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Abstract

ON THE STOCHASTIC SEQUENTIAL AND NON-SEQUENTIAL 
PRODUCTION PLANNING PROBLEM

fay
Shivaji Rao 

Adviser: Prof. George O. Schneller IV.
This dissertation examines a stochastic sequential and a non-sequential 
capacitated production planning problem (Bitran and Yanasse, 
Operations Research, 32 , 5 , 1984) where the demand of each period is  
a continuous random variable. The stochastic non-sequential production 
planning problem is  at first examined with sequence independent and 
then with sequence dependent set-up costs and the worst case error 
determined when an approximate solution is  obtained by solving the 
deterministic equivalent. We prove in general that the worst case error 
is  not dependent on the nature of the set-up cost. Based on a result due 

to Huang, Ziemba and Ben-Tal (Operations Research, 25 , 2 , 1977) we 
identify a family of approximations for both the stochastic sequential 
and the stochastic non-sequential production planning problem. We find 
a problem which bounds the stochastic sequential problem of two period 
from above: the upper bound coupled with Bitran and Yanasses’ 
(Operations Research, 32 , 5 , 1984) lower bound enable us to perform 
worst-case analysis. Given uniformly distributed demand, this analysis 
produces results with in 23% of optimality. Finally, we derive 
conditions such that an order-up-to the service level policy is  optimal 
for the T-period stochastic sequential capacitated production planning 
problem.
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INTRODUCTION

1.1 Nonsequential, Capacitated, Production Planning Problem

In a recent review of lot-sizing problems by (Bahl,Ritzman and Gupta, 
1987), the authors note that future research must be directed to solve 

more realistic lot-sizing problems. One of the issues, they refer to is  
the incorporation of uncertainty (Stochastic Demand Distribution) and 
they suggest the development of heuristics and approximations.

Further, they differentiate between the Uncapacitated and the Capacitated 
Lot-size problem. They contend, that since the Uncapacitated, single 

product Lot-size problem is  not NP-Complete, it is  fairly tractable 
(Bitran and Yanasse, 1982). The Wagner-Whitin Algorithm(1958), and 

a number of heuristics, such as the, Lot-for-Lot, Modified EOQ,
Periodic Order Quantity, Least Unit Cost, Part Period Balancing and 
the Silver and Meal (1973), perform well computationally.

The difficulty, they note, lies in developing reasonable solutions for the 
stochastic and the deterministic version of the capacitated lot-size 
production planning problem, because even the deterministic, capacitated 
production lot-size problem is NP-Hard (Florian, Lenstra, Rinnooy Kan, 
1980). The problem is however solvable in polynomial time for 
special cost structures (Bitran and Yanasse, 1982). Approximations for 
the more intractable, single and multiproduct, capacitated, 
deterministic lot-size problem have recently been reported in the 
literature (Bitran and Matsuo, 1986a, 1986b).



The deterministic or the stochastic problem solved in the manner cited 

above, has one major drawback, no effort is  made to incorporate the 

decision making behavior of the rational decision maker. It is  

im plicitly assumed that decisions are nonsequential in nature, which 

obviously does not conform to the practical situation, where decisions 

for each and every time period are revised as better forecasts for 
demand are known. Thus to incorporate a realistic decision making 

behavior, we differentiate between non-sequential and sequential 
production planning problems. To summarize, our effort w ill focus on 

solving the most intractable (but the most realistic) problem which is  
the stochastic, capacitated, sequential, production planning problem.

To this end, its seem s likely that no direct optimal solution procedures 

are available, given the complex nature of these problems. A line of 
research, which might be fruitful would be to examine the solution of 

the nonsequential, capacitated, deterministic, production planning 
problem as an approximation to the sequential, capacitated, stochastic, 
production planning problem.

1.2 Sequential, Capacitated Production Planning Problem

The literature to date concentrates on solution procedures for the 
uncapacitated/capacitated, deterministic, production planning problem 
(Baker et al, 1978, Bitran and Yanasse, 1982, Bitran et al, 1984, 
Bitran and Matsuo, 1986a, 1986b, Florian and Klein, 1971, Florian et 
al, 1980, Jagannathan and Rao, 1973, Karmarkar et al, 1987, 
Korgaonker, 1977, Love, 1973, Swoveland, 1975 and see (Bahl et al,
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1987) for other references)) and for the stochastic uncapacitated 

problem, (see Schwarz (1981) for references). The stochastic 
capacitated problems themselves have not often been addressed directly. 
Bitran and Yanasse (1984), have developed good approximations for the 
stochastic capacitated production problem where period demands are 
familiar random variables and production decisions are made non­
sequential ly for T-time periods. For a particular class of sequential T- 
period problems, Bitran and Yanasse produced tractable related 

problems whose solution values were a lower and an upper bound to the 
solution value of their stochastic, capacitated, sequential problem. The 
upper bound was derived by solving a single period stochastic 
capacitated problem on a rolling horizon basis, while the lower bound 
was the solution to a linear deterministic equivalent problem. For a 

specific typical numerical example, they found that the relative error of 
the deterministic approximation to the stochastic problem was at most
3 .5  %.

Exact algorithms for the sequential two-period and the T-period 

problems have recently been reported in the literature: Birge (1985), El 
Agizy (1967), and Everitt and Ziemba (1979): but for all cases at least 
one of the random variables was assumed to be discrete. Since the 
sequential problem is a stochastic non-linear programming problem, 
other bounds and exact algorithms for variants of the problem have 
recently appeared in the literature: Ben-Tal (1985), Ben-Tal and 
Teboulle (1986), Ben-Tal and Teboulle (1987), Birge and Wets (1987), 
For special cost structures of a two-stage stochastic program, 
distribution-free upper and lower bounds have been found which can be



made to converge to the optimal solution by evaluating them over finer 
and finer partitions of the domains of the random variables, provided 
that the objective functions are strictly convex on those random 
variables: Ben-Tal and Hochman (1972), Huang, Vertinsky and Ziemba 

(1977), Huang, Ziemba and Ben-Tal (1977).

1 .3  Worst-Case Analysis and developing performance bounds

Worst-Case Analysis of Heuristic and Approximations is motivated by 
the recent work of Karp (1972, 1976) and Cook (1971) who crystallized  
the growing impression that it is  difficult if not impossible to devise 
polynomial time algorithms for most combinatorial optimization 
problems. A sim ilar analysis is  found in Karp (1986) as well.

Devising performance bounds for intractable problems, provides a 
practical benefit only if they are evaluated for their efficiency. Natural 
measures of bound efficiency are the relative error which is  itself  
bounded by the relative difference between the upper and the lower 
bound. An alternative measure is  a probability density function of the 
relative error.

A review of the literature yields, a small sample of studies which 
develop worst-case results of production planning approximations and 
heuristics (Axsater, 1982, 1985, Bitran, Magnanti and Yanasse, 1984, 
Bitran and Yanasse, 1984, Bitran and Matsuo, 1986a, 1986b).
Sim ilarly bounds are developed exploiting the property of convexity of 
of functions, over the domain of familiar linear operators (Huang et al,



1977a, 1977b, Avriel and Williams, 1970, Madansky, 1960, Dantzig 

and Madansky, 1961).

1.4 Organization of the Dissertation

The purpose of this dissertation is to bridge the gap between the more 
realistic (Stochastic) and the more tractable (Deterministic), versions 
of the production planning problem. We shall investigate these problems 

when they have variable capacity constraints and incorporate both 
sequential and nonsequential decision making behavior. In the stochastic 
problem, when we assume decisions are made sequentially, we exclude 
fixed costs for set-up, and propose to determine a deterministic 
equivalent. Given Uniform distribution the equivalent is  robust and in 
the worst case is  found to produce results within 23% of optimality.

In addition we study a stochastic non-sequential production planning 

problem, first with sequence independent and then with sequence 
dependent set-up costs and determine the worst case error if an 
approximate solution is obtained by solving the deterministic equivalent. 
The approach is justified by noting that the literature is  somewhat 
sparse, containing a number of heuristics and approximations. 
Karmarkar, Kekre and Kekre (1987), did produce a number of heuristics 

and approximations which solve the deterministic capacitated version in 
polynomial time.

Further, we prove, that the worst case error is not dependent on the 
nature of the set-up costs. We also prove that the stochastic version of



the non-sequential, single product, production planning problem of 
(Karmakar, Kekre and Kekre, 1987) is  an upper bound for a stochastic 
production planning problem first introduced by Bitran and Yanasse 
(1984), and the worst case behavior has an identical bound.

Based on a result due to (Huang, Vertinsky and Ziemba, 1977a, Huang, 
Ziemba and Ben-Tal, 1977b), we identify a family of approximations 
for the more intractable stochastic sequential, the stochastic non­
sequential production planning problem of Bitran and Yanasse (1984) 

and the Stochastic version of the problem suggested by Karmarkar, 
Kekre and Kekre (1987). It is  conjectured, since the approximations 

are a consequence of the convexity of the holding cost (convex in 2  d J , 
that a family of approximations can be developed for problems with 
more general cost structures with unaltered holding cost.

Finally, we derive conditions such that an order-up-to the service level 
policy is optimal for the single period stochastic sequential capacitated 
production planning problem. The nature of the policy is  such that it is  

'myopic’ and does not consider cases when cost situations demand 
production quantities in excess of the amount which merely satisfy the 
service level requirements for the planning periods in question.
Further by induction, additional conditions are derived, and the results 
extended to the T-period problem.
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THE STOCHASTIC NON-SEQUENTIAL PROBLEM

2.1 Introduction

It is  quite common in the classical economic literature to maximize the 

expected utility or minimize the expected disutility, discounted to the 
present, which is  in effect a non-sequential approximation of a 

sequential decision making process. In this chapter we concentrate on 
two members of the familiy of non-sequential decision making 

production problems.

At first we compare the stochastic version of the non-sequential, single­
product, production planning problem of Karmarkar et al (1987) with a 
stochastic production planning problem first introduced by Bitran and 

Yanasse (1984).

Further, we determine a deterministic lower bound of the stochastic 

version of the production planning problem of Karmarkar et al (1987) 
and analyze the worst case error if the solution is  approximated using 
the solution of the deterministic equivalent. The approach is justified  
since a review of the literature yields a number of heuristics and 
approximations which solve the deterministic capacitated version in 
polynomial time (Karmarkar et al, 1987).

7



2.2 Notations for Chapter 2

- the production cost per unit in period t.
- production labor overtime cost per hour in period t.
- holding cost per unit in period t.
- Units produced in period t.
- Units held in inventory from period t to t+1 (Stockout if 1̂  < 0)

- Max(It,D)
- Probability that stockout w ill occur in period t.
- Overtime hours worked in period t.
- Demand in time period t.
- Regular labor hour capacity per period.
- Labor hours required to produce one unit.
- The number of units produced through period 1 through t to 

achieve the mininum acceptable service level in period t (non­
sequential problem).

- Cumulative demand for time period 1 through t.
- The probability density function of cumulative demand d̂  in 

time period t.
- The cumulative distribution function for cumulative demand d̂ .
- The unit set-up cost for period t.
- The sequence dependent reservation cost in period t.
- The start-up cost in time period t.
- The binary variable which signifies whether the machine is  on 

or off in time period t.
- The binary variable which signifies whether the machine is  

turned on or off in period t.



2.3 Problem Statements

2 .3 .1  Problem Statement I

In our first production planning problem, we make the following
assumptions: stochastic demand, non-sequential decision making
behavior, variable capacity lim its on regular time production and more
significantly, the incorporation of sequence dependent and sequence
independent set-up costs. The assumption on set-up costs is  significant
because it allows us to implicitly consider the situation, that it is
sometimes cost effective to reserve machines for production for a
successive period ( 1 )  eventhough no production is being undertaken
((<5(X )̂=0) which satisfies constraint (6)), because the start-up costs of
time period t (q̂ ) may be significantly greater than the sequence
dependent reservation costs of time period t (e )̂. Further, we do not
include any stockout costs, because stockout costs are difficult to
estimate (Bitran and Yanasse, 1984) but instead consider a chance
constraint (costraint (2) ) in our set of constraints. Thus we state the
first of our problems, where the problem and its optimal objective

* *function value are denoted by (SP ) and v(SP ]_ respectively.

(SP*)

v(SP*) = Min 2  [(etYt + q ^ )  + - J , y k + Iq)++ +

+ DtOt)]
S.t.

mXt - £  Cj. t = 1, 2, . . . ,  T. (1)

9



t
2  X. + In * 1 t = 1, 2, T. (2)

k=l u 1
Ft (Jt) = 1 - crt t = 1, 2, T. (2’)

y  _ /  1 if the machine is on in period t \

 ̂  ̂0 if  the machine is shut off '

^  _  f 1 if the machine state changes from off to on in period t \

 ̂ x0 otherwise (4)

z t *  V  Yt - i  (5)
Yt 2  <5(Xt) (6)

4(>C) = f l i f X t > 0 }  (7)
x0 otherwise'

Xt, Ot ^ 0 (8)
X = { X 15 X2 XT} (8")

The deterministic equivalent of (SP ) is  (SP) and it is  obtained by

replacing
t t

Erf ht ( 2  (Xk - yk) + I0) by ht ( 2  Xk + IQ - (jJ,  where ^  is  equal
t k— 1 k— 1

E 2  yj, = 2  Ety,) = E (ty-
k=l K k=l K 1

2 .3 .2  Problem Statement II (Bitran and Yanasse, 1984)

We consider the problem of determining production plans over T time 
periods. Production can occur at any time period and demands are

to

10



assumed to be stochastic with known distribution functions. Any demand 
that occurs when the system is out of stock is  backordered. Moreover, 
in our second production planning problem we only consider sequence 
independent set-up costs and do not consider the realistic situation that 
it is  sometimes cost effective not to turn off the machine at the end of a 
production run, even though a production run is not scheduled for the 
subsequent time period. Thus we present the second non-sequential 
problem, where the problem and its optimal objective function value 
are denoted by (SP) and v(SP) respectively.

T 1 +v(SP) = Min E 2  [ s t4(Xt) + vtXt + otOt + ht ( 2  (Xp- dp) + IQ)+]
X ^t t= l r= l

s.t .

m v p t s c t
1 = 1 , 2 , T a )

k?!Xk + ’o H
1 = 1 , 2 , T •••? J (2)

Ft (it) = 1 - «t 1 = 1 , 2 , T •••? 1 (2’)

i (Xt) = ( l i f X t > 0 '. 
 ̂0 otherwise (7)

The deterministic equivalent of (SP) is  (DP). It is  again obtained by 
replacing

Edt h t(k ! i (Xk’ yk> +  Iq1+  by  ht<J i X k  +  Iq " Pl> ’ w h e re  Mt
t

is equal to E 2  yi,- 
k=l k

l i



2.4 Relationship between v(5P) and v(5P )

Theorem i:  If ê  ^ s  ̂ then v(SP ) ^ v(SP).
Proof: Let (X, 0) be any choice of vectors feasible in (SP). Then it 
is  feasible in (SP*), because of constraints, (1), (2), (2’), (7) and (8). 
But given a random choice of a feasible solution, and substituting in 

(SP ) w ill result in an objective function value greater than in (SP) 
because ^ d(X^), which reflects the fact that in (SP ) an additional 
cost is incurred even though nD production is undertaken in period t. 

Moreover the set up cost has a sequence dependent cost component 
which is incurred at the time a production run is scheduled and the 
machine is turned on. Therefore for given (X,0), feasible in (SP),

T T
2  fetYt + qtZt) ^ 2  for t  = 2 ’ — ’ Q-E-D.
t™ i  t̂ ~ 1

Hr
2.5 Deterministic equivalent of v(SP )_

Theorem 2: v(SP ) ^ v(SP)
t , t t

Proof: Since ht ( 2 ( x k" yk̂  + W  is convex in 2  Yk> and 2  Yk is a 
Ic— 1 k— 1 k - 1

random variable, then using Jensen’s  inequality (Ross, 1976. p. 340)

 ̂ 'j' ^
2  [Ej ĥ  ( 2  x k + “ 2  yk)t ^ 2  [ M 2  x k + *o ~ t̂^"

t= l at 1 k=l k U k=l t= i k=i u 1 
t

where p. = 2  E (y.). Q.E.D.
1 k=l k

la



2 .6  Family of Approximations

We develop a sequence of approximations, by adopting a method due to 

Huang, Ziemba and Ben-Tal (1977), who compute the weighted 

average of a set of partial means, by subdividing the domain (a,b) of a 
convex function ,<£(p) , convex on random variable p, at arbitarary 
points, /ig=E(p), and the result is  stated as Theorem 3 of the 
dissertation.

Theorem 3: (Huang, Ziemba and Ben-Tal, 1977)
(a) Suppose (a,b) is  subdivided at arbitrary points dg, . . . ,  dm, where a = 

dg < ... < dm = b. Let Jm = 2  j l j 0 cf^(jS^), denote the m-fold
d. i d.

generalized Jensen bound, where or.= /  dF(p) > 0, ft. = cr /  pdF(p)
1 d i - i  d i - i

i = 1, 2, . . . ,  m. Then assuming that the partition corresponding to k+1 
is  at least as fine as that corresponding to k for k = 1, . . . ,  m-1, we 
obtain J° 5 J1 £ J2 . . .  £  Jm £ E <Mp).

(b) Suppose (a,b) is  subdivided n times on the basis of the partial means

■=2kof the previous subintervals. Let = 2  k= 0 ,1 , . . . ,  n,
denote the generalized Jensen bound obtained from the kth subdivision. 
Then Jg £ J  ̂ £ J2 ^ . . .  ^ Jn ^ E ij>(p), where Cg^=l, /igj=/igand the 
ith interval the kth subdivision is  denoted by [a^.sb^.j, 

b, . b. .
cki E !dF{p) > A'ki E4  ! pdF(p) /  cki’ whereki ki

ck+ l , 2 i - l  5 /a kk‘dF<P) > 0 and ck + l ,2 i > 0 -

13



Following Theorem 3 we state a variant of our problem (SP), as 
(SP;Jn), which is obtained by replacing the expected holding cost in (SP) 
by its generalized Jensen bound Jn (illustrated in Theorem 4 as 
well). Thus (SP;Jn) is  stated as:

• T
(SP; Jn) v(SP;Jn) = Min 2  [S|.<J(Xt) + vtXt + otOt + JJ

X t—1
t t

where J is  calculated by letting t£(p) = h, ( 2  X. + In - 2  Y\) an{̂  n t k_ i  k u k=i k

p = 2 y k-
k=l k

Theorem 4: v(SP) ^ v(SP;Jn), . . .  ^ . . .  ^ v(SP;Jj) ^ v(DP)
Proof: We simply illustrate our method of proof by evaluating one 
candidate problem, say v(SP;J^), because generating relationships for 
all other terms in the inequality chain is  a simple task Df subdividing 
the domain of the random variable p.

If we now calculate Jj by letting <J>(p) = ht ( 2  \  + Iq “ 2  yk)?
k— 1 k— 1

t t
p = 2  yn  and 2  + = Q then A  is  written as:

k=l k k= l  k u 1

J 1 =  t / o f t  W  ht< o  -  t / o W v A t W +

A w  V  °  ■ A w  v A w

t t 
where /j. = E 2  yk = 2  E(yk)- 

L k=l k k=l k
and

1*



T T
v(SP) * Min 2  [stJ(Xt) + vtXt + otOt + * Min 2  [s^P ^) +

X t— 1 X t— 1

+ ° t ° t + ht (k| j x k + ’o - 4  = V<DP> (9)

Thus in (9) we have generated a family of approximations which span
the continuum of values between the optimal objective function value of

problem (SP) and problem (DP) respectively. What remains is the
determination of the worst-case relative error of obtaining approximate

★
solutions to problems (SP) and (SP ) by solving their deterministic 
equivalents (DP) and (SP) respectively. This is  the focus of our 
attention in section 2 .7 .

2 .7  Relative Error Analysis of (SP ^

The methodology of this section which w ill be used again in Chapter 3 is  
closely related to the analysis of Bitran and Yanasse (1984).

Let (X, D, ¥ ,  2) be optimal in v(SP), which is  also feasible in v(SP ). 
Then

v(SP*) S E { j ?  (et* t + qt2 t + ht ( j x k + I0 - j : y k>++ vtXt + o & )  }

Let v(SP ) - v(SP) = A, ^ then 'S' X +1
T t t k= 1  ̂ ^

A ht (Ft (, | * k + v  - + w + h t w  - ddt}

15



From Theorem 2 we have A ^ 0; therefore in the event that both 
problems are solved at the same feasible set points, the relative error 

(r.e.), one would experience is the objective function value by using the 
solution of SP to approximate the solution of SP , would be bounded as 

follows:

r.e. * A/v(SP*) £ A /v(SP). (ID)

If following Bitran and Yanasse (1984) one assumes, O. ^ D, 
t T L

j f k  + ’o *  Jt’ j | * k  + I0 = JT’ etYt *  °> s tZt a  0 . vt = V and

ĥ  = h = r.v we obtain (11).

T Jt

r t ! i ( * '  w ddt)
r.e. £----- ----------- j --------------------------------------------  (11)

rt? 1(Jt " /' t ) + i T _ I0

which is identical to the relative error bound of Bitran and Yanasse 

(1984).

Remark: It is no coincidence that the relative error bounds of the 

two stochastic non-sequential problems are identical, because in 
obtaining A the terms containing the set-up costs drop out and thus we 

make the observation that the worst-case error bound is  independent of 
the nature of the set-up cost.
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THE APPROXIMATIONS TO THE
STOCHASTIC SEQUENTIAL PROBLEM 

3.1 Introduction

As stated in Chapter 2, the stochastic ron-sequential problem is an 
approximation of the sequential decision making process, and an effort 
is  made to obtain optimal lot-sizes (or production quantities), which 

minimize the long-run total cost.

In this chapter we show that a two-period stochastic capacitated 
sequential production problem can be approximated by a quadratic 

program from above and by a linear program from below in the special 
case where the demand random variables are distributed uniformly and 
maximum demand bounds maximum capacity and that these 
approximations yield optimal objective function values and that must be 
quite close to the optimal objective function values of the optimal.

17



3 .2  Notations for Chapter 3

vt - The production cost per unit in time period t.

°t - The production labor overtime cost per hour in period t.

\ - Holding cost per unit in period t.

x t - Units produced in time period t.
- Units held in inventory from period t to t+1.

't+ - Max (It, 0)
- Probability that stockout w ill occur in time period t.
- Overtime hours worked in time period t.
- Demand during time period t.

c t - Regular labor hour capacity per period.

ct - Capacity limit on overtime hours in time period t.
m - Labor hours required to produce one unit.

- The number of units produced in period t to achieve the 
minimum acceptable service level in time period t.

*b - The probability density function of demand for time period t.

Ft - The cumulative distribution function for demand ŷ  for time 
period t.

- Inventory at the beginning of time period t.

“ t - Maximum inventory in time period t.

18



3.3  Problem Statement

In problems (SP) and (SP ) (Chapter 2), we had assumed, stochastic 
demand, nonzero set-up costs (both sequence dependent and sequence 
independent setup costs), zero stockout costs and variable capacity 

lim its on regular time production. In addition we had assumed non­
sequential decision making behavior. We alter some of these 

assumptions (zero set-up costs, capacity lim its on both regular time as 

well as overtime production levels and sequential decision making 
behavior) and attempt to solve a sequential production planning problem 
first presented by Bitran and Yanasse (1984) where the problem and its 
optimal objective function value are denoted by (S) and v(S) 
respectively.

(S) v ( S ) = g l (I0)

si  tV  = M£ E y ina{vix i + hiix i-yi]+ + di ° i  + s2('i>}

St f W  = Eyt Ut. 1{vtx t + ht [k| 1(x k'yk»+ + Dt ° t + St+1 (It>}

&r+i^T^ = ^

subject to the constraints:

m xt ■ ° t s  c t t =  1, 2, T.. . ,  i . (1)
Prob[ It < 0 I It. j  ] £ ort t =  1, 2, T• i • (2)

° t S o t t =  1, 2, . . . ,  T. (3)

!t = ’t- l + Xt " t =  1, 2, . . . ,  T. (4)
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If distribution functions for demand are known, then constraints (2) and 
(4) take the following form,

2 X k * A t + 2 y k 
k=l 1 k=l K

t = 2, T.

(7)

(8)

Since we assume zero stockout costs, an alternative formulation allows 

us include service level requirements instead. The service level 
requirements (X̂ ) for each period (unlike a cumulative service level 
requirement (Ĵ ) in the non-sequential problem) implicitly lim its the 
number of backorders which is a feature often desired by managers.

3 .4  Deterministic version of problem (S)

Upon substituting the expected values of the random variables (ŷ ) in 
problem (S), we obtain its deterministic version. For our 
analysis in chapter 3 we lim it our attention tD the twD-period problem 
and thus we consider problem (D) for T=2:

2 1 +(D) v(D) = Min 2  [vtXt + h j  2  (Xk - E(yk))]+ + o ^ ]
X t— 1 k— 1

where X = { X^, X2 }.



s .t .
X 1 * A1 (9)
X j + X 2 ^ X2 + E(y i ) (ID)

raXt - O t S C t t = l ,  2 . (11)

Ot £ cfc and Xfc, Ofc * D. t = 1, 2. (12)

The following theorem, proven by Bitran and Yanasse (1984), shows that 
the optimal value of Problem (D) bounds Problem (S) from below.

Theorem 5: v(D) £ v(S)
In fact, they prove the result for the more general situation of T time 
periods: in brief the proof strategy relies on the fact that, if each stage 
of the stochastic program is  convex on the random variable yt, then it is  
possible to repeatedly use the inequality of Avriel and Williams (1970): 
( E Min f(X, z) £  Min E f(X, z) where all expectations and minima 

ex ist).54 X Z

For the assumptions of our simple formulation for (S), the stage 
convexity conditions hold. With this, and the well known inequality of 
Jensen, (given function </>, convex in z, Ez«J>(z) ^ 0(E(z))) the theorem is  
derived. Note that D is solvable by linear programming.

An interesting extension is  determining an upper bound of problem (S). 
We consider a two-period problem where in, the expected cost of the 
second planning period is evaluated with respect to random variable y  ̂
prior to the minimization with respect of X-,. Thus we consider problem

itit  -

(D ) and it is  stated as:
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★★
(D ) v(D ) — ° i ^ i  Ey i iiQ

MX Eyl |IQEy2 |I l^V2X2 + ° 2<=>2 + h2^X l +X2'y l"y2^+}

s.t.

X 1 ^ X 1 (13)
X j + X2 ^ X2 + Max y i (14)
mXt -O t ^C t t = l ,  2. (15)
Ot ^ ct, Xt, Ot S 0 t = 1, 2. (16)

Note the implicit assumption that is  bounded. For any practical 
decision making purpose, y  ̂ might as well be bounded by the number of 
units which can be produced in period 1 and 2 at full, regular and over 
time capacity; i.e ., y  ̂ £ (l/m)(C^ + C2 + c  ̂ + c2 ). Problem(D ) 
differs from Problem (S) in that, for S, the expectation is taken over 
two periods, the second of which incorporates a minimization; thus (S) 
is  essentially a stochastic dynamic programming problem. However, in 
Problem (D ), the expectations are evaluated prior to the 
minimization, producing a programming problem quadratic in yt< 
Further, we obtain constraint (14) by rewriting constraint (10), and 
substituting E(y^) by Max y^. Such a rewrite is theoretically useful 
because we are able to create an artificial upper bound by making the 
the set of feasible solutions of D a subset of the set of feasible
solutions of problem (S), in the special case when T = 2 (See Fig. 1).

5 2



3.5  Relationship between v(D ) and v(5)

Theorem 6: v(D ) ^ v(S)
Proof: Problem (S) can be solved theoretically if  the nested optimization 

problem, 62 1) ’ *s  s° lved prior to solving the first period problem 
g |  (Iq). One inefficient way to do this is  to solve gj (Iq) for all possible 
values of (Xj, O j). If ( and therefore O^) is  known, then the nested 

problem reduces to a function of X2, y  ̂ and O2 . Further, O2 is  a 
function of X2 , if X2 is  the independent variable. Hence the nested 
optimization problem would simply be a function of X2 and y  ̂ if  Xj 
were known. Sim ilar reasoning on problem D allows us to modify both 
S and D : assume that we have fixed on a specific X^, call it X^ j .

From the Avriel-Williams inequality we have,

M£  Ey i f <X2> y l ’ X lj> * Ey i M£  f(X2’ y l ’ X lj> (17)

then,

v(D ) = Min
for all X

v(S) = Min
for all X

(Min g(X1, O J  + Min ( Ev f(X7 , y , , X, .)) }  (18) 
^  X j 1 1 X2 y l  ‘  1 J

[Min g(X j, Oj) + E ( Min ftX j, y L, X ^ )) }  (19) 
1 2i j

and from (17), (18) and (19), we have that

v(D**) * Min[in {  Min g (X ., O ,) + Ev Min f{X -, y , , X , .)]• * v(S)
X  ̂ 1 1 ^1 x2 Z 1 1jJ
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where the outer minimization is taken over all pairs (X1, X9) in the
ifk  1 ^

feasible set of D . This holds since taking a minimum over the larger
•kk

feasible set of problem (S) which includes that of (D ), can only result 
in either a sm aller minimum or no change. Thus we have arrived at an 
inequality which defines the range of solution values to problem S; i.e . 

v(B) ^ v(S) * v(D**).

As D is an LP, and relatively tractable, it is  reasonable to wish to know 
how inaccurate it might be to approximate problem S by problem D. 
Towards that end we explore other bounds and examine the relative 
difference between the upper and the lower bound in sections 3 .11 , 
which itself is  an upper bound of the relative error.

We next explore some variants on the production problems presented so 
far. First consider a variant of problem (D ); where in we replace the 

random variable y2 by its expected value in the cost expression of the 
second planning period and evaluate the expression with respect to 

y p  prior to the minimization with respect to X2 .

(D*) v(D*) = Min {e  lr (vjX j + Oj Oj + h j I X j -y j f )  +

Mjn IIQ V̂2X2 + ° 2 ° 2  + h2 lX l +X2"yr E^ 2 ^ +V

satisfying (9) - (12), the set of constraints for problem (D).
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3.6 Relationship between (D ) and (D)

Theorem 7: v(D ) ^ v(D)
First we need the following lemma:
Lemma 1: The problems below are equivalent:
(A) Min[g(X1 ,O i) + Min f(X 1, X 7, O-O] (X, fixed in the evaluation 

o ff ) .  X1, 0 1 X2,0 2 (20)
(B) Min[g(Xr  Oj) + f(Xr  X2 , 0 2)] (21)

X, o

Proof: If problem (A) is  solved for all possible or admissable values of 
(X j,0^ ), it reduces to a problem of minimizing over a large number of 
subproblems, each a minimization with respect to decision variable X2 . 
Problem (B), on the other hand, minimizes globally from the outset over 

X = (X |, X2), and clearly must arrive at the same solution value.
Proof of Theorem 7: Since h  ̂[X^-y^]+ is convex on y^, we employ 

Jensen’s  inequality to obtain:

E ^ V̂1X 1 °1^1
1 h1[X1-E(y1)]+) (22)

Similarly, as h2 [X^+X2_ E(y2) - y^]+ is  convex on y^, we have 

Ey ^ v2X2 + ° 2 ° 2  + M X1 + X2 " E^  ‘ yl ^  *

(v2X2 + ° 2 ° 2  + h2^X l  + X2 " Ety^ “ E(y l ^  ^

So the lemma and inequalities (22) and (23) yield,

v(D*) = Min (Ey^lvjX^ + o ^  + h  ̂[X^-y^]'*’) + Ey^(v2X2 + ° 2 ° 2  +

h2 [Xj + X2 - E(y2) - y j]+) a  v(D) (24)
Hence v(D ) is  greater than or equal to v(D).
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3 .7  Relationship between (D )and (D

Theorem B: v(D ) ^ v(D )

Proof: Since (V2X2 + °2®2 + ^2 ̂ X1 +X2’y 1 ~y 2^ * s  convex ^  t îen 
using Jensen’s Inequality yields,

Ey2111 V̂;2X2 + ° 2 ° 2  + f’2^X l +X2 'yl ' y2^+* 4
(v2X2 + o20 2 + h2 [X1+X2-y1-E(y2)]+) (25)

Further

V o S ' ^ 2* 2 + °2° 2 + h2 [x i + x 2'yr y2^+) *

Eyl HofV2X2 + ° 2 ° 2  + h2^Xl +X2'y l ' E ŷ2^ +  ̂ ^

Minimizing both sides of (26) over pairs (X. ,Xn) in the feasible set 
★★ ★★ * 

of (D ), one gets v(D ) on the left and on the right one has the
★★ ★ 

objective function of D minimized over a subset of D ’s  feasible set;
★ ★★ 

hence an expression £ v(D ). Therefore v(D ) is  greater than or equal
to v(D ).

3 .8  Family of Approximations

An interesting consequence of convexity led us to the above theorems. 
Based on the observation, other upper bound candidates for Problem (S) 
seem worthy of examination. One common method of finding distribution 
free bounds is based on the principle of partitioning the domain of the 
random variable, operating on each of the resulting subintervals and 
summing, Huang, Vertinsky and Ziemba(1977), Huang, Ziemba and Ben- 
Tal (1977). The summed expression, (say J^), obeys a Jensen-like

st>



inequality of the form: E0(y) ^ ^ $(E(y)), where y is  a random
variable and (ply) is  convex on y. Similarly, if (ply) is  convex and 
bounded on y £ [a,b] then the classical Edmundson-Madansky inequality 
(Madansky, I960; Dantzig and Madansky, 1961) bounds <j> = E(t£(y)) from 

above. E.g., if is  defined to be E(y^), then:

{[(b - /!0)/(b  - a)]ij>(a) + [(/Jq - a)/(b - a)](J>(b)}- S 0  (27)

Replacing tp(y) by h^[X^-y|]+ and h2 [X ̂  +X2 -y ̂  -E (y 2) ]+ in turn, we note 

that if y  ̂ is  the random variable and each function is  convex on y  ̂ £ 

[0,a], such that a ^ {X^+X2) then we obtain problems D and M, 
detailed below, for which it is clearly true that v(M) ^ v(D ) ^ v(D ) ^ 
v(D) (See Fig. 2). The solution values for problem M, D and D are 
upper bound candidates for problem (S) in the special case when T=2, 
and M and D have the virtue of being distribution free LP’s.

We derive the first member of our family of approximations by
employing the generalized Jensen’s  bound (J^) on the holding cost
expressions of problem (D ). Thus we state the first of our problems,
where the problem and its optimal objective function value are denoted 

_ ★ _ ★
by (D ) and v(D ) respectively.

(D*) v(D*) = Min[v1X 1 + OjOj + jhj (Xj-y 1 ^  + c i 2 hl ( X l~y12  ̂ + 
x

V2X2 + ° 2 ° 2  + c l l h

where; c< , = / E ŷP  dFfy,) c 17= / a dF(y,)
11 0 1 E(y i ) 1

2^X l +X2'E^ ' y l P  + c 12h2^X l +X2"E^ “y12^
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> i i  = -fQE(yi) ! y i 2 = f  e ( )dFt> i) / c i2

In like manner, employing the classical Edmundson-Madansky Inequality 
on the holding cost expressions of problem (D ) we obtain the second 

member of our family of expressions. Thus we state problem (M) and 
its optimal objective function value is  denoted by v(M).

(M) v(M) = M in^X j+D jO j+K a-ElyjJl/aJhjX j+IEtyjJ/alhj (Xj-a) +

V2X2 + ° 2 ° 2  + " Et y i / a] th2 (Xi +X2" E^ 2^  +

[E(y1)/a]h2 [X1+X2- E(y2) - a]}

_ ★
Both problems M and D are subject to the constraint set (9)- (12).

3 .9  Detailed Examination of Bounds v(D ) and v(D )

We next examine the nature of our upper bound candidate, v(D ), and the 
proven upper bound, v(D ) [Theorem 6], for the particular case where 
the demand in period two, random variable y2 , is  known to be uniformly 
distributed. Suppose that we are given that:

f fv ) = (  i /b  o * y2 * b
2 ^2 \  0 otherwise

With this p.d.f. the term Ew IT Ew ,T + 0«-,0o + fvJX<+X.-,-
+ i .  * * .  , , y j fIo >2u i  >-2 2 2 2 2 1 2y ^ ^ J  • in D is evaluated  ̂as

h2 s o1+J<2 f/0xi+x2'yi [ v x2'yry2] dF(y2! (28)
SB



Substituting the p.d.f. of y2 in (28) and assuming max y  ̂ £  (XJ+X2) ^ 
max y2 , (in order to ensure X^+X2-y^-y2 convex in y2), we obtain

max yj
h2/2 b  J 0 [X j+ X j-yj]2 dF(y i ) (29)

Next v(D ) is  evaluated for the special case where both demands, 

random variables y  ̂ and 2̂  ̂ are known to be uniformly distributed. 
Suppose that we are given that:

r 1 /a  for 0 £ y  ̂ ^ a r 1 /b  for 0 £ y2 ^ b
f 1 W  ~ I  0 otherwise ^2^2^ ~ {  0 otherwise

With these p.d.f’s the term jj (X^+X2_yji-E(y2))+ becomes

(h2/ 2a)[X^+X2"(b/2)]^ and expression E  ̂ ^ h^(X^-y^)+ reduces to

h j (X ^ ) /2 a . Hence the objective function sim plifies to:

v(D ) = Min 
X

[(h2+h1)/2a ](X 12) + (h2 /2a)(X 22) + (h2/2a ) (XjX2) +

(v^- [bh2/2a ])X j + {v2-[bh2/2a])X 2 + + o20 2)

Likewise, in (D ), making the assumption that max y  ̂ £ X^+X2 ^
max y2, v(D ) is written as:

**  r x i x i
v(D ) = MinjvjX^ + OjOj + h ^ X j /  dF(y^) - /  yjdFfy^)] + v2X2

^  max y^  ̂ ^
+ o20 2 +(h2/2b)[(X 1+X2)2 + f  y /d F fy j )  - 2(X 1+X2)/iy ]}  (30)

29



which further simDlifies to
M in|v1X 1 + Oj O j +  dFfy^) - J y^dFfy^)] + v2 X2 + o2 0 2 +

(h2/2b)[(X 1+X2 )2 + cry  2 + ^  - 2(X1+X2)ju ]]• (31)

If we further assume that the demand for period 1, random variable y^, 
is  uniformly distributed, between 0 and a and that K = max(Xj+X2) £  
max y2 = b, then v(D ) becomes the following:

again under the constraints (13)- (16) of (D ) listed at the beginning 

of this chapter. Therefore, we have shown that for uniformly
★  it-Jk

distributed demands, the two problems D and D reduce to 
manageable quadratic forms. To illustrate, suppose without loss of 
generality, that h^=h2=h, v^=v2=v and a=b. Then the objective function
of problem (D ) that we seek to minimize over the set of constraints, 
(13)-(16), can be rewritten as:

As in Bazaraa and Shetty (1977), this quadratic programming objective 
function is in the standard matrix notation form:

v (D ) = Min- 
X

2
‘̂ 2  (vtXt + otOt) + { (h ^ a H X j)2 +

(h2/6b)(3(X 1+X2)2 + a2 - 3a(X1+X2 )]}} (32)

|  [X^v- h /2) + X2 (v- h/2) + X 12 (h/a) + X2 2 (h/2a) +

X 1X2 (h/a)] + o i O { + o20 2 + ha/6 j- (33)

Z(X) = (ClX) + (1 /2 ) (XtHX)
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such that AX £ B , h 0, a > 0, H is  positive definite and is  given by: 

2h/a h/a

H =
h/a  h/a

Therefore a finite optimal solution can be obtained in a finite number of 
iterations. Finally, we can use the well known Lemke Fixed Point 
Theorem to transform these quadratic problems in the standard form 
into linear complementary problems of the form:

w - Mz = q, w*z = 0 where w, z ^ 0 and
- » - - ■ * m

M =
”o ’ -A

q=
b

w =
y

and z =
U

A1 H c V X
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3.1D Relative Difference Analysis

In order to determine the efficacy of our bounds (and bound candidates)
on problem (S) we investigate the worst case relative difference between 

★ _ ★★ _ 
v(D ) and v(D) and between v(D ) and v(D). The latter analysis is
immediately significant, as Theorems 5 and 6, imply that the relative
error incurred by approximating Problems (S) by Problem (D) is  less
than or equal to the relative difference between v(D ) and v(D) (if the
solutions of (D) and (S) occur at the same feasible space point). The
former w ill be relevant only if  we can confirm our conjecture that
v(D ) is  a sharper upper bound for v(S): if not in general, at least for
some large class of problems. At the end of this chapter, we shall
discuss the more realistic situation where the solutions of (D) and (S)
do not occur at the same feasible space point. Reversing the order, we
look at v(D ) and v(D) first.

Let (X, 0) be optimal in Problem (D); then (X, 0) must be feasible in 
Problem (D ), and we can write:

v(D ) £  VjXj + OjOj + hjlX jJF jtX j] - h j f  * yjftyj) dyj + v2^2 + 

o2Q2 + hgptj + %2 - E(y2)]F2 [Xj + %2 - E(y2)] -

x ,+ x 9-E(y9)
h2 / Q y i^ y ^ d y i (34)

and so
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v(D*) - v(D) S h j l X j J F j l X j ]  - 1) +  h 1{E(y±) -  JQ1 y j f t y p d y j }  +

[hjtXj + X2 - E(y2))(F2 [X1 + % 2  - E(y2)] - 1)] + 

x 1+x?-E(y2) •yif(yi>dyi} os)
Define A to be the left hand side of (35) and recalling Theorem 7 we 
have 0 £ v{D ) - v(D)= A. Furthermore, the relative difference (denoted 
r.d) of D* and D obeys the inequality r.d £ A/v(D ) £  A/v(D). We let y. 
= E(y.) i = 1, 2, and evaluate A/v(D) to determine the worst case 

relative difference we get:

“  (36)r.d. = — ------------------------    — -̂----------— - — -—^—
Vl̂ i+V2̂ 2+01̂1 + °2̂ 2 + hl̂ ryii + I^W y^]

Throwing away negative terms in the numerator and positive terms in 
the denominator, and using the following facts (equations 37-41), we can 

simplify (36) to (42).

F j [Xj ] - 1 £ 0 and F ^ X j + X2 - y2] - 1 £ 0 (37)
X j * A1 (38)

\  ^ ^t’ (s *nce’ *n Practice, service levels exceed 50%) (39)
X i + X2 ^ + X2 ^ y  ̂ + y2 HD)
Ot ^ 0 (41)
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Hence we obtain,
X1 -  

r.d. s hi<yi - / o yiftypdyj)+ tyyi ~ f o yiF<yi)dyi> (42)
vi*i+ V2X2+ ¥*i] + h2[Xi+x2i • hi>r h2tyi+ &

If the two periods are quite sim ilar in cost and service level 

constraints, we can assume further (following Bitran and Yanasse, 
1984), that v^=V2=v, h^=h2=h=rv, where r is  a carryover cost, 
a^=cr2 =a. These, simplify (42) further, and upon cancellation of the 
common factor v, we get (43):

r [2yL - / 0 1y1f(y1)dy1 - /^ 1y1F(y1)dy1]
r.d. £ ______________________________________________  (43)

(X2 + yA) + r(X1 - yA) + r(X2 - y2)

In the event that we know the period demands are distributed uniformly, 
with distributions as in (29"), then various expressions in (43) simplify
still further: namely y^= a /2  and y2= b /2

A, 2 (a/2)
i / 3 /q  y ^ Y i  = (x )) / 2a ^/a /  q y^ y^  = a /8  (44)

X11 /a  /g  dy  ̂ = 1 - or = X^/a X2 = b(l - or) (45)

Thus (43) becomes,

r.d. ^ r(a " 3 /2(1  " " a /8 l (46)
b(l - or) + a /2  + r[a(l - a) - a /2  + b(l - or) - b/2]

From (39) and (45) we see that we can replace b(l - or) by its lower
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bound, (b/2), and, after some manipulation, inequality (46) becomes:

r.d. £  ja/(a+b)j- r ^ /B  " (1"g) / 2  ̂ (47)
1 /2  + r ( l / 2  - cr)

If we follow Bitran and Yanasse (1984), setting r = .025/m onth and or 
= .0 5 , then (47) reduces to r.d. £  [a/(a+b)j(.0207212). Since a £
(a+b), then the worst case relative difference cannot be larger than 

1.036%.

The analysis for v(D ) begins with the observation that if  (X,0) is
optimal in (D"), which is problem (D) with constraint (10) replaced by

★★ - >•
constraint (14) of (D ), and we let v(D") indicate the optimal solution
to (D") , and we write the corresponding objective function value as

_ a <£-•£- i t i f a /\
v(D"), then (X,0) is feasible in (D ) (See Fig. 1). Let v(D ;X,0)

*★ ^
denote the objective function value of D at (X,0), and we shall obtain
in Theorem 9 the worst case relative difference v(D ;X,0)-v(D"). With
the aid of several lemmas we shall use Theorem 9 to prove Theorem

★★  ̂ ~
10, which w ill provide an upper bound on v(D ;X,0) - v(D). Since
v(D) ^ v(S) ^ v(D ) ^ v(D ;X,0) the relative difference window
between v(D ;X ,0) and v(D) contains the relative difference window of 

★★ _
v(D ) and v(D). To this end we present lemmas 2 through 4.

Lemma 2: If 6 = v (D") - v(D) then
v(D**; X,0) - v(Dn  6 v(D**;X,0) - v(D)

+
v(D) v(D) v(D)
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Proof: The proof is  immediate from the definition of <5.

Remark: In our analysis of (D ), when y2 was bounded, v/e assumed 

K = max(Xj+X2) ^ max y2 = b, this creates an additional problem in 
our analysis of (D"), because the constraints of (D") and (D ) are 

identical, and in (D), we make no such assumptions. Moreover, if max 
y^ £ K, then the convex set of the set of constraints of (D") w ill not be a 
subset of the convex set of the set of constraints of (D). Hence in 
Lemma 3 and Lemma 4 we add this to our set of conditions.

Lemma 3: v(D") ^ v(D). (See above remark).
Proof: If we observe Fig. 1, we notice, that the convex set of the set of

•kit
constraints of (D ) is a subset of the convex set of the set of 
constraints of (D), and hence the result is immediate.

There are two simpler cases with arguments which parallel what 

follows; these two cases involve ^2 + y l ^ ^1 ^ ^2 + max y l and 
Xj ^ X2 + max y  ̂ and would only produce worst case relative difference 
of 6 less than or equal to the worst case relative difference produced 
by our analysis of Fig. 1. So we shall continue to work with the case of 
Fig. 1.

Lemma 4: v(D ) ^ v(D"), if max y2 ^ max (X^+X2) = K.
Proof: The result is  a consequence of the repeated use of Jensen’s  
inequality (with identical set of constraints). Where Ey^h^ [X^- y^]+ ^

hl t X r  Yi) and Ey 1Ey2 X̂ l +X2"y r y2̂  * [Xi +X2‘ y l  ‘ y2 '̂
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In section 3.9 when y  ̂ and y2 were bounded, (D ) had to satisfy the 
inequality max y^ ^ (XJ+X2) ^ max y2* This condition in Theorem 9 is  
not violated, because of constraint (14) and our remark in the previous 
page which makes the inequality redundant. Thus we state Theorem 9 

without any additional conditions.

Theorem 9: If random variable y2 is  uniformly distributed between 
(0,b), h^=h2=h, and 0 ^ y  ̂ £ b, but we do not know how it is  
distributed, then the worst case relative difference (r.d.), between 

v(D ;X ,0))- v(D") is bounded by

M/1 -hAdFtyj ) ]  + ( h/2b) [K2-2K(/iy^+b)+jUy^2+2b/jy^+b^+<Ty^2]

v(X2+/Jy )̂ + h(^1‘jUŷ ) + h(X2“

where K = max{X^ + X2} = (l /m)(C^ + + C2)
★★ *

Proof: We start with v(D ) as given in (31) and observe that, if (X,0)
_ ★★ 

is  optimal in (D"), which has the constraint set of (D ) then it is
H t *

feasible in D as well. Therefore: 

v(D ;X,0) =
A

2 ^

+ ° A /  + hilX i^dFlyj) - +

(h2/2b)[(X 1+X2)2 + <7 2 + 2 - 2(X j+X 2) p ] m
and so 1 1 1
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v(D ;X,6) - v(D') ^ h1X 1[F1(X1)- l]-h 1[/^y1dF(y1)-/Jy ] +

(h2 /2b) [(X1+X2)2+CTy 2+/Jy 2- 2 ( p y i +b)+2b(/iy i +92)] (49)

Define A" to be the right hand side of (49) and we have 
D £ v(D ; X,0)-v(D") £ A". Furthermore, the relative difference 
(r.d.) of (D**;X,0) and (D") obeys the inequality r.d. £  A"/v(D ;X,0) 
£ A"/v(D") £ AVv(D). Thus evaluating A'/v(D),and using the 

following facts (equations (50)-(57)),to determine the worst case 

relative difference, we obtain (58):

F ^ X ^ - 1 ^ 0  (50)
X 1 * A 1 (SI)
Xj+X-, ^ A-, + u (Constraint of problem D) (52)l  £. c y,
otOt * 0 1 (S3)
X ^ X 2 ^ K (54)

y2 = b /2  (55)
hj=h2=h (56)
v^=v2=v (57)

h [u -/Xy11dF(y1)]+(h/2b)[K2-2K(iu +b)+2bu +b2+a 2+u 2] 
r.d. £  y l 0 1 1_________________ y l y l y l y l

v{X2+(jy ) + h(A1 - /Jy )̂ + h(A2 - (b/2)) (58)

Q.E.D.
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From Lemma 2 we see that, we have yet to fulfill our objective of 
determining the bound on our relative difference window (v(D ;X ,0) - 
v(D)). In Theorem 10 we derive a bound on 6, and a sum of the two 
bounds shall then result in obtaining a bound on our relative difference 
window.

Theorem 10: Under the assumptions and conditions of Lemma 2 to 
Lemma 4, the worst case relative diference of 6 is  bounded by:

p  ̂ ^ [Max y^- y^](v + 2h) + 2om(A2+Max y^) - 2oC

v(X2 + yj) + h(X1+X2- Y2‘ Y*) (59)

where v=v^=v2 , h=h^=h2=rv, o=o^=o2 and C=C^=C2 -

Proof: Let (X,0) be the optimal solution for problem (D) and recall that✓v /\
(X,0) is  the optimal solution for problem (D"). From Fig. 1 depicting 
the nested convex-feasible sets of both these problems, and from the 
conditions, X2+ y  ̂ ^ X^, max y2 ^ X2 + max y ^  we obtain:

6 = v(D') - v(D) = (X1-X 1)(v1+h1+h2) + (X2-^ 2) (v2+h2) +

o 1(0 1-D1) + o2 (O2-0 2) (GO)

Noting that both (D") and (D) are linear programming problems, with 
identical objective functions, we can conclude from inspecting Fig. 1 
that there are exactly two possibilities for (X,0) and (X,D); namely
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either (Case 1): X = L = (X2 + max 0)

and X = L = (X2 + y p  0) (61)
or (Case 2): X = M = (Xp X2 ~ X^+ maxy^)

and % = M"= (Xp X2 - Xj + y±)

Now we note that one or the other of the first two terms in the R.H.S. 
of (60) is  zero. Moreover the remaining term is  either (v+2h)[max y p  
y^] or (v+h)[Max y p  y^], and, since h > 0, clearly the first of these is  

larger.

Moreover,
A

Max (Op 0^) = m(Max y  ̂ - y^) - C 

Max (02 , &2) = m (Maxy  ̂ - y^) - C
(62)

Substituting (61) and (62) into (60) and recalling the expression for 
v(D)in equation (58)’s  denominator, yields (59). / /

Summarizing, the relative error in approximating v(S) by v(D) is  
v(S) - v(D) and we can find a worst case upper bound for it from

v(D)
Theorems 9 and 10. Fig. 2 summarizes the relationships between 
optimal objective function values for production problems met in this 
dissertation, and from it we can deduce that.

★★ — ★★ A _
r _ _  v(S) - v(D) v(D ) - v(D) v(D ;X,0)-v(D) 
r -e- ~    £     £    =

v(D) v(D) v(D)
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★★ A A -  
v(D ;X,0) - v(D") 6 A" 6
   +  ^  + --------

v(D) v(D) v(D) v(D)

Given the assumptions of Theorem 9, and K=max{Xj+X2) then;

r.e. £  {h[u - /  1 y.dFfy,)] + (h/2b)[K - 2K(u +b) + u +2bu 
Yl 0 1 1 yl yl yl

+ b + °y  + y + (v+2h) [Max y1 - /iy ]

+ 2o[m(X2+Maxy1) - C]} t M X ^ /iy ^ + h lX j+ X ^ /i^ -fi )} (63)

In the special case where we know both period demands are distributed 
uniformly with distributions as in (29)", so that equations (44) holds as 

well, (63) sim plifies to (64):

r.e. ^ {^ J ta -fX ^ /a J J + ^ W p C ^ K tfa ^ + b J + a b + b V fa V s))]  +
(v+2h)(a/2) + 2o(m(X2+a)-C)} t {v(X2+(a/2)) + h(X1+X2-((a+b)/2))}

(64)

If equation (45) holds also, and we make the realistic assumption that 
service levels w ill always be set above 50%, we can further sim plify 
(64) to (65).

{(a/2)[3+(l/rH l-ffl)2] + (l/2b)[K2-2K((a/2)+b)+abWWV3)] +
(2o/h) (m[b(1 -a2) +a]-C)} t { ( l /r ) (b ( l-a 2)+(a/2))+((a+b)/2)-cr1-ff2)}

(65)

Should the two production periods be so sim ilar that a=b, and cr^=ff2=ar,



and when we define (N=(K/a)) then (65) becomes;

(a /2 )[( l/r )  - (1-cr) + ((16/3)+N  -3N) + (2o/h) (ma(2-cr)-C)
 (6 6 )

(a/r)[(3/2)-cr] + a(i-2a)

Now the assumption made in Lemmas 2-4 that K ^ b implies that 0 £ N 
£ 1 which means that 1 0 /3  £ N -3N + (16/3) £ 1 6 /3 . Further, casting 

out the negative term, - C, in the numerator simply enlarges bound (66), 
and allows cancellation of a in what remains, and we are left with

(1 /2 ) [(1/r) - (1-ff)2 + (10/3)] + (2om /h)(2 - cr)
-------------------------------------------------------------------------  (67)

(l/r)((3/2)-cr) + (1 - 2cr)

Finally, when we test our bound with the values of the typical numerical 
example given by Bitran and Yanasse, (1984, p. 1016), [h=.4, o=9.S, 
or=.05, m=.2, v=19.0], inserted in (67), we get a value of .4135 .

If we reinstate the negative term - 2oC/ha which we cast out of equation
(66), assume a=2 (average monthly demand of 9248 units) and that the 
lim it on overtime hours is  4800 hours, (since Bitran and Yanasse 
postulate 2400 regular labor hours monthly and we assume 2 more 
shifts to be the maximum), then the value of our upper bound on the 
relative error improves to .2373 .

It is  reasonable to ask how one can be sure (S) and (D) w ill take on their 
optimal objective values at the same point in their common feasible set,
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of course, the answer is that one cannot be sure (In fact, if  their 
solution points were identical, it would obviate the need for much of the 
analysis of this Chapter). Thus there is the very real risk that if the 
decision maker chooses point (X)q , optimal for (D), to use in problem 
(S), the result may be an objective function value much greater than 
v(S). However, the decision maker facing the 2-period version of 
production problem (S) w ill face it repeatedly; as a consequence several 
benefits may arise from considering the relationships we have 

developed in this chapter.

(1) As (D) is  easily solvable, we can use the optimal value, v(D) and the 
bound on the relative error to form a "target window" within which v(S) 
must reside.

(2) (X)q may yield an objective function value close enough to this 
"target window" to satisfy the decision maker outright, and

(3) this chapter has provided several other problems (e.g., the candidate
_*  *  ★★ _ 

upper bounds, (D ), (D ), (D ) and (D")) which offer the decision maker
alternative feasible set points to try for problem (S), and experience
over time with using them in (S) may lead to useful heuristics such as
"Find (X)j=j and move from it a certain distance in the direction of
(X) q** to regularly obtain a satisfactory decision outcome for problem
(S)."
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THE OPTIMAL SOLUTION OF THE STOCHASTIC SEQUENTIAL
PROBLEM

4.1 Introduction

In this chapter we discuss methods to determine the optimal solution of 
a stochastic sequential problem. Our approach hinges on the use of a 
familiar dynamic recursion scheme, based on a relationship between 
beginning inventory maximum inventory (cû ) and the demand
incurred during the time period (ŷ ) in question.

We present conditions when an order- up-to policy (ordering upto the 
service level requirement, Â J is  optimal and derive exact expressions 
for representative real-life stochastic sequential problems. Our 
method of proof hinges on the use of a dynamic recursion scheme where 
the objective function from period to period is evaluated on the basis of 
a combination of the state variable (1̂  )̂ and the decision variable (X )̂, 

We follow the notations introduced in chapter 3, in addition to new 
notations introduced exclusively in this chapter.
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4.2 A Procedure to obtain an Optimal Solution of Problem (S)

Problem (S) of chapter 3 in the special case when T=2 i-s -salvable if we 
can discretize X^ (first period production) and (first period demand) 
and roll back in a decision tree to obtain the optimal cost of production. 
The decision tree can be solved if the nested optimization problem

Min E [^2^2 + 02max{mX2"C2, 0} + l^ tX jH ^ -y ^ ^ )* ]  (1)
X2 Y2 

has a solution.

Further, a solution to (1) can be found, if the term (Xj+X2-y^-y2) 
has a closed formed solution. Notice this term is a function which 
considers only the positive component of a linear expression; therefore 

at first we must specify the condition for which X^+X2~y^-y2 w ill be 

positive, it is  y2 ^ X  ̂ + X2 - y^-

We find optimal values of X2 , for two known demand situations; first 
assuming y2 is  a triangular distribution and then assuming y2 has a 
uniform distribution.
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4 .3  Period 2 demand (y^l is a triangular distribution

The p.d.f is  given by
(4 /bZ)y2 if 0 £ y2 £ b /2

p(y2) = (4 /b 2) (b-y2) if (b/2) £ y2 ^ b (2)
0 elsewhere

For evaluating [X^+X2-y^-y2]+ we have three possible cases. In

Case A, we consider 0 ^ y2 ^ Xj+X2-y^ < b /2 , in Case B, we
consider 0 £ X^+X2y ^  y2 £ b, and finally in Case C, we consider b £
X i+ X 2-y i ^ y2 - In addition we assume X j+X 2~y  ̂ ^ 0, which implies, 
X2 ^ y^"Xj. The expected value is  obtained by multiplying the solution 

of the integrals (3)-(5) by 4 /b  .

Case A:
x l+ X 2-yi

/  (X1+X2-y1-y2) y2 dy2 (3)
0

Case B:

b /2  X i +X2_yl
J ( X ^ - y j - y ^  y2 dy2 + /  « 1+X2-yr y2) (b-y2) dy2 (4)

U D / £

Case C:
b /2  b

/ J x 1+x 2-y1-y2) y2 dy2 + b̂/^ l+X2"yr y2  ̂̂b"y2  ̂ dy2 ^

Let c*> — X l+X 2~y  ̂ and g(cj)= E [gj - y2J then g2 (1 )̂ in our sequential
M
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problem is written as Min [V2X2 + D2®2 + ^2 S ^ )]- Rewriting our
X2

cost component g2-Wj_) as above) allows us to make one observation, that 
an optimal policy minimizing g(co) minimizes g2 ^^) as we^ because 
g(co) is  the only non-linear cost component in the total cost structure.

0

(2 /3b 2) J  

g(c*>) 2co /b  - co - (2 /3b2) to + b /6  

c o - b / 2

if co £ 0
if O i u ^ b / 2

if b /2  £ co £ b

if  co ^ b

(6 )

4.3 .1  Structure of (2 /3b 2)co

Assume for notational purposes, that I^=Xj-y^ then co=Ij+X2* Further, 
if we graph (2 /3b 2)co , we find at co=0(or X2= -1^), g{0)=0, co=I|(or 

X2=0) g(I1)= 2 /3 b ZI13 and co=b/2(or X ^ b /2 - l^ )  g (b /2)= b /12 . Hence 

g(co) for 0 £ co ^ b /2  (or ^ ^2 ^ b /2 -Ij) , is  a strictly increasing 
function in co.

2 2 3
4 .3 .2  Structure of 2co /b+b/6-co-(2/3b )co

If we graph 2co /b+  b /6  - co - (2 /3b2)co , we find at X2=b(l-(1/V2))-I^  
and X2= b (l+ (1/V 2))-I^ the slopes are zero, g(b(l - (1/V2))) = b((3- 
2V2)/6) and g(b(l + (1/V2))) = b((3+2V2)/6) ,g(co=b/2)=b/12, 
g(co=b)=b/2. Thus the function g(co), in the region b /2  
£ co £ b or ({b/2)-I^ ^ X2 ^ b-Ij); is  strictly increasing in co and X2 .
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4 .3 .3  Structure of co - (b/2)

( co - (b/2)) is a linear function in co and X2, thus it is  for co ^ b or 
X2 ^ b-Ij, strictly increasing in co and X2 . Further, g(co=b)=b/2. 
Finally g(co) is continuous with breaks at points, b /2 , and b.

4 .3 .4  Evaluation of the service level constraint X2 
For evaluating X2 we recall (6) which is  written as:

Substituting the p.d.f. of y2 (triangular distribution) and assuming ^
0 .50 , (6) from chapter 3 is rewritten as:

After some algebraic manipulations, (7) is  rewritten as:

Upon solving (8), X2 is  found to equal either X2 = b( 1 + V ^ / ^ ) )  or 

b( 1 - V(of2/2))- Since b( 1 + V ^ /^ ) )  is greater than b (maximum 
demand) then X2 = b(l - Vfc^/^)) is  the only admissable value. Using 
the admissable root of (8) the condition X2 ^ X2~Xj+y^ becomes:

2 2
X2 - 2bX2 + b (1 - (a2/2 ))  = 0 (8 )

X2 * b(l - Y(cr2 /2 )) - ^ (9)
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Lemma 5: - 1̂  < b /2  - 1̂  ^ b(l - - 1̂  ^ b - 1̂
Proof: Let A = - 1 ;̂ B = b /2  - Ip  C = b(l - V(cr2/^ )) _ Ij_ and D = b-I^, 
The proof follows from the observation that b ^ 0; ^ 0 - 5  and
expression C evaluated in the lim its of  ̂ and 0.5) has values b - 

1̂  and b /2  - 1̂  respectively.

4 .3 .5  Optimal policy

Since A < B £ C £ D, for all positive values of C, the optimal policy is  

an order-up-to the service level (X2) policy, and is  written as:

y  _ f X2 '  !1 X2 * l i \
2 \  0 elsewhere J

Notice the policy is  myopic and does not consider cases when cost 
situations demand production quantities in excess of the amount which 
merely satisfy the service level requirement (X2) for the period in 
question. However in a two-period problem the optimal order-up-to the 
service level policy of the second period need not have a look ahead 
component. Similarly in a T-period problem, it suffices to consider an 
order-up-to the service level (Xy) policy as optimal in the Tth period.

4 .4  Period 2 demand (vs) is a uniform distribution

The p.d.f is  given by

r 1 /b  0 £ y2 ^ b
P^2^ “  0 otherwise
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For evaluating E  ̂ [X^+X2-yj-y2J+ we again assume w=Xj+X2-y^ and 
I^=X^-y^. Also define g{co) = [w - y2]+- Further, g(co) is  equal to 
zero, if co is  less than zero. This is  justified because, no holding costs 
are incurred if negative inventory is  experienced. For evaluating the 
expectation we have two possible cases. In Case A, we consider co ^ b 
and in Case B, we consider co > b. The expected value is obtained by 

solving for the integrals (1Q)-(12).

Case A:

(1/b) - y2) dy2 (10)

Case B:

b
(1/b) /  (ai - y2) (ID

Then g(o>) is  written as:

0 if co * 0
g(co) = co /2 b  if 0 ^ co £ b

co - b /2  if co ^ b

4.4 .1  Structure of e(co)

When co is less than the maximum possible demand (b); g(w) is a 
quadratic expression, symmetric around the origin, with minimum at 
co = 0 or X2 = -Ij .̂ At cj = b or X2 = b -Ij ,  g M  = b /2 . Further g(co) 
is  an increasing function in co and in X2 in the region 0 £ co £  b. When
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u  ^ b, g(w) is a linear expression, increasing in cj, the minimum at 
o> = b o r X 2 = b - I ^  and g(w) = b /2 .

4 .4 .2  Evaluation of the service level constraint A^

For evaluating X2 we recall (6) and upon substituting the p.d.f of 
(uniform distribution) (6) is rewritten as:

Upon solving (13), A-> is found to equal b(l - Thus :

X2 * b ( i  -cr2) (14)

Lemma 6: - 1̂  < b(l - a^j - 1̂  £ b - 1̂
Proof: The proof follows from the observation that b ^ 0 and 0 £
1.
Let A = - 1 ;̂ B = b(i - c^) - Ij and C = b - 1 .̂

Since A < B ^ C, and if A  ̂ 0, then it is  optimal to order-up-to the 
service level (^ L  The policy is written as:

F2 (X2) = d /b )  /  dy2 = 1 “ or2 (13)

4 .4 .3  Optimal Policy

elsewhere
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4.5 Period T demand (y-p) is  represented by any continuous p.d.f.

For solving (S) a T period stochastic sequential problem we undertake in 
period T to evaluate the expression:

T T- 1
MinE [ 2 x k - 2 y k - y T! ( i s )

X , >Tk=l K k=l K 1
 ̂ T T- 1 T-l

Let co = 2  X, - 2  Yl- and I t  1 = 2  I*. " yJ j tben I15) can be
k=l ■ k = l K 1-1 k=l k k

rewritten as E [ co - yT]+. Further, the expectation is  evaluated byy-p i
solving (16).

j l c o  - yT) dF(yT) = co /^ F (yT)- J > TdF(yT) (16)

4.5.1 Structure of E [co - y-rly-p l

The expectation is an increasing function in co in the region co ^ 0. This 
follows from the fact that:

co co
Limit /  dF(y-p) = 1 ; Limit /  y-p dF(y-p) = f i j  and Limit (co - ( i j ) = co
co —► CO  ̂ CO —► CO  ̂ co —► CO

Further, differentiating (16) with respect to co^and invoking the Leibnitz 
rule for differentiation (Protter and Morrey, 1966) (See Appendix C):

co co
d /  (co - y-p) ( -̂p(yy) dy-p = /  ^yfy-p) dy^= F-p(co) ^ □ because co  ̂ 0.

dco
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4 .5 .2  Optimal Policy for period T

The optimal policy is determined by one critical variable Ay- Iy_^, 
which is also the upper bound on the chance constraint. Since g(o>) is  

an increasing function in g> and Xy, then the optimal policy is  
charaterized by:

Condition Optimal Policy
A y  — I y  ^  ^  0  ^ C y  —  A y  ”  I y  ^  y j

elsewhere =  D
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4.6 Optimal Policy for period T-l

In this section we obtain the optimal policy for period T -l, given that 
the optimal policy in period T is  an order-up-to policy (section 4 .5). 
Further we do not impose any restricting conditions on the probability 

density function (p.d.f.). We assume in general, that the p.d.f. has finite 
mean and assume capacity constraints on regular and overtime 
production.

4.6.1 Dynamic Recursion Scheme

The T-period sequential stochastic problem is hard to solve due to the 
nested optimization structure and the variability of the feasible solutions 
of the sequential decision problems with the demand observed in 
previous periods. The solutions for the inner programs are computed 
assuming known production and demands of previous periods. Hence they 
are function of these quantities. To this end we define:

= It_j + Xt t = 1, 2 , 3, . . . ,  T. (18)

Jt-1 = “ t- l '  y t-l  t = 1, 2, 3, . . . ,  T. (19)

S n X - l 1 = ^  S A -1 >  » = ‘ . 2 - 3 ’ T' <20>

en(In-l» = « ” W l >  Xn> n = *’ 2’ 3 ’ -  T' <21>

fA - l ’ Xn> = Ey < vnXn + °n°n + hn'“ n ‘ + W  '22>
n n = 1, 2 , 3, . . . ,  T.

In our dynamic recursion scheme, gn(In_j) is  the minimum expected
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cumulative cost rolling back from period T to n, where the cumulative 
expected cost component is  denoted by Fn(I X^). Since the minimum 
expected cumulative cost is  obtained after minimizing over (decision 

variable), gn(.) is  a function of only the state variable unlike fn(-). Thus 
the dynamic recursion scheme eliminates a single decision variable 

from our set of T decision variables (X p X2 , X^, . . . ,  Xp) at each step, 
because the minimization is  undertaken with the aid of an optimal 
policy (a linear transformation) which is known a priori.

Remark: Since ^  = Min X J = X J  and Xn

(optimal X )̂ by our optimal policy is either equal to D (wn= In_ )̂ or 

Xn~*n-1 ^ n =Xn̂ ’ thus we represent g (I )̂ alternatively as either
f (I 1 , D) = g (I 4 ) or f (I *, X -I .) = g (A ) for n = 1,2,3,  . . . ,  T. n n-1’ Bn n-i n n-1’ n n-1 5n n' ’ ’ ’ ’

Remark: In order to establish the optimal policy in period T-l ,  we need 
to discuss the impact the capacitation assumption might have on the 
optimal solution. Since mX  ̂ - and ^ c ,̂ in equations (25),
(25), (28) and (29), values of Xp = (Xp - k>p_j + ^ (Cp+Cp)/m
are infeasible and thus in general values of X  ̂ = (X̂  - + y ^ )  ^
(Cj. + c^)/m are infeasible.

Since we prove in 4.5 that the optimal policy in the Tth period is an 
order-up-to policy, the optimal Xp has the following structure:

Xp = XT " !T-1 if XT > JT-1 \
0 elsewhere J ' '

and fp(Ip_p Xp) for n=T is defined as the expected holding and produc-
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tion cost in period T. Where fy{Iy_l5 Xy) is  written as:

VyXy + 0ymax{ mXy-Cy,0} +hyj(wy - yy) $y(yy)dyy if c*iy ^ 0 

VyXy + Oymax{mXy-Cy,0} if Wy ^ D (24)

To determine the expected holding cost of period T-l and the expectation 

of the sum of the production and holding cost of period T, we define 

T̂ 1 ^T 1’ XT̂  j us*' as we ^  ôr period T. ^y_j is  the sum of the 
inventory at the beginning of period T-l (Iy_2  ̂ ant* amount you 
produce in period T-l ( X y _ ^ ) -  Further as a consequence of W y _ ^  and 

^T I 5 *T 1 can exPerience a ranBe °f values, which w ill in turn 
determine the value of X y  and c j y .  Let us then prove three lemmas to 

help us in our effort.

Lemma 7: Under the condition W y _ j  ^ Ay.

f WT-1~^T-1 if 0 ^ yy_| ^ ^ T -l” 'S ” 
u T = j

A y  i f  y y  ^  ^  W y  j  “  A y .

Proof: By definition Iy_^=oiy_^ - Yy_j* if ^ Ay and yy_^=0, then 
I y _ j  £ A y  and X y = 0  and the inequality is  preserved until Y p j^  

o>t_i “At , and thereafter I y _ j  <  A y ,  and as a consequence of (23)
X y — A y " I y  ^  a n d  C O y  A y .

Lemma B: Under the condition 0 ^ c j y _ ^  < A y .

G J y  “  A y  if 0 ^  y y  |  ^  0 0 .

Proof: By definition Iy_^=cjy_^-yy_^. If Yy_j> ^T-l" ^ p  ^ en ^X-l ^
A y  and as a consequence of (23) X y  = A y - I y _ j  and o > y = A y .
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Lemma 9: g y  ^y_j) — Sy^y_j_) — Min fy(Iy_^j X y ) .

this expression differs under two cases: when cjy - I * XT it is  equal to:

hy /  ^ /  (^y_ ̂  “Yy- i  "Yy) ̂ y  fyy) ̂ Yyj’̂ y . j (Yy_ ]_) ̂ Yy_ j
^ y -i'Y y -i  

□  ̂ D

00
/  [Vy  (Xy-CUy_ j + Yy _ j ) + hy f  {Ay-yy) $ y  fyy) dyy] (J)y_ ̂  (ŷ _ ) dyy_ j +
£Uy  ̂~Ay 0

+  Oy /  j m  (A y-cuy_  ̂  +  yy_  | ) -  C y ^  0 y _  ̂  (yy_  ̂ )d y y _  j

(Cy/m)+CUy_^-Ay (25)

and when 0 £ ^ y .j   ̂ ^y ^ is equal to:
co Ay

/  [vy (Ay_ojy_ ̂  +Yy_ ̂ )  + h y  /^ (^ y -yy) $ y  (Yy) dyy] $y_  ̂  (Yy_ ̂ )  dyy_ ̂  +

CO
+  O y  /  { m ( A y - £ J y _ j + y y _  j )  “  C y }  0 y _  ^  ( y y _  )  d y y _  |

(Cy/m)+cuy_j-Ay (26)

Proof: The expressions (25) and (26) are obtained by the repeated use of 
Lemma 7 and Lemma 8, after substituting (24) in (20) and (21) for 
n=T.

To illustrate our method we derive (25). From Lemma 7, for 
0 ^ yy_j ^ cuy_^-Ay, ojy=Gjy_y-yy_j , and Xy=0. Thus substituting the 
values of Wy and X y  in (24) and recalling (20) we obtain:

hy T_1 T| / ^ T_1 (^y_j-yT_ 1 -yy)qby(yy)dyyj^y, 1 (yy .^dyy^
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Sim ilarly, for cjy -̂Y'j’ j ^ ^T-l ^ “ T— Xy—Xy~Ct>y_ "̂Yqv 5̂ 
and substituting the values of c*iy and Xy in (24) and recalling (2D) we 

obtain:

00 X y
/  [Vy(Xy-CJy+Yy_ j) + hy f  (Xy~yy) $y (yy)dyy] 0y_ ̂  J J^Yy, J
CUy “Xy 0

+ Oy f  ImtXy-GJy^+yy^) " ^yj" 0y_  ̂(yy_^)dyy_
(Cy/i 11) “hOJy “Xy

Further from (22) fy_| ^ j-2 ’ *s w ^ ten  as:
VT- ^ C y  D y  ^  !TlaX{l 11 /*Cy ^  “ C y  ^,0) “I”

“ T-l
hy_^/  (^y_^_Yy_<) $t-1  t y y - j _ ^ 6y  ^T-P (27)

Also from our set of constraints of Problem S, ^ Xt for t=l ,  2, 3, 
. . . ,  T. As a result, ^y_^ must satisfy an additional constraint,
Xy_j,. Finally, substituting (25) and (26) in (27) we obtain 
fy_l (Iy_2: Xy_ ̂ ), but the expression differs under two cases: when 
£Uy_i ^ Xy, it is equal to:

“ T-l
VT-1X ?-1 + ^T-i ^T-l ^ T -l^ T -1  +

Prod. Cost in Holding Cost in Period
Period T-l .  T-l .

Oy |max{mXy “̂Cy llD} "f*

Overtime Costs in Period T-l .
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WT-1~XT WT-1~^T-1
r i

h j /  /  (^T_1-yT_i -yj) 0T(yT) dy>p ■ $y_ ̂  (yy_ ̂ ) *tyy_  ̂ ■*■
o o

Holding cost in Period T as a consequence of the decision in Period

T - J M j . j * X T).
+00 XT

/  [vy (X-p-Wp_ ̂  +yy_ ̂ ) + h j f  (Xy-y-p) (y-p) dy-p] $y_j_(yy_i)dyy_^
cjj  ̂-X-p 0

Production Cost in Holding cost of Holding X j  units in
Period T. Period T.

co
+o-p J {m (X-p- cl>j _ |  +y-p_ ̂ ) -C-p} $>p_ ̂  (yy_ ̂ ) dy>p_ ̂
(Cj/m)+co»p  ̂—X*p
Overtime costs in period T. (28)

and when 0 ^ wy_j ^ ^y ^  *s equal to:

wT-i
VT-1^T-1 "** ^T-l ^g^T-l"^T-l^ ^y-1 ^T-l^dyT-l

Prod, cost Holding cost in period T-l .
in period T-l.

+Oj_^max{mXj_^-C^_|,0) +

Overtime cost in period T-l.

co XT
+ / [vy (X<p-c*>"p_ ̂ +y-p_|) + h'p J (X-p-y-p) $y(yy)dy<p] 0y_^ (yy_j )̂dyy_^

Prod, cost in Holding cost in Period T.
Period T.
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CD

O y  /  {m('̂ y-£̂ y_^yy_^) Cy} $ y _ j  (yy_̂ )dyy_̂  (29)
( C y / l  K l )  * f  £ * } y  ^  “ X y

Overtime cost in Period T.

From (18) and (19), we observe that is  positively related to and 
l _̂j respectively, thus in the minimization of f (̂I^_ ,̂ X^), the first 
derivative of X̂ ) shall remain unchanged if it is  differentiated
with respect to instead. We define the condition of stationarity 
to mean that v^=v^_^=v; and o^=o^_^=o for t = 1, 2, . . . ,  T. Now we 

state the first of several Theorems leading upto our claim that the 
optimal policy for any period t is an order-up-to policy.

Theorem 11: fy_i (^y_2’ X y^) is an increasing function in Wy_  ̂ and the 
optimal policy in period T-l is

v  _ T XT-1 *T-2 if XT-1  ̂ 1T-2 1
T-l -  ' 0 elsewhere

if |Vy + Oym| ^ (fy^"{Iy.2 ,Xy_1)+{Positive component of the Slope). 
Note under the assumption of stationarity, theorem 11 has no restricting 
conditions.
Proof: Differentiating (28) with respect to cjy_^ and invoking the 
Leibnitz rule (Protter and Morrey, 1966) we obtain:
( V y  ^  — V y )  "f" m  ( O y  ^  “ O y )  “I" h y  ^  F y  ^  (C * } y  )  "I"

CJy  ̂“Xy
+ hy J Fy(Wy_|-yy_j^) 0y_ ̂  (yy_ ) dyy_ J +

V y F y  (C * } y  ^  “ X y )  "I" O y m F y  ^  ( [ C y / l T l )  "l“ C jt?y  ^  “ X y )  ( 3 0 )
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Sim ilarly differentiating (29) with respect to yields:

(31)
(v>p_ j"Vy) + m (Dj_^-Oj) + hy_ ̂  Fy_ (c<->'p_ ̂  ) +
o*pi i iF*j» j ([Cy/mj 'toy  | “Xy) (31).

Thus from (30) and (31) it is  easy to see that for all positive values of 

c^T_p fy_i (IT_2 , is  an increasing function in and as a
consequence the optimal policy is  an order-up-to policy in period T-l .
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4.7 Optimal Policy in Period t -l  given optimal policy in period t

In this section we prove that if  the optimal policy in any period t is  an 
order-up-to policy then the structure of the policy remains unchanged in 
period t- l  (under certain conditions). The result is  significant, because 
in essence by mathematical induction it is  easily proved that the optimal 
solution of Problem S  is  attained at Xj=Aj.

4.7.1 Structure of the Optimal policy in period t

Given that the optimal policy in period t  is  an order-up-to policy, we can 
make the following assertion:

v  _ / V ’f-j i f Xt > ; t - n
£ \  0 elsewhere J

Further, from (22) we can define for any n, fn(In_j, Xn) which is  
again different under two cases: when it is:

v X + o  max{mX -C ,0} + h /  (o> -y ) </> (y )dy + n n n 1 n n’ 1 n J^ n Jn *n Jn Jn

wn \ i + l  co

+ L  B n n K V W K  + I  , S n + l ' W W ^ n
0 wn n+1

(33)
and when D £ u  < A , , it is: n n+J

"n
v X + o  max{mX -C ,0} + h /  (w -y )d> (yjdy + n n n 1 n n’ ; n Jgl n Jn' *nJrr Jn
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/ D < W l tW W d>'n (34 )

Reasoning as before and substituting n=d-J in (33)-(34), ^ - l^ t-2 ’ ^t-1^’ 
which is again different under two cases: when j ^ X̂ , it is  written 

as:

u t-i
vc-ixt-i +ht-i +

o^maxfmX^-C^pO} +

“ t - r x t

oo
I  &t (Xj) * 6. 1 tyt. 1)dy£-i

(35)
and when D £ < X̂  it is  written as:

“ t-i
V l X£-l + h£-l +

_^max{mXt _^-C^_pO} + 
co

(35)

Since our primary aim is to minimize ^t-1^’ we can rewr^e
(35) and (36), from our definitions (20)-(22) and (27), as:
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“ t-1

\ - i \ - y + °t-imaxfmXt-r ct-i’ °>+ ht- i^ (“t-ryt-i)*t-i(yt-i)dy t - i+
(3 7 )

To evaluate ĝ  we substitute n=t in (33) and (34) and derive the
expression for fj.(It_p  Xt). On deriving (Î _ ̂ , Xfc) we assert that 
gt (Ij._̂ ) has five alternative formulations which are presented in 
Lemma 10. (For a detailed account of the proof refer to Appendix A of 

the dissertation).
Lemma 10: ĝ  (I _̂ )̂ has five alternative formulations when the 
relationships among A ^  and Â  are outlined.
Case 1: ^ At+ j > Â , gt (I _̂ )̂ is  expressed as:

■C s t + i  tx t + i J d F *yt)J * t - i  +

“ t - i - yt - r xt+ i

Ct>t_ i  -At co

/  th t  +  ^ t + i (Xt + i )d F (y t ) ] * t - i tyt - i )dy t - i +

“ t - i _xt+ i

CO

s  [VttXj-Un+yj.!) +Dt 0} +

“ t - r x t
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ht / o(Xt-yt)dF(yt) + / Qgt+1 (Xt+1)dF(yt)]^t_ ^ (y ^ ld y ^  (38)

★
Case 2 : At ^ 6̂  ^t-jJ is  exPressec* as:

“t-rn -i «
L  [ht  f  +  f A + A + i )d F ty t ) i * t - i fyt - i ld y t - i +

CO Xt
i’K (V “t-l+>'t-l) +ol max{m(Xt - u t . 1+yt . 1)-Cl ,0 ) t h j  ( X ^ ld F f y , )  +  

“ t - f Xt

^ t + i V i )dFM \ - i (yt - i )dyt - i  (39>

Case 3: 0 £ < Â  < Â + ^
eo

U vt(V “t-i+yt-i) + Dtrnaxfm(Xt'“t-i+>'t-i)'c t’ D) +
Xt <0

+ ht / o(Xt-yt)dF(yt) + / ”gt+1 ( X ^ W F ^ ) ] ^  ( y ^ J d y ^  (40)

Case.4: Xt+1 S Xt £ u t. j

“ t - r x t “ t - i 'yt- i “ t - r yt-i"x t+ i
f j  ht {, K - r yt - i-yt,dF(yt) + / j f t+ i  H - i - yt- i ) dFfyt> +

+1 Et+1 (Xt+1 >dF (yt> ] *t-1 (yt-1 > dyt-1 +
“ t - r yt - r xt+ i
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CO
+  /  K tx t" wt - i + >rt - i ) +  ° t  m a x i m ^ t " w t - i + y t - i ^ “c t ’ +
“ t - l “\

At At_At+ l

+  h t  / 0| \ - y t > d F (J 't) +  ^ t + i K - r y t - i 1^ ^ 1 +

+  / 6 + 1  (\ + i )dF<y t) I * t - i  M 1)
At"At+ l

Case 5: 0 ^ < X̂  and X̂  ^

co
^ ^ ■ " t - l + y t - l 1 + otmax{m(Xt-wt_1+yt_1) - Cfc, 0} +

At At~^t+1
+ ht JQ(Xt- yt)dF(yt) + / Dgt+1 CcJt. 1-yt_1)dF(yt) +

^ ft+1 (Xt+l)dF(yt,1*t-l »2>
At"At+ l

Theorem 12: If the optimal policy in period t is  an order-up-to policy or 
a one bin policy given by

V I , 1  if X. > L
C = (  1 t_j 1t̂ \  □ elsewhere J

and assuming as fixed, then f ^  ( I ^ ,  X^_ )̂ is  an increasing
function in and the optimal policy in period t-J is  an order upto
the service level (X^_j) policy, which is:
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x t- l  = {  Xfc-J" Ifc"2 if Xc' j > If' 2 }  x 0 elsewhere *

under the following set of conditions:

Case 1: If X̂. < X ^ j ^ “ t-1’ ^ en structure of the policy is as 
stated above if:
(v£. r vp + m(oc. r ot) + ht_jFt_j + vtFt_t (0)t. r Xt) +

+ ocmFt. i ((Cc/m ) + u t. J -X £) +

u t - l ~ \ + l  u t- ’Xt+ i

+ ^ htFt (ut - i - h - i ] + 1 z t + i ' H - r y t - r y J & t y  +

+ /  +

u t - r * t + i  0

+ !  i ^nEt+^ (X‘+ i ,dF(y‘, 1 ^ - i (y‘-J)dyt-^ (43)

is greater than zero.

Case 2 : if X̂  £ j < \ + ] ’ ^ Bn structure of the policy is as stated
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above if:

<vf- r vt) + + hc-jFt-i + v£Ft-1 H - r V  +

°£mF£ -l((C£/m ,+ “ £-J‘X£) +

u t - l ~ \  CO

+ •>'g1£F£("£-J-y£-J) + ^ £ + i'(X£+J)dFM V i (>,£-J,d>'£-i +

+ [  [ ^ H - l ' v + l ’^ M V i v l ’f y - i  (44 )
wfc-J"Afc u 

is  greater than zero.

Case 3 : If D ^  ̂ < X̂ + j , then the policy is as stated above if:

(v£. r vc) + m(ot_j-ot) + o£mFt_j((Cc/m )+w t _ ̂  -Xfc) +

+ i 0 [̂ £ + j '(X£+j)dFM V i  V -P 'V -l <45>

is  greater than zero.

Case 4: if ^ X̂  ^ then the policy is  as above if:

(Vf.r v£) + m (o£. r ot ) +  V jF j.j tU j.j-X j)  +  0fm F(. J {(Ct / m ) + u t . J -Xt ) +  

“ £ - l ‘X£

+  h£ . j F £ . i ( “ £ - j )  +  { h tF t i u t - i - y t - i )] V i  (y £ - j , d v i +
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“ t-J "X£
+  ¥ “ £ - r y£ - r x £+i>  W “ £ - r > W  -  k + j (X£ + i » +

u t - l ' y t - f \ + l  a
+ f j t + i ' {at - i - y t - i )dF(y ^ + ^ t + i ' lh + i ldF(y ^ K i ly t - i )dy t - i +

,  .  “ t - r yt - r x £+i
eo £ £+1 <0

+ /  [ / ng£+r (“ £-ry£-3)dF(y£) + /  8 £ + r iW dF<y£)]V i< y£-3)dy£-i
“t - i V  W l  t46)
is  greater than zero.

Case 5 : If 0 £ < X̂ , and X̂  ^ X ^  then the policy is as above if:

( v £ - 3 " v £> + m ( 0 £ - J ' D £ )  + h £ - l F £ - 3 ( “ £ - l )  + 0 £ m F £ - J ( ( C £ / m , + “ £ - 3 ' X £ )  +

<o X£ X£+3 ®
L  [ S j t + i ' H - i - y t - i ^ W + i  k + i ' ^ t + ^ y f i h - i  ty£-i)dy£-jm

X£~X£+J « 7 >
is  greater than zero.
Proof: Expressions (43)-(47) are obtained by differentiating expressions 
(39)-(42), invoking the Leibnitz rule (Appendix C) of differentiation, 
with respect to (For a detailed account of the proof refer to 
Appendix B of the dissertation).

Remark: The following terms are always positive from Cases 1 through 
5. They are:
v^_j (production cost in period t - i ) ,  o^_j (marginal overtime labor cost 
in period t - l )„  h^_jF^_  ̂(c^_j) (expected holding cost in period t-J), , 
v^F ^ (o^ j-Xp (partial expected production cost in period t), and o^m

69



F̂ _j ((C /̂m)+co^_jXp (expected overtime cost in period t).

We have in this chapter examined the total cost structure of problem 
- (S), derived an order-up-to the service level policy, which is at first

proven to be optimal in the one period problem. Later, the result is  
extended to determine conditions under which the policy is  optimal in 
period T -l, given that it is  optimal in period T. Finally, in our last 
induction step, we determine conditions under which the policy is  
optimal in period t - l , given that it is  optimal in any period t. Notice the 
order-up-to the service level (X̂ ) policy is  "myopic" and does not 
have the look ahead capability. If we are to create policies with a look 
ahead feature we have to then determine order levels (y^), for each 
individual period as we go along in the dynamic recursion scheme,which 
are greater than X̂ . Devising such an algorithm is an avenue for future 
research.
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CONCLUSION

5.1 Conclusion

In chapter two, we examined the stochastic non-sequential production 
planning problem, at first' with fixed set-up costs and then with sequence 
dependent set-up costs. We proved in general that the stochastic version 

of the problem suggested by Karmarkar et al. (1987), bounds the 
stochastic production problem first introduced by Bitran and Yanasse 
(1984). and their respective deterministic equivalents exhibit 
identical worst case behavior. In chapter three, we examined the more 
intractable, but the more realistic sequential production planning 

problem. We focused our attention on the two period problem, and 
assumed zero fixed set-up costs, and using Jensen’s  inequality, and a 

result due to Huang et al. (1977a, 1977b), derived a family of 
approximations which spanned the spectrum of values between the bounds 
of the problem. We also examined the worst case difference between the 

lower and the upper bound and obtained a worst case error no greater 
than 23% of the optimal solution. Finally in chapter four, we obtained 
an optimal policy for a version of the one period stochastic sequential 
production planning problem, and extended our analysis by mathematical 
induction to derive conditions such that an order-up-to the service level 
is  optimal for the T-period stochastic sequential problem.
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5.2 Opportunities for future research

The next logical step is  examining the stochastic sequential production 
planning problem with non zero fixed set-up costs and monotonically 
increasing period holding costs as a function of It is  conjectured, 
that the optimal policy w ill be a non-stationary, (s ,̂ S j j  type of policy. 
Where the cost expressions from period to period will exhibit K- 
quasiconvexity (Porteus, 1971).

Another, line of research is  examining the types of policies which are 

optimal when the conditions of Theorem 12 are not satisfied or the 
slopes in Case 1 through 5 are not positive. Again, it is  conjectured, an 
order-up-to y  ̂ policy will be optimal, where y  ̂ ^ X̂ .

Certain problems in finance, for example the cash management problem 
the pension fund management problem etc., are sim ilar to problem (S). 
It is  conjectured since an order-up-to the service level policy is  
optimal, a sim ilar policy may be optimal for the cash management and 
the pension fund management problem as well.
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Summarizing the relationships 
between optimal objective function values 
for a collection of production problems.
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APPENDIX A

Detailed proof of Lemma 10 

★
Lemma ID (p. GO): ĝ  ( I ^ )  has five alternative formulations when the 

relationships among and Â  are outlined.
Remark: In our endeavour we present the derivation of the most 
detailed expression (Case 1), because all others are easily derived once 
the method of proof is  outlined.

Proof: From (20) and (21) ĝ  = Ey Min fj.(Xj., Ij..^))
t-l xt

and fj.(X ,̂ I^_|) is  derived by substituting n=t in (33) and (34). We also 
outline in general a Procedure to derive the partial expectations and we 
demonstrate its utility by deriving Case 1, which is  a sum of three 
partial expectations denoted by or, and y respectively.
Procedure
Step 1: Identify the breakpoints in the range of y ^  over which the 

partial expectations of Min f̂  (X ,̂ I ^ )  are evaluated.
Xt

Step 2 : For y ^  £ [c, d], identify the corresponding range of I ^ .
Step 3: On identifying the corresponding range of 1 ^ ,  determine the 
optimal value of X̂ ., where the optimal policy is given by (1).

x t =
\  ■ *t-i if \  V i

0 elsewhere ( 1)

Step 4 : Determine the value of by substituting values of and
in the expression = Xj. + I ^ .
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Step 5 : Choose expression (33) if ^ Â + j and (34) if  cj ^

Derivation of Case 1

Case 1 of Lemma 10 is obtained if  the condition, ^ A ^  > At is 
satisfied. The condition implies, that the expectation is not uniformly 
evaluated over the range of G [0,oo] but instead, it is  a sum of 
three partial expectations, denoted by or, (3 and y where

yt. !  e P .  “ t - r W ’ x t - i 6 H - r \ + r  “ t - r x t i and
y^_j G [c*>£_j -A j., co] respectively.

Derivation of expression g : Since y ^  G [0, f°^ owin6 the
procedure, correspondingly G [ ^ _ p  Â + ̂  ]. Further, Â + j > Â , 
hence X̂ . = 0 (step 3) and Â +  ̂ £ ^ (o^ = I^_j)(step 4). Thus
we chDDse expression (33) (step 5) to determine the first of the partial 
expecations, which is written as:

“ t - r \ + i  “ t - i 'yt- i “ t - r yt - r x t+ i

{ a [ht ! o (“ t-i-y t-i-y t)dF(yt) + ^ t + i  +

f St+l(Xt+l)dFlyt)]* t-l(yt-l)dyt-l 1 a)
“ t - r yt - r x t+i

Derivation of expression ff: Since y ^  G [wt - i " \ + l ’ ^ t - lN J  (step 1), 
*t-i  ̂ ^ t+ 1 ’ (step 2), Xt=0 (step 3), w^=It_^(step 4), and we 
choose expression (34) (step 5) because s  x t + r  Thus the second of 
the partial expectations is written as:
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/ [t\ + ̂ t+i(Xt+i)dFtyt,Il,>t-i(>'t-i)dn-i w
“ t-i"x t+ i

Derivation of expression y: Since ŷ  6 [cu^-A^., co] (step 1), I _̂j £ 

[At, - co] (step 2), Xt=Xt-It i  (step 3), ^ t=At (step 4), and we choose 

expression (34) (step 5) to derive expression y:

co
/  [vt (Xt-o>t_ +yt_ 1) + otmax{m(At-o>t_1+yt_1) - Ct, 0} +

“ t - r x t

\
h t / o (Vyt)dF(yt) + / ^ + i ' x t+ i)dF(yt!]'ft-i<yt - i )dyt - l  ' t )

And it is  easy to see expression (38) (p. 60) is  the sum of expressions 

a, fl and y.
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APPENDIX B

Detailed proof of Theorem 12

Theorem 12 (p. 62): If the optimal policy in period t is  an order-up-to
the service level (X̂ ) policy and assuming 1 ^  as fixed, then

f̂ _̂  (1 -̂2’ Xt-P  *s  an *ncreas*nB faction  in and the optimal policy

separate set of conditions.
Remark: Just as we derived the most complex of expressions in 
Appendix A we do the same in Appendix B and obtain the first 
derivative of Case 1 of Lemma 10, with respect to by invoking the 
Leibnitz rule outlined in Appendix C.

(Appendix A), is the sum of three different partial expectations (or, /? 

and y). Further, from (37), Xt-1  ̂ *s wr^ en as:

Thus differentiating (^-2’ Xt-P  resPect to we obtain:

in period t- l  is an order-up-to the service level (A ^ ) policy under five

Proof: We begin, by making the observation that g^^t-1^ *n ^ase  ̂

“ t-l
vt - i x t - i +  ot - i m a *{m X t - r c t - i ’ D} +  N - i ^ K - i ^ t - i ^ t - i ^ t - i ^ y t - i +

t-i

( i )

+ d (cf)/dcj, . +

+ d (jS) /do>t i + d fy j /d u ^ . (2 )
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Differntiating the first of the expressions in (2) under the integral sign 
and invoking procedure 2 (Leibnitz Rule) of Appendix C, we obtain:

Uj(x) = Uq (x) = 0, x = a>t_ls t = yt_l5

f(x, t)= ht- i K - r y t - i )(*W (yt-1} (step 1); f(x, u ^ x jju ^ x )  = D (step 2);

u, (x) ° V l  -
f(x, uQ(x))u0 "(x) = 0 (step 3); f  f^ (x , t)dt = h ^ J  $ t- i  (yt_ i)dyt_i

uq (x) 5 0
u1 (x)

(step 4); and (d/dw. ,) J f(x, t)dt = hfc_^Ft (cjt_ )̂ (step 5).
Ug(x)

Similarly, we invoke procedure 2 (Appendix C), and obtain the first 
derivative of expressions or, ft and y (Appendix A) respectively.

First derivative of a

Ujlx) = u t_r  X J ,  uD(x) = 0, x = u t. r  t = yt_r
"t-lVt-1 “t-lVt- r xt+l

Fix, t) = [ ht Jo(<»t_1-yt_1-yt>*t (yt>‘Jyt + +

00
I  W W W f y K - i f r t - i *  (steP 11:

“ t -r > V i'xt+ i
\ + i

Fix, u jM iu j'M  =[ht / o( \ +1-yt)0t (yt>dyt +

/ j f t + i H - r  W  (SteP 2)’ (3)

f(x, Uq (x) ) u q " ( x) = 0 (step 3);
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u. (x) wt-l"Xt+ l wt - l ’yt-i
/  f . ( x, t)dt = /  [ht [ 6 / i u ^ )  f  (wt_i-yt_i-yt)0t (yt)dyt +
Un (x) ’ 0 ,0

0 “ t - i -y t - r x t+ i
(S/iut_j) / tpt+ i t “ t. 1-yt. r y t ) * t (yl )‘Jyt +

CO

w / H - i>  f  (step 3)

In step 4 we observe the partial deriavative of f(x, t) is  obtained by 
differentiating three nested integrals, denoted in the order as they 
appear as a, b and c respectively.

i) Partial differentiation of integral *a’
Again invoking procedure 2 of Appendix B we obtain: 

uA(x) = <̂ t_i -yt_i , Ug(x) = 0, x = a>t_ls t = yt,

f(x, t) = ht (ĉ t_ i -yt_ i  _yt) ̂ t ̂ yt) ŝteP 1);
f(x, u^fxDu^fx) = D (step 2); f(x, Uq(x))uq' ( x) = 0 (step 3);
u< (x) wt - r yt-i
/  f  x (x, t) dt = ht /  0t (yt) dyt = hfc Ft (ĉ t l -yt i ) (step 4);
Uq (x) ’ Q

and the final answer is hj. (c*>̂_ i ~yt_ 1) (step 5) (5)

Partial differentiation of integral *b’
Invoking procedure 2 we obtain:
u^(x) = Uq (x) = 0, x = t = yt and

f (* > u = Et+ i(" t- iV t- i-y t)*t (yt) (steP 1};
f(x, u^xiju^fx) = gt+ 1(xt+1) ^ t H - r yt - r yt̂  ŝtep 2 ;̂
f(x, Uq(x))uq"(x) = 0 (step 3);
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u I (x)
/  F ,(x , t)dt = /  l t+1'(wt. 1-yt. 1-yt)*t (yt)dyt and 
Ug(x) ’

u. (x)
(d/dU j) /'f ix  tjdt = gt+ i ( \ +1)'Xt H - r y t - r x t+ 1) +

Ug (X)

“ t - r n - r V i
W dyt (step S) (6)

Partial differentiation of integral *0’
u. (x) = co, un (x) = w .a -y .a -X , p  x = u . , ,  t = y,,

f fo 1 )  = gt+ i ( x t+ 1)0 t (y^ (steP i);
f(x, u^xDu^fx) = 0 (step 2); f(x, uQ(x))uQ"(x) = 1 (^t+ i ) ^ t - 1 “

yt_ 1 “x t+ 1) (steP 3 ̂

Ui (x) CO
/  f A(x, t)dt = /  gt+1"(Xt+1)0t (yt)dyt (step 4); 
un (x) ’ -vD “t - r n - i 'V i

co
and (d /d ^ .j )  /  gt+ 1( \ +1)$t (yt)dyt = - gt+ l (Xt+ l)lf,tH - l '> 't - l 'Xt + l )+

“ t - r n - r V i

/  Et+ i ' ( x t+1)<#>t (yt)dyt (7)

“ t - r yt - i 'xt+ i

Continuing with our differentiation of expression 'or’, and substituting 
equations (5), (6) and (7) in (4) to complete step 4 of procedure 2, the 
resulting expression is:
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“t-l"yt-l'xt+l
FtH -i-V i> + ^ t+ i 'K - i-yt-ryt),W dyt +

co

/  St+l ' (Xt+lllMyt)1*t-l (yt-l)dyt-l (8)
“t-r yt-r xt+i
The first derivative of or is  obtained by substracting the result obtained 
from step 3 (which equals zero) from the sum of the result obtained 

from step 2 (equation (3)) and step 4 (equation (8)).

Sim ilarly, the expressions 0  and y are differentiated to obtain the 
expression of Case 1 (Theorem 12).
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APPENDIX C

Leibnitz’ Rule for differentiation under the integral sign 

Theorem (Protter and Morrey, 1966)
Suppose that f  and df/dx are continuous in the rectangle R:{a £ x ^ b, 
c £ t £ d}, and suppose that uq (x), u^(x) are continuously differentiable 
for a £ x £ b with the range of uq and u  ̂ in [c, d]. If (p is  given by

u, (x)
4>M = f  f(x, t) dt

u„w

then
Ui (x)

0"(x) = f[x, Ui (x)]ui "(x) - f[x, u (x)].u "(x) + /  f  1 (x, t) dt 1 1  0 0  u^(x) ,1

where (p'(x) = 6<p[x)/6x; f   ̂(x, t) =  df(x, t) /d x ; U j"(x) =  d u ^(x )/dx  and 
Uq"(x) =  d u g (x )/ dx.

In summary, a procedure is outlined to apply the leibnitz rule:
Procedure 2
Step 1: Identify u^(x) and U g (x ), x, t and f(x, t).
Step 2: Substitute t by u^(x) in f(x, t) and multiply the expression 
by the first derivative of u  ̂(x) with respect to x.
Step 3: Substitute t by Uq(x) in f(x, t) and multiply the expression by the 
first derivative of Ug (x) with respect to x.
Step 4 : Obtain the partial derivative of f(x,t) with respect to x, and 
integrate the expression over R 6 [ug(x), u^(x)].

Step 5: Subtract the result obtained from step 3 from the sum of the 
results obtained from step2 and step4.
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