
City University of New York (CUNY) City University of New York (CUNY) 

CUNY Academic Works CUNY Academic Works 

Dissertations, Theses, and Capstone Projects CUNY Graduate Center 

6-2017 

Wave Propagation Inside Random Media Wave Propagation Inside Random Media 

Xiaojun Cheng 
The Graduate Center, City University of New York 

How does access to this work benefit you? Let us know! 

More information about this work at: https://academicworks.cuny.edu/gc_etds/2067 

Discover additional works at: https://academicworks.cuny.edu 

This work is made publicly available by the City University of New York (CUNY). 
Contact: AcademicWorks@cuny.edu 

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/gc_etds
https://academicworks.cuny.edu/gc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/gc_etds/2067
https://academicworks.cuny.edu/gc_etds/2067
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu


Wave Propagation inside Random Media

by

Xiaojun Cheng

A dissertation submitted to the Graduate Faculty in Physics in partial ful�llment of the

requirements for the degree of Doctor of Philosophy, The City University of New York

2017



c©2017

Xiaojun Cheng

All rights reserved

ii



Wave Propagation inside Random Media

by

Xiaojun Cheng

This manuscript has been read and accepted by the Graduate Faculty in Physics in satisfaction of

the dissertation requirement for the degree of Doctor of Philosophy.

Professor Azriel Z. Genack

Date Chair of Examining Committee

Professor Igor Kuskovsky

Date Executive O�cer

Professor Alexander Lisyansky

Professor Alexander Khanikaev

Professor Chushun Tian

Professor Victor Gopar

Supervisory Committee

The City University of New York

iii



Abstract

Wave Propagation inside Random Media

by

Xiaojun Cheng

Advisor: Azriel Genack, Distinguished Professor of Physics

This thesis presents results of studies of wave scattering within and transmission through random

and periodic systems. The main focus is on energy pro�les inside quasi-1D and 1D random media.

The connection between transport and the states of the medium is manifested in the equivalence

of the dimensionless conductance, g, and the Thouless number, δ, which is the ratio of the average

linewidth and spacing of energy levels. This equivalence and theories regarding the energy pro�les

inside random media are based on the assumption that LDOS is uniform throughout the samples

[1, 2]. We have conducted microwave measurements of the longitudinal energy pro�les within

disordered samples contained in a copper tube supporting multiple waveguide channels with an

antenna moving along a slit on the tube. These measurements allow us to determine the local

density of states (LDOS) at a location which is the sum of energy from all incoming channels on

both sides. For di�usive samples, the LDOS is uniform and the energy pro�le decays linearly as

expected. However, for localized samples, we �nd that the LDOS drops sharply towards the middle

of the sample and the energy pro�le does not follow the result of the local di�usion theory where

the LDOS is assumed to be uniform. We analyze the �eld spectra into quasi-normal modes and

found that the mode linewidth and the number of modes saturates as the sample length increases.

Thus the Thouless number δ saturates while the dimensionless conductance g continues to fall with

increasing length, indicating that the modes are localized near the boundaries. This is in contrast
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to the general believing that g and δ follow the same scaling behavior. Previous measurements show

that single parameter scaling (SPS) still holds in the same sample where the LDOS is suppressed

[3]. We explore the extension of SPS to the interior of the sample by analyzing statistics of the

logrithm of the energy density lnW (x) and found that 〈lnW (x)〉 = −x/` where ` is the transport

mean free path. The result does not depend on the sample length, which is counterintuitive yet

remarkably simple. More supprisingly, the linear fall-o� of energy pro�le holds for totally disordered

random 1D layered samples in simulations where the LDOS is uniform as well as for single mode

random waveguide experiments and 1D nearly periodic samples where the LDOS is suppressed in

the middle of the sample.

The generalization of the transmission matrix to the interior of quasi-1D random samples, which

is de�ned as the �eld matrix, and its eigenvalues statistics are also discussed. The maximum energy

deposition at a location is not the intensity of the �rst transmission eigenchannel but the eigenvalue

of the �rst energy density eigenchannels at that cross section, which can be much greater than

the average value. The contrast, which is the ratio of the intensity at the focused point to the

background intensity, in optimal focusing is determined by the participation number of the energy

density eigenvalues and its inverse gives the variance of the energy density at that cross section in

a single con�guration. We have also studied topological states in photonic structures. We have

demonstrated robust propagation of electromagnetic waves along recon�gurable pathways within

a topological photonic metacrystal. Since the wave is con�ned within the domain wall, which is

the boundary between two distinct topological insulating systems, we can freely steer the wave by

reconstructing the photonic structure. Other topics, such as speckle pattern evolutions and the

e�ects of boundary conditions on the statistics of transmission eigenvalues and energy pro�les are

also discussed.
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1

Introduction

1.1 Overview

We encounter waves everyday. We rely on waves to bring us music, cell phone signals, and we

even cook with microwave radiation. The wave nature of fundamental particles also explain many

phenomena such as tunneling through a barrier which are forbidden for classical particles.

Many real systems are not perfectly ordered. Thus, the study of wave scattering in disordered

media is of interest in both quantum and classical systems. In disordered electronic systems, wave

can be come localized [4], which originates from coherent back scattering [5, 6, 7, 8, 9, 10], and the

coherence e�ects also occur for classical waves [11, 12, 13, 14, 15].

Recently, there has been a lot of progress in manipulating the pattern of scattered radiation

by reconstructing the incident wavefront. Many experiments have successfully seen the control of

wave�elds for focusing in disordered media [16], the transmission of images across highly scattering

samples [17], and also focusing in the time domain [18, 19, 20]. This may �nd important applications

in medical imaging and diagnosis [21, 22].

Many theoretical methods have been developed to study wave scattering in complex media such

as random matrix theory (RMT) which treats the Hamiltonian or the transmission matrix to be a

large N × N random matrix [23] including the maximum entropy approach which is implemented

through the a maximization of the Shannon entropy [24] and supersymmetry method where anti-

commuting variables are utilized in calculations [25]. We will introduce these methods and how

they are applied to our problems.
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1.2 Anderson localization

Anderson predicted that electrons in random lattices would be exponentially localized by disorder

[4]. The scaling theory of localization states that the scaling of g, which is the conductance in

units of e2/h, depends on only the parameter g itself [26], and a critical value of gc ∼ 1 marks the

localization threshold. For unbounded three dimensional random systems, localization is predicted

to occur when the Io�e-Regal criterion k` ≤ 1 is satis�ed, where k is the wave number and ` is

the transport mean free path [27]. Later, Thouless argued that for �nite open systems, the nature

of wave propagation can be described in terms of the degree of overlap of quasi-normal modes [1].

This can be expressed by the ratio of the average mode linewidth δν to the mean spacing between

modes ∆ν of the medium, which is the Thouless number δ. When the level width exceeds the

level spacing, di�erent energy levels overlap spectrally within the medium and the wave becomes

extended in space. When the states are isolated spectrally, waves are localized and the transmission

decays exponentially with sample length. Therefore, δ ∼ 1 gives the threshold of localization.

The localization phenomenon in electronic systems has stimulated interest in the study of local-

ization of classical waves [28, 29]. Geometry is a key factor which determines localization behavior.

In 1D and 2D, the system is localized for arbitrary strength of disorder while in 3D there exist

a localization transition [4, 26]. Samples with quasi-one-dimensional geometry, with the longitu-

dinal dimension much larger than the transverse dimension, such as wires or random waveguides

are widely used in the study of wave transportation and localization [1]. Such samples are three

dimensional locally but are con�ned in the transverse directions. The methods of random matrix

theory are well suited for this geometry and the weak localization limit is well described in this

framework [23]. The dimensionless conductance g, whose classical analogue is the transmittance

g = 〈T 〉 =
∑

a Ta where a denotes an incoming channels and Ta the corresponding transmission,

is used as a parameter that characterizes statistics of transmission [30, 31, 11]. Here g ∼ N`/L

for di�usive samples and g ∼ e−L/ξ for localized samples with L the sample length and ξ the lo-

calization length [26]. It is generally believed that g and δ follow the same scaling behavior with

the assumption that the local density of states (LDOS) is uniform throughout a random sample.

However, we show in chapter 5 that the LDOS is not uniform and these two parameters di�er in

random waveguides.
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1.3 Speckle

The speckle pattern is the result of the interference of many scattered partial waves that follow

di�erent trajectories to arrive at a point at the output, as illustrated in Fig. 1.1.

Figure 1.1: Example of a speckle pattern produced by the interference of multiply scattered waves
in a random medium.

The speckle pattern produced by multiply scattered waves averaged over a time much shorter

than the correlation time is generic [32, 33, 34] and so carries no sample-speci�c information. How-

ever, changes in the speckle pattern with time can be used to characterize and image the internal

motion within a sample [35, 36, 37]. A variety of approaches have been used to characterize the

dynamics of scattered radiation. Among these are the measurement of the temporal correlation

function of the intensity [38, 39, 40], and the contrast of the speckle pattern which falls as the ex-

posure time increases beyond the correlation time [37, 41, 42]. The temporal correlation functions

and spatial contrast re�ect both the motion of scatterers and wave propagation within the sample.
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In this thesis, we develop another way to characterize speckle evolution. We follow the trajectories

of the distinctive features in speckle evolution, such as phase singularities and intensity maxima

[43, 44], and �nd that their motion over the output plane is di�usive. From the 2D di�usion coe�-

cient of these features, we are able to characterize internal dynamics and �nd the photon di�usion

coe�cient of the system.

1.4 Quasi-normal modes

Excitations in complex media can be expressed via the eigenstates of the random Halmitonian,

which are called quasi-normal modes for classical waves. The �eld E(~r, ω) at any position ~r and

frequency ω inside an open random medium can be described as

E(~r, ω) = Σnan(~r)
Γn/2

Γn/2 + i(ω − ωn)
, (1.1)

where ωn and Γn are the central angular frequencies and linewidths for the nth mode respectively.

The �eld can be viewed as a superposition of all these modes. Here Γn can also be viewed as the

imaginary part of the central frequency, indicates a non-Hermitian Helmholtz operator associated

with the open boundary conditions and absorption within the medium.

The high transmission due to a single mode is believed to have a spatial shape with a single

peak near the center of the sample [45]. The overlap of modes both spectrally and spatially results

in large transmission with a relatively broad frequency range [46, 47, 48], which are called the

necklace states. The spectrum of the �eld speckle pattern at the output of a random sample has

been decomposed into a sum of speckle patterns due to the modes of the medium [49]. In chapter 5,

we show that the number of modes and the mode linewidth saturates for random waveguides as we

increase sample length. The spatial pro�les of modes an(~r) in Eq. 1.1 is not accurately determined

when the modes are peaked near the input and will be studied in the future.

1.5 Transmission matrix

Random matrix theory was �rst proposed by Wigner to be used to describe the statistical properties

of excited states of atomic nuclei [50], which later was widely applied to mesoscopic physics [23],
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wireless communications [51] and �nance [52]. This theory was further developed by Dyson and

Mehta to determine the universal properties only in terms of some symmetry types of the system

[53, 54]. In the study of the statistics of energy levels of disordered systems, the Hamiltonian H is

treated as a N×N random matrix. On the other hand, the statistics of transport properties through

disordered systems, such as metal wires or quantum dots with point contacts, the scattering matrix

S or its submatrix, the transmission matrix t is treated as a large random matrix. The transmitted

�eld is related to the incident �eld via the �eld transmission matrix Eb = ΣN
a=1tbaEa, where a and

b label the incoming and outgoing channels, respectively, and N is the total number of channels.

The statistics of wave propagation in random media are fully determined by the eigenvalues τi of

the transmission matrix tt†. The transmission coe�cients of the eigenchannels are the eigenvalues

of the transmission matrix tt† and the transmittance is given by T = ΣN
i τi. We will discuss in this

thesis the e�ects of boundary re�ectivity on the transmission eigenvalues τ distribution. We will

also investigate the extension of transmission matrix to the interior of the sample in section 3.1.

1.6 Supersymmetry

The supersymmetry approach is an important technique in one way it establishes a connection

between di�erent disciplines and in another way it is a powerful method of calculation itself. Even

for problems that can be reduced to the random matrix theory, the zero-dimensional σ -model is

more convenient for computations and very often is the only way to get explicit results. For example,

the calculations of the average Green's function and its products are made dramatically easier with

the tool of supersymmetry, as will be seen in this section. For higher dimensions, the supermatrix

σ-model is the only tool available now in most cases [25].

Supersymmetric �eld theory originally dealt with particles with both integer and half integer

spin, bosons and fermions. This does not mean that we are dealing with bosons and fermions in our

photonic systems. We borrow the mathematical objects, such as the Grassmannians, as discussed

below, for calculations of classical wave propagation as well.

Grassmannians are mathematical objects satisfying the anticommuting relation

χχ′ = −χ′χ. (1.2)
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This is similar to the anticommutations of creation and annihilation operators of fermions. This

anticommuting relation also tell us that for any integer n > 1, χn = 0, similar to creation operators

of fermions when n > 1, (a†)n = 0. This is the Pauli exclusion principle that two identical fermions

cannot be created in the same state.

The integral over a single Grassmannian is de�ned by

∫
dχ =

∫
dχ∗ = 0,

∫
χdχ =

∫
χ∗dχ∗ = 1. (1.3)

Consider a non-singular N ×N Hermitian matrix M . By using the equations above, we �nd an the

identity ∫
e−χ

∗
iMijχjdχ∗1dχ1...dχndχ

∗
n = det(M), (1.4)

in contrast to the corresponding Gaussian integration over commuting variables which is propor-

tional to det−1(M).

With the commuting and anticommuting variables in hand, we are able to construct the su-

pervector space. Suppose φ is a supervector of n anticommuting component vectors χ and m

commuting component vector S. The transpose of the vector can be written as

φT = (χ1...χnS1...Sm). (1.5)

The linear transformation on the supervector space is described by a supermatrix, M with the

structure

M =

 MFF MFB

MBF MBB

 . (1.6)

The subscripts F and B refer to the fermionic (anticommuting) and bosonic (commuting) compo-

nents respectively. The entries in MBB and MFF are commuting variables while those in MFB and

MBF are anticommuting. The transpose of the supermatrix is

MT =

 MT
FF −MT

BF

MT
FB MT

BB

 . (1.7)
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The minus sign comes from the anti-commuting relation. The transpose of MFF is de�ned in the

usual way.

The Hamiltonian of a disordered system is H.

Hϕk = εkϕk, H = H0 +H1, < H1 >= 0. (1.8)

Here εk and ϕk are eigenvalues and eigenfunctions of the Hamiltonian H. The term H0 stands for

the kinetic energy part ε(p̂) of a free electron where p̂ is the momentum operator. In the simplest

case

ε(p̂) =
p̂2

2m
, (1.9)

where m is the electron mass.

The other term H1 describes the random potential that can orginate from impurities in the

system. Interactions with an external magnetic �eld B can be obtained by the substitution p̂ →

p̂− (e/c)A, where A is the vector potential corresponding to the magnetic �eld B.

The Green's function for the Schrodinger equation is

GR,Aε (r, r′) =< r|(ε− Ĥ + iη)−1|r′ > η → 0. (1.10)

We can express the Green's function in terms of the eigenfunctions of H

GR,Aε (r, r′) =
∑
k

ϕk(r)ϕ∗k(r
′)

ε− εk + iη
η → 0, (1.11)

or

GR,Aε (r, r′) =
∑
k

GR,Aεk ϕk(r)ϕ∗k(r
′) η → 0. (1.12)

An important property of the Green's functions is

GRε (r, r′) = (GAε (r′, r))∗ (1.13)

Generally we assume the disorder potential H1 = v(r) satisfying

< v(r) >= 0, < v(r)v(r′) >=
1

2π
δ(r− r′), (1.14)
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which is the Gaussian potential. It is not possible to solve the Schrodinger equation for any arbitrary

potential. However, for many cases such a solution would be unnecessary because what one need

to deal with are the statistical properties and has to calculate averages of quantities containing the

solutions. One particular important quantity is the local density of states at energy ε

< ρ(ε, r) >=<
∑
k,σ

ϕk(r, σ)ϕ∗k(r, σ)δ(ε− εk) > . (1.15)

Now we take the spin variable σ = ±1 into account as well. Use the formular 1
x+i0 = pp 1

x−iπδ(x),

we obtain the relation between the local density of states and the Green's functions

ρ(ε, r) =
1

2πi

∑
σ

(GAε (r, r)−GRε (r, r)) =
1

π

∑
σ

ImGAε (r, r) (1.16)

The LDOS is equivalent to the imaginary part of the Green's functions. So one of the ways to

obtain LDOS is through the Green's functions. We will introduce other ways later in this thesis.

We can use the formula

∫
ΦiΦ

+
k exp(−Φ+FΦ)dΦ∗dΦ∫

exp(−Φ+FΦ)dΦ∗dΦ
= (F−1)ik (1.17)

for any matrix F to rewrite the Green's function in terms of integration over auxilary �elds.

GR,Aεk =
∓i
∫

ΦαkΦ
+
αkexp(−iΦ

+(±(ε− εk) + iδ)ΦdΦ∗dΦ)∫
exp(−iΦ+(±(ε− εk) + iδ)ΦdΦ∗dΦ)

(1.18)

A di�culty arises when we are dealing with averaging over the disorder potential due to the term

in the denominator. The replica method was used to solve this problem [55]. Within this approach

one substitutes the initial disordered system by n identical systems. This makes it possible to

average over the disorder in the very beginning. But it is not rigorous due to the fact that one takes

the limit n → 0 to obtain the average values of physical quantities. This is inconsistent with the

conjecture of n systems where n is a positive integer.

The supersymmetry �eld theory approach can be applied to calculate the average of the Green's

functions, which is required to obtain the average LDOS. If we evaluate an integration with the

8



same number of degrees of fermionic and bosonic components, the integration

∫
eφ

+Mφdφ∗dφ = 1, (1.19)

since the integration over the anti-commuting part provides det(M) while the commuting part

contributes det−1(M). This nice property provide us an exact way of evaluating the Green's function

for disordered systems.

With the supermathematics constructed, the denominator becomes unity after integration over

the commuting and anti-commuting parts, as in Eq. 1.19. The Green's function then becomes

GR,Aεk = ∓i
∫

ΦαkΦ
+
αkexp(−iΦ

+(±(ε− εk) + iδ)dΦ∗dΦ) (1.20)

Introducing the �eld variables

Φ(y) =
∑
k

Φkϕk(y), Φ+(y) =
∑
k

Φ+
k ϕ
∗
k(y) (1.21)

The Green's functions GR,Aε (y, y′)

GR,Aε (y, y′) = ∓
∫

Φα(r)Φ+
α (r′)exp[i

∫
Φ(x)(±(ε−H) + iδ)Φ(x)dx]DΦ∗DΦ (1.22)

Here x and y denote both for the space and spin variables.

The absence of the denominator enables us to average the Green functions over the random

potential exactly for some Hamiltonian H. This is a great advantage of the supersymmetry method.

1.7 Topological insulator

Topological ideas in photonics arises from the development of new phases of matter in solid-states

materials [56, 57]. Examples are integer quantum Hall e�ect in which electrons in a magnetic �eld

form quantized orbits called Landau levels, and the quantum anomalous Hall e�ect where the same

e�ect is achieved in a periodic system without Landau levels [58].

Topology in mathematics is used to describe geometrical properties. For example, a sphere can
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be continuously deformed into the spoon so they are topologically equivalent while a torus can be

continuously deformed into a mug. But a sphere cannot be transformed into a torus without making

a hole. The objects that can be continuously transformed to each other are called topologically

equivalent. Topological invariant is the number that characterize this property, which is the number

of holes, or genus, as in this example, and objects of the same topological invariant are in the same

topological phase. When the topological invariant changes, that is when a hole is created or removed,

the object undergoes a process called topological phase transition [59].

For 2D quantum hall systems, the topological invariant is the Chern number, denoted as C,

which is a number, just like momentum or energy, to be used to describe the feature of the entire

system. Since the topological invariant is an integer which changes discretely, it is robust against

small perturbations such as defects or variations of material parameters. A mirror with zero Chern

number below the energy gap, which is generally opened from breaking time reversal symmetry (T),

is called topologically trivial and mirrors with non-zero Chern numbers are topologically non-trivial.

When two systems with di�erent Chern numbers connect, the gap must be closed and thus ensuring

the appearance of gapless states at the interface between the two bulks. In general, the number of

the gapless edge states equal the di�erence between the Chern numbers of the bulks, known as bulk-

edge correspondence. One important property of the edge modes is their uni-directionality, which

means that the states are not back scattered and is robust again impurities in the bulk. In quantum

spin Hall systems, the spin-orbit interaction allow a di�erent topological class when T symmetry is

not broken, called Z2 topological insulator [60]. The analogy of these e�ects in photonic crystals

provides many interesting applications and will be explored in chapter 5.

1.8 Outline

This thesis mainly describes wave transport through and within random media. Chapter 1 review

key concepts and presents a broad overview of the thesis. In chapter 2 we describe studies from

measurements of the output of random media, including work on speckle evolution and the impact of

internal re�ection on the distribution of transmission eigenvalues. Chapter 3 involves the exploration

of energy distribution within random media, including the discussion of the �eld matrix which is a

generalization of transmission matrix to the interior of the media, the statistics of energy distribution
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and single parameter scaling inside random media, and the e�ects of boundary conditions on the

energy density pro�les. In chapter 4 we present measurements of density of states and local density

of states in random waveguides, showing that the LDOS is suppressed in the middle of the sample for

localized waves and δ saturates while g continues to fall. In chapter 5 we addresses the topologically

protected edge states in recon�gurable photonic metacrystals. Our �ndings and conclusions are

summarized in chapter 6.
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2

Wave transport through random media

2.1 Speckle evolution

2.1.1 Phase singularity di�usion

Speckle patterns are interference patterns result from multiply scattered waves transmitted through

random media. The speckle pattern is generic, with elements of its structural elements and their

statistics unchanged as the speckle pattern evolves with changes in the con�guration or incident

frequency [33, 61, 62, 63, 64]. It is thus possible, in principle, to characterize changes in the

interaction of the wave through the sample by following the displacement of speci�c features of the

speckle pattern in time or frequency shifts. The most distinctive features of a speckle pattern are the

phase singularities at intensity nulls of the speckle pattern for each polarization component of the

wave [62, 65, 66]. Since both the in- and out-of-phase components of a single polarization of the �eld

vanish at the intensity nulls, the phase is ill-de�ned. The phase is singular with a discontinuity of π

rad along any line passing though the center of the vortex of �ux centered on the singularity. The

phase change in a complete counterclockwise circuit around the phase singularity is ±2π rad, which

is associated with a topological charge of ±1 [65]. Higher order vortices do not appear to arise in

speckle patterns of waves transmitted through random media. Phase singularities of opposite signs

are created or annihilated in pairs in a process in which charge is conserved. Though much is known

about the structure of speckle patterns, their motion has been little studied. The velocity statistics

of singularities has been calculated [33] and measured [63, 64] and the variance of singularity velocity
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has been shown to be a measure of the impact of weak localization [63]. However, the statistics of

motion over stretches of time in dynamic samples or over frequency change in static samples have

not been characterized.

Figure 2.1: Singularities in the speckle pattern in microwave experiments. Singularities with positive
and negative charges are represented by yellow dots and yellow squares respectively. We show
trajectories of two singularities as examples. Note that since singularities are annihilated after a
typical decaying frequency, the comparably longer trajectory as in this �gure is a relatively rare
event.

Here, we utilize microwave spectral measurements and computer simulations in the frequency

and time domains to demonstrate that singularity motion in the speckle pattern transmitted through

a scattering medium is di�usive.

In microwave experiments, the sample is composed of alumina spheres with diameter 0.95 cm

and refractive index 3.14 embedded in Styrofoam shells giving an alumina volume fraction of 0.068.

Randomly positioned spheres are contained in a copper tube with diameter 7.2 cm and length 61

cm. Speckle patterns are recorded at the output on a 1-mm grid. The full �eld is recovered with

use of the Whittaker-Shannon two-dimensional sampling theorem [67]. The frequency is scanned

from 14.7 to 15.7 GHz in 1601 frequency steps in 40 random realizations of the sample. New sample
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con�gurations are created by rotating and vibrating the sample tube.

We follow trajectories of singularities as frequency is stepped. An example of singularities in

a speckle pattern with the trajectories of two singularities is shown in Fig. 2.1 and the average

square displacement 〈R2〉 vs. frequency shift ∆ν is shown in Fig. 2.2. 〈R2〉 increases linearly after

a frequency shift of approximately 10 MHz.

Figure 2.2: Average of the square of singularity displacement with frequency shift. Slope of 〈R2〉
approaches a constant.

The average of the square displacement is given by the velocity correlation function [68],

〈R2(t)〉 = 〈(~r(t)− ~r(0))2〉 =

∫ t

0
dt′
∫ t

0
dt′′〈~u(t′)~u(t′′)〉. (2.1)

Here ~r is the position of a singularity. The variable t denoting time can be replaced by ν when consid-

ering the variation with frequency shift studied experimentally. The velocity auto-correlation func-

tion with frequency shift Cu(∆ν) = 〈(~u(ν) ·~u(ν+ ∆ν))〉/〈u〉2 shown in Fig. 2.3 decays rapidly. The

loss of correlation indicates that the motion of a phase singularity is random. The correlation func-

tion in the limit of vanishing frequency step ∆ν = 0, Cu(0) = 〈u2〉/〈u〉2 diverges. This can be cal-
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the con�guration selected, up or down, respectively, in the recon�gured area, the electromagnetic

radiation was carried by the topological edge states either from Port 1 to Port 2 or from Port 1

to Port 3, as illustrated in the insets to Fig. 5.3b,c. Measurements of topological switching of

transmission are shown in Fig. 5.3b,c and con�rm the possibility of the steering radiation by

changing the con�guration of the synthetic gauge �eld.

Figure 5.6: Demonstration of recon�gurable topological switch and its time-resolved dynamics.

5.4 Conclusion

In conclusion, we have demonstrated the robust propagation of electromagnetic edge states along

recon�gurable topological domain walls in a topological metacrystal. This opens up possibilities for

manipulations of propagation of electromagnetic radiation. Such a platform provides a versatile and

robust topological approach towards controlling and delivering energy along any desired path to a

particular location with no back-re�ection. In addition, this recon�gurable platform enables the
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study of a variety of fascinating physical phenomena such as controllable spin �lter and switch. In

particular, the pseudo-spin selective wave divider and topological switch demonstrated here prove

the versatility of the proposed recon�gurable platform for implementing unique device functional-

ities. The exploration of the breakdown of robustness in the face of diverse types of disorder and

the interplay with Anderson localization in topological systems will be studied in the future.

74



6

Summary

We have investigated the statistics of the energy density pro�les within random media. We have

shown in microwave measurements and FDTD simulations that the average of the LDOS drops

sharply towards the center of samples in which the wavelength is comparable to the scale of scattering

elements. The uniformity of the LDOS in random samples has been a fundamental assumption of

localization theory which lies behind the equivalence of the dimensionless conductance g and the

Thouless number δ. But in the systems in which the LDOS vanishes, δ saturates while g continues

to fall with increasing sample length. The decay of the LDOS is especially puzzling since the

samples we have studied satisfy SPS. We have found an extension of SPS to the interior of random

1D samples and disordered single-mode waveguides. The average of the logarithm of the energy

density pro�le < lnW (x) > decays linearly with depth into the sample as < lnW (x) >= −x/`.

Surprisingly, this linear fall-o� holds for random single-mode waveguides where the LDOS tends to

vanish. It also holds for nearly periodic 1S samples in which the LDOS is suppressed to a constant

level and periodic 1D samples inside the bandgap. Remarkably, the result < lnW (x) >= −x/` does

not depend on sample length L. This is counterintuitive since more energy is re�ected back to x

and < W (x) > does increase as L increases. It is further surprising that the slope of the fall-o� of

< lnW (x) > is also immune to boundary re�ectivity or energy barriers inside random media. The

full statistics of lnW (x) with energy barriers and the interplay between the LDOS and localization

are under study.

We have demonstrated edge transmission along the domain walls between two distinct topologi-

cal regions with spin-Chern numbers C = 1 and C = −1. The waves are shown to be spin-locked and
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the robustness of �ux along the domain walls was demonstrated in a recon�gurable structure. Fur-

ther studies will include the analysis of the edge states between topologically trivial and non-trivial

domains. We will also explore the robustness of transport in the face of disorder.

We have also discussed the extension of the transmission matrix, which we call the �eld matrix, to

the interior of random samples. The square of its singular values, are the energy density eigenvalues,

the highest of which is the maximum energy that can be delivered to at any depth into the sample.

The participation number of the energy density eigenchannels determines the contrast of optimal

focusing. The construction of the �eld matrix in experiments will be carried out in the future with

random samples in a 2D plane where �elds at all locations can be measured.

Besides measuring energy pro�les inside random media, we have explored the evolution of speckle

patterns at the output of random samples. The motion of phase singularities and local maxima of

intensity can be used to determine the photon di�usion coe�cient and, in a dynamic sample, the

rate of motion of scattering particles.

We have studied the e�ects of boundary re�ection on the distribution of transmission eigen-

values. We show that when re�ectivities at the two boundaries di�er, there exist a transition in

the transmission eigenvalue distribution at a critical re�ectivity beyond which perfect transmission

cannot be achieved. When two ends of the sample are equally re�ecting, there always exist perfect

transmission eigenchannels.

In this thesis, we have examined wave scattering inside disordered media from di�erent per-

spectives. This work may have applications in deep tissue imaging, information transmission, and

energy �ow in photonic devices.
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Appendix A

Appendix

A.1 Calculations of D(x) with boundary re�ectivity

We use the supersymmetry method as described in sections 1.6 and 2.2 to calculate the energy

pro�les within random media.

The super matrix Q can be written as a rotation about its free space form Λ as

Q(r) = T (r)−1ΛT (r). (A.1)

We replace T (r) with 1 + iW and express Q as [80],

Q(r) = (1 + iW )−1Λ(1 + iW ),W =

 0 B

kB† 0


ar

. (A.2)

We want to rewrite the boundary conditions of Q described in chapter 2.2 to that ofW . The original

equations are

2zb1Q∂Q+ [Q,Λ] = 0|x=0

2zb2Q∂Q− [Q,Λ] = 0|x=L.

(A.3)
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To simplify the calculations, we take iW →W and rewrite Q as

Q = (1 +W )−1Λ(1 +W )

= (1−W +W 2 + ...)Λ(1 +W )

= Λ(1 +W +W 2 + ...)(1 +W )

= Λ(1 + 2W + 2W 2 + 2W 3 + ...)

= Λ[1 + 2(W +W 3 + ...) + 2(W 2 +W 4 + ...)]

= Λ[1 +
2W

1−W 2
+

2W 2

1−W 2
]

= Λ[
1 +W 2

1−W 2
+

2W

1−W 2
]

. (A.4)

Since W 2 and Λ are diagonal matrices, the o�-diagonal term here is Λ 2W
1−W 2 and one of the terms

in the boundary conditions A.3 is

[Q,Λ] =
−4W

1−W 2
. (A.5)

Now we calculate the other term Q∂Q.

Q∂Q = Λ(
1 +W 2

1−W 2
+

2W

1−W 2
)∂[Λ(

1 +W 2

1−W 2
+

2W

1−W 2
)]

= (
1 +W 2

1−W 2
− 2W

1−W 2
)∂(

2W 2

1−W 2
+

2W

1−W 2
)

=
1−W
1 +W

∂[
2W (W + 1)

1−W 2
]

=
1−W
1 +W

∂(
2W

1−W
)

= 2[
1

1 +W
∂W +

(1−W )W

1 +W
∂

1

1−W
]

= 2[
1

1 +W
∂W − 1

1 +W
∂(1−W )

W

1−W
]

= 2(
1

1 +W
∂W +

1

1 +W
∂W

W

1−W
)

= 2(
1

1 +W
∂W

1−W
1−W

+
1

1 +W
∂W

W

1−W
)

= 2
1

1 +W
∂W

1

1−W

(A.6)

78



The boundary conditions are

zb1∂W −W = 0|x=0, zb2∂W +W = 0|x=L (A.7)

The correlation function is de�ned as

Y(r, r′) =
(πν
ω

)2
∫
D[Q]Q12

bb(x)Q21
bb(x′)e−

ξ
8

∫ L
0 dxstr(∂xQ)2−Ssurface , (A.8)

where Ssurface is surface term

SRsurface = −Ñdω
d−1A

2

1−R(εR)

1 +R(εR)
str(ΛQ(L)), (A.9)

and Ñd = ((4π)
d−1

2
d−1

2 Γ(d−1
2 ))−1. Y can also be expressed in terms of W and we can obtain

boundary conditions. Rigorous calculations are hard and needed to be ful�lled in the future. But

a reasonable simpli�cation can be obtained

(zb1 − 1)Y0(0, x′) = 0|x=0, (zb2 + 1)Y0(L, x′) = 0|x=L, (A.10)

which can be tested in simulations. Here Y0(x, x′) satisfy the equation

(γ −D0∂
2)Y0(x, x′) = 0 (A.11)

γ is the absorption rate. There are two kinds of solutions sinh
√

γ
D0

and cosh
√

γ
D0

. The solutions

can be written as

Y(x, x′) = Asinh(ξax) +Bcosh(ξax), x < x′

Y(x, x′) = Csinh(ξax) +Dcosh(ξax), x ≥ x′
(A.12)

At x = x′,

Y0(x′+, x′) = Y0(x′−, x′)

−D0[Y0(x′+, x′)− Y0(x′−, x′)] = 1

(A.13)
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B = zb1/ξaA

Asinh(x′/ξa) +Bcosh(x′/ξa) = Csinh(x′/ξa) +Dcosh(x′/ξa)

−D0/xia[Ccosh(x′/ξa) +Dsinh(x′/ξa)−Acosh(x′/ξa)−Bsinh(x′/ξa)] = 1

zb2/ξa[Ccosh(L/ξa) +Dsinh(L/ξa)] = −[Csinh(L/ξa) +Dcosh(L/ξa)]

(A.14)

We assume zb1, zb2 < ξa

zb1/ξa = tanhφ1

zb2/ξa = tanhφ2

(A.15)

We obtain

D = −tanh(φ2 + L/ξ)

B = tanh(φ1)A

A
sinh(x′/ξa + φ1)

coshφ1
= C

sinh(x′/ξa − φ2 − L/ξa)
cosh(φ2 + L/ξa)

C = −ξa/D0
sinh(x′/ξa + φ1)cosh(L/ξa + φ2)

sinh(L/ξa + φ1 + φ2)

(A.16)

Where we have used

cosh(x± y) = coshxcoshy ± sinhxsinhy, sinh(x± y) = sinhxcoshy ± coshxsinhy (A.17)

The return probability Y0(x = x′, x′)

Y0(x = x′, x′) = −ξa/D0
sinh(x′/ξa + φ1)sinh(x′/ξa − φ2 − L/ξa)

sinh(L/ξa + φ1 + φ2)

=
ξa

2D0

cosh(L/ξa + φ1 + φ2)− cosh(2x′/ξa + φ1 − φ2 − L/ξa)
sinh(L/ξa + φ1 + φ2)

(A.18)

As long as zb1, zb2 � ξa,we can just take L→ L+zb1 +zb2, x→ x+zb1. When there's no absorption

ξa →∞.

Y0(x, x) =
(x+ zb1)(L+ zb1 + zb2 − x− zb1)

D0(L+ zb1 + zb2)
(A.19)

From comparison with previous results [80], we can conjecture that

80



D(x)/D0 ∝ e
− (x+zb1)(L+zb2−x)

ξ(L+zb1+zb2) . (A.20)

A.2 List of methods used

In this thesis, experimental, numerical and theoretical methods are used to mainly analyze wave

scattering in the interior of random samples. We have developed 1) microwave experiments with

antenna moving along the longitudinal direction measuring energy from a slit on the waveguide;

2) computer simulations including recursive Green's function simulations, �nite di�erence time

domain simulations (FDTD) and 1D transfer matrix simulations; 3) theoretical approaches including

supersymmetry and random matrix calculations.

In microwave experiments, speckle patterns are measured at the output. The analysis of speckle

evolution is presented in section 2.1. By measuring the transmission matrix, and analyzing �elds

into quasi-normal modes, we obtain the DOS as in section 4.1. The energy pro�le of single mode

and quasi-1d samples are presented in section 3.2 and section 4.2. In section 4.2, the LDOS is

shown to vanish in the middle of the sample even in samples with no residue periodicity. However,

the logrithm of the energy density < lnW (x) > fall o� linearly in both suppressed and uniform

LDOS samples. The demonstrating of topological states in photonic crystals is also conducted using

microwave as in section 5.

The various ways of computer simulations are widely used in almost every chapter. The recursive

Green's function method provides calculations on a 2D lattice and can obtain �elds everywhere inside

random media with adjustable boundaries as described in sections 2.2, 3.1. The FDTD simulations

can mimic our experimental samples with more �exibility of sample parameters but runs slower and

are used in 2.1, 4.2. The simulation method based on transfer matrix approach is a small program

which can do simulations fast but currently only restricted in 1d and is utilized in sections 3.2, 3.3.2,

4.2.

The theoretical calculations are not limited to any speci�c approach. The main approach de-

scribed in this thesis is supersymmetry approach with an introduction of the basis in 1.6 and is used

in 2.2, 3.3.1.

There are many remaining questions in this thesis. In chapter 2, there are questions of the
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statistics of phase singularities created and annilated and the e�ect of boundary conditions on the

distribution of transmission eigenvalues for localized sample. In chapter 3, the full statistics as

how the bimodal distribution at the output gradually changes to the distribution of energy density

eigenvalues inside is unexplored and the e�ect of barrier inside random media is still under study.

Chapter 4 presents a new transport regime and many questions such as why the LDOS is suppressed

and how we can interplay this e�ect with localization and why SPS still holds, which could provide

many insights into wave scattering in open media. In chapter 5, further studies on the role of disorder

and the edge states propagating along domain walls between non-trivial and trivial crystals.
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