similar analysis on a set of H2(NO2)5TPP conformers, however, we 

were brought to a slightly different conclusion. The presence of the β-nitro further splits the four 

atropisomers of H2(NO2)4TPP  into 16 distinct geometries in H2(NO2)5TPP. For example, the αβαβ 

and βαβα isomers can be distinguished if we adopt the convention that the first character (α or β) 

in the string corresponds to the orientation of the nitro-phenyl group closest to the pyrrole-NO2. 

We again surveyed a broad sample of these various conformations, and the z-coordinate plots are 

shown in Figure D5 in Appendix D, with the physical data given in Table 5.3. These conformers 

also tend to group into two states that are well-separated in energy, but the determining factor here 

Intermediate Saddle
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Figure 5.7. Schematic energy level diagram of the two 
principle conformations of H2(NO2)TPP. The thick lines
represent optimized or relaxed nuclear geometries, and 
the dashed lines represent (unknown) barriers to 
interconversion between these relaxed geometries. The 
unrelaxed geometries may be able to internally convert to 
either stable structure (for both S0 and S1), potentially 
scrambling the populations. 
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is not the distortion of the macrocycle. In fact, all of the structures sampled converged to one of 

the intermediate conformations – no purely ruffled or saddled type conformers were found. Rather, 

the orientation of the nitro-phenyl dipoles with respect to the β-nitro group dictates the overall 

energy. In particular, the orientation of the nitro-phenyl closest to the β-nitro has the largest 

influence on the energies, splitting them into higher (βxxx-type) and lower (αxxx-type) levels. The 

β-nitro dipole and the closest nitro-phenyl dipole are almost perfectly orthogonal in the αxxx 

atropisomers, but have an obtuse angle in the βxxx ones. This creates a more unfavorable dipole-

dipole interaction for the latter, raising its energy almost 1.5 kcal/mol relative to the former. The 

other nitro-phenyl dipole orientations further modulate the molecular energies, but only slightly 

(< 0.5 kcal/mole). The TD-DFT results for H2(NO2)5TPP again show the coexistence of two stable 

conformations in the excited state. The energy level scheme is shown in Figure D9 of Appendix 

D, and has many of the same characteristics as for H2(NO2)TPP. 

In H2(NO2)6TPP, all of these complications are further exacerbated by the presence of a 

second β-nitro group. After surveying a range of structures, a stable saddle-type conformer once 

again emerged. In addition, the intermediate structures further split into the βxxx-type and αxxx-

type conformers, as in the penta-nitro derivatives. Thus, there appear to be at least three separate 

structures that are well-resolved in terms of the energy, and possibly more. The experimental 

results suggest that not all of these states are populated or resolved under standard conditions. 

DFT calculations on the series of nitrated zinc Pors yields results that are qualitatively 

similar to those just discussed. As mentioned, the energy differences between the various 

geometries are all slightly smaller than for the corresponding free base compounds. This lowers 

the ruffled conformer of Zn(NO2)TPP enough to make it an accessible, stable geometry, and 

confirms that the energies of the intermediate structures are about halfway between the saddled 
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and ruffled forms, as expected. Corresponding data for the zinc compounds is given in Appendix 

D. 

5.3.4.4. Charge Transfer States 

The presence of a strongly electron withdrawing group such as NO2 suggests the possibility 

of a CT state. If the emissive singlet is able to interact with this CT state, it will be quenched and 

shortened in a way consistent with the experimental spectroscopy.[42,49-54,64] Unfortunately, 

there seem to be contradictory, yet at times overlapping, descriptions of how this interaction is 

manifested, with some authors postulating a distinct CT state formed by a separate electron transfer 

step,[42,49-53] while others simply attribute a “CT character” to S1 itself.[52,53] There is also 

discussion of a “twisted intramolecular charge transfer” (TICT) occurring when there is electron 

transfer to the nitro group followed by a rotation making it perpendicular to the macrocycle plane. 

While there is little doubt that nitro groups withdraw substantial electron density in the excited 

state, resulting in a large dipole moment, that alone is not sufficient to identify S1 with an emissive 

CT state. 

To characterize the nature of these transitions, we analyzed their composition according to 

the DFT and TD-DFT results. The ground state energy levels of some of these are shown in Figure 

5.8. The levels are color coded according to the type of orbital – yellow for orbitals localized on 

the macrocycle core, red for nitro orbitals, and blue for phenyl orbitals. Orbitals that are delocalized 

among two or more regions have composite colors – orange for core/nitro, green for core/phenyl, 

purple for nitro/phenyl, and black for all three. The β-nitro groups mix with one of the macrocycle-

centered LUMOs, lowering it in energy and breaking the degeneracy. On the other hand, the more 

pure nitro-localized orbitals remain relatively high in energy for these compounds. The situation 

for H2(NO2)4TPP is different because the nitro groups are not directly conjugated into the aromatic 
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ring. Instead, the ortho arrangement puts them close to the core π-system and allows them to mix 

equally with both LUMOs equally. This “through-space” interaction is much weaker and only 

shifts the orbitals about 0.1 eV in energy, explaining the much smaller redshift in their spectra. 

In H2(NO2)5TPP and H2(NO2)6TPP, the phenyl-nitro groups mix with the phenyl orbitals 

themselves more than in H2(NO2)4TPP. This is a consequence of the structural reorganization 

caused by the β-nitro forcing the phenyl groups away from the more perpendicular angle attained 

in H2(NO2)4TPP. This, in turn, forces the ortho-nitros to adopt shallower dihedral angles with 

respect to the phenyl, allowing more effective orbital mixing. Meanwhile, the core nitro group 

lowers the energy of both LUMOs enough to decouple them from the ortho-nitros, albeit 

unequally. The primary change induced by the second β-nitro in H2(NO2)6TPP is the lowering of 

the second LUMO, essentially restoring the degeneracy. 

The energy levels marked with open circles in Figure 5.8 indicate orbitals that are involved 

in TD-DFT transitions less than about 3.0 eV. The compositions of these same transitions, in terms 

of singly excited Slater determinants, is given in Table 5.4 and Table D1. As expected, the 

lowering of one of the LUMOs in H2(NO2)TPP increases the H→L contribution to the lowest 

energy transition, redshifting it substantially in both conformations. However, the next lowest 

transition present in H2TPP becomes mixed with a core→nitro excitation in both conformations of 

H2(NO2)TPP, raising its energy and blueshifting it from 536 nm to about 430 nm. Moreover, a 

new transition arises between these (at 468 nm) in the intermediate conformation, and has a 74% 

core→nitro excitation component. While there may be higher energy pure CT states, they would 

not be close enough in energy to S1 for there to be a meaningful thermodynamic equilibrium 

between them. 
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In order to visualize these transitions in terms of the charge transfer, electron difference-

density maps (EDDMs) were generated for each one (see Appendix D, Figures D10 to D16).[73] 

There is a buildup of charge on the nitro group in all of the transitions of H2(NO2)TPP (for both 

conformations), but there also remains substantial electron density on the macrocycle, even in the 

new 468 nm transition of the intermediate conformation. Thus, none of these can be assigned to a 

pure CT state. A similar inspection of the wavefunctions for the relaxed excited states leads to the 

same conclusion. In fact, upon relaxation within the S1 manifold, the β-nitro dihedral angle 

Figure 5.8. Ground state orbital energies for the series of free base nitro-Pors. The HOMO-LUMO gap 
energies are given in the gap for each compound. The energy levels are color coded according to the 
localization of the orbital density, as shown in the key at the bottom. Orbitals involved in the first few TD-
DFT transitions are marked with open circles. 
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decreases by almost 30°, becoming more coplanar with the macrocycle and increasing the 

conjugation and thus the electron delocalization. This is in direct contradiction to the hypothesis 

of a TICT state, but is consistent with the results of Chirvony et al., who also report that S1 has a 

transient absorbance spectrum most similar to a 1(π,π*) state.[42] 

There lowest energy transitions of H2(NO2)4TPP have a composition similar to the same 

transitions in H2TPP, which correspond to the Qx(0,0) and Qy(0,0) bands. The transition EDDMs 

for the two compounds also match very closely, with some additional charge buildup on the nitro-

phenyl groups in H2(NO2)4TPP. Visual inspection of the maps indicates that the 533 nm transition 

of H2(NO2)4TPP may be the closest to being a true CT state (see Figure D13). This is consistent 

with previous reports of related compounds[49-51] which analyzed the intramolecular charge 

transfer to an ortho-nitro-phenyl in terms of Marcus theory. It is worth noting, however, that the 

dihedral angles of the nitro groups with respect to the phenyls decrease from ca. 25° in the ground 

state to a ca. 17° in the relaxed excited state, contrary to the TICT hypothesis. The CT state formed 

here is also different in that it is actually delocalized over all four nitro groups. This will affect 

factors such as the solvent reorganization energy and the CT lifetime, and may have important 

implications for harnessing the state to use in specific applications. 

In H2(NO2)5TPP, the transitions share features of the mono- and tetra-nitro derivatives. For 

both the αxxx and βxxx type atropisomers, transitions corresponding to the Qx(0,0) and Qy(0,0) 

bands are present. These are perturbed by the β-nitro in a manner almost identical to the 

intermediate conformation of H2(NO2)TPP, resulting in bands near 630 and 430 nm. There are 

also new bands that arise between these with significant CT character, but these are formed by the 

mixing of multiple nitro groups simultaneously, as in H2(NO2)4TPP. The αxxx-type atropisomers 

apparently have more pure CT transitions at 449 and 442 nm, but both of these are formed by 
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transfer to the ortho-nitros with the β-nitro actually losing electron density. The transitions of 

H2(NO2)6TPP are even further complicated by the second β-nitro, the four ortho-nitros, and the 

coexistence of two or more conformations. The two examples in Table 5.4 (see Figure D16 and 

Table 5.4. TD-DFT transitions for the series of free base nitro-Pors. 

ΔE (eV)a λ (nm)b f c Wavefunctiond 

H2TPP 

2.164 573 0.023 34% (H-1→L+1) + 65% (H→L) + … 

2.314 536 0.030 38% (H-1→L) + 62% (H→L+1) + … 

H2(NO2)TPP (Saddle) 

1.908 650 0.099 13% (H-1→L+1) + 86% (H→L) + … 

2.858 434 0.748 39% (H-1s→L) + 27% (H-1→L+2) + 30% (H→L+1) + … 

H2(NO2)TPP (Intermediate) 

1.966 631 0.080 15% (H-1→L+1) + 83% (H→L) + … 

2.650 468 0.014 22% (H-1→L+1) + 74% (H→L+2) + … 

2.884 430 0.639 34% (H-1→L) + 32% (H-1→L+2) + 29% (H→L+1) + … 

H2(NO2)4TPP 

2.149 577 0.017 26% (H-1→L+1) + 61% (H→L) + 6% (H→L+1) + … 

2.325 533 0.014 26% (H-1→L) + 16% (H→L+1) + 21% (H→L+4) + 30% (H→L+5) + … 

H2(NO2)5TPP (αxxx) 

1.959 633 0.070 14% (H-1→L+1) + 84% (H→L) + … 

2.694 460 0.036 33% (H-1→L+1) + 9% (H-1→L+2) + 53% (H→L+6) + … 

2.763 449 0.042 5% (H-1→L+2) + 86% (H-1→L+3) + … 

2.803 442 0.011 95% (H-1→L+4) + … 

2.915 425 0.618 29% (H-1→L) + 5% (H-1→L+3) + 26% (H-1→L+6) + 25% (H→L+1) + … 

H2(NO2)5TPP (βxxx) 

1.967 630 0.069 14% (H-1→L+1) + 83% (H→L) + … 

2.683 462 0.021 24% (H-1→L+1) + 57% (H-1→L+2) + 15% (H→L+6) + … 

2.712 457 0.032 10% (H-1→L+1) + 34% (H-1→L+2) + 52% (H→L+6) + … 

2.933 423 0.663 32% (H-1→L) + 30% (H-1→L+6) + 25% (H→L+1) + … 
a Energy of the transition in electron volts. Only transitions with energies below 3.0 eV are given. b Transition 
wavelength in nanometers. c Calculated oscillator strengths. Only transitions with oscillator strengths greater than 
0.01 are given. d Excited state wavefunction, in terms of the contributions of single excitations of the ground state 
Slater determinant. Only single excitations with contributions greater than 5% are given. The HOMO is designated 
“H”, the second HOMO is “H-1”, etc. The LUMO is designated “L”, the second LUMO is “L+1”, etc. Excitations 
involving only orbitals corresponding to Gouterman’s four-orbital model are shown in bold. Excitations which 
populate a nitro or nitro-like orbital are underlined. 
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D17 in Appendix D for EDDMs) show the extreme variation in the number and character of the 

transitions. 

The relaxed S1 geometries of the penta- and hexa-nitro derivatives are more complicated 

than the other cases. For H2(NO2)5TPP, they again display shallower angles for both the ortho- 

and β-nitro groups, but for H2(NO2)6TPP one of the β-nitros becomes slightly more perpendicular 

by about 5°. Moreover, the wavefunction compositions have a different character after nuclear 

reorganization, with more pure CT states developing. This could indicate the potential for efficient 

charge separation, although the transition probabilities between the states are unknown. 

5.4. Conclusion 

The strong electron withdrawing nature of the nitro group makes it very useful for 

modulating the ground state properties and excited state dynamics of porphyrinoids and other 

organic dyes. It can be tempting to try to explain all of the properties of a nitrated compound 

strictly in terms of electronic effects, but our results indicate that structural factors related to the 

presence of an NO2 group can be just as important, if not more so. Taken together, our 

spectroscopic and quantum chemical studies point to three principle conclusions: (1) a nitro group 

at a β-pyrrole position can interact with a nearby bulky meso-substituent to significantly distort 

the macrocycle; (2) increased conformational dynamics can lead to multiple stable minima in both 

the ground and excited state potential energy surfaces, each with different photophysical 

characteristics; and (3) the position of the nitro group in a TPP molecule will significantly modify 

the excited state dynamics and dictate the existence and energy of a CT state. 

In addition, there are many subtle effects that the detailed molecular structure can have on 

the photodynamics, especially when both ortho- and β-nitro groups are present in the same 
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molecule. Given the important role of atropisomerism these compounds, for example, it may be 

possible to use an external field to switch between two states with distinguishable excited state 

dynamics. Depending on the specific interconversion barriers between states, this could manifest 

as electrochromic or photochromic behavior, although we have not observed any evidence for this 

to date. The rate of intersystem crossing is another important factor to consider, as the triplet state 

population can be crucial to applications in photodynamic therapy, photovoltaics, and organic light 

emitting diodes. 

These results also have implications for organic dyes other than nitrated porphyrins. The 

nitro group itself has some electronic effect on the photophysics, but many of the more significant 

changes are due to the distortion of the macrocycle. The structural changes induced by the nitro 

group can also be brought about by the presence of other bulky substituents. There is at least one 

example of anomalous biexponential decay of distorted Pors reported in the literature,[74] but 

while the authors discuss the possibility of multiple stable excited state conformations, they do not 

explicitly cite this as the reason for the dual lifetimes. This framework may be useful for 

interpreting other results in the literature, and should also help point to new directions for future 

progress. 
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Appendix A. Supporting Information for Chapter 2 

A1. Synthesis 

A1.1. Porphyrin 1b 

Pyrrole (69.5 µL, 1.0 mmol) and 5-Formyl-6-methyluracil 1 (158 mg, 1.0 mmol) and zinc 

acetate (109.8 mg, 0.50 mmol) were added to a boiling mixture of acetic acid (7.5 mL) and 

nitrobenzene (5.0 mL). The reaction mixture was refluxed for 10 h while monitoring the yields 

spectroscopically, and then taken to dryness under vacuum. The resulting solid was purified by 

column chromatography, eluting with ethyl acetate/ methanol/ acetic acid (7:3:1) to yield 17 mg 

(8%) of 1. Chromatographic purification enriches the α4 and α3β atropisomers. 1H NMR (DMSO-

d6) δ11.5 (br, d, 8H), 9.50 (s, 8H), 2.50 (s, 12 H); 13C (DMSO-d6) δ 41.84, 110.60, 113.38, 113.41, 

131.70, 150.77, 150.81, 152.26, 166.25. HRMS calcd. for C40H28N12O8Zn (M+H)+ 869.1523, 

found 869.1514. 

A1.2. Porphyrin 2b 

Aldehyde 4 was synthesized according to the previous literature. Pyrrole (69.5 µL, 1.0 

mmol) and 1-Ethoxymethyl-5-formyl-6-methyluracil 4 (212 mg, 1.0 mmol)  and zinc acetate 

(109.8 mg, 0.50 mmol) were added to a boiling mixture of acetic acid (7.5 mL) and nitrobenzene 

(5.0 mL). The reaction mixture was refluxed for 10 h while monitoring the yields 

spectroscopically, and then taken to dryness under vaccum. The resulting solid was purified by 

column chromatography, eluting with ethyl acetate/ methanol (9:1) to yield 15 mg (5 %) of 2. 

Chromatographic purification enriches somewhat the α4 and α3β atropisomers. 1H NMR (MeOD-

d4) δ 9.22 (s, 8H), 5.65 (m, 8H), 3.86 (m, 8H), 2.51 (m, 12H), 1.31(m, 12H). 13C NMR (MeOD-
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d4) δ 12.83, 14.48, 54.63, 63.24, 71.86, 129.61, 149.23, 163.24, 189.5. HRMS calcd. for 

C52H52N12O12Zn (M)+ .  1100.3119, found 1100.3112. 

A1.3. Porphyrins 1a and 2a (Free Base) 

Porphyrin 2b (15 mg, 13 µmol) was dissolved in a THF, water and concentrated HCl 

mixture. This was stirred for 30 min and then poured into water, after which (NH4)2CO3 was added 

to reach a pH of 6. The porphyrin products were extracted with ethyl acetate. The combined 

organic extract was washed with water and brine, and then dried over Na2SO4. Porphyrin 2a was 

precipitated from this solution with ethyl acetate/hexane to give 12 mg of product (90% yield). 

The same procedure was performed with 15 mg of porphyrin 1b (17 µmol) to give 12 mg of 

porphyrin 1a (90% yield). 

A1.4. 2,4-di(n-decylamino)-6-amino-1,3,5-triazine (bis(decyl)melamine) 

Bis(decyl)melamine, was prepared similarly to literature methods[1-3] from 2-amino-4,6-

dichloro-1,3,5-triazine, which was prepared from cyanuric chloride (Scheme A1). [4] 

 

 

Scheme A1. Synthesis of 2-amino-4,6-dichloro-1,3,5-triazine from cyanuric 
chloride. 
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A2. Spectroscopy 

  

Figure A1. 1H  NMR of porphyrin 1b in DMSO-d6. 

Figure A2. 13C NMR of Porphyrin 1b in DMSO-d6. 
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Figure A3. Mass spectrum of Porphyrin 1b 

Figure A4. NMR of bis(decyl)melamine in CDCl3. 
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Figure A5. Day 1 NMR of melamine and porphyrin 1b in dry THF in ratio 4:2 
respectively.   

Figure A6. Day 14 NMR of melamine and porphyrin 1b in dry THF in a ratio of 4:2 
respectively. 
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Figure A7. 1H NMR of porphyrin 2b in MeOD-d4 solvent. 

Figure A8. 13C NMR of porphyrin 2b in MeOD-d4 solvent. 
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Compound Label RT Mass Abund Formula Tgt Mass Diff (ppm) 

Cpd 1: C52H52N12O12Zn 0.264 1100.3122 2913 C52H52N12O12Zn 1100.3119 0.24 

 

Figure A9. Mass spectrum of porphyrin 2b. 

Figure A10. 1H NMR of Porphyrin 2b + melamine; day 1 in THF-d8. 
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Figure A11. 1H NMR of Porphyrin 2b + melamine; day 10 in THF-d8. 

Figure A12. 2D DOSY spectrum of cyclodextrin in CDCl3. 
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Figure A13. 2D DOSY spectrum of porphyrin 1b + melamine in THF as 
solvent. 

Figure A14. 2D DOSY spectrum of Porphyrin 2b + melamine in THF as 
the solvent. 
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Compound Label RT Mass Abund Formula Tgt Mass Diff (ppm) 

Compound 1 0.6 406.37921 46202 C23H46N6 406.3784 2.01 

 

Figure A15. Mass spectrum of bis(decyl)melamine. 
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Appendix B. Supporting Information for Chapter 3 

B1. UV-Visible Spectra 

 
 

Figure B2. UV-Visible absorbances of a titration of C60 (left) or C70 (right) into 20.0 μM solutions of TPPF5.  
The inset shows the difference between the calculated sum of the absorbance of the two components (at 
418 nm) and the experimentally observed absorbance for the mixed solutions, as function of the quencher 
concentration. 

Figure B1. UV-Visible absorbances of a titration of C60 (left) or C70 (right) into 10.0 μM solutions of 1H2.  
The inset shows the difference between the calculated sum of the absorbance of the two components (at 
419 nm) and the experimentally observed absorbance for the mixed solutions, as function of the quencher 
concentration. 
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B2. Fluorescence Spectra 

 

B3. Carbon Nanotube Studies 

Portions (3 mL) of an 85 M solution of 1Zn in DMF were sonicated with 1.0 mg single 

walled carbon nanotubes (SWCNT) for 20 minutes. The solutions were then centrifuged to remove 

insoluble SWCNT and its complexes with the dimer. The supernatants were analyzed by 

fluorescence and UV-vis spectroscopy. 

Figure B3. Fluorescence emission spectra of a titration of (left) C60 and (right) C70 into a 10.0 μM solution 
of 1H2.  Both graphs show quenching, but the effect of C70 is again more pronounced.  The solutions were 
excited at a wavelength of 414 nm, a near-isosbestic point, and the emission was further corrected for the 
absorbance at the excitation wavelength. 

Figure B4. Fluorescence emission spectra of a titration of (left) C60 and (right) C70 into a 20.0 μM solution 
of TPPF5 solution. The solutions were excited at a wavelength of 414 nm, a near-isosbestic point, and the 
emission was further corrected for the absorbance at the excitation wavelength. 
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B3.1. Fluorescence Spectra 

B3.2. UV-visible Spectra 

  

0.0

0.5

1.0

1.5

2.0

2.5

550 600 650 700

Co
un

ts
x 

10
00

00

wavelength (nm)

1Zn
1Zn/SWCNT

Figure B5. Fluorescence spectra of a typical nanotube experiment before and 
after treatment with nanotubes. 
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B4. AFM 

 

 

 

 

Figure B7. AFM of films deposited from a 1.0 mM solution of C70. Top-left: height image. Top-right: 
phase image. Bottom-left: histogram of particle sizes (~1.1 nm corresponds to the diameter of C70). 
Bottom-right: height profile. 
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Figure B8. Films deposited from a 10 μM solution of 1H2. Top-left: height image. Top-right: phase 
image. Bottom-left: histogram of particle sizes (mean ~5 nm). Bottom-right: height profile of larger 
aggregates. 
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Figure B9. Films deposited from a 10 μM solutions of C70. Top-left: height image. Top-right: height 
profile. Bottom: histogram of particle sizes (~1.1 nm corresponds to the diameter of C70). 
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Figure B10. Films deposited from equimolar solutions of C70 and dimer 1H2, 10 μM each. Top-left: 
height image. Top-right: height profile trace. Bottom: histogram of particle sizes. A mean of ~3.8 
nm corresponds to diameter of C70 complexed with two porphyrins (~1.1 nm for the C70 and ~1.4 
nm for each porphyrin). 
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Figure B11. Films deposited from equimolar solutions of C70 and dimer 1Zn (10 μM each). Top-
left: height image showing a few large islands interspersed in the ~4 nm thick film. Top-right: height 
profile trace. Bottom: histogram of particle sizes in the films. A mean of ~4 nm corresponds to 
diameter of C70 complexed with two porphyrins. 
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Figure B12. The structures of the dimers listed in Table 3.1 in the main text. 
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Appendix C. Supporting Information for Chapter 4 

C1. Distribution of Positional Isomers 

In order to analyze how the positional isomers are distributed among the members of the 

series studied, a custom PHP program was written to enumerate the possibilities. The code first 

prompts the user to enter the number of positions available for substitution, the number of 

substituted positions being considered, and the order of the principal axis of rotation. While the 

code assumes only one kind of substituent and a dihedral, achiral prismatic symmetry (Dnh, where 

n is input by the user), it can be easily modified to account for multiple substituent types and other 

molecular point groups. Conceptually, the code consists of two parts. First, it finds every possible 

permutation of the specified number of substitutions over the specified number of positions. 

Second, it takes each permutation, applies all of the relevant operations of the symmetry group 

specified, and checks each result to see if it is duplicated somewhere else in the list. If found, the 

redundant isomer is deleted, and the program moves on to check the next item in the list. 

The process of enumerating every permutation is accomplished by representing the 

substitution pattern as a binary string (or array, in practice) and applying a previously published 

algorithm.[1] This can obviously be extended to any number of different types of substituents 

simply by assigning each substituent type a different numerical value, in which case the string 

would no longer be binary. The advantage of using an array over a string is that each position in 

an array can hold an arbitrarily large number, rather than being limited to the ten decimal digits 0 

through 9. This allows for a potentially unlimited number of possible substituents, and the search 

algorithm is general enough to be applied without modification. The only changes necessary would 

be to prompt the user to enter the numbers of each possible substituent, and to find an alternate 



148 

way to generate the initial, “non-increasing” multiset array that begins the search. Both of these 

modifications are trivial. 

Modifying the code to account for other molecular point groups is somewhat more 

challenging. First, the proper symmetry subgroup must be identified. This is the subgroup 

consisting of all orientation-preserving operations. Thus, it excludes reflections, improper 

rotations, and other operations that do not correspond to real physical transformations of the 

molecule. For metallophthalocyanines with D4h symmetry, the proper symmetry subgroup 

comprises only the rotations about the principal C4 axis and the four C2 axes perpendicular to it. 

For other symmetry groups, this list of operations would need to be modified accordingly. 

Moreover, each of these operations is implemented in the code as a transformation acting on a 

matrix representation of a given isomer. This means that any additional symmetry operations 

would need to be interpreted in terms of such matrix transformations before being incorporated 

into the program. While this is less trivial than the other modifications discussed, it is certainly 

possible given the limited number of point groups that exist. 

The following code was written and executed on a Lenovo Yoga 3 Pro with an Intel® 5Y70 

1.30 GHz processor and 8 GB RAM, running a 64-Bit version of the Windows 10 Home Operating 

System. A local Apache HTTP Server (v. 2.4.16) running PHP v. 5.6.12 was implemented via the 

XAMPP (Control Panel v. 3.2.1) stack. The PHP program was accessed through an HTML form 

interface embedded in a page named “isomers.php” (identified by the action attribute of the HTML 

form element), using the Firefox (v. 42) web browser. 
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/*-------Begin code-------*/ 
<?php 
if ( $_SERVER['REQUEST_METHOD'] == 'POST' ) 
 $posted = true; 
else 
 $posted = false; 
?> 
 
<!DOCTYPE html> 
<html> 
 <head></head> 
 <body> 
  <form action="isomers.php" method="post"> 
   No. of Positions: 
   <input type="text" name="positions" 
   value="<?php echo $posted ? $_POST['positions'] : ''; ?>"><br> 
 
   No. of Substitutions: 
   <input type="text" name="substitutions" 
   value="<?php echo $posted ? $_POST['substitutions'] : ''; ?>"><br> 
 
   Order of Principal Axis of Rotation: 
   <input type="text" name="n" 
   value="<?php echo $posted ? $_POST['n'] : ''; ?>"><br> 
 
   <input type="submit" value="Submit"> 
  </form> 
  <br> 
<?php 
if (  ($posted == true) AND  
    ( !isset($_POST['positions']) OR 
   !isset($_POST['substitutions']) OR 
   !isset($_POST['n']) )  ) 
 echo "Bad Data Passed!"; 
elseif ( $posted == true ) 
{ 
 $places = $_POST['positions']; 
 $subs = $_POST['substitutions']; 
 $n = $_POST['n']; 
 
 /* 
 Create the "non-increasing" binary multiset list (actually an array) 
   1 = substituted position 
   0 = unsubstituted position */ 
 $array = array();  
 for ($i = 0; $i <= $places-1; $i++) { 
  if ($i < $subs) 
   $array[] = 1; 
  else 
   $array[] = 0; 
 } 
 
 /* 
 Initialize values for positions that require comparison 
 (counting starts at 0 for arrays) */ 
 $i = $places - 2; // Second-to-last position in the array 
 $j = $places - 1; /* last position in the array */ 
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 /* 
 Initialize the master array of all permutations 
 (without regard to symmetry) */ 
 $permutations[0] = $array; 
 
 /* 
 Loop will stop when 2 conditions are BOTH met: 
  1. $j has reached the final bit position 
  2. The value of the bit in $j is greater than or equal to 
   the head bit value ($array[0]) */ 
 while ( ($j < $places-1) OR ($array[$j] < $array[0]) ) 
 { 
  if ( ($j < $places-1) AND ($array[$i] >= $array[$j+1]) ) 
   $k = $j + 1; 
  else 
   $k = $i + 1; 
 
  /* 
  “beforek.next <-- k.next” 
  First rearrangement of actual multiset array 
  Store the bit in position k first */ 
  $kvalue = $array[$k]; 
 
  /* Also store the head bit for later comparison */ 
  $headvalue = $array[0]; 
 
  /* Then remove the kth bit and reindex the following bits */ 
  unset($array[$k]); 
  $array = array_values($array); 
 
  /* 
  “k.next <-- head” 
  Then push the k value onto the beginning of the stack 
  and reset the $k variable */ 
  array_unshift($array,$kvalue); 
  $k = 0; 
 
  /* This also requires pushing up the i index */ 
  $i++; 
   
  if ($kvalue < $headvalue) 
   $i = $k; 
  $j = $i + 1; 
 
  /* Push this binary representation onto the master array */ 
  $permutations[] = $array; 
 } 
 echo "Done. ".count($permutations)." total permutations, including 
duplicate structures.<br>\r\n"; 
 
 /* 
 We will need to split each array representation into n segments, 
 where n is the order of the principal axis, defined by the user 
 $groupNo will be the length of each segment */ 
 $groupNo = $places/$n; 
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 /* 
 Set the begin and end points for the search 
 through the master $permutations array */ 
 $key = 0; 
 $number = count($permutations); 
 
 set_time_limit(500); 
 while ($key < $number) 
 {   
  if (isset($permutations[$key])) 
  {    
   /* Create a 2 dimensional array of n rows, each $groupNo long */ 
   for ($i = 0; $i <= $n-1; $i++) 
    $isomer[$i] = array_slice($permutations[$key], $groupNo*$i, 
$groupNo); 
 
   /* $isomer now holds a matrix representation of the isomer that we 
are testing, which will need to be manipulated to check if it is identical to 
any other isomers in the list. Since we are considering the proper symmetry 
subgroup, we only need to deal with rotations that are relevant to the 
molecular point group. We are here assuming a dihedral, achiral point group, 
D_nh, where the user supplies the order of the principal rotational axis, n 
(n=4 for metallophthalocyanines). We will need to step through n rotations 
about the principal axis, and for each, we also need to take a 180 degree 
rotation about a single C2 axis within the symmetry plane. This is equivalent 
to taking separate 180 degree rotations of the original isomer about each of 
the n C2 axes perpendicular to Cn. */ 
   for ($rotation = 1; $rotation <= $n; $rotation++) { 
    /* 
    Apply a (360/n) degree rotation by cycling the 
    rows of the $isomer array */ 
    $lastrow = array_pop($isomer); 
    array_unshift($isomer, $lastrow); 
 
    /* 
    Rebuild a one line array to compare to other entries 
    in the master permutations list */ 
    $isoarray = array(); 
    foreach ($isomer as $isokey=>$row) 
     $isoarray = array_merge($isoarray,$row); 
 
    /* 
    check if isoarray matches any other values in the master 
    permutations list */ 
    $foundkeys = array_keys($permutations, $isoarray, TRUE); 
    if ( (count($foundkeys) > 1) OR 
         ( (count($foundkeys) == 1) AND ($foundkeys[0] != $key) )  ) 
    { 
     /* 
     Delete the duplicate entries in the $permutations array */ 
     foreach ($foundkeys as $duplicatekey) 
      unset($permutations[$duplicatekey]); 
    } 
 
    /* 
    And check a 180 degree rotation of this about a C2 axis, 
    just by reversing the array */ 
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    $isoarray = array_reverse($isoarray); 
 
    /* 
    check if isoarray matches any other values in the 
    master permutations list */ 
    $foundkeys = array_keys($permutations, $isoarray, TRUE); 
    if ( (count($foundkeys) > 1) OR 
         ( (count($foundkeys) == 1) AND ($foundkeys[0] != $key) ) ) 
    { 
     /* Delete duplicate entries in the $permutations array */ 
     foreach ($foundkeys as $duplicatekey) 
      unset($permutations[$duplicatekey]); 
    } 
   } 
   unset($isomer); 
  } 
 
  /* Move on to the next permutation */ 
  $key++; 
 } 
 
 /* 
 Quote the results and list the binary representations 
 of the isomers found */ 
 echo "Done filtering. ".count($permutations)." unique structures 
found.<br>\r\n"; 
 foreach ($permutations as $row) { 
  foreach ($row as $bit) 
   echo $bit; 
   
  echo "<br>\r\n"; 
 } 
} 
?> 
 </body> 
</html> 
/*-------End code-------*/ 
 
 

Figure C1 shows plots of the results obtained from running the program for two different 

cases. The total number of permutations and the number of unique isomers are plotted as functions 

of the number of substituents. If all sixteen fluorines on the ZnF16Pc can be substituted with equal 

probability, the distribution will resemble that in Figure C1(A), with ZnF8(SR)8Pc having the 

maximum number (1,654) of unique isomers. In order to determine the distribution for the 

restricted case, in which the β fluorines are substituted first, we ignore the α fluorines and input 

“8” as the number of possible positions into the program prompt, while retaining the D4h symmetry. 
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This data is shown in Figure C1(B), with two maxima occurring at just 13 unique isomers for both 

ZnF12(SR)4Pc and ZnF4(SR)12Pc. As one check of the validity of the program, we note that the 

total number of permutations for any given number of substituents, n, should be ܥଵ଺
 

௡ =

16!/ሾ݊! (16 − ݊)!ሿ for the unrestricted case, and ଼ܥ
 

௡ = 8!/ሾ݊! (8 − ݊)!ሿ for the restricted case, 

and these calculated values match the program output exactly. 

 

C2. Oxidative Decomposition 

Purification and separation of the crude reaction mixtures proved to be difficult, due 

primarily to the ease with which thioethers can oxidize into sulfoxides and sulfones. This is 

indicated by the differences in TLCs of purified products upon standing in air, wherein the Rf, 

were reduced essentially to zero, indicating near quantitative conversion into a highly polar 

product. The UV-Vis absorbance spectra of these spots also showed distinct changes, including a 

splitting of the Q-band and an increase in the band at the blue edge near 640 nm. To verify this 
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Figure C1. The total number of permutations (•) and the number unique isomers (•) as a function of the 
number of substituents, for two different mechanistic assumptions: (A) The unrestricted case assumes 
that all sixteen positions react with equal probability, and (B) The restricted case assumes that all eight β 
positions react with equal probability, before any of the eight α positions react. Note the difference in the 
vertical scales. 
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conclusion, a small sample of ZnF13(SR)3Pc was freshly purified by TLC and then subjected to 

oxidative conditions by dissolving in glacial acetic acid with four equivalents of 30% hydrogen 

peroxide per thioalkane group, and the solution was stirred at room temperature. These conditions 

were reported to convert alkyl phenyl sulfides into the corresponding sulfoxides in high yield.[2] 

After two hours, UV-Vis spectroscopy of the reaction mixture was almost identical to those 

observed in the unknown polar products, confirming that they were indeed sulfoxides. 

Consequently, TLC was used for most separations, and the compounds were kept under nitrogen 

at low temperatures. 

C3. UV-Vis Spectroscopy 

Solution phase UV-Vis absorbance spectra were obtained on a Lambda 35 

spectrophotometer operating in single beam mode. The monochromator bandwidth was set to 1 

nm to match the excitation monochromator settings of the fluorescence spectrometer. All spectra 

were obtained from dilute solutions in either quartz or special optical glass cuvettes using freshly 

distilled or spectroscopic grade solvents. For extinction coefficient measurements, samples of each 

Pc were accurately weighed and dissolved into a known volume of distilled THF. This solution 

was then titrated into a THF blank to record spectra at multiple concentrations and construct 

calibration curves according to the Beer-Lambert equation. 
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Figure C2. Expanded, normalized UV-Vis spectra of all compounds ZnF16-x(SR)xPc (x = 0 to 16) in freshly 
distilled THF. The arrow indicates the increase in the high energy absorbance with increasing thioalkyl 
substitution and the corresponding changes in the molecular orbitals as described in the text. 
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Figure C3. Calibration curves of the compounds Zn(tBu)4Pc and ZnF16-x(SR)xPc for x = 0, 1, 3, 4, 5 and 6. 
Linearity over the concentration range is consistent with the application of the Beer-Lambert Law. The 
slopes given on the right are the extinction coefficients in units of (μM·cm)-1. 
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C4. Fluorescence Spectroscopy 

Steady state fluorescence emission spectra, quantum yield comparisons, and fluorescence 

lifetime measurements were made using right-angle detection mode with the excitation 

monochromator bandwidth set to 1 nm. Excitation spectra were obtained in the same configuration 

with the monochromator bandwidths reversed. For both steady state and lifetime experiments, all 

solutions were degassed with dry nitrogen for 2 to 3 minutes immediately prior to data collection. 

Monochromator bandwidths were sometimes increased as necessary to improve signal-to-noise 

ratios, but were always kept consistent between samples and standards for comparison purposes 

and quantum yield calculations. In order to minimize inner filter effects, solutions for right angle 

measurement were diluted so that the absorbance remained below 0.1 for all wavelengths. 

Quantum yields, ߶௙, were calculated using a relative gradient method according to the equation 
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Figure C4. Calibration curves of the compounds ZnF16-x(SR)xPc for x = 8, 11, 12, 13 and 16. Linearity over 
the concentration range is consistent with the application of the Beer-Lambert Law. The slopes given on 
the right are the extinction coefficients in units of (μM·cm)-1. 
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߶௙ =  ߶௥ ቀ
∇ி

∇ிೝ
ቁ ቀ

௡

௡ೝ
ቁ

ଶ
. The ∇ܨ term is the gradient of a plot of integrated fluorescence intensity vs. 

absorbance at the excitation wavelength for each compound. The last term is a correction for the 

respective indices of refraction, n, of the solvents used for the sample and reference solutions. The 

subscript, r, indicates a quantity corresponding to the reference solution. Thus, ߶௥ is the quantum 

yield of the standard obtained from the literature. To obtain the ∇ܨ values, multiple solutions of 

each compound were prepared at varying concentrations, and emission spectra were taken for each. 

Zn(tBu)4Pc in deaerated toluene was used as standard, with ߶௥ = 0.081.[3] 

It is not clear why there is an anomalously high value for the quantum yield of ZnF16Pc in 

the literature (see main text).[4] The higher concentration reported would tend to increase 

aggregation and thus decrease the apparent quantum yield by artificially inflating the measured 

absorbance at the excitation wavelength quoted (660 nm). Indeed, the authors cite this as the reason 

for the reduction of the quantum yield between ZnPc and ZnF16Pc, stating that aggregation prevails 

in the latter. However, our own studies indicate that there is a real decrease by the same factor 

between these two for a series of dilute THF solutions in which there is no evidence of aggregation. 

It is thus much more likely that the inflated literature value for ZnF16Pc is a consequence of the 

artificially high value of the ZnPc quantum yield they used as a standard. 

Linearity of the plots of florescence intensity vs. absorbance at λex was used as a criteria to 

judge the extent of aggregation. For compounds ZnF16Pc, ZnF15(SR)Pc, ZnF14(SR)2Pc, and 

ZnF13(SR)3Pc, there was a noticeable curvature in these plots. This was accompanied by the 

observation of increasing absorbance bands near 635, 642, 649, and 655 nm, respectively. These 

bands are commonly attributed to the absorbance of dark (i.e. non-emissive) aggregates. Since 

they overlap the excitation wavelengths used for fluorescence, their contribution needed to be 

subtracted from the absorbance used to calculate the quantum yield. To account for this, the 
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lineshape of the most dilute, least aggregated solution of each compound was scaled to the peak 

maximum of the spectra for the other concentrations, and the absorbance of the newly scaled 

spectra at the excitation wavelength was used in calculating the quantum yield. Performing this 

correction on these four compounds effectively restored the linear relationship between 

fluorescence intensity and absorbance in all cases. 

For lifetime measurements a dilute solution of colloidal silica (LUDOX, Sigma) in 

deionized water was used to produce the instrument response function (IRF). Dilute samples and 

narrow slit bandwidths were preferred to give slower collection rates over longer periods of time. 

This reduces the so-called “pulse pile-up effect” that would otherwise skew the counting statistics 

towards earlier photon detection events and therefore shorter lifetimes. All of the measured decays 

were fit reasonably well with a single lifetime parameter, except as noted in Table 4.1 n the main 

text. The only exceptions to this required a minor second lifetime parameter very close to the IRF 

width, which is likely to be a scattering artifact. The fits obtained were judged based on a 

combination of the χ2 value and visual inspection of the plotted residuals. Lifetimes were recorded 

for each compound at several different concentrations over the range studied, and multiple fits 

were performed on each decay spectrum using different boundaries to ensure numerical stability. 

The separate numerical fits for each concentration were averaged together and then plotted as a 

function of concentration (Figure C5) to ensure that they remained constant over the range of 

interest. Finally, the results for each compound were averaged together over all fits and all 

concentrations to give the lifetime values quoted in Table 4.1. 
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Figure C5. Lifetimes for each compound ZnF16-x(SR)xPc (x = 0 to 16) vs. concentration, 
demonstrating that they remain constant over the range investigated. Concentrations were 
calculated from the absorbance spectra of the solutions and the extinction coefficients that were 
obtained in a separate set of experiments. Horizontal error bars indicate a ±10% uncertainty in 
the concentration as a consequence of the uncertainty in the extinction coefficient. Vertical 
error bars correspond to instrumental uncertainties of ±50 ps. 

Figure C6. Fluorescence and non-radiative rate constants (݇௙ and ݇௡௥, 

respectively) for compounds ZnF16-x(SR)xPc (x = 0 to 16) in THF. Note the different 
scales of the left and right axes for the different constants. 
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C5. Synthesis & Characterization 

octylthiopentadecafluorophthalocyaninato zinc(II), ZnF15(SR)Pc  

ZnF15(SR)Pc was synthesized according to the above procedure using 30 mg ZnF16Pc 

(0.035 mmol), 0.1 mL 1-octanethiol (0.58 mmol), and 100 mg K2CO3 (0.72 mmol) in 10 mL dry 

THF. The reaction was run at 50° C for 1 hour. The blue-green solid Pc mixture obtained from the 

column was separated by TLC using a 6:4 mixture of hexanes to ethyl acetate. Yield: 43% (15 mg, 

0.015 mmol). 1H NMR ((CD3)2CO, 500 MHz): δ 0.82-0.97 (m, 3H, CH3), 1.17-1.83 (m, 12H, 

CH2), 2.51-2.73 (m, 2H, SCH2). 19F NMR ((CD3)2CO, 376.5 MHz): δ -141.90 (br, 7F, β), -153.46 

(br, 8F, α). MALDI-TOF MS: m/z 990.96 (65%, [M+H]+), 877.71 (100%, [M-(CH2)7CH3]+); 

calculated for [ZnF15(SR)Pc+H]+ 991.04. UV-Vis (in THF): λmax/nm 679 (log ε 5.32), 612 (4.58), 

401 (4.58). 

bis(octylthio)tetradecafluorophthalocyaninato zinc(II), ZnF14(SR)2Pc  

UV-Vis (in THF): λmax/nm 686, 618, 369. 

tris(octylthio)triskadecafluorophthalocyaninato zinc(II), ZnF13(SR)3Pc 

ZnF13(SR)3Pc was synthesized according to the above procedure using 65.5 mg ZnF16Pc 

(0.076 mmol), 0.04 mL 1-octanethiol (0.23 mmol), and 165 mg NaH (6.88 mmol) in 2 mL dry 

THF. The reaction was run at room temperature for 10 min. The green solid Pc mixture obtained 

from the column was separated by TLC using a 8:2 mixture of hexanes to ethyl acetate. MALDI-

TOF MS: m/z 1244.88 (100%, [M+H]+), 1146.70 (8%, [M-(CH2)7CH3+O]+); calculated for 

[ZnF13(SR)3Pc+H]+ 1244.24. UV-Vis (in THF): λmax/nm 692 (log ε 5.08), 620 (4.41), 369 (4.57). 
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tetrakis(octylthio)dodecafluorophthalocyaninato zinc(II), ZnF12(SR)4Pc 

ZnF12(SR)4Pc was synthesized according to the above procedure using 60 mg ZnF16Pc 

(0.069 mmol), 0.4 mL 1-octanethiol (2.3 mmol), and 200 mg K2CO3 (1.4 mmol) in 20 mL dry 

THF. The reaction was run at 50° C for 4 hours. The green solid Pc mixture obtained from the 

column was separated by TLC using a 9:1 mixture of hexanes to ethyl acetate. Yield: 24% (22.4 

mg, 0.016 mmol). 1H NMR (CDCl3, 500 MHz): δ 0.81-0.91 (m, 12H, CH3), 1.18-1.57 (m, 48H, 

CH2), 3.17-3.36 (m, 8H, SCH2). 19F NMR (CDCl3, 376.5 MHz): δ -108.86 (br, 4F, β), -122.65 (br, 

4F, α), -142.47 (br, 4F, α). MALDI-TOF MS: m/z 1370.29 (100%, [M]+), 1496.38 (10%, 

[ZnF11(SR)5Pc]+); calculated for [ZnF12(SR)4Pc]+ 1370.35. UV-Vis (in THF): λmax/nm 698 (log ε 

5.44), 626 (4.75), 372 (4.89). 

pentakis(octylthio)undecafluorophthalocyaninato zinc(II), ZnF11(SR)5Pc 

ZnF11(SR)5 was isolated from the same reaction as ZnF12(SR)4Pc above. Yield: 26% (27.0 

mg, 0.018 mmol). 1H NMR (CDCl3, 500 MHz): δ 0.83-0.91 (m, 15H, CH3), 1.17-1.67 (m, 60H, 

CH2), 3.25-3.70 (m, 10H, SCH2). 19F NMR (CDCl3, 376.5 MHz): δ -109.09 (br, 6F, α), -123.07 

(br, 3F, β), -142.57 (br, 2F, α). MALDI-TOF MS: m/z 1496.37 (100%, [M]+), 1622.47 (15%, 

[ZnF10(SR)6Pc]+); calculated for [ZnF11(SR)5Pc]+ 1496.46. UV-Vis (in THF): λmax/nm 704 (log ε 

5.36), 630 (4.67), 378 (4.77). 

hexakis(octylthio)decafluorophthalocyaninato zinc(II), ZnF10(SR)6 

ZnF10(SR)6 was isolated from the same reaction mixture as ZnF12(SR)4Pc above. Yield: 

19% (21.1 mg, 0.013 mmol). 1H NMR (CDCl3, 500 MHz): δ 0.82-0.95 (m, 18H, CH3), 1.18-1.57 

(m, 72H, CH2), 3.17-3.36 (m, 12H, SCH2). 19F NMR (CDCl3, 376.5 MHz): δ -109.13 (bs, 4F, α), 

-123.22 (bs, 2F, β), -142.38 (bs, 4F, α). MALDI-TOF MS: m/z 1623.44 (100%, [M]+), 1749.52 
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(7%, [ZnF9(SR)7Pc]+); calculated for [ZnF10(SR)6Pc]+ 1623.57. UV-Vis (in THF): λmax/nm 708 

(log ε 5.29), 635 (4.57), 382 (4.69). 

heptakis(octylthio)nonafluorophthalocyaninato zinc(II), ZnF9(SR)7Pc 

ZnF9(SR)7Pc was synthesized according to the above procedure using 60 mg ZnF16Pc 

(0.069 mmol), 0.6 mL 1-octanethiol (3.5 mmol), and 200 mg K2CO3 (1.4 mmol) in 20 mL dry 

THF. The reaction was refluxed for 8 hours. The green solid Pc mixture obtained from the column 

was separated by TLC using a 9.4:0.6 mixture of hexanes to ethyl acetate. Yield: 17% (21.4 mg, 

0.012 mmol). 1H NMR (CDCl3, 500 MHz): δ 0.75-0.85 (m, 21H, CH3), 1.19-1.65 (m, 84H, CH2), 

3.00-3.50 (m, 14H, SCH2). 19F NMR (CDCl3, 376.5 MHz): δ -91.10 (s, 1F, α), -91.85-92.05 (m, 

2F, α/ β), -93-93.5 (m, 6F, α). MALDI-TOF MS: m/z 1749.54 (100%, [M]+), 1875.64 (17%, 

[ZnF8(SR)8Pc]+); calculated for [ZnF9(SR)7Pc]+ 1749.68. UV-Vis (in THF): λmax/nm 716 (log ε 

5.46), 642 (4.73), 372 (4.87). 

octakis(octylthio)octafluorophthalocyaninato zinc(II), ZnF8(SR)8Pc 

ZnF8(SR)8Pc was isolated from the same reaction mixture as ZnF9(SR)7Pc above. Yield: 

25% (31.4 mg, 0.017 mmol). 1H NMR (CDCl3, 500 MHz): δ 0.75-0.85 (m, 24H, CH3), 1.15-1.92 

(m, 96H, CH2), 3.27-3.51 (m, 16H, SCH2). 19F NMR (CDCl3, 376.5 MHz): δ -91.17 (s, 1F, β), -

92.06 (s, 4F, α), -92.34-93.74 (m, 3F, α). MALDI-TOF MS: m/z 2002.11 (6%, [ZnF7(SR)9Pc]+), 

1876.01 (100%, [M]+), 1779.86 (17%, [M-(CH2)7CH3+O]+), 1763.84 (14%, [M-(CH2)7CH3]+), 

1749.87 (11%, [ZnF9(SR)7Pc]+); calculated for [ZnF8(SR)8Pc]+ 1875.78. UV-Vis (in THF): 

λmax/nm 720 (log ε 5.47), 645 (4.78), 374 (4.88). 

nonakis(octylthio)heptafluorophthalocyaninato zinc(II), ZnF7(SR)9Pc 

UV-Vis (in THF): λmax/nm 727, 656, 366. 
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decakis(octylthio)hexafluorophthalocyaninato zinc(II), ZnF6(SR)10Pc 

MALDI-TOF MS: m/z 2129.72 (100%, [M]+); calculated for [ZnF6(SR)10Pc]+ 2129.99. 

UV-Vis (in THF): λmax/nm 731, 657, 371. 

undecakis(octylthio)pentafluorophthalocyaninato zinc(II), ZnF5(SR)11Pc 

MALDI-TOF MS: m/z 2255.28 (100%, [M+H]+), 2160.12 (16%, [M-(CH3)7CH3+O+H]+); 

calculated for [ZnF5(SR)11Pc+H]+ 2255.10. UV-Vis (in THF): λmax/nm 733 (log ε 4.97), 660 

(4.33), 364 (4.52). 

dodecakis(octylthio)tetrafluorophthalocyaninato zinc(II), ZnF4(SR)12Pc 

MALDI-TOF MS: m/z 2382.28 (100%, [M+H]+), 2255.13 (37%, [ZnF5(SR)11+H]+); 

calculated for [ZnF4(SR)12Pc+H]+ 2382.21. UV-Vis (in THF): λmax/nm 740 (log ε 4.89), 669 

(4.27), 358 (4.49). 

triskadecakis(octylthio)trifluorophthalocyaninato zinc(II), ZnF3(SR)13Pc 

1H NMR (CDCl3, 500 MHz): δ 0.78-0.92 (m, 39H, CH3), 0.95-1.85 (m, 156H, CH2), 3.15-

3.58 (m, 26H, SCH2). MALDI-TOF MS: m/z 2634.40 (24%, [ZnF2(SR)14Pc+H]+), 2508.29 

(100%, [M+H]+), 2382.18 (38%, [ZnF4(SR)12Pc+H]+), 2254.06 (10%, [ZnF5(SR)11Pc+H]+); 

calculated for [ZnF3(SR)13Pc+H]+ 2508.31. UV-Vis (in THF): λmax/nm 749(log ε 5.12), 677 (4.51). 

tetradecakis(octylthio)difluorophthalocyaninato zinc(II), ZnF2(SR)14Pc 

1H NMR (CDCl3, 500 MHz): δ 0.75-0.85 (m, 42H, CH3), 1.05-1.90 (m, 168H, CH2), 3.15-

3.55 (m, 28H, SCH2). MALDI-TOF MS: m/z 2633.97 (100%, [M]+), 2507.86 (28%, 

[ZnF3(SR)13Pc]+); calculated for [ZnF2(SR)14Pc]+ 2633.41. UV-Vis (in THF): λmax/nm 755, 679, 

357. 
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pentadecakis(octylthio)monofluorophthalocyaninato zinc(II), ZnF(SR)15Pc 

UV-Vis (in THF): λmax/nm 768, 691. 

hexadecakis(octylthio)phthalocyaninato zinc(II), Zn(SR)16Pc 

Sodium metal (300 mg) was added to 25 mg of ZnF16Pc (0.029 mmol) in 40 mL of diglyme 

and stirred until the Na dissolved. Then, 3.5 mL of 1-octanethiol (0.013 mol) was added under N2 

at room temperature. The resulting mixture was heated to 100 °C and stirred for 16 hours. The 

reaction was then cooled to room temperature and poured into 300 mL of water. The product was 

extracted with diethyl ether (3 × 20 mL), dried over Na2SO4, and concentrated under reduced 

pressure. Silica gel chromatography (2 × 8 in) with hexane followed by hexane/ethyl acetate (30:1 

v:v) yielded 50 mg (0.013 mmol) of the product (44% yield). MALDI-TOF MS: m/z 2887.16 

(100%, [M]+), 2793.12 (18%, [ZnF3(SR)13Pc]+); calculated for [Zn(SR)16Pc]+ 2887.64. UV-Vis 

(in THF): λmax/nm 777 (log ε 5.16), 697 (4.52). 

C6. MALDI-TOF Mass Spectrometry 

After being separated chromatographically, each individual Pc was prepared for MALDI-

TOF analysis using a DHB matrix and a THF/water/TFA mixture as the solvent. The MALDI 

spectra obtained are shown in Figure C7 through C20 For each compound there is a strong peak 

corresponding to the intact molecular cation, either protonated ([M+H]+) or oxidized ([M]+). In 

some cases additional minor peaks are observed. These are attributed to either contamination by a 

small amount of a different substitution product, oxidized byproducts of the expected Pc, fragment 

ions in which one or more sulfide chains have been cleaved, or some combination of these three. 

In some spectra we observed small peaks between 600 and 800 amu which are likely due to 

fragmentation of the Pc macrocycle itself. Increasing the laser power generally caused these peaks 
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to become more significant, confirming that they are due to fragmentation occurring during the 

laser ablation. 

All of the mass spectra obtained are shown below along with tables listing the assignments 

of the most prominent peaks. For some of the sample, there is a cluster of small molecular weight 

fragments around 600 Daltons. This cluster likely corresponds to ionic fragments of the parent 

molecule, and has been cut out of most of the given spectra for clarity. The x-axis (m/z) is scaled 

differently for each compound in order to show all of the observed peaks in as much detail as 

possible, but no higher mass fragments have been excluded from the data shown. 

Except for the ZnF16Pc standard, each spectrum is followed by a table of peak assignments. 

Each peak cluster in the spectrum is labelled by the most abundant mass, and the table gives a 

proposed structure and the corresponding observed and expected mass ranges. In each chart, the 

structure of the primary intact molecular ion is given in red. The abbreviated notation includes the 

number of fluorine atoms, Fn, followed by (16 – n) different possible substituents. (SR)x indicates 

x octylthio chains, while (SH)y indicates y chains in which the octyl portion has been cleaved off, 

leaving behind a thiol. Hz denotes z similar cleavages, except that the sulfur atom has been removed 

with the octyl chain, the entire group being replaced by an H attached directly to the Pc core. Om 

may also be included to indicate that one or more of the sulfur groups has been oxidized. Although 

it is not possible to establish the precise nature or locus of oxidation through MALDI, a pattern 

emerges in which an oxygen is almost always accompanied by the presence of a thiol group. This 

suggests that oxidation occurs by the conversion of thiol (–SH) to sulfenic acid (–SOH) subsequent 

to fragmentation. 
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For every possible proposed structure, n + x + y + z = 16, necessarily, and m ≤ 2(x + y) 

since only sulfur atoms can be oxidized in this case. Finally, the “-H” or “+H” terms are used when 

the mass more closely corresponds to a deprotonated anion or protonated cation, depending on the 

detection mode. However, given the resolution of the instrument, the usage is somewhat arbitrary. 

As an example, the structure denoted [ZnF9(SR)3(SH)4Pc+H]+ refers to a protonated fragment of 

a ZnF9(SR)7Pc molecule in which four octyl chains have been cleaved, leaving behind four thiols 

and three intact octylthio groups. 

From the UV-Vis spectroscopy and TLC analysis, it appears that all of these compounds 

are stable in solution over the timescale of the mass spec analysis. Thus, it is likely that these 

fragmentations occur during the laser ablation. This is further corroborated by the fact that the 

relative intensity of the fragmentation peaks was observed to increase with increasing laser power. 
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Figure C7. Mass spectrum of ZnF16Pc in a DHB matrix. An expanded view of the region immediately 
surrounding the detected ion peak [ZnF16Pc]+. The black trace is the experimental data obtained in positive 
ion detection mode. The vertical red lines correspond to the expected theoretical isotopic distribution, 
calculated using ChemBioDraw Ultra 14.0 and scaled to the highest observed peak. The inset shows the 
full spectrum over the entire mass range observed, from 0 to 5000 Daltons, with no other ions or fragments 
visible. 
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Structure Observed Mass Range Expected Mass Range 

[ZnF15(SH)Pc]+ 877.71 883.77 877.91 883.90 

[ZnF15(SR)Pc+H]+ 990.96 997.04 991.04 997.04 

[ZnF12(SR)2(SH)2Pc]+ 1144.12 1150.12 1144.10 1150.10 

 

 

 

Figure C8. Mass spectrum of zinc (II) octylthiopentadecafluorophthalocyanine (ZnF15(SR)Pc) in a DHB 
matrix. A very small amount of fragmented tetra-substituted Pc also appears to be present, as well as 
significant fragmentation of the primary compound. The structural notation is described in detail above. 



169 

 

Structure Observed Mass Range Expected Mass Range 

[ZnF13(SH) 2(SH)OPc]+ 1145.70 1153.74 1146.12 1153.11 

[ZnF13(SR)3Pc+H]+ 1242.88 1249.90 1243.26 1250.25 

 

 

 

 

 

Figure C9. Mass spectrum of zinc (II) tris(octylthio)tridecafluorophthalocyanine (ZnF13(SR)3Pc) in a DHB 
matrix. A small amount of an oxidized fragment ion is also present. The structural notation is described in 
detail above. 
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Structure Observed Mass Range Expected Mass Range 

[ZnF12(SR)4Pc]+ 1368.28 1376.31 1368.35 1376.35 

[ZnF11(SR)5Pc]+ 1494.39 1501.37 1494.46 1501.47 

  

 

 

 

 

 

Figure C10. Mass spectrum of zinc (II) tetrakis(octylthio)dodecafluorophthalocyanine (ZnF12(SR)4Pc) in a 
DHB matrix. A very small amount of the pentakis- substituted product is also present. The structural notation 
is described in detail above.  
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Structure Observed Mass Range Expected Mass Range 

[ZnF11(SR)5Pc]+ 1494.35 1503.42 1494.46 1501.47 

[ZnF10(SR)6Pc]+ 1620.47 1628.48 1620.57 1629.57 

  

 

 

 

 

 

 

Figure C11. Mass spectrum of Zinc (II) pentakis(octylthio)undecafluorophthalocyanine (ZnF11(SR)5Pc) in a 
DHB matrix. A very small amount of the hexakis- substituted product is also present. The structural notation 
is described in detail above. 
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Structure 

Observed Mass 
Range 

Expected Mass 
Range 

[ZnF10(SR)6Pc]+ 1620.43 1629.44 1620.57 1629.57 

[ZnF9(SR)7Pc]+ 1745.54 1754.51 1746.68 1755.68 

 

 

 

 

 

 

 

 

Figure C12. Mass spectrum of Zinc (II) hexakis(octylthio)decafluorophthalocyanine (ZnF10(SR)6Pc) in a 
DHB matrix. A very small amount of the heptakis- substituted product is also present. The structural notation 
is described in detail above. 
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Structure Observed Mass Range Expected Mass Range 

[ZnF9(SR)7Pc]+ 1746.54 1755.56 1746.68 1755.68 

[ZnF8(SR)8Pc]+ 1872.63 1881.64 1872.78 1882.78 

 

 

 

 

 

Figure C13. Mass spectrum of Zinc (II) heptakis(octylthio)nonafluorophthalocyanine (ZnF9(SR)7Pc) in a 
DHB matrix. A very small amount of the octakis- substituted product is also present. The structural notation 
is described in detail above. 
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Structure Observed Mass Range Expected Mass Range 

[ZnF9(SR)7Pc]+ 1747.87 1755.06 1746.68 1755.68 

[ZnF8(SR)7(SH)Pc]+ 1759.87 1767.88 1760.66 1769.66 

[ZnF8(SR)7(SH)OPc]+ 1776.88 1784.86 1776.65 1785.65 

[ZnF8(SR)8Pc]+ 1872.99 1882.98 1872.78 1882.78 

[ZnF7(SR)9Pc]+ 2000.10 2009.14 1998.89 2008.88 

 

  

 

 

 

Figure C14. Mass spectrum of Zinc (II) octakis(octylthio)octafluorophthalocyanine (ZnF8(SR)8Pc) in a DHB 
matrix. Some fragmentation and oxidation products are present, as well as very small amounts of the 
heptakis- and nonakis- substituted products. The structural notation is described in detail above. 
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Structure Observed Mass Range Expected Mass Range 

[ZnF6(SR)10Pc]+ 2125.72 2135.74 2125.00 2134.00 

 

  

 

 

 

 

 

 

Figure C15. Mass spectrum of Zinc (II) decakis(octylthio)hexafluorophthalocyanine (ZnF6(SR)10Pc) in a 
DHB matrix. Very small amounts of oxidized fragment ions are also present. The structural notation is 
described in detail above. 
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Structure Observed Mass Range Expected Mass Range 

[ZnF5(SR)10(SH)OPc+H]+ 2156.13 2165.22 2155.98 2165.97 

[ZnF5(SR)11Pc+H]+ 2252.26 2260.27 2252.11 2262.10 

 

  

 

 

 

 

Figure C16. Mass spectrum of Zinc (II) undecakis(octylthio)pentafluorophthalocyanine (ZnF5(SR)11Pc) in a 
DHB matrix. A small amount of an oxidized fragment ion is also present. The structural notation is described 
in detail above. 
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Structure Observed Mass Range Expected Mass Range 

[ZnF5(SR)11Pc+H]+ 2252.16 2262.19 2252.11 2262.10 

[ZnF4(SR)12Pc+H]+ 2378.27 2388.29 2378.21 2388.21 

 

  

 

 

 

 

 

Figure C17. Mass spectrum of Zinc (II) dodecakis(octylthio)tetrafluorophthalocyanine (ZnF4(SR)12Pc) in a 
DHB matrix. A small amount of the undecakis- substituted product is also present. The structural notation 
is described in detail above. 
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Structure Observed Mass Range Expected Mass Range 

[ZnF5(SR)11Pc+H]+ 2252.04 2261.16 2252.11 2262.10 

[ZnF4(SR)12Pc+H]+ 2378.20 2388.15 2378.21 2389.22 

[ZnF3(SR)13Pc+H]+ 2504.29 2513.27 2504.32 2515.31 

[ZnF2(SR)14Pc+H]+ 2630.39 2639.42 2630.43 2642.42 

 

  

 

 

 

 

Figure C18. Mass spectrum of Zinc (II) triskadecakis(octylthio)trifluorophthalocyanine (ZnF3(SR)13Pc) in a 
DHB matrix. Small amounts of the undecakis-, dodecakis-, and tetradecakis- substituted products are also 
present, as well as some unidentified smaller fragments. The structural notation is described in detail above.
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Structure Observed Mass Range Expected Mass Range 

[ZnF3(SR)13Pc]+ 2503.85 2513.86 2503.32 2514.31 

[ZnF2(SR)14Pc]+ 2629.98 2640.98 2629.42 2641.42 

  

 

 

 

 

 

Figure C19. Mass spectrum of Zinc (II) tetradecakis(octylthio)difluorophthalocyanine (ZnF2(SR)14Pc) in a 
DHB matrix. A small amount of the triskadecakis- substituted product is also presents. The structural 
notation is described in detail above. 
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Structure Observed Mass Range Expected Mass Range 

[Zn(SR)15(SH)OPc]+ 2789.12 2797.12 2786.50 2797.51 

[Zn(SR)16Pc]+ 2882.19 2894.17 2881.64 2893.64 
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Figure C20. Mass spectrum of Zinc (II) hexadecakis(octylthio)phthalocyanine (Zn(SR)16Pc) in a 
DHB matrix. Small amounts of some oxidized fragments are also present. The structural notation is 
described in detail above. 
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Appendix D. Supporting Information for Chapter 5 

D1. Z-Coordinate Plots 

Figure D2. Z-coordinates of the core atoms of H2TPP (left) and ZnTPP (right). 
Carbon atoms are black and nitrogen atoms are blue. 

Figure D1. Z-coordinates of the core atoms for the three principle conformations of Zn(NO2)TPP. 
The red arrow points to the nitro-bearing pyrrole carbon. The horizontal axis is arbitrary. The planar 
deviations increase on going from the ruffled to intermediate to saddled conformations. Carbon 
atoms are black and nitrogen atoms are blue. 
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Figure D3. Z-coordinates of the core atoms for the four atropisomers of H2(NO2)4TPP. The 
horizontal axis is arbitrary. Carbon atoms are black and nitrogen atoms are blue. 

Figure D4. Z-coordinates of the core atoms for the four atropisomers of Zn(NO2)4TPP. The 
horizontal axis is arbitrary. Carbon atoms are black and nitrogen atoms are blue. 
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Figure D5. Z-coordinates of the core atoms for some of the conformers of 
H2(NO2)5TPP. The red arrow points to the nitro-bearing pyrrole carbon. The 
horizontal axis is arbitrary. All of the atropisomers adopt an intermediate 
conformation. Carbon atoms are black and nitrogen atoms are blue. 
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Figure D6. Z-coordinates of the core atoms for some of the conformers of Zn(NO2)5TPP. 
The red arrow points to the nitro-bearing pyrrole carbon. The horizontal axis is arbitrary. 
Carbon atoms are black and nitrogen atoms are blue. 
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Figure D7. Z-coordinates of the core atoms for some of the conformers of H2(NO2)6TPP. 
The red arrows point to the nitro-bearing pyrrole carbons. The horizontal axis is arbitrary. 
Carbon atoms are black and nitrogen atoms are blue. 
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Figure D8. Z-coordinates of the core atoms for some of the conformers of Zn(NO2)6TPP. 
The red arrows point to the nitro-bearing pyrrole carbons. The horizontal axis is arbitrary. 
Carbon atoms are black and nitrogen atoms are blue. 
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D2. Molecular Energy Level Diagram for H2(NO2)5TPP 
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Figure D9. Schematic energy level diagram of the two principle conformations of H2(NO2)5TPP. 
The thick lines represent optimized or relaxed nuclear geometries, and the dashed lines represent 
(unknown) barriers to interconversion between these relaxed geometries. The unrelaxed 
geometries may be able to internally convert to either stable structure (for both S0 and S1), 
potentially scrambling the populations. 
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D3. Ground State Orbital Energies for the Zinc Nitro-Porphyrins 

 

Figure D10. Ground state orbital energies for the series of zinc  nitro-Pors. The HOMO-LUMO gap energies 
are given in the gap for each compound. The energy levels are color coded according to the localization of 
the orbital density, as shown in the key at the bottom. Orbitals involved in the first few TD-DFT transitions
are marked with open circles. 
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D4. TD-DFT Results for the Free Base Nitro-Porphyrin 

 

Table D1. TD-DFT transitions for two conformations of H2(NO2)6TPP. 

ΔE (eV)a λ (nm)b f c Wavefunctiond 

H2(NO2)6TPP (Intermediate, αxxx) 

1.987 624 0.033 12% (H-1→L) + 13% (H-1→L+1) + 37% (H→L) + 37% (H→L+1) + … 

2.087 594 0.041 13% (H-1→L) + 10% (H-1→L+1) + 40% (H→L) + 36% (H→L+1) + … 

2.659 466 0.160 37% (H-1→L+1) + 9% (H→L) + 47% (H→L+6) + … 

2.709 458 0.419 48% (H-1→L) + 6% (H-1→L+1) + 15% (H→L+1) + 23% (H→L+7) + … 

H2(NO2)6TPP (Saddle, βxxx) 

1.954 635 0.034 24% (H-1→L) + 74% (H→L+1) + … 

2.017 615 0.059 18% (H-1→L+1) + 81% (H→L) + … 

2.608 475 0.138 9% (H-1→L) + 36% (H-1→L+1) + 44% (H→L+6) + … 

2.672 464 0.427 46% (H-1→L) + 12% (H-1→L+1) + 12% (H→L+1) + 17% (H→L+7) + … 

2.917 425 0.021 94% (H-1→L+2) + … 

3.000 413 0.017 83% (H-1→L+5) + 8% (H→L+7) + … 

a Energy of the transition in electron volts. Only transitions with energies below 3.0 eV are given. b Transition 
wavelength in nanometers. c Calculated oscillator strengths. Only transitions with oscillator strengths greater 
than 0.01 are given. d Excited state wavefunction, in terms of the contributions of single excitations of the 
ground state Slater determinant. Only single excitations with contributions greater than 5% are given. The 
HOMO is designated “H”, the second HOMO is “H-1”, etc. The LUMO is designated “L”, the second LUMO 
is “L+1”, etc. Excitations involving only orbitals corresponding to Gouterman’s four-orbital model are 
shown in bold. Excitations which populate a nitro or nitro-like orbital are underlined. 

Figure D11. Electron density-difference maps for the lowest energy transitions of 
H2TPP. The red regions are areas that lose electron density in the transition, and 
the green areas gain electron density. 
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Figure D13. Electron density-difference maps for the lowest energy transitions of the intermediate 
(top row) and saddle (bottom row) conformations of H2(NO2)TPP. The red regions are areas that 
lose electron density in the transition, and the green areas gain electron density. 

Figure D12. Electron density-difference maps for the lowest energy transitions of 
the αβαβ atropisomer of H2(NO2)4TPP. The red regions are areas that lose electron 
density in the transition, and the green areas gain electron density. 
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Figure D14. Electron density-difference maps for the lowest energy transitions of the αβαβ 
atropisomer of H2(NO2)5TPP. The red regions are areas that lose electron density in the transition, 
and the green areas gain electron density. 
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Figure D15. Electron density-difference maps for the lowest energy transitions of the βαβα 
atropisomer of H2(NO2)5TPP. The red regions are areas that lose electron density in the transition, 
and the green areas gain electron density. 
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Figure D16. Electron density-difference maps for the lowest energy transitions of 
the αβαβ atropisomer of the intermediate structure of H2(NO2)6TPP. The red 
regions are areas that lose electron density in the transition, and the green areas 
gain electron density. 
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Figure D17. Electron density-difference maps for the lowest energy transitions of the βααα 
atropisomer of the saddle structure of H2(NO2)6TPP. The red regions are areas that lose electron 
density in the transition, and the green areas gain electron density. 
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