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Abstract

Solving Algorithmic Problems in Finitely Presented Groups via Machine

Learning

by

Jonathan Gryak

Advisor: Professor Delaram Kahrobaei

Machine learning and pattern recognition techniques have been successfully applied to

algorithmic problems in free groups. In this dissertation, we seek to extend these techniques

to finitely presented non-free groups, in particular to polycyclic and metabelian groups that

are of interest to non-commutative cryptography.

As a prototypical example, we utilize supervised learning methods to construct classi-

fiers that can solve the conjugacy decision problem, i.e., determine whether or not a pair

of elements from a specified group are conjugate. The accuracies of classifiers created us-

ing decision trees, random forests, and N -tuple neural network models are evaluated for

several non-free groups. The very high accuracy of these classifiers suggests an underlying

mathematical relationship with respect to conjugacy in the tested groups.

In addition to testing these techniques on several well-known finitely presented groups,

we introduce a new family of metabelian groups for which we analyze the computational

complexity of the conjugacy search problem. We prove that for the family in general the

time complexity of the conjugacy search problem is exponential, while for a subfamily the

problem is polynomial. We also show that for some of these groups the conjugacy search

problem is an instance of the discrete logarithm problem.
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We also apply machine learning techniques to solving the conjugacy search problem. For

each platform group we train a N -tuple regression network that can produce a candidate

conjugator for a pair of conjugate elements. This candidate is then used as the initial state

of a local search for a conjugator in the Cayley graph, in what we call regression-based

conjugacy search (RBCS). RBCS can be applied to groups such as polycyclic groups for

which other heuristic approaches, such as the length-based attack, are ineffective.
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Chapter 1

Introduction

Group theory has been a rich source of decision problems dating back to Max Dehn, who in

1911 [11] articulated the word, conjugacy, and isomorphism problems for finitely generated

groups. The exploration of solutions to these problems gave rise to combinatorial group

theory - the study of groups via their presentations, i.e., sets of generators and relations.

In 1955, the word problem was proven by Novikov [42] to be undecidable in general, one of

the first undecidable problems to be found outside of mathematical logic. Much subsequent

work in combinatorial group theory has determined the decidability of the word, conjugacy,

and (to a lesser extent) the isomorphism problem for many classes of groups.

Each of the above classic decision problems has a dual in the form of a search or “witness”

problem; the latter so called due to the requirement that a valid solution produces a group

element that acts as a witness to the affirmative answer of the decision problem. For the

word search problem, a word w known to be equivalent to the group identity is rewritten as

a product of the group’s elements and relators, while for the conjugacy search problem, an

element z is produced for a known conjugate pair x, y such that xz = y. Beyond the classic

problems, there are many other algorithmic decision/search problem pairs that have been

1



CHAPTER 1. INTRODUCTION 2

studied in group theory, including the subgroup membership problem and various problems

concerning morphisms.

Spurred by the 1994 publication of Shor’s quantum algorithm [49] for solving discrete

logarithm and integer factorization problems, upon which the security of most commercial

cryptographic systems rely, mathematicians and cryptographers sought new hardness as-

sumptions distinct from those aforementioned number-theoretic standards. The wellspring

of algorithmic problems from group theory was put to good use through the development of

non-commutative cryptography, the first modern instance of which was the commutator key

exchange introduced [2] by Anshel, Anshel, and Goldfeld (AAG).

The security of the AAG key exchange is based in part on the conjugacy search prob-

lem. As new cryptographic schemes are developed, there is a natural parallel advancement

in cryptanalysis. The original AAG protocol operating over braid groups was found to be

susceptible to a heuristic algorithm known as the length-based attack [26]. This has moti-

vated the search for other potential platform groups. In general, groups suitable for use in

non-commutative cryptography must be well-known and possess the following properties: a

solvable word problem, a computationally difficult group-theoretic problem, a “fast” word

growth rate, and the namesake non-commutativity [39].

In 2004, Eick and Kahrobaei [12] investigated the complexity of the word and conjugacy

problems in polycyclic groups: groups possessing a finite subnormal series of subgroups with

cyclic factors. Their experiments showed that while the time complexity of the conjugacy

problem grew exponentially with increased Hirsch length (the number of subgroups isomor-

phic to Z in the subnormal series), the word problem remained efficiently solvable. This

suggested the suitability of polycyclic groups as platform groups, and stimulated further

investigation into their use in non-commutative cryptosystems.
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Algorithmic problems in polycyclic groups can be studied in a variety of ways, including

through their linear representations, multiplication polynomials, or through polycyclic pre-

sentations [20]. In [23], Haralick et al. suggested a machine learning approach to solving

algorithmic problems in free groups. In this dissertation we seek to extend these results to

non-free groups in general and polycyclic groups in particular. As a prototypical example,

we will use machine learning techniques to solve the conjugacy search and decision problems

in a variety of groups, including a family of polycyclic and metabelian groups that have an

exponentially bounded conjugacy search problem.

In Chapter 2 we provide the group theory and non-commutative cryptography back-

ground needed to facilitate the reader’s comprehension of our exposition. In Chapter 3,

we introduce the aforementioned family of polycyclic groups, proving the upper exponential

bound on the conjugacy search problem and the relationship between it and the discrete log-

arithm problem. In Chapter 4 we present our method for implementing a machine learning

system for non-free groups, including methods for feature extraction, model selection, data

generation, and system evaluation. In Chapter 5 we apply this methodology to solving the

conjugacy decision problem in a variety of non-free finitely presented groups. In Chapter

6, we present a framework for applying these techniques to the conjugacy search problem,

as well as suggest additional improvements and uses of our machine learning method.



Chapter 2

A Primer on Group Theory and

Non-Commutative Cryptography

2.1 Group Theory

In this section we provide an overview of group theory that is relevant to this dissertation

and the work contained herein. We assume that the reader has a basic understanding of

group theory gleaned from an undergraduate course in the subject, from a graduate course

in theoretical computer science, or from a familiarity with traditional cryptographic protocols

such as RSA or Diffie-Hellman key exchange. The content here is not exhaustive; additional

concepts will be introduced in context as needed.

2.1.1 Conjugacy

Definition 2.1.1. For a given group G, two elements u, v ∈ G are conjugate, denoted u ∼ v,

if there exists an element z ∈ G such that

zuz−1 = v.

4
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As with any group action, conjugation can be defined equivalently as either a left or

right action. The definition above uses the left action convention. However, throughout this

dissertation we will denote conjugation exponentially as

uz = zuz−1.

Conjugation by a fixed element of G is an inner automorphism, i.e., a bijection from G to

itself that is also a group homomorphism.

2.1.2 Semidirect Products

One of the standard ways in which to construct non-commutative groups is through the

use of the semidirect product. The semidirect product of two groups is a generalization of

the direct product, wherein only one of the groups is normal in the resultant group.

Definition 2.1.2. Given two groups H and K, along with a homomorphism φ : K →

Aut(H), we can construct a new group G called the semidirect product and denoted by

G = H oφ K.

Multiplication in the semidirect product G is defined as

(h1, k1)(h2, k2) = (h1φ(k1) · h2, k1k2)

with (h1, k1), (h2, k2) ∈ G and · denoting the action of φ(k1) on h2. The o symbol is used to

indicate that H is a normal subgroup of G.
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G contains subgroups H ′ = {(h, 1) | h ∈ H} and K ′ = {(1, k) | k ∈ K} that are isomorphic

to H and K respectively. It follows that the group action φ(k) · h is equivalent to hk, i.e.,

φ(k) · h = hk = khk−1.

Note that G will be non-abelian provided that φ is not equivalent to the trivial homo-

morphism.

2.1.3 Torsion

The concepts of torsion elements and subgroups are instrumental to the proof in section

3.2 concerning the computational complexity of the conjugacy search problem in F .

Definition 2.1.3. Let G be an abelian group. An element g ∈ G has finite order n if

∃n ∈ Z \ {0} such that ng = 0. If no such n exists, the element is said to have infinite order.

For each n ∈ Z, the elements that have the same order n form a subgroup of G, denoted

G[n]. The set of all elements with finite order forms a subgroup T ≤ G called the torsion

subgroup of G.

Definition 2.1.4. Let G be an abelian group. For p ∈ Z, with p a fixed prime, the subgroup

Gp is called a p-primary component of G.

Definition 2.1.5. The exponent of a torsion subgroup T , denoted exp(T ), is the smallest

positive integer k such that kv = 0 for any v ∈ T . If no such integer exists, then by

convention exp(T ) =∞.

Theorem 2.1.1 (Primary Decomposition Theorem). Let G be an abelian group with torsion

subgroup T , then

T = ⊕pGp,

with Gp the p−primary components of G.
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2.1.4 Free Groups, Group Presentations, and Generic Sets

Analogous to the use of set-builder notation for sets, groups can be defined via group

presentations. Before defining presentations, we must first be explicit about what we mean

by “words” in the context of free groups. Let X be a set of symbols, and let X−1 denote

the set of inverses of X, e.g., if a ∈ X, then a−1 ∈ X−1. A word on Y = X ∪X−1 is a finite

string of elements of Y . A reduced word w is a word on Y such that no subwords of the form

x−1x or xx−1 exist in w. We are now ready to define a free group:

Definition 2.1.6. The free group on X, denoted FX , is the set of all reduced words on Y .

The group operation is string concatenation, with the reduction of any subwords of the form

x−1x or xx−1 to the empty symbol as necessary. The rank r of the free group FX is the

cardinality of X, and up to isomorphism there is precisely one free group of rank r.

We need one additional concept before defining group presentations, that of the normal

closure:

Definition 2.1.7. Let R ≤ G be a subset of the group G. The normal closure of R, denoted

RG, is the intersection of all normal subgroups of G that contain R. Or, more constructively,

RG is defined as the group generated from conjugating R by all elements of G:

RG = 〈gRg−1 | g ∈ G〉.

Definition 2.1.8. Let X be a set of symbols and R a set of freely reduced words from FX .

The group G ∼= FX/R
G is said to be given by a presentation

〈X | R〉.

The corresponding mapping φ : F (X) → G with ker(φ) = RG is called the canonical

epimorphism.
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The elements of X are called the generators of G, while elements of R are called relators.

The cardinality of the sets X and R determine different classes of groups. If X and R are

finite, G is said to be finitely presented. A special subclass of finitely presented groups have

presentations with |R| = 1, these are called one-relator groups. If only X is finite, then G is

finitely generated. In this dissertation, we will only be considering finitely presented groups.

We conclude our discussion of free groups with an additional concept that is relevant to

our analysis of length-based conjugacy search in section 6.1.1, that of the generic free basis

property. We first require the notion of a generic set, whose definition we take from [28].

Given a finite alphabet X, let (X∗)k denote the set of all k-tuples of words on X. The

length of a k-tuple is defined as the length of the words within it. For all n ≥ 0, let Bn be

the set of all k-tuples of length n.

Definition 2.1.9. Let S be a subset of (X∗)k. The asymptotic density of S, denoted ρ(S),

is defined as

ρ(S) = lim sup
n→∞

|S ∩Bn|
|Bn|

.

A set S is considered generic in (X∗)k if ρ(S) = 1. Conversely, a set S is considered negligible

in (X∗)k if ρ(S) = 0.

If a subset S of a free group G possesses a property P , and if S can be shown to be

generic in G, then probabilistically the property P holds for all words in G. Akin to this

concept, we can now define the (generic) free basis property, following [40]:

Definition 2.1.10. LetG be given by a presentation 〈X | R〉. A k-tuple of words (w1, . . . , wk)

from the free group on X has the free basis property in G if it freely generates a free subgroup

of G. The group G has the generic free basis property if the free basis property is generic

for every k ≥ 1 and finite generating set X of G.
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2.1.5 Algorithmic Problems

As mentioned in the introduction, group theory is an abundant source of decision and other

algorithmic problems. Below we provide the explicit definitions of the classic decision prob-

lems given by Dehn, along with those for the search problems relevant to non-commutative

cryptography.

Decision Problems

In 1911, Max Dehn introduced [11] three decision problems on finitely presented groups -

the word problem, the conjugacy problem, and the isomorphism problem. In the definitions

below, let G be a finitely presented group:

• Word Decision Problem - For any g ∈ G, determine if g = 1G, the identity element of

G.

• Conjugacy Decision Problem - Determine for any u, v ∈ G if u is conjugate to v.

• Isomorphism Decision Problem - Given groups G and G′ with respective finite presen-

tations 〈X | R〉 and 〈X ′ | R′〉, determine if G is isomorphic to G′.

An additional decision problem called the subgroup membership decision problem (also

called the generalized word decision problem) asks for any g ∈ G and subgroup H ≤ G,

determine if g ∈ H.

Search Problems

Let G be a group with elements a1, . . . , an, b1, . . . , bn such that ai ∼ bi. The problem of

finding a c ∈ G such that for all i, aci = bi is called the (single) conjugacy search problem for

i = 1 and the multiple conjugacy search problem for 1 < i ≤ n.
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2.1.6 Normal Forms

The normal form for elements of a group can in general be construed as the unique and

most concise representation of each element in the group. For free groups the normal form

of an element is its reduced word representation. Normal forms need not be words; they can

be numbers, sequences, or some other formal representation. Note that in some contexts the

uniqueness of normal forms may be relaxed.

We can give a general but precise definition of normal forms by using the language of

rewriting systems. Let X be a set and → be a binary relation on X, with
∗→ its reflexive,

transitive closure. The relation→ is said to be terminating if there exist no infinite sequences

x0 → x1 → . . . for any xi ∈ X. The relation → is confluent if for all x, y, z ∈ X with x
∗→ y

and x
∗→ z, there exists a w ∈ X such that y

∗→ w and z
∗→ w. An element x ∈ X is

irreducible if no y ∈ X exists such that x
∗→ y. We can now give the following definition:

Definition 2.1.11. Let X be a set and→ be terminating and confluent. For every element

x ∈ A there exists a unique, irreducible element nx ∈ X called the normal form of x, with

x
∗→ nx. Moreover, x and y are equivalent under

∗→, that is x
∗→ y and y

∗→ x, if and only if

nx = ny.

A group may have zero, one, or many normal forms. The existence of at least one normal

form for a group implies the decidability of the word problem. For some finitely presented

groups (e.g., automatic groups) the Knuth-Bendix algorithm [30] can be used to create a

confluent, terminating rewriting systems with respect to the generating set X. In other

classes of groups, such as polycyclic groups, the collection algorithm can be used (see section

2.1.9).
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2.1.7 Growth Rate

Let G be a finitely generated group. The growth rate of a group is specified by its growth

function γ : N −→ R defined as γ(n) = #{w ∈ G : l(w) ≤ n}, where l(w) is the length

of w as a word in the generators of G. The growth rate of a group imposes restrictions on

its algebraic structure, e.g., whether or not it is virtually nilpotent. In non-commutative

cryptography, growth rate is important as it affects the size of the key space, the set of all

possible candidate keys available to a cryptosystem.

2.1.8 Nilpotent Groups

Nilpotent groups are a superclass of abelian groups. Before defining them we will need

some additional terminology. For any elements x, y ∈ G, the commutator of x and y is

[x, y] = xyx−1y−1. The set of all commutators of all elements x, y ∈ G, is a normal subgroup

of G denoted by [G,G], and is called either the commutator subgroup or derived subgroup of

G.

Using the commutator one can define a series of subgroups called the lower central series,

G = G1 DG2 D · · ·DGn D · · ·

with Gi+1 = [Gi, G]. We can now use the lower central series to define a nilpotent group:

Definition 2.1.12. A nilpotent group is a group with a finite lower central series that

terminates with the trivial group, i.e.,

G = G1 DG2 D · · ·DGn = {1}.

Nilpotent groups are contained within the class of polycyclic groups, which we define in
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the next subsection. The use of nilpotent groups in this dissertation will be restricted to

differentiating between subclasses of polycyclic groups.

2.1.9 Polycyclic Groups

Polycyclic groups are natural generalizations of cyclic groups that are finitely presented

and can be readily represented computationally via their eponymous presentations. This

ease of representation, amongst other properties, have motivated their use in group-based

cryptography. We describe here the aspects of polycyclic groups that are salient to this dis-

sertation. For further details on their algebraic theory and use in group-based cryptography,

see [20], a joint work from which this section is derived.

Polycyclic Sequences and Hirsch Length

A group G is said to be polycyclic if it has a subnormal series G = G1 . · · · . Gn+1 = {1}

such that the quotient groups Gi/Gi+1 are cyclic. This series is called a polycyclic series.

The Hirsch length of a polycyclic group G is the number of infinite groups in its polycyclic

series. Though a polycyclic group can have more than one polycyclic series, as a consequence

of the Schreier Refinement Theorem, its Hirsch length is independent of the choice of series.

Polycyclic Presentations

Every polycyclic group can be described by a polycyclic presentation:

〈g1, . . . , gn | g
gj
i = uj,i for 1 ≤ j < i ≤ n,

g
g−1
j

i = vi,j for 1 ≤ j < i ≤ n,
grii = wi,i for i ∈ I〉,

where uj,i, vi,j are words in the generators gj+1, . . . , gn; wi,i are words in the generators

gi+1, . . . , gn; and I is the set of indices i ∈ {1, . . . , n} such that ri = [Gi : Gi+1] is finite.
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In a polycyclic group G with polycyclic sequence X, any element g can be represented

uniquely in normal form as a product of powers of the generators of G:

g = xe11 · · ·xenn ,

with ei ∈ Z. The sequence (e1, . . . , en) is called the exponent vector of g with respect to X.

This special type of finite presentation reveals the polycyclic structure of the underlying

group, see [24, Chapter 10] for details. Unlike general finite presentations, a polycyclic

presentation enables the word problem to be solved using an algorithm called collection.

While the collection algorithm is generally effective in practice, its precise computational

complexity remains unknown. For finite groups, collection from the left was shown to be

polynomial by Leedham-Green and Soicher [33]. For infinite groups, the complexity of the

collection algorithm with respect to word length remains unknown.

Matrix Representation

It is well-known that every polycyclic group can be embedded into GL(n,Z) for some

n ∈ N. For groups that are additionally torsion-free and nilpotent, a matrix representation

can be computed from the polycyclic presentation using the algorithm of Lo and Ostheimer

[34]. Multiplication of group elements in their matrix form is polynomial in the dimension

n of the representation.

Algorithmic Problems in Polycyclic Groups

For polycyclic groups all three of the classic problems in Section 2.1.5 are decidable. The

conjugacy decision problem for polycyclic groups is decidable by the results of Remeslennikov

[44] and Formanek [15]. That the word problem is decidable can be observed from its
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formulation as a special case of the conjugacy decision problem (where g = u, v = 1G), or by

observing that every word has a unique normal form induced by a polycyclic presentation.

The isomorphism decision problem for polycyclic groups is solvable by a result of Segal [48].

In polycyclic groups, the multiple conjugacy search problem for n elements reduces to n

independent solutions of single conjugacy search [12]. Mal’cev showed [36] that the subgroup

membership search problem is solvable for polycyclic groups.

2.1.10 Metabelian and Solvable Groups

Definition 2.1.13. A group G is metabelian if and only if it has an abelian normal subgroup

A such that G/A is abelian. Alternatively, it is a group with a subnormal series of length 2:

{1} = G0 / G1 / G2 = G,

and G2/G1 is abelian.

Example 2.1.1. The dihedral group of order 8 is metabelian.

Metabelian groups are a special case of solvable groups, whose definition removes the

restriction on the length of the subnormal series. Note that all polycyclic and metabelian

groups are solvable, but not all metabelian groups are polycyclic:

Example 2.1.2. The Baumslag-Solitar group

BS(1, 2) = 〈a, b | bab−1 = a2〉

is metabelian but not polycyclic.

The word problem is decidable in finitely generated metabelian groups [5], as is the
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conjugacy decision problem [41]. The decidability of the isomorphism problem is currently

unknown.

2.2 Non-Commutative Cryptography

As mentioned in the introduction, non-commutative cryptographic systems replace al-

gorithmic problems from number theory with group-theoretic problems for their hardness

assumptions. In this section we include background material from standard and non-

commutative cryptography that is referenced throughout the remainder of the text.

The discrete logarithm hardness assumption undergirds well-known cryptosystems such as

Diffie-Hellman key exchange and ElGamal encryption. As we will show in chapter 3, there

are particular groups for which solving the conjugacy search problem is equivalent to finding

a discrete logarithm. The depiction of the seminal Anshel, Anshel, and Goldfeld (AAG) key

exchange protocol provides a concrete example of how non-commutative cryptosystems oper-

ate. The protocol’s use of the conjugacy search problem gave rise to the length-based attack

algorithm, which can be modified to perform conjugacy search instead of cryptanalysis; we

provide the pseudocode for such a modification below.

2.2.1 Security and the Discrete Logarithm Problem

A cryptosystem exhibiting perfect security means that, from an information-theoretical

standpoint, no information can be obtained from the encrypted data without the encryption

key. Note that this property is irrespective of the computational power of any adversary

wishing to obtain the unencrypted information. As such systems are often impractical,

modern cryptographic systems replace perfect security with the notion of semantic security,

whereby a cryptosystem is deemed secure if any probabilistic, polynomial time algorithm
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that can decrypt information without the key does so with negligible probability. Negligible

functions [29, Def 3.4] are a convenient way of formalizing this probability:

Definition 2.2.1. A function f is negligible if for every polynomial p(x) there exists a N

such that for all integers n > N , f(n) < 1
p(n)

. A negligible function can be denoted negl.

Given a cyclic group G and elements g, y ∈ G, with y ∈ 〈g〉, recall that the discrete loga-

rithm problem is to find an integer x such that gx = y. Using the concept of semantic security,

we can now formally define a hardness assumption based upon the discrete logarithm:

Definition 2.2.2. Let A(G, g, y) be any probabilistic, polynomial time algorithm A that,

for a specified cyclic group G with elements g and y, outputs 1 if an x is found such that

gx = y and 0 otherwise. The discrete logarithm assumption is that there exists a G such

that, for any probabilistic, polynomial time algorithm A, the following holds:

Pr[A(G, g, y) = 1] ≤ negl(n),

with n = |G| being the order of the cyclic group.

There is no known efficient algorithm for computing discrete logarithms for arbitrary

groups on conventional (i.e., non-quantum) computers. Exhaustive search for a discrete

logarithm takes O(n) time, where n is the group order. For scale, note that the order of

a group Z∗p based on the common key size of 2048-bit primes is approximately 10617. The

baby-step, giant-step algorithm by Shanks is currently the most efficient for arbitrary groups,

at O(
√
n · polylog(n)) [29, pg. 306]. For groups of the form Z∗p with p prime, the general

number field sieve is the most efficient at 2O(n1/3·(logn)2/3) [29, pg. 307].

With a quantum computer of sufficient size, Shor’s algorithm [49] can solve the discrete

logarithm problem efficiently. The algorithm runs in bounded-error quantum polynomial
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time (BQP), that is, it runs in polynomial time and the probability that the algorithm

produces an incorrect answer can be made arbitrarily small.

2.2.2 The Anshel-Anshel-Goldfeld Key-Exchange Protocol

In their 1999 paper [2], Anshel, Anshel, and Goldfeld introduced the commutator key

exchange protocol, which is also referred to as AAG key exchange or Arithmetica. The

group-based version of the key exchange described below is in the style of [38]. Prior to the

key exchange, the protocol parameters N1, N2, L1, L2, L ∈ N, with 1 ≤ L1 ≤ L2, are chosen

and made public:

1. Alice chooses a set Ā = {a1, . . . , aN1}, with Bob choosing B̄ = {b1, . . . , bN2}, where

ai, bj ∈ G are words of length in [L1, L2]. Note that Ā and B̄ both generate subgroups

of G. These sets are then exchanged publicly with each other.

2. Alice constructs her private key as A = aε1s1 . . . a
εL
sL

, with ask ∈ Ā and εk ∈ {−1, 1}.

Similarly, Bob computes as his private key B = bδ1t1 . . . b
δL
tL

, with btk ∈ B̄ and δk ∈

{−1, 1}.

3. Alice then computes b′j = A−1bjA for 1 ≤ j ≤ N2 and sends this collection to Bob,

while Bob computes and sends Alice a′i = B−1aiB for 1 ≤ i ≤ N1.

4. Alice and Bob can now compute a shared key κ = A−1B−1AB, which is the commutator

of A and B, denoted [A,B]. Alice computes (using only the a′i which correspond to

some si of her private key):
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κA = A−1a′
ε1
s1
· · · a′εLsL

= A−1B−1aε1s1B · · ·B
−1aεLsLB

= A−1B−1aε1s1(BB
−1)aε2s2B · · ·B

−1aεL−1
sL−1

(BB−1)aεLsLB

= A−1B−1aε1s1a
ε2
s2
· · · aεL−1

sL−1
aεLsLB

= A−1B−1AB.

Analogously, Bob computes κB = B−1A−1BA. The shared secret is then κ = κA = κ−1B .

As noted in [51], the security of AAG is based on both the simultaneous conjugacy search

problem and the subgroup membership search problem.

2.2.3 Length-based Attack and Conjugacy Search

The length-based attack (LBA) is an incomplete, local search that attempts to solve the

conjugacy search problem (or its generalized version) by using the length of a word as a

heuristic. It was first introduced by Hughes and Tannenbaum [26] as a means to attack

the AAG key exchange protocol over braid groups. In [17], Garber et al. explored the

use of length functions based on the Garside normal form of braid group elements. They

demonstrated experimentally that the length-based attack in this context could break the

AAG protocol, albeit inefficiently.

As the length-based attack is an iterative improvement search, it is susceptible to failing

at peaks and plateaux in the search space. In [38], Myasnikov and Ushakov identified where

these peaks occurred and were able to make successive refinements to the algorithm to yield

a high success rate. More recently, the authors of [16] analyzed the LBA against AAG over

polycyclic groups, finding that the success rate of the LBA decreased as the Hirsch length

of the platform group increased.
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Any version of the LBA algorithm can be readily adapted to solve the single conjugacy

search problem in a finitely presented group. Such algorithms will be referred to as length-

based conjugacy search. In what follows we provide the pseudocode for the “LBA with

Memory 2” from [16], the most effective algorithm from their paper, adapted to solving the

single conjugacy problem. In this variation, one maintains a set S full of conjugates of our

initial element, y. Each element of S is conjugated by each generator and the results are

stored in a set S ′. After every element of S has been conjugated by every generator, the T

smallest elements of S are kept, with the rest discarded. The algorithm terminates when

the problem has been solved or after a user-specified time-out. We assume that the group

G has a length function, | · |, such that |g| < |xgx−1|, and that the set S generates G. As

input we take x, y ∈ G such that |y| > |x| and X such that 〈X〉 = G. For convenience, we

assume that X is closed under the inversion of elements:

Algorithm 1 LBCS with Memory 2 (Single Conjugacy Problem)

S ← {(|y|, y, idG)}
while not time-out do

for (|z|, z, a) ∈ S do
Remove (|z|, z, a)
for h ∈ X, e = ±1 do

g ← he

if gzg−1 = x then
Return ga as a conjugator of x to y

else
Save (|gzg−1|, gzg−1, ga) in the set S ′

end if
end for

end for
Sort potential conjugators in S ′ by their length
Copy the shortest T elements into S and delete the rest of S ′

end while
Upon time-out, return FAIL



Chapter 3

The Conjugacy Search Problem in a

Family of Polycyclic and Metabelian

Groups

The exposition in this section is a condensed and annotated version of [21], a joint work.

3.1 Split Metabelian Groups of Finite Prüfer Rank

We consider the conjugacy search problem for a certain family F of finitely presented

metabelian groups given by the following presentation:

G = 〈q1, . . . , qn, b1, . . . , bs | [ql, qt] = 1, [bi, bj] = 1, bqli = b
ml(1,i)

1 b
ml(2,i)

2 . . . b
ml(s,i)
s 〉

with 1 ≤ l, t ≤ n, 1 ≤ i, j ≤ s and the ml(j,i) suitable integers so that the actions of the ql

commute.

20
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Observe that q1, . . . , qn generate a free abelian group which we denote by Q and that

b1, . . . , bs and their Q-conjugated elements generate a torsion-free abelian group B such that

G = B o Q, with B a normal subgroup of G. Throughout this chapter we will consider B

as a Q-module with left action and will denote conjugation as bqli = qlbiq
−1
l .

As B is torsion-free abelian there is an embedding B ↪→ Qs that maps b1, . . . , bs to a free

basis of Qs. This means that the group G has finite Prüfer rank n+ s. Recall that a group

has finite Prüfer rank if the number of generators needed to generate any finitely generated

subgroup is bounded. Observe that the action of Q on B can be described using integral

matrices: the action of ql is encoded by the s × s matrix Ml with entries ml(j,i). As these

matrices commute pairwise, Q maps onto an abelian subgroup of GL(s,Q). Our group G

need not be polycyclic: in fact, it is polycyclic if and only if the matrices Ml have integral

inverses [3].

Elements of these groups exhibit the following normal form:

q−α1
1 . . . q−αn

n bβ11 . . . bβss q
γ1
1 . . . qγnn ,

with αl, βi, γl ∈ Z and α1, . . . , αn ≥ 0. Collection from the left [33] can be employed to

convert any word written in the generators of G into its unique normal form.

3.1.1 Generalized Metabelian Baumslag-Solitar Groups

Of particular interest is the subfamily of F that we call generalized metabelian Baumslag-

Solitar groups. Let m1, . . . ,mn be positive integers. These groups are given by the following

presentation:

G = 〈q1, . . . , qn, b | bqi = bmi , 1 ≤ i, j ≤ n, [qi, qj] = 1〉.
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They are constructible metabelian groups of finite Prüfer rank and G is isomorphic to BoQ

with Q = 〈q1, . . . , qn〉 ∼= Zn and B = Z[m±11 , . . . ,m±1k ] (as additive groups).

Example 3.1.1. The group GMBS(2,3) given by the presentation

GMBS(2, 3) = 〈q1, q2, b | bq1 = b2, bq2 = b3, [q1, q2] = 1〉

is a generalized metabelian Baumslag-Solitar group. Note that GMBS(2,3)∼= Z
[
1
2
, 1
3

]
o Z2.

Let us examine how collection works for these groups. Consider an uncollected word in

GMBS(2,3):

q−11 q2b
−1q1q

−1
2 .

As the elements qi commute we have

q−11 q2b
−1q−12 q1.

We then apply the negated form of the relation bq2 = b3 to yield

q−11 q2q
−1
2 b−3q1,

that, after cancellation, gives us the reduced word in normal form:

q−11 b−3q1.

3.1.2 Galois Extensions

Let L : Q be a Galois extension of degree n and fix an integral basis {u1, . . . , us} of L over

Q, then {u1, . . . , us} freely generates the maximal order OL as a Z-module. Now, choose

integral elements, q1, . . . , qn, that generate a free abelian multiplicative subgroup of L−{0}.
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Each ql acts on L by left multiplication and using the basis {u1, . . . , us}, we may represent

this action by means of an integral matrix Ml. Let B be the smallest sub Z-module of L

closed under multiplication with the elements q±1l such that OL ⊆ B, i.e.,

B = OL[q±11 , . . . , q±1n ].

We may then define G = BoQ, where the action of Q on B is given by multiplication by the

elements ql. The generalized metabelian Baumslag-Solitar groups of the previous example

are a particular case of this situation when L = Q. If the elements ql lie in O×L , the group of

units of OL, then the group G is polycyclic.

3.1.3 Linear Representations

Recall that each ql ∈ Q can be represented linearly as a matrix Ml ∈ Qs×s. As B ⊂ Qs,

elements of G can be converted from words to linear representations, where a word g = bx ∈

G is mapped to a vector vX ∈ Qs, with X a product of the matrices Ml. If g is in normal

form, i.e.,

q−α1
1 . . . q−αn

n bβ11 . . . bβss q
γ1
1 . . . qγnn ,

then the following word also yields g:

q−α1
1 . . . q−αn

n bβ11 . . . bβss q
α1
1 . . . qαn

n qγ1−α1

1 . . . qγn−αn
n .

In the semidirect representation of we have g = bx with x = qγ1−α1

1 . . . qγn−αn
n and additively

b = (q−α1
1 . . . q−αn

n ) · (β1b1 + . . .+ βsbs).
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To represent b as a vector v ∈ Qs, recall that the action of each ql is encoded by the integral

matrix Ml, then

v = M−α1
1 · · ·M−αn

n

β1...
βs

 .
The complexity of the above procedure using Gaussian elimination for inverses, standard

matrix multiplication, and efficient exponentiation is:

O((n− 1)[s3 + s3 log max
l

(αl) + s3 log max
l

(γl − αl)] + s2 + s3).

Thus, we have shown that we can, in polynomial time, convert from a word representation

to a linear one. Now, consider the converse, in which we have vx with v given as a vector

in Qs. In order to convert v into its normal form, we first show that B is embedded in a

particular subset of Qs. Testing for membership in this subset will then yield an element

b ∈ B in normal form as desired. In the following discussion, we identify B with its image

in Qs and the group generated by b1 . . . , bs with Zs.

Let d =
∏

l dl, with dl is the lowest common denominator of the entries of Ml. Observe

that for any v ∈ B,

dα1+...+αnv ∈ Zs,

thus v ∈ Z[1
d
]s. In other words, we have

B ⊆ Z[1
d
]s ⊂ Qs.

Lemma 3.1.1. Let M =
∏

lMl. There is some α depending on G only such that for any i,

B ∩ 1
di
Zs ⊆M−iαZs. Moreover, α ≤ s log d.
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Proof. Consider first the case when i = 1. We have Zs ⊆ 1
d
Zs and

Zs ⊆M−1Zs ∩ 1

d
Zs ⊆ . . . ⊆M−jZs ∩ 1

d
Zs ⊆M−j−1Zs ∩ 1

d
Zs ⊆ . . . ⊆ 1

d
Zs.

As the quotient 1
d
Zs/Zs is the finite group Zd × . . .×Zd of order ds, this sequence stabilizes

at some degree, say α. Then B ∩ 1
d
Zs = M−αZs ∩ 1

d
Zs and

B ∩ 1

d
Zs ⊆M−αZs

as desired. Moreover, we claim that it stabilizes precisely at the first α such that

M−αZs ∩ 1

d
Zs = M−α−1Zs ∩ 1

d
Zs.

To demonstrate, let b ∈M−α−2Zs ∩ 1
d
Zs. Then Mb ∈M−α−1Zs ∩ 1

d
Zs = M−αZs ∩ 1

d
Zs thus

b ∈M−α−1Zs ∩ 1
d
Zs = M−αZs ∩ 1

d
Zs. Repeating the argument implies that for all β > α,

M−αZs ∩ 1

d
Zs = M−βZs ∩ 1

d
Zs.

As a consequence, α is bounded by the length of the longest chain of proper subgroups in

Zd × . . .× Zd, i.e., α ≤ log(ds) = s log d.

Now we argue by induction. Let b ∈ B ∩ 1
di
Zs, then db ∈ B ∩ 1

di−1Zs and by induction we

may assume that db ∈M−(i−1)αZs, thus M (i−1)αdb = v ∈ Zs. Then

1

d
v ∈ B ∩ 1

d
Zs ⊆M−αZs.

Therefore

MαM (i−1)αb =
1

d
M iαv ∈ Zs
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and b ∈M−iαZs.

To glimpse how the above lemma can be used, consider the group G ∈ F given by the

following presentation:

G = 〈bi, qi | bq11 = b21, b
q2
2 = b42, b

q3
3 = b163 , b

qj
i = bi for i 6= j, [bi, bj] = 1, [qi, qj] = 1〉,

with 1 ≤ i, j ≤ 3.

From the presentation above s = 3. The linear representations of the elements ql (and their

product M) are then:

M1 =

 2 0 0
0 1 0
0 0 1

M2 =

 1 0 0
0 4 0
0 0 1

M3 =

 1 0 0
0 1 0
0 0 16

 ;M =

 2 0 0
0 4 0
0 0 16

 .
From visual inspection of M it is clear that d = 16. Moreover, it is easy to check that

1
16
Zs ⊆ B and that

1

16
Zs =

1

16
Zs ∩B ⊆M−4Zs,

with α = 4 the smallest value that satisfies the above equation.

There are two cases to considered in determining the word representation of v. If v ∈ Zs,

then v ∈ B and the coordinates of v are the coefficients of the elements bi. However, if

v ∈ 1
di
Zs, then from Lemma 3.1.1 there is some i > 0 such that div is integral. To determine

this, we only have to check whether the vector

[(M1M2 . . .Mn)]isblog dc ≡M iα

is integral, which can be achieved within the complexity bounds of the following lemma:

Lemma 3.1.2. Let v ∈ Z[1
d
]s and i the smallest possible integer such that div is integral.
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Then v ∈ B if and only if

M isblog dcv ∈ Zs

where M = M1M2 . . .Mn. The complexity of this computation is polynomial, specifically

O((n−1)s3 log isblog dc). (Alternatively, the same result holds true for α instead of sblog dc.)

Proof. Lemma 3.1.1 implies that v ∈ B if and only if M iαv is integral. Thus if v ∈ B,

M isblog dcv = M (isblog dc−iα)M iαv

is integral because isblog dc − iα ≥ 0. The converse is obvious.

Regarding the time complexity, we have to compute the (isblog dcv)-th power of the matrix

M . The complexity estimation is obtained using standard matrix multiplication and efficient

exponentiation.

Note that the exponent isblog dc is merely an upper bound; often a much smaller value

suffices to obtain an expression of a given v ∈ B as a product of the conjugated bi’s. Consider

the example group from Lemma 3.1.1 above and the following vector v ∈ Q3:

v =

[
1

32
,

3

64
,

5

16

]
.

Here, i = 2, s = 3, and d = 16, thus isblog dc = 24, but note that M5v is already integral.

3.1.4 Solving Linear Systems

In developing our algorithm to solve the conjugacy search problem in F we will need the

ability to solve linear systems. Let N be an integral s × s matrix that is some product of

the matrices Ml and u ∈ Qs an integral column vector.
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We wish to determine if the linear system

NX = u (3.1)

has some solution v ∈ Qs that lies in B ⊆ Z[1
d
]s. To solve this problem, we will first use a

standard technique to solve this type of system in Z. The Smith normal form of a matrix A

is a diagonal matrix D with entries k1, . . . , kr, 0, . . . , 0, such that kj divides kj+1 for j ∈ [1, r),

with r being the rank of A. Moreover, there are invertible matrices P and Q in SL(s,Z)

such that D = QAP .

Let a = max{|aij| | aij entry of N}, then we have the following bound on the product of

the diagonal entries k1, . . . , kr:

Lemma 3.1.3.
r∏
j=1

kj ≤
√
sas

Proof. It is well known that the product k1 · · · kr is the greatest common divisor of the

determinants of the nonsingular r × r minors of the matrix N . Let N1 be one of those

minors, then

kr ≤ k1 · · · kr ≤ |detN1|.

Now, the determinant of the matrix N1 is bounded by the product of the norms of the

columns c1, . . . , cr of the matrix (this bound is due to Hadamard, see for example [25]) so

we have

|detN1| ≤
r∏
j=1

‖cj‖ ≤ (
√
ra)r ≤

√
sas.
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Let D = PNQ be the Smith normal form of N , with P and Q as above. If r is the rank

of N , then the columns of D can be rearranged such that the first (s− r)× (s− r) diagonal

block is zero, and that the kernel of N , KerN , is generated by the first s− r columns of P .

Let D2 be the last r × r diagonal block. Our system (3.1) can then be transformed into

DX̃ =

[
0 0
0 D2

]
X̃ = Qu (3.2)

with X̃ = P−1X. At this point, we see that this reduced system has some solution if and

only if the first s− r entries of Qu vanish.

Assume that this is the case and let v2 be the unique solution to the system

D2X̃2 = (Qu)2 (3.3)

where the subscript 2 in X̃ and Qu means that we take the last r coordinates only. Then

v2 = D−12 (Qu)2.

The set of all the rational solutions to (3.1) is{
P
[
v1
v2

]
| v1 ∈ Qs−r

}
.

Equivalently, this set can be written as

v + KerN where v = P
[
0
v2

]
.

As P is invertible, it has full rank, thus yielding a basis for Zs. Each Ml can be rewritten

in this new basis as P−1MlP . The fact that N commutes with each Ml implies that Ml leaves

KerN (set-wise) invariant. By construction, KerN is generated by the first s− r columns of

P and therefore each P−1MlP has the following upper triangular block form:
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P−1MlP =

[
Al Bl

0 Cl

]
.

Moreover, Cl is just the r × r matrix associated with the action of ql in the quotient

Qs/KerN , written in the new basis obtained from the last r columns of P .

Proposition 3.1.1. A solution to the system (3.2) exists in B if and only if v2 ∈ Z[1
d
]r and

Cirblog dcv2 ∈ Zr,

with C =
∏

l Cl and i the smallest possible integer such that div2 is integral. (We can use s

instead of r.)

Proof. Assume first that Cirblog dcv2 ∈ Zr, with i as above. We have

P−1M iαP =

[
A S
0 Cirblog dc

]
for a certain (s− r)× r matrix S and a certain (s− r)× (s− r) invertible matrix A, with

M =
∏

lMl as before. Therefore

P−1M irblog dcPX̃ =

[
A S
0 Cirblog dc

] [
v1
v2

]
=

[
Av1 + Sv2
Cirblog dcv2

]
.

This means that we only have to find a v1 ∈ Qs−r such that Av1 + Sv2 ∈ Zs. To do so,

observe that it suffices to take v1 = −A−1Sv′2.

Conversely, assume that some P

[
v1

v2

]
lies in B. Then some product of positive powers

of the matrices Ml transforms P

[
v1

v2

]
into an integral vector, thus there is a product of the

blocks Cl that transforms v2 into an integral vector. We may use now Lemma 3.1.2 applied

to Qr = Qs/KerN with respect to the action of the blocks Cl to conclude that v2 ∈ Z[1
d
]r

and

Cirblog dcv2 ∈ Zr,
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with i the smallest possible integer such that div2 is integral. (Note that dC−1l is integral so

we can use the same d for this quotient as for the original group.)

Remark 3.1.1. Observe that, as N is integral, a necessary condition for the system (3.1)

to have some solution in B is for u to lie in Z[1
s
]. Let i0 be such that di0u is integral.

Then di0det(D2)v2 is also integral. If this lies in Z[1
d
]s, it means that for some i1 such that

di1 ≤ det(D2), we have that di0+i1v2 is integral. By Lemma 3.1.3, det(D2) ≤
√
sas, thus

i1 ≤
√
sas. As a consequence, if i is as in Proposition 3.1.1, we have

i ≤ i0 +
√
sas.

We now have an algorithm to solve this system:

1. Compute the Smith normal form of N .

2. Compute v2 from the product of D−12 and (Qu)2.

3. Find a v1 ∈ Qs−r such that Av1 + Sv2 ∈ Zs. This can be computed directly: v1 =

−A−1Sv′2.

The complexity of the algorithm is stated formally in the following proposition:

Proposition 3.1.2. There is an algorithm to decide whether the system (3.1) has some

solution in B and to compute that solution. The complexity of this algorithm is polynomial,

specifically

O(s6 log sa+ (s− r)5 + (s− r)3 + (n− 1)[s3 log is log d+ 1] + r3).

where i ≤ i0 +
√
sas and i0 is such that di0u is integral and a is the maximum absolute value

of the entries of N .
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Proof. The algorithm has been described above. In summary, we have to transform the

original system using the Smith normal form for N , compute v2 and the matrices Cl and

C = C1 . . . Cn, and then check whether v2 lies in Z[1
d
]. If it does, we may either compute i

such that div2 is integral or estimate i as i0 + i1 (see Remark 3.1.1). We then compute

Cirblog dcv2

and check whether it is integral or not.

For a proof of this fact see [27] in the non-singular case and [55] for the singular one.

Once we have the Smith normal form, to compute v2 we only have to perform the product of

D−12 and (Qu)2, which is O(r3). Next, we have to compute the matrices Cl, which requires

n− 1 matrix multiplications, taking time O((n− 1)s3). We then check whether Cirblog dcv2 is

integral which takes at most O((n−1)s3 log is log d) time. Solving for v2 and v′1 via Gaussian

elimination takes O(r3) and O((s− r)3), respectively, and calculating v1 is O((s− r)5.

The overall time complexity is then the sum of of the above operations and is denoted in

the proposition. Note that the lower order terms involving s and r are dominated by the

complexity of calculating the Smith normal form.

3.2 The Complexity of the Conjugacy Search Problem

in F

Given g, g1 ∈ G and g ∼ g1, the conjugacy search problem is to find h ∈ G such that

gh = g1. Let g = bx, g1 = b1x and h = cy, with b, c ∈ B and x, y ∈ Q, then:
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gh = hgh−1

= cybxy−1c−1

= cyby−1xc−1 (Q is abelian)

= cby(c−1)xx

The component cby(c−1)x belongs to the abelian group B. We can write it additively as:

cby(c−1)x

= c(c−1)xby (B is abelian)
= cc−xby (definition of semidirect product)
= c− x · c+ y · b (· denotes the action)
= y · b+ (1− x) · c. (B is a ZQ-module)

Consequently, the conjugacy search problem above is equivalent to the problem of finding

c ∈ B, y ∈ Q such that b1 = y · b+ (1− x) · c.

The equation above can be further reduced. Notice that the subgroup (1−x)·B is invariant

under any action y ∈ Q:

y · (1− x) ·B = (y(1− x)) ·B (compatibility)
= ((1− x)y) ·B (Q is abelian)
= (1− x) · b′,

with b′ = y · b ∈ B. Thus, Q acts on the quotient group B̄ = B/(1 − x) · B. Let b̄ be the

coset in B̄ associated with the element b. The conjugacy equation is then:

b̄1 = y · b̄.

In solving the modified conjugacy search problem above, we will need to utilize the linear

representation of B̄. Let Mx be the rational matrix associated with the action of x on B

(with respect to the set b1, . . . , bs), N = I −Mx, and let NB to denote (1 − x) · B. Using

this notation, B̄ = B/NB. Let T be the torsion subgroup of B̄. Recall that the torsion

subgroup is the subgroup of an abelian group that contains elements of finite order. T is also
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Q-invariant, so Q acts on B̄/T . As B̄/T is torsion-free and of finite Prüfer rank, it can be

embedded in Qs/NQs.

3.2.1 An Algorithm for the Conjugacy Search Problem in F

The idea of the algorithm is to decompose the problem of finding the original conjugator

h into two problems - one is an instance of the multiple orbit problem in a vector space,

while the other is a type of discrete logarithm problem. For the first we take advantage of

the polynomial time solution of Babai et al. [4]. For the latter, we provide an upper bound

for its complexity that is essentially dependent upon the size of T , the torsion subgroup of

B̄.

The algorithm proceeds as follows:

1. Construct the quotient group B̄/T , where B̄ = (1 − x) · B < B and T is the torsion

subgroup of B̄. We then consider the projections b̄+ T and b̄1 + T of b and b1 in B̄/T ,

where b̄ are the cosets. Using the algorithm from [4], we solve the multiple torsion-free

orbit problem

y · (b̄+ T ) = b̄1 + T

with y ∈ Q. In fact, this algorithm finds the full lattice of solutions (i.e., set of linear

combinations):

Λ = {q ∈ Q | q · b̄− b̄1 ∈ T},

2. For some fixed h ∈ Λ, we compute a basis y1, . . . , ym of Q1 ≤ Q where

Q1 = {h−1q | q ∈ Λ}.

Order the elements of Q1 with respect to their word length and for each q ∈ Q1 deter-
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mine whether q · b− b1 ∈ NB (the linear representation of T ).

More precisely, we must determine whether the linear system

u = NX

with u = q · b− b1 has some solution c in B; this can be done by using the algorithm in

Section 3.1.4. The number of linear systems that must be checked is dependent upon

t = |T |, the order of T .

To verify that the algorithm above does indeed solve the modified conjugacy search

problem, and that it, in fact, halts, we must show respectively that the lattice generated by

the multiple orbit algorithm generates all possible coset representatives (i.e., solutions), and

that t = |T | is finite. The lemma below ensures that we can generate all coset representatives:

Lemma 3.2.1. Let Q2 ≤ Q1 with Q1 free abelian with generators x1, . . . , xm, and assume

that the group Q1/Q2 is finite of order t. Then the set

Ω = {xα1
1 . . . xαm

m |
m∑
j=1

|αj| < t}

has order bounded by (2t)m and contains a full set of representatives of the cosets of Q2 in

Q1.

Proof. Let v1, . . . , vm be generators of the subgroup Q2, which can be viewed as points in

Zm. Consider the parallelogram

P = {t1v1 + . . .+ tmvm | tj ∈ R, 0 ≤ tj < 1}.

Then Zm ∩ P is a set of representatives of the cosets of Q2 in Q1 and we claim that P ⊆ Ω.
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Observe that for any point p = (α1, . . . , αm) in Zm ∩ P there is a path in Zm ∩ P from

(0, . . . , 0) to p. We may assume that the path is simple and therefore its length is bounded

by t. On the other hand, the length of the path is greater than or equal to
∑m

j=1 |αj| thus

m∑
j=1

|αj| ≤ t.

3.2.2 On the Subgroup T

In determining the order of T , we will first need two results concerning the order of

torsion subgroups in general. If T ′ is some torsion subgroup of finite Prüfer rank s, then |T ′|

is bounded by ks, where k = exp(T ′), the exponent of T ′, i.e., the smallest natural number

such that kv = 0 for v ∈ T ′. We then need a bound on k, which is provided by the following

lemma:

Lemma 3.2.2. Let N be a square s × s integer matrix and T ′ the torsion subgroup of the

group Zs/NZs. Then

exp(T ′) ≤
√
sas

with

a = max{|aij| | aij entry of N}.

Proof. Let D = diag(k1, . . . , kr, 0, . . . , 0) be the Smith normal form of N . Then

exp(T ) = kr ≤ k1, . . . , kr

so it suffices to apply Lemma 3.1.3.

Finally, we must show that our particular T has finite order, which is confirmed by the
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theorem below. Recalling our previous notation, for 1 ≤ l ≤ n, let dl be the smallest positive

integer such that dlM
−1
l is an integral matrix and let d be the product of all the integers

d1, . . . , dn.

Theorem 3.2.1. Let T be the torsion subgroup of the abelian group B̄ = B/(1− x) ·B.

Then T is finite and

|T | ≤
√
s
s
dLs

2

(a+ 1)s
2

where L is the length of the element x as a word in the generators of Q, a is the maximum

absolute value of an entry in Mx, the matrix associated with the action of x on B.

Proof. Let N = I −Mx. Assume first that Mx is an integral matrix, so the same happens

with N . We want to relate the exponent of T with the exponent of the torsion subgroup of

Zs/NZs. Let k be this last exponent and choose b ∈ B such that 1 6= b̄ lies in T . Denote

by m > 0 the order of b̄. Observe that mb = Nc for some c ∈ B and that m is the smallest

possible under these conditions.

Next, choose q ∈ Q such that q · b and q · c both lie in Zs. To find such a q it suffices to

write b and c multiplicatively using their normal forms and take as q a product of the ql’s

with big enough exponents.

Then we have m(q · b) = q · Nc = N(q · c) ∈ NZs thus q · b + NZs lies in the torsion

subgroup of Zs/NZs. Therefore, k(q ·b) ∈ NZs. Now, let m1 be the greatest common divisor

of m and k and observe that the previous equations imply m1(q · b) ∈ NZs. This means that

for some c1 ∈ Zs we have m1(q · b) = Nc1, thus

m1b = q−1Nc1 = Nq−1c1 = Nc2
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with c2 = q−1 · c1 ∈ B. By the minimality of m we must have m ≤ m1. As m1 divides both

k and m we can conclude m = m1 | k. This implies that k is also the exponent of T .

Next, we consider the general case when N could be non-integral. As Mx is the product of

L matrices in the set {M±1
1 , . . . ,M±1

n } we see that the matrix dLMx is integral and therefore

so is dLN . Obviously, the group NB/dLNB is torsion thus

exp(T ) ≤ exp(torsion subgroup of B/dLNB).

The matrix dLN also commutes with the Q-action so the results above imply that this

last exponent equals the exponent of the torsion subgroup of Zs/dLNZs. These statements,

together with Lemma 3.2.2 and the fact that the largest absolute value of an entry of dL is

bounded by dLN , yield

exp(T ) ≤
√
sdLs(a+ 1)s.

Finally, as the group B̄ has finite Prüfer rank, so too does T .

We can now show that bound on the order of T is exponential with respect to the word

length L of x:

Proposition 3.2.1. With the previous notation, there is a constant K, depending on G only

such that for T , the torsion subgroup of B/NB = (1−Mx)B,

|T | ≤ KL

where L is the length of x.

Proof. By Theorem 3.2.1 and the observation above

|T | ≤
√
s
s
dLs

2

(a+ 1)s
2 ≤
√
s
s
dLs

2

(sL−1hL + 1)s
2 ≤ (

√
sdsh+

√
sd)s

2L
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so we only have to take K = (
√
sdsh+

√
sd)s

2
.

3.2.3 Complexity Results

Using the results of the previous section, we can now state the following results concerning

the conjugacy search problem:

Theorem 3.2.2. The time complexity of the conjugacy search problem in F is at most

exponential with respect to word length.

Proof. Recall that we seek to determine h where gh = g1. Assume that g and g1 are given

as words in normal form. Observe that Step 1 of the algorithm only requires polynomial

time. As for Step 2, we have to consider an exponential (in L) number of systems of linear

equations of the form

u = NX

with u = q ·b−b1. Moreover, we may find (by writing u in its normal form) some z ∈ Q such

that z ·u is in the group generated by b1 . . . , bs. If Z is the matrix representing the action of

z, this is equivalent to the vector Zu being integral. As Z and N commute our system can

be transformed into

NZX = Zu.

Obviously, X lies in B if and only if ZX does, thus the problem is equivalent to deciding

whether

dLNX1 = dLZu

has some solution X1 in B.

Using Proposition 3.1.1 and the complexity computation of Proposition 3.1.2 we see that

this can be done in a time that is polynomial in the logarithm of the maximum absolute

value of an entry in dLN . Observe that our integrality assumption on Zu implies that the
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integer denoted i0 in Proposition 3.1.2 can be taken to be 0. As the maximum absolute

value of an entry in dLN is exponential with respect to L, this time is polynomial on L. The

exponential bound follows, as we must potentially solve a number of linear systems that is

exponential with respect to L.

We also have a second result for groups in F whose matrix actions are of a particular

form:

Theorem 3.2.3. Fix s1, s2 ≥ 0, with s = s1 + s2 and assume that for 1 ≤ i ≤ n,

Mi ∈ {Matrices

[
Is1 M
0 Is2

]
with M ∈ Mat(s2 × s1,Z)}.

Then the time complexity of the conjugacy search problem is polynomial.

Proof. Consider the matrices Γs1,s2 , given by

Γs1,s2 :=

{
Matrices

[
Is1 A
0 Is2

]}
≤ SL(s,Z).

As these matrices are invertible in SL(s,Z), we can choose d = 1. Assume that for

l = 1, . . . , n,

Ml ∈ Γs1,s2 .

Then there is some constant K depending on G only such that for T , the torsion subgroup

of B/NB = (1−Mx)B,

|T | ≤ KLs2

where L is the length of x. We consider the bound of Theorem 3.2.1 for d = 1 (see above)

|T | ≤
√
s(a+ 1)s

2

,

where a is the maximum absolute value of an entry in A. Observe that A is a product of

matrices in Γs1,s2 and that
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[
Is1 A1

0 Is2

] [
Is1 A2

0 Is2

]
=

[
Is1 A1 + A2

0 Is2

]
.

Therefore, if we let h be the maximum absolute value of an entry in each of the matrices

A1, . . . , An, then a ≤ Lh and therefore

|T | ≤
√
s(a+ 1)s

2 ≤
√
s(Lh+ 1)s

2 ≤
√
s(2Lh)s

2

so it suffices to take K =
√
s(2h)s

2
.

This result together with the algorithm above (recall that d = 1 in this case) produces the

desired bound.

3.3 The Relationship of the Conjugacy Search Prob-

lem to the Discrete Logarithm

By using the algebraic machinery constructed in the previous section, we can show that for

certain members of F the conjugacy search problem is an instance of the discrete logarithm

problem.

For this section, we restrict ourselves to the subfamily from section 3.1.2, where Q is a

multiplicative subgroup of a field L such that L : Q is a Galois extension and B is the additive

group of the subring OL[q±1 , . . . , q
±
n ] that is sandwiched between Q and L. In particular, this

means that the only element in Q with an associated matrix having an eigenvalue of 1 is the

identity matrix: the eigenvalues of the matrix representing an element h ∈ L are precisely h

itself and its Galois conjugates and thus cannot be 1 if h 6= 1. Recall also that this subfamily

includes the generalized metabelian Baumslag-Solitar groups of section 3.1.1.
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We will keep the notation of the previous section, with elements bx, b1x ∈ G such that

there is some cy ∈ G with (additively)

b1 = y · b+ (1− x) · c.

We may consider y and 1 − x as elements in the field L. From now on we omit the · from

our notation and use juxtaposition to denote the action. Now, B also has a ring structure

and (1− x)B is an ideal in B. Moreover, in this case the quotient ring B̄ = B/(1− x)B is

finite (because the matrix associated with 1− x is invertible). In this finite quotient ring we

wish to solve the equation

yb̄ = b̄1.

Let y = qt11 . . . q
tk
k , then solving the discrete log problem in B/(1 − x)B consists of finding

t1, . . . , tk so that

qt11 . . . q
tk
k b̄ = b̄1

in the finite ring B̄.

This is a special type of discrete logarithm problem, as one can observe by recalling what

happens when Q is cyclic: x = qs1 for some s thus we have to solve

qt11 v̄ = w̄

in B̄ = B/(1 − qs1)B. To solve it s trials are sufficient (see [9]). In general, as h̄ = 1 in B̄,

ql11 . . . q
lk
k = 1. Assume that we choose x = q1. Then q̄1 = 1 in B̄ thus the problem is to find

t2, . . . , tk such that

qt22 . . . q
tk
k b̄ = b̄1
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in B̄.

Let us restrict ourselves further to the case of generalized metabelian Baumslag-Solitar

groups. We identify the elements ql with the integers ml encoding their action. Assume that

each ml is coprime with 1−m1. As before let y = mt1
1 . . .m

tk
k and choose x = m1. Then as

each ml is coprime with 1−m1

B/(1− x)B = Z[m±1 , . . . ,m
±
k ]/(1− x)Z[m±1 , . . . ,m

±
k ] = Z/(1− x)Z = Z1−x.

We then have to find t2, . . . , tk such that

mt2
2 . . .m

tk
k b̄ = b̄1

in the ring of integers modulo 1−m1.

If k = 2 this is an instance of the ordinary discrete logarithm problem.



Chapter 4

A Machine Learning Approach to

Algorithmic Problems in Group

Theory

4.1 Related Work

In [23], Haralick et al. posited that pattern recognition techniques are an appropriate

methodology for solving problems in combinatorial group theory. To demonstrate, they

constructed a machine learning system for discovering effective heuristics for the Whitehead

automorphism problem, a search problem in free groups that uses the successive application

of the namesake automorphisms to reduce a word to its minimal length.

As mentioned in [23], every machine learning system must contend with the following

tasks: data generation, feature extraction, model selection, and evaluation. Once the system

is constructed, analysis of the system’s performance can yield insights into the nature of

the problem at hand, and potentially be used to improve upon it. In this chapter we will

44
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delve into each of these aforementioned tasks, showing in the process how these techniques

can be extended from free groups to finitely presented groups. The primary difference in the

construction of machine learning systems for free and not-free groups is in feature extraction,

which is the focus of the next section.

4.2 Feature Extraction

One of the most important aspects of creating a machine learning system is the process of

feature extraction, the means by which relevant information is distilled from the raw dataset

and presented to the learning algorithm. If the raw dataset is unstructured, subsets of data

may first be aggregated into units of observation, from which the features will be extracted.

Some datasets may come with an intrinsic structure, such as that of a list, a matrix, or a

string of text. Regardless of the data’s inherent structure, the ability to extract features

from the underlying data that provide information relevant to the learning process requires

domain-specific knowledge.

Finitely presented groups, in addition to their representation as generators and relators,

have a combinatorial structure that is manifested by their Cayley graphs. A Cayley graph is

a rooted, labeled digraph, with a vertex for every word in the group and each edge labeled

by a generator or an inverse generator. The root of the graph is the identity element. If

the group is infinite then so is its Cayley graph. The graph is connected, and the label of

every path from the root to a vertex represents a word in the group. Circuits from the root

represent elements that are equivalent to the identity and are therefore in the normal closure

of the set of relators.

The Cayley graph also enables groups to be considered as metric spaces. Let G be a finitely

generated group with generating set X and φ : F (X)→ G the canonical epimorphism. If w
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is a word over X representing the element g ∈ G, the geodesic length of g over X is defined

as

lX(g) = min{|w| | w ∈ F (X), φ(w) = g}.

The geodesic length of g corresponds to the shortest path in the Cayley graph whose label

corresponds to w. If every edge in the Cayley graph is given unit length, then lX(g) corre-

sponds to the number of edges in the shortest path labeled by w. We then define the word

length (or word norm) of w, denoted |w|, as |w| = lX(g). Given words u and v representing

elements g and h respectively, we can now define the word metric dX(u, v) = |u−1v| that

satisfies the axioms required of a metric function. Note that as the notation implies, dX(u, v)

is dependent upon the choice of the generating set X.

Assigning unit lengths to edges is but one way to extract numerical information from the

Cayley graph. In [23], Haralick et al. utilize a weighted variant of the Cayley graph to extract

features related to the Whitehead problem. Given a word w and an edge (x, y) in the Cayley

graph with label v, the weight of an edge is associated with a counting function, C(w, xvy),

that counts the number of occurrences of the subword xvy in w. Various counting functions

can be employed, and there is a duality between a counting function and a subgraph of the

Cayley graph of a word w.

More generally, for a finitely presented group G = 〈X|R〉, with words w, v1, . . . , vk ∈ G

and subsets U1, . . . , Uk+1, the counting function C(w,U1v1U2v2 . . . vkUk+1) counts the number

of occurrences of subwords of the form u1v1u2v2 . . . vkuk+1, with u1, . . . , uk+1 in U1, . . . , Uk+1

respectively. Every sequence of counting functions C1, . . . , CN , when normalized by the word

length |w|, gives rise to a real-valued feature vector v ∈ RN :

v =
1

|w|
〈(C1(w, ·), . . . , CN(w, ·)〉.
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The origin of the counting functions defined previously can be illuminated by examining

group presentations. Recall from section 2.1.4 that a finitely presented group G = 〈X | R〉 is

isomorphic to the quotient of the free group FX over the alphabet X and the normal closure

RG, with RG consisting of all products of conjugates of all relators r ∈ R. Note that we

need only consider the cyclically reduced versions of r, as this represents the minimal (but

not unique) form of each relator. A word w is cyclically reduced if and only if every cyclic

permutation of w is reduced. Consequently, a word w over X is a element of N if and only

if it can be expressed in the form

w = u1r1u2 . . . rkuk+1,

with u1u2 . . . uk+1 = 1 in F and where rk is a cyclically reduced permutation of a relator

in R±1[46][5.1.1]. One can compare the expression above to the previous definition of a

counting function and observe their similarity.

Relators of the form rk are said to be symmetrized. More generally, let RS denote the

symmetrization of R, where every rs ∈ RS is cyclically reduced and

• R ⊆ RS;

• RS contains every cyclic permutation of r ∈ R;

• r−1 ∈ RS ∀r ∈ R.

That trivial words can be written as products of cyclic permutation of relators can be

interpreted topologically. First let us consider the embedding of the Cayley graph of G into

R2. The vertices are then simply points in R2, while the edges become bounded subsets

homeomorphic to the interval (0, 1). In addition to the graph (or 1-skeleton, in topological

parlance), we now have two-dimensional regions or cells of the Euclidean plane that are
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enclosed by the embedded edges of the Cayley graph. These cells are homeomorphic to an

open disk, i.e., a circle without a boundary. The edges that form the boundary of these

cells retain their labels and orientation from the original Cayley graph. The points and

bounded subsets of the embedded graph can be considered 0-dimensional and 1-dimensional

cells respectively.

A van Kampen diagram for a word w over the group G is this collection of aforementioned

cells D with the following properties:

i. No edge is labeled by 1G;

ii. D is connected and simply connected;

iii. A distinguished vertex O exists on ∂D, the boundary of D;

iv. Any region of D has a label on its boundary w′ which is equivalent to 1G, that is, w′ ∈ N .

Thus, from a topological perspective, a word is G trivial (i.e., belongs to N) if and only if

its homotopic to a loop in the Cayley graph, or equivalently, it can be identified with the label

of the boundary of a van Kampen diagram. This is the basis of the van Kampen theorem,

which states that for every reduced word in G a van Kampen diagram D exists, and vice

versa. Van Kampen diagrams were originally used to explore instances of the word problem

in free groups, and were then extended to other types of groups. There is an analogue of

van Kampen diagrams for conjugate elements; these are called annular or Schupp diagrams,

after Paul Schupp, who used them to extend results for the conjugacy problem in small

cancellation theory [47].

We now have at our disposal a bevy of mathematical machinery to extract information

concerning group elements: combinatorial, geometric, and topological. As noted previously,
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not all groups with decidable word problems have normal forms that are efficient to calculate.

We first consider feature vectors that are applicable to finitely presented groups that possess

an efficient normal form:

• n0 (Normal Form) - Let G be a finitely generated group with generating set X and

possessing a normal form. Let Y = X ∪X−1. If w is a word in normal form, then w

is of the form

ye11 · · · y
eN
N

with yi ∈ Y and ei ∈ Z. The feature vector n0 is then

n0 = 〈e1, . . . , eN〉.

• n1 (Weighted Normal Form) - The feature vector n1 is the same as n0 above, except

it is weighted by the word length |w|:

n1 =
1

|w|
〈e1, . . . , eN〉.

The features below were introduced in [23]. They apply to finitely presented groups in

general and do not require a normal form:

• f0 (Generator Count) - Let the generator set X be given a fixed order and let xi ∈ X

be the ith generator. The counting function C(w, xi) = |{wj | wj = xi ∨ x−1i }|, that

is, the number of occurrences of the generator xi (and its inverse) in the word w. The

feature vector f0 is then

f0 = 〈C(w, x1), . . . , C(w, xN)〉.

• f1 (Weighted Generator Count) - The feature vector f1 is the same as f0 above, except
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it is weighted by the word length |w|:

f1 =
1

|w|
〈C(w, x1), . . . , C(w, xN)〉.

• f2 through f7 (Cayley Subgraphs) - These features count subwords of length 1, 2, and

3. For each subword length there is a weighted and non-weighted variant:

f2 = 〈C(w, x1sx2) | x1, x2 ∈ X; s ∈ G ∧ |s| = 1〉

f3 = 1
|w|〈C(w, x1sx2) | x1, x2 ∈ X; s ∈ G ∧ |s| = 1〉

f4 = 〈C(w, x1sx2) | x1, x2 ∈ X; s ∈ G ∧ |s| = 2〉

f5 = 1
|w|〈C(w, x1sx2) | x1, x2 ∈ X; s ∈ G ∧ |s| = 2〉

f6 = 〈C(w, x1sx2) | x1, x2 ∈ X; s ∈ G ∧ |s| = 3〉

f7 = 1
|w|〈C(w, x1sx2) | x1, x2 ∈ X; s ∈ G ∧ |s| = 3〉

4.3 Model Selection

In the context of machine learning, a model or learning algorithm is the means by which

a set of training inputs can be used to predict the output on future, unseen inputs. The

choice of a learning algorithm is informed by the type and structure of the training data,

such as whether the data is discrete or continuous, or is comprised of feature vectors like

those described above. A particular learning algorithm in turn determines the hypothesis

space; the set of functions that can be learned from the data. The class of available learning

algorithms that have been developed is too numerous to describe here. Instead, we will focus

on a set of models that will be applied to group-theoretic problems: decision trees, random

forests, and N -tuple networks.
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4.3.1 Decision Trees

Decision tree learning is a model that utilizes a tree structure to encode the learned

function. Trees can be used for either classification or regression analysis; we will focus on

those used for classification, and in particular binary classification trees, where each node can

have a maximum of two children. Every node in the decision tree corresponds to a unique

partition of the measurement space. Leaf nodes correspond to the assignment of a particular

class, while at internal nodes a test is performed to distinguish between data points. This

distinction is encoded in the node’s children and further partitions the measurement space.

Trees can distinguish by feature, by combining features via a discriminant function (such as

a linear discriminant), or by other means.

There are a number of tests available that can be used to partition the space at each

internal node. Gini impurity measures the frequency at which the remaining data points

would be misclassified, with the best split being that which minimizes this impurity. With

information gain, the entropy of the parent node and the remaining data are calculated,

and a partition is chosen that reduces the entropy the most, i.e., that which maximizes the

information that can be obtained from the partition. The probability of misclassification

can also be used.

As with many learning algorithms, decision trees are prone to overfitting. As decision trees

do not have a fixed size representation (i.e., they are considered a non-parametric model),

the tree-making algorithm can create large trees or ones with complex branching that do

not generalize well. This can be combatted by pruning, whereby a subtree of the learned

decision tree is replaced with a leaf node whose class is the most common one of the data

points contained in the pruned subtree. Pruning can be performed by testing a subtree’s

classification performance against a separate data set, and keeping the subtree if improves



CHAPTER 4. A MACHINE LEARNING APPROACH TO GROUP THEORY 52

the performance of the classifier. Pruning can also be achieved by employing a statistical

significance test such as the χ2 test that can determine if a subtree results in a meaningful

split in the data, and pruning if the subtree does not meet some threshold of significance.

Yet another technique is to limit the depth to which the tree can grow during the training

process, a form of pre-pruning.

4.3.2 Random Forests

Random forest classifiers [7] are an example of an ensemble method, in which multiple

classifiers are combined into a single classifier. As the name implies, random forests are

comprised of several decision trees that are constructed from a random sampling of the

training set. Additionally, the best split at each node in a particular tree is determined not

by the single best component of the feature vector, but instead by choosing the best feature

among a randomly sampled subset of the feature vector’s components. Using multiple trees

trained on the sampled training set reduces overfitting, while using subsets of the feature

vector for choosing partitions in the measurement space reduces variance. Once trained, the

classification of a new sample can be determined by either averaging the classifications of

each tree in the forest, or by having each tree vote for the sample’s class and assigning the

sample to the class with a plurality of the votes.

4.3.3 N-tuple Neural Networks

Another model that we will investigate is the N-tuple neural network. N -tuple classifiers

were introduced in 1959 by Bledsoe and Browning [6] as a means of performing printed

character recognition using specialized table lookup hardware. In its original implementation,

the positions of a binary number s are sampled using a total of M random patterns of size N

for each class C. The sampled positions produce another binary number bm. These samplings
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are stored in tables Tmc (one for each class c and random sample m), and the value of the

table entry Tmc(bm) is the total number of times a sample s of class c was mapped by m to

the binary number bm. A new sample s′ is classified by choosing the class for which the sum

of Tmc(b
′
m) is maximal. If no maximum exists, the classifier does not choose a class and is

said to reserve decision.

With the advent of radial basis function networks and other forms of artificial neural

networks in the late 1980s and early 1990s, N -tuple classifiers were revisited, being recast

as a type of weightless, single-layer artificial neural network (e.g., the “single layer lookup

perceptrons” of Tattersall et al. [52]). In a series of papers, Allinson and Ko lcz extended

N -tuple neural networks further, developing a binary encoding scheme based on CMAC

(cerebellar model arithmetic computer, an older form of artificial neural network) and Gray

codes [31], as well as using NTNNs for regression analysis [32] instead of classification. In

[45], Rohwer performed a series of experiments on standard pattern recognition databases,

finding that for most data sets the best results were achieved with N -tuples of size 8 and

the total number of patterns M around 1000.

NTNNs can be generalized beyond classifying binary data by utilizing the framework of

relational algebra. Consider a feature vector s of length N and class c. Let J1, . . . , JM be

index sets, that is, subsets of the set {1, . . . , N} that represent the indices at which to sample

s. For each class c and index set Jm, form the table Tmc, and for each training sample s,

store the number of times the projection of s onto Tmc via the index set Jm occurs.

Various classification criteria [22] have been devised for use with NTNNs. For all criteria

listed below, if there is no unique class that satisfies the criterion the NTNN reserves decision:

• Voting Majority – Assign s to class c′ if
∑

m∈M Tmc′(s) >
∑

m∈M Tmc(s) for all classes

c 6= c′.
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• Logarithm Voting Majority – Assign s to class c′ if
∑

m∈M log Tmc′(s) >
∑

m∈M log Tmc(s)

for all classes c 6= c′.

• Least Votes – Assign s to class c′ if minm∈M Tmc′(s) < minm∈M Tmc(s) for all classes

c 6= c′.

• Minimum Probability – Assign sample s to class c′ when

min
c′
Pc′(Tmc′(s) > 0 | c′)P (c′) ≥ min

c
Pc(Tmc(s) > 0 | c)P (c)

for all c 6= c′.

4.3.4 N-tuple Regression Networks

The N -tuple neural network classifiers of the previous section can be modified so that they

perform regression analysis rather than classification. N -tuple regression networks (NTRNs)

were introduced by Tattersall et al. in [52] as single-layer lookup perceptrons (SLLUPs). In

that paper, the authors demonstrated that SLLUPs could be considered non-linear function

interpolators that operate by convolving a low-pass filter with the input data. This is similar

to how radial basis function (RBF) interpolation works, in that the network’s output is a

weighted sum of each RBF, except that the N -tuple patterns represent implicit functions

rather than explicit ones.

In [32], Ko lcz and Allinson showed that SLLUPs can be considered as a type of NTRN.

They then showed that NTRNs are equivalent to a form of non-parametric kernel regression

analysis. Let X and Y be random variables of which the input/output pairs (x, y) of our

training set are respective realizations. By assuming the existence of a joint probability

distribution P (X, Y ), a trained NTRN learns the conditional expectation E(y | x) of an

unknown regression function f , i.e., the expected value of the function output y given x.
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In our implementation of the NTRN, let N be the dimension of the feature vector and

D the dimension of the output vector. For each d ∈ D we maintain a distinct set of M

patterns of size P . Thus, for each d and m ∈M we populate tables Tmd with projections of

each input x. As in the NTNN case, each table entry k contains a count ck of the number

of times elements of the training set were projected onto entry k of Tmd. In addition, an

estimate wk for the dth output of the network response is stored, which is initialized to zero.

Given an N -tuple table entry containing a previous value of wk and the observed output yd,

the updated value w′k is calculated as

w′k = wk + yd.

During the output phase, the NTRN is given a new (unseen) input x from which it

constructs a D-dimensional response vector ŷ. For each d ∈ [1, D] and m ∈ M , the NTRN

produces an estimate of the dth value of ŷ by first projecting x onto Tmd, and then producing

an average of the estimates wk stored in each projected entry k of Tmd:

ŷd =

∑
k wk∑
k ck

.

The average as specified above is the arithmetic mean. This mean is not a particularly

robust statistic: it is overly sensitive to outliers (i.e., unusually small and large values) in the

training data. To mitigate this behavior, one can instead use the geometric mean. During

the training phase, the updated value w′k is calculated as

w′k = wk + ln yd.
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Using the same notation as before, the network’s response using the geometric mean is

calculated as:

ŷd = exp

(∑
k wk∑
k ck

)
.

For both means, the output vector ŷ will need to be made integral by applying some form

of rounding function (e.g., floor, ceiling) component-wise. As as alternative, the network

response can be configured to calculate the median of the estimates for each output compo-

nent. For each d ∈ [1, D] and m ∈ M , the NTRN produces an estimate of the dth value of

ŷ by first projecting x onto Tmd. For each entry k, a set {ŷd} is constructed by inserting the

estimate wk a total of ck times. If |{ŷd}| is odd, then ŷd is the median of the set, otherwise

ŷd is the floor (or ceiling) of the mean of the two middle values.

In producing the output vector ŷ above, we are making an implicit independence assump-

tion on the joint probability distribution, specifically that

P (X, Y ) = P (X)(Y ).

This assumption may prove too restrictive to produce an effective response. Therefore, we

construct an additional set of tables Tqdi that can be used to estimate the values of X and Y

via an unknown random variable Z. These tables will operate under the weaker assumption

of conditional independence of X and Y from Z, namely

P (X, Y | Z) = P (X | Z)P (Y | Z).

Let Q < D be the number of 1-dimensional patterns (i.e., indices) that will be stored for

each dimension d ∈ D, and let i ∈ {x, y} indicate whether the table is to record entries

for input x or output y. Given a training sample (x, y) and the pattern q for dimension d,
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the table Tqdx will store the projection (xd, yq), while the table Tqdy will store the projection

(yd, xq). As before, each table entry k will contain a count ck of the number of times that

samples of the training set were projected onto entry k of Tqdi.

For a concrete example, let N = 4 and D = 2. The possible values of q are then {1, 2} (we

will assume Q = 1 for this demonstration). Consider the sample (x, y) = (〈a, b, c, d〉, 〈r, s〉).

Let d = 1 and q = 2, then the projections of (x, y) are

πqdx((x, y)) = (a, s)
πqdy((x, y)) = (r, b)

,

which are stored in tables Tqdx and Tqdy respectively.

To generate the network response for a new input x using the tables Tqdi, we proceed

component-wise as before. For each d ∈ [1, D] and q ∈ Q, the NTRN produces an estimate

of the dth value of ŷ by first projecting x onto Tqdx. This produces a tuple (xd, z), and for

each entry k = (yk, zk) in Tqdy such that z = zk, the median of the values yk is evaluated as

above by adding ck copies of each yk to the set {ŷd}, and taking the median of this set if its

cardinality is odd, or the rounded mean of the two middle values if its cardinality is even.

4.4 Generating Data

The primary goal of a supervised machine learning system is to predict classes or values

on new, unseen members of the data domain. As a consequence, the system’s construction

requires at least two sets of data - one for training and one for evaluation. When data is

scarce the method of cross-validation can be employed, whereby the data set is partitioned

into separate sets that are used exclusively for training or evaluation. Depending on the

learning model chosen, a third data set may be required for use during the optimization

process that occurs between the training and evaluation phases. Our approach is to produce
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three, independently generated sets that are used in each phase of the system’s construction.

The sets used for training, optimization, and verification are respectively referred to as Si,

So, and Sv.

Note that the data generation process for a finitely presented group is dependent upon

the group under consideration and the learning task at hand.

4.5 Evaluation and Analysis

There are various means by which the performance of a machine learning system can

be evaluated. Regardless of which method is chosen, it is imperative that an independent

data set (e.g., the verification set Sv from the previous section) is used to measure the

system’s performance. We will focus on methods available to the different learning tasks of

classification and regression analysis.

In classification, we are primarily concerned with the accuracy A of a modelM(f), trained

with respect to the feature vector f , over the verification set Sv:

A(M(f), Sv) =
|True Positives(Sv)|+ |True Negatives(Sv)|

|Sv|
.

If performance metrics other than accuracy are required, a confusion matrix can be cal-

culated. The matrix is a 2 × 2 table that indicates the classification of the samples in the

verification set relative to a particular class C. For instance, if a sample s0 ∈ Sv was labeled

C ′ 6= C but the classifier assigned s0 to C, the classification of s0 would be considered a false

positive. The full table is depicted below:



CHAPTER 4. A MACHINE LEARNING APPROACH TO GROUP THEORY 59

Assigned
C ¬C

T
ru

e C True Positives False Negatives
¬C False Positives True Negatives

Table 4.1: Values of a Confusion Matrix for Class C

The confusion matrix enables us to derive a whole host of performance measures. For

instance, we can define precision, or positive predictive value, as

Precision(M(f), Sv) =
|True Positives(Sv)|

|Sv|
.

In regression analysis, we are given a feature vector ~x with true output ~y of dimension D

and are looking to produce an estimated value ŷ. There are many methods of measuring

regression error; we emphasize two that are relevant to the NTRN method of section 4.3.4.

The mean squared error for each sample is calculated as

MSE =
1

D

D∑
i=1

(ŷi − yi)2 .

Using the same notation as above, the mean absolute error (MAE) for each sample is calcu-

lated as

MAE =
1

D

D∑
i=1

|ŷi − yi| .

The performance of the regression network is then the average of the MSE or MAE over the

entire verification set Sv.

Beyond verifying that a machine learning system performs as intended, analysis can pro-

vide may benefits, including greater performance, elimination of irrelevant features, and the

discovery of heretofore unknown mathematical relationships in the data domain.



Chapter 5

Solving the Conjugacy Decision

Problem via Machine Learning

Recall that the conjugacy decision problem for a group G is to determine for any u, v ∈ G if

u is conjugate to v. With respect to computability, the conjugacy decision problem is in fact

two problems - each concerned with determining positive or negative solutions exclusively.

The positive conjugacy decision problem in any recursively presented group is computable, as

for any element in the group its conjugates can be recursively enumerated [39]. The negative

solution is not guaranteed to be computable for non-finite groups. There are classes of groups

for which both parts of the conjugacy decision problem are computable, including finitely

generated polycyclic and metabelian groups.

Computability, however, does not imply efficiency. The efficient algorithms that do exist

are often restricted in some sense, such as answering only one part of the decision problem

or being solely applicable to a specific class of groups. For instance, a polynomial algorithm

exists [35] for the full conjugacy decision problem in the Grigorchuk groups, while for non-

cyclic finitely generated groups of infinite abelianization, a linear algorithm was found [28]

60



CHAPTER 5. SOLVING THE CDP VIA MACHINE LEARNING 61

that can only be used to solve the negative conjugacy decision problem.

Given the limitations of existing algorithms, we turn to the framework of the previous

chapter for a machine learning solution. In the sections below we outline how we adapt

the general framework to constructing machine learning systems for the conjugacy decision

problem. We use the aforementioned supervised learning methods to train classifiers for

several classes of finitely presented group. These classifiers can determine whether a pair of

elements from their respective groups are conjugate or not, and do so with very high accuracy.

We analyze the performance of different models and feature vectors for each group, as well

as provide methods for visualizing the NTNN classifiers.

The results in this chapter represent joint work with Robert Haralick and Delaram Kahrobaei.

5.1 Machine Learning System for the Conjugacy De-

cision Problem

As outlined in the previous chapter, constructing a machine learning system for the con-

jugacy decision problem requires us to consider feature extraction, model selection, data

generation, and evaluation criteria. We delineate our solutions to each of these tasks below.

5.1.1 Feature Extraction

Given a group G and words u, v ∈ G, we concatenate (denoted by ‖) the unit feature

vectors n0 and n1 from section 4.2 to create two derived feature vectors for the conjugacy

decision problem:

c0 = 〈n0(u) ‖ n0(v)〉

c1 = 〈n1(u) ‖ n1(v)〉
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The default feature vector used with tree-based classifiers is c1 (weighted normal forms),

while for NTNNs it is c0 (unweighted normal forms). Additional feature vectors and normal

forms that are used for a particular group are included in that group’s experimental results

section.

5.1.2 Model Selection

For the conjugacy decision problem we can utilize all three classifiers defined in section

4.3: decision trees, random forests, and NTNNs. The parameters and implementation of

each model are discussed below:

Decision Trees

Using the DecisionTreeClassifier from Scikit-learn [43], we trained a decision tree

classifier for each group on its respective training set Si. Each leaf node was required to

contain at least one sample, and a split could only occur if there were at least two samples

at that node. The accuracy of each classifier was calculated by classifying the data in each

group’s verification set Sv. Both Gini impurity and information gain were used to determine

the best split. For the depth limit, we tested not having a limit, as well as limiting the

number of levels to log2 Si − 1.

Random Forests

Using the RandomForestClassifier from Scikit-learn [43], we trained a random forest

classifier for each of group on its respective training set Si. As in the case of single decision

trees, each leaf node was required to contain at least one sample, and a split could only

occur if there were at least two samples at that node. Additionally, the number of trees in

the forest was 10, and the size of the random subset of features was
√
|c1|, i.e., the square
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root of the length of the feature vector. The same combinations of split criteria and depth

limits for decision trees were used for random forests as well.

NTNNs

For learning a NTNN classifier, the total number of patterns M was varied, with M taking

on values from the set {10, 20, 30, 50, 100}. The initial size of the patterns was set to 3, and

where applicable, sizes in the range [3, 5] were tested. We used both the “Voting Majority”

and “Logarithm Voting Majority” criteria for classification in our tests.

For a given feature vector of dimension N , the total number of patterns of size P ≤ N

is
(
N
P

)
. When initializing a NTNN classifier that uses pattern sets of size M (a set of M

patterns of size P ), the list of
(
N
P

)
patterns is generated, and a separate permutation of each

list is kept for each class C (in our case, C = 2, as we are performing binary classification).

Before training the NTNN on the set Si, each class is assigned the first M patterns from its

pattern list.

As the accuracy of the initial random selection of patterns varies considerably, a random

restart was implemented, in which a new NTNN was initiated with a new random permuta-

tion of all possible patterns. Each NTNN’s performance was tested against the set So, with

the NTNN proceeding to the optimization stage only when its accuracy was greater than

the starting threshold θα, which was set to 60%.

During the optimization phase, the algorithm alternates between each classes’ list of pat-

terns in choosing the next test pattern. Each pattern in M is swapped out with the test

pattern, and the NTNN is evaluated against the optimization set So. The algorithm keeps

track of the pattern m whose replacement with the test pattern improves accuracy the most

over all m ∈M , and makes that pattern swap permanent if a new best accuracy is achieved.
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The algorithm will continue this process until all patterns have been exhausted or the goal

threshold θω is reached, which was set to 97%. The NTNN classifier and the current location

in the pattern list are then saved, so that optimization can be continued at a later time if

desired.

5.1.3 Generating Data

Each dataset consists of 20,000 words in normal form, with two 10,000 word halves that

are generated via the following procedures:

1. Random Non-Conjugate Words in Normal Form - For each n ∈ [5, 1004] we generate

two words u, v ∈ G with |u| = |v| = n. A word w is generated uniformly and randomly

by starting with the identity element w = 1G, then selecting a generator g from X and

performing the product w = w · g. The element is then converted into its normal form

w′, and the length |w′| is computed. Additional products are computed until |w′| = n.

After generating each u, v pair, an additional step is required to verify that u 6∼ v.

Using the method from [28], we construct the derived (or commutator) subgroup of G,

denoted [G,G], and an epimorphism φ : G → G/[G,G]. We then look at the images

φ(u) and φ(v) and reject the pair if they map to the same representative in the quotient

G/[G,G]. This process is repeated until 10 non-conjugate pairs are generated for each

n.

2. Random Conjugates in Normal Form - For n ∈ [5, 1004] we generate a pair of words

v, z ∈ G with |v| = |z| = n. Each word v, z is generated uniformly and randomly as

above. After v and z are generated, the word u = vz is formed, and the tuple (u, v, z)

is added to the dataset. This process is repeated 10 times for each n.

Note that the minimal length of two conjugate words written in their trivial form is 4, as

this corresponds to a pair of elements that are abelian (i.e., they commute under the group
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operation).

Three disjoint datasets were generated using the procedure above:

1. Training Set Si - The set Si was used to train all three classifiers.

2. Optimization Set - The set So was used to optimize the choice and number of patterns

for each NTNN.

3. Verification Set - The set Sv was used to evaluate the performance of our trained

and/or optimized classifier.

One instance of each of the three data sets was generated for each group.

5.1.4 Evaluation and Analysis

For the conjugacy decision problem over a group G, we are primarily concerned with the

accuracy of the model over the verification set, A(M(f), Sv), as defined in section 4.5.

5.2 Experimental Results

In this section we present experimental results from the application of our machine learn-

ing system to the conjugacy decision problem in several groups. We note the following

conventions that are used throughout this section:

• All confusion matrices are from the perspective of the class of conjugate elements.

• Accuracy for the NTNN classifier is with respect to “Voting Majority” unless otherwise

noted.
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• When both “Voting Majority” and “Logarithm Voting Majority” accuracies are avail-

able for a NTNN classifier, they are denoted in the experimental results tables as

“Accuracy (Σ)” and “Accuracy (log)” respectively.

5.2.1 The Baumslag-Solitar Group BS(1,2)

Recall that one-relator groups are finitely presented groups of the form 〈X | R〉, where |R|

is strictly one. These groups played an important role in the development of combinatorial

and geometric group theory. The Baumslag-Solitar groups are a well-known class of one-

relator groups that include among their number instances of non-Hopfian groups. A group

G is non-Hopfian if there exists an epimorphism from G to itself that is not an isomorphism.

We will consider the non-hyperbolic Baumslag-Solitar group of Example 2.1.2:

BS(1, 2) = 〈a, b, | bab−1a−2〉.

Note that the conjugacy decision problem over BS(1,2) resides in the complexity class TC0

[53], where TC0 is the class of constant-depth arithmetic circuits using AND, OR, NOT,

and majority gates.

Normal Form and Feature Vectors

Elements in BS(1,2) can be uniquely written in the following normal form:

n0 = be1ae2be3 ,

with e1 ≤ 0 and e3 ≥ 0. Collection from the left can transform any element of BS(1,2) into

this normal form. The dimension of feature vectors c0 and c1 is 6.
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Decision Trees and Random Forests

Method, Split Criterion, Depth Accuracy
Tree, Gini Impurity, No Depth Limit 91.24%
Tree, Gini Impurity, Depth Limit 91.85%
Tree, Entropy, No Depth Limit 91.53%
Tree, Entropy, Depth Limit 92.00%
Random Forest, Gini Impurity, No Depth Limit 93.72%
Random Forest, Gini Impurity, Depth Limit 93.17%
Random Forest, Entropy, No Depth Limit 93.64%
Random Forest, Entropy, Depth Limit 93.16%

Table 5.1: Decision Tree and Random Forest Results for BS(1,2)

For BS(1,2), the random forest classifier using entropy as the split criterion and with no

depth limit performed the best, with an overall accuracy of 93.64%. The confusion matrix

for this classifier on the verification set Sv is below:

Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9713 287
Non-Conjugate 969 9031

Table 5.2: Confusion Matrix for the Best Performing Tree Classifier of BS(1,2)

NTNN

For BS(1,2) the NTNN classifier did not perform well using the feature vector c0. It may

be that the relatively low dimension of the feature vector for BS(1,2) (N = 6) provides

insufficient information to the classifier. Therefore, we also tested features vectors c2 and

c4, defined as the concatenation of unit vectors f2 and f4 respectively. The feature vector

c2 is of dimension 48, while c4 has dimension 96. The use of the feature vector c2 produced

a marked improvement in accuracy as compared to c0. We ran the full array of tests over

all (M,P ) pairs for c2, but ran only three additional tests using the c4 feature vector, as in
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these initial tests we did not see any improvement in the performance of the NTNN classifier

as compared to using c2.

Group M P Accuracy (Σ) Accuracy (log)
BS(1,2) 6 1 66.46% 73.40%
BS(1,2) 6 2 71.26% 76.37%
BS(1,2) 6 3 68.84% 71.38%
BS(1,2) 10 2 72.23% 73.96%
BS(1,2) 10 3 69.18% 71.42%
BS(1,2) 15 2 70.96% 71.77%
BS(1,2) 15 3 71.17% 71.36%
BS(1,2) 20 3 70.83% 73.29%

Table 5.3: NTNN Results for BS(1,2) Using Feature Vector c0

Group M P Accuracy (log)
BS(1,2) 10 3 87.76%
BS(1,2) 10 4 87.98%
BS(1,2) 10 5 82.04%
BS(1,2) 20 3 92.08%
BS(1,2) 20 4 91.10%
BS(1,2) 20 5 89.33%
BS(1,2) 30 3 90.15%
BS(1,2) 30 4 92.41%
BS(1,2) 30 5 89.97%
BS(1,2) 50 3 88.71%
BS(1,2) 50 4 90.47%
BS(1,2) 50 5 89.34%
BS(1,2) 100 3 84.94%
BS(1,2) 100 4 90.53%
BS(1,2) 100 5 90.42%

Table 5.4: NTNN Results for BS(1,2) Using Feature Vector c2

Group M P Accuracy (log)
BS(1,2) 30 3 85.58%
BS(1,2) 30 4 92.37%
BS(1,2) 50 3 92.33%

Table 5.5: NTNN Results for BS(1,2) Using Feature Vector c4



CHAPTER 5. SOLVING THE CDP VIA MACHINE LEARNING 69

For BS(1,2), the NTNN classifier using feature vector c2 and parameters M = 30, P = 4

performed the best, with an overall accuracy of 92.41%. The confusion matrix for this

classifier on the verification set Sv is below:

Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 8817 1183
Non-Conjugate 336 9664

Table 5.6: Confusion Matrix for the Best Performing NTNN Classifier of BS(1,2)

Improving Performance

Despite achieving an accuracy of 92.41%, the performance of all classification models for

BS(1,2) is relatively low compared to the other groups tested. Given the high dimensionality

of the feature vectors c2 and c4, it may be possible to improve performance by utilizing feature

selection, whereby a portion of the components of the feature vector are discarded. Sugges-

tions for the best components may be found by using the NTNN visualizations described

later in the chapter.

Another option is to utilize a faithful linear representation of BS(1,2), with generators a

and b corresponding respectively to the matrices A and B below:

A =

[
1 1
0 1

]
B =

[
2 0
0 1

]
.

The feature vector using this representation would be similar to fm for SL(2,Z) in section

5.2.4, and can be used with decision trees and random forests.

5.2.2 Non-Nilpotent Polycyclic Groups

Polycyclic groups that are non-virtually nilpotent have exponential word growth ([54],[37])

and remain promising candidates for use as platform groups [20]. One method of constructing
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such groups is through the use of algebraic number fields, as outlined in [24, §8.2.2].

Given an algebraic number field F with degree [F : Q] > 1, one can define two sub-

structures, the maximal order O(F ) and the unit group U(F ). The maximal order is the

largest ring of integers of F , and consists of those elements in F that are a root of some

monic polynomial over F with integral coefficients. The multiplicative group U(F ) consists

wholly of the non-zero elements of O(F ) that have a multiplicative inverse, i.e., are units.

Given these two structures and the aforementioned degree criterion, the semidirect product

O(F ) o U(F ) results in an infinite, non-virtually nilpotent polycyclic group.

Below are three specific instances of the O(F ) o U(F ) family of polycyclic groups. The

conjugacy search problem over the first two groups was studied in [16], in the context of the

length-based attack (see section 2.2.3 for further details). The groups can be constructed

by using the MaximalOrderByUnitsPcpGroup function of the GAP Polycyclic package [13].

The function takes a polynomial that is irreducible over Q (thereby defining a field extension

of Q) and returns a group of the form O(F ) o U(F ):

• O o U14 - Given the polynomial f = x9 − 7x3 − 1, MaximalOrderByUnitsPcpGroup

returns a group of the form O(F ) o U(F ) with a Hirsch length of 14.

• O o U16 - Given the polynomial f = x11 − x3 − 1, MaximalOrderByUnitsPcpGroup

returns a group of the form O(F ) o U(F ) with a Hirsch length of 16.

• O o U34 - Given the polynomial f = x23 − x3 − 1, MaximalOrderByUnitsPcpGroup

returns a group of the form O(F ) o U(F ) with a Hirsch length of 34.

Normal Form

Recall from section 2.1.9 that every polycyclic group has a normal form in terms of the

generators in its polycyclic sequence. The feature vector n0 for a polycyclic group element g
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simply corresponds to the exponent vector of g in normal form. Thus the feature vectors c0

and c1 are readily computable for polycyclic group elements. The dimension of these feature

vectors for groups of the form O(F )oU(F ) is 2(H + 1), where H is the Hirsch length of the

group.

Decision Trees and Random Forests

Method, Split Criterion, Depth Accuracy
Tree, Gini Impurity, No Depth Limit 98.05%
Tree, Gini Impurity, Depth Limit 98.20%
Tree, Entropy, No Depth Limit 98.52%
Tree, Entropy, Depth Limit 98.49%
Random Forest, Gini Impurity, No Depth Limit 98.42%
Random Forest, Gini Impurity, Depth Limit 98.61%
Random Forest, Entropy, No Depth Limit 98.69%
Random Forest, Entropy, Depth Limit 98.63%

Table 5.7: Decision Tree and Random Forest Results for O o U14

For O o U14, the random forest classifier using entropy as the split criterion and with no

depth limit performed the best, with an overall accuracy of 98.69%. The confusion matrix

for this classifier on the verification set Sv is below:

Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9952 48
Non-Conjugate 215 9785

Table 5.8: Confusion Matrix for the Best Performing Tree Classifier of O o U14
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Method, Split Criterion, Depth Accuracy
Tree, Gini Impurity, No Depth Limit 96.43%
Tree, Gini Impurity, Depth Limit 96.64%
Tree, Entropy, No Depth Limit 97.23%
Tree, Entropy, Depth Limit 97.21%
Random Forest, Gini Impurity, No Depth Limit 97.74%
Random Forest, Gini Impurity, Depth Limit 97.99%
Random Forest, Entropy, No Depth Limit 98.01%
Random Forest, Entropy, Depth Limit 98.19%

Table 5.9: Decision Tree and Random Forest Results for O o U16

For O o U16, the random forest classifier using entropy as the split criterion and with the

standard depth limit performed the best, with an overall accuracy of 98.19%. The confusion

matrix for this classifier on the verification set Sv is below:

Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9974 26
Non-Conjugate 335 9665

Table 5.10: Confusion Matrix for the Best Performing Tree Classifier of O o U16

Method, Split Criterion, Depth Accuracy
Tree, Gini Impurity, No Depth Limit 97.99%
Tree, Gini Impurity, Depth Limit 98.02%
Tree, Entropy, No Depth Limit 98.34%
Tree, Entropy, Depth Limit 98.47%
Random Forest, Gini Impurity, No Depth Limit 98.61%
Random Forest, Gini Impurity, Depth Limit 98.83%
Random Forest, Entropy, No Depth Limit 98.89%
Random Forest, Entropy, Depth Limit 98.82%

Table 5.11: Decision Tree and Random Forest Results for O o U34

For O o U34, the random forest classifier using entropy as the split criterion and with no
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depth limit performed the best, with an overall accuracy of 98.89%. The confusion matrix

for this classifier on the verification set Sv is below:

Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9989 11
Non-Conjugate 212 9788

Table 5.12: Confusion Matrix for the Best Performing Tree Classifier of O o U34

NTNN

For the group O o U14 the best parameters are M = 20, P = 3 for both classification

criteria.

Group M P Accuracy (Σ) Accuracy (log)
O o U14 10 3 90.32% 91.49%
O o U14 10 4 95.93% 97.41%
O o U14 10 5 97.12% 97.59%
O o U14 20 3 97.88% 98.77%
O o U14 20 4 97.17% 96.57%
O o U14 20 5 97.37% 97.19%
O o U14 30 3 96.70% 97.34%
O o U14 30 4 96.15% 96.00%
O o U14 30 5 96.98% 77.91%
O o U14 50 3 95.52% 91.93%
O o U14 50 4 93.68% 89.28%
O o U14 50 5 97.37% 91.87%
O o U14 100 3 96.75% 93.77%
O o U14 100 4 96.26% 96.75%
O o U14 100 5 97.44% 96.60%

Table 5.13: NTNN Results for O o U14

The confusion matrix for the best performing NTNN classifier on the verification set Sv

is below:
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Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9995 5
Non-Conjugate 242 9758

Table 5.14: Confusion Matrix for the Best Performing NTNN Classifier of O o U14

For the group O o U16 the best parameters are M = 20, P = 5 using voting majority,

and M = 10, P = 3 for the logarithm voting majority.

Group M P Accuracy (Σ) Accuracy (log)
O o U16 10 3 94.36% 94.25%
O o U16 10 4 96.56% 88.82%
O o U16 10 5 98.01% 80.68%
O o U16 20 3 97.30% 93.58%
O o U16 20 4 96.16% 86.21%
O o U16 20 5 98.46% 88.06%
O o U16 30 3 97.68% 92.12%
O o U16 30 4 96.54% 90.74%
O o U16 30 5 98.41% 90.85%
O o U16 50 3 97.45% 87.31%
O o U16 50 4 97.52% 90.41%
O o U16 50 5 97.75% 91.94%
O o U16 100 3 97.32% 91.06%
O o U16 100 4 96.60% 92.00%
O o U16 100 5 97.15% 90.39%

Table 5.15: NTNN Results for O o U16

The confusion matrix for the best performing NTNN classifier on the verification set Sv

is below:

Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9950 26
Non-Conjugate 247 9741

Table 5.16: Confusion Matrix for the Best Performing NTNN Classifier of O o U16

The classifier reserved decision for 24 conjugate pairs and 12 non-conjugate pairs.



CHAPTER 5. SOLVING THE CDP VIA MACHINE LEARNING 75

For the group O o U34 the best parameters are M = 50, P = 5 using voting majority,

and M = 100, P = 3 for the logarithm voting majority.

Group M P Accuracy (Σ) Accuracy (log)
O o U34 10 3 94.82% 93.15%
O o U34 10 4 96.90% 95.91%
O o U34 10 5 96.36% 96.68%
O o U34 20 3 95.02% 95.37%
O o U34 20 4 96.61% 98.09%
O o U34 20 5 96.74% 95.54%
O o U34 30 3 98.12% 99.15%
O o U34 30 4 97.14% 97.87%
O o U34 30 5 84.13% 97.37%
O o U34 50 3 97.00% 95.73%
O o U34 50 4 96.77% 97.00%
O o U34 50 5 98.71% 98.99%
O o U34 100 3 96.35% 99.50%
O o U34 100 4 97.00% 97.46%
O o U34 100 5 91.80% 93.57%

Table 5.17: NTNN Results for O o U34

The confusion matrix for the best performing NTNN classifier on the verification set Sv

is below:

Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9914 86
Non-Conjugate 14 9986

Table 5.18: Confusion Matrix for the Best Performing NTNN Classifier of O o U34

5.2.3 Generalized Metabelian Baumslag-Solitar Groups

Generalized metabelian Baumslag-Solitar groups are the family of polycyclic and metabelian

groups defined in Section 3.1.1. We tested the group GMBS(2,3) of Example 3.1.1, whose
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presentation we reproduce here for convenience:

GMBS(2, 3) = 〈q1, q2, b | bq1 = b2, bq2 = b3, [q1, q2] = 1〉.

Normal Form

Elements in GMBS(2,3) can be uniquely written in the following normal form:

n0 = qe11 q
e2
2 b

e3qe41 q
e5
2 ,

with e1, e2 ≤ 0 and e4, e5 ≥ 0. Collection from the left can transform any element of

GMBS(2,3) into this normal form. The dimension of feature vectors c0 and c1 is 10.

Decision Trees and Random Forests

Method, Split Criterion, Depth Accuracy
Tree, Gini Impurity, No Depth Limit 93.88%
Tree, Gini Impurity, Depth Limit 95.43%
Tree, Entropy, No Depth Limit 94.25%
Tree, Entropy, Depth Limit 95.32%
Random Forest, Gini Impurity, No Depth Limit 96.31%
Random Forest, Gini Impurity, Depth Limit 96.35%
Random Forest, Entropy, No Depth Limit 96.49%
Random Forest, Entropy, Depth Limit 96.40%

Table 5.19: Decision Tree and Random Forest Results for GMBS(2,3)

For GMBS(2,3), the random forest classifier using entropy as the split criterion and with

no depth limit performed the best, with an overall accuracy of 96.49%. The confusion matrix

for this classifier on the verification set Sv is below:
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Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9931 69
Non-Conjugate 632 9368

Table 5.20: Confusion Matrix for Best Performing Tree Classifier of GMBS(2,3)

NTNN

For the group GMBS(2,3), the best parameters are M = 30, P = 4 using voting majority.

Group M P Accuracy (Σ) Accuracy (log)
GMBS(2,3) 10 3 84.89% 87.39%
GMBS(2,3) 10 4 94.73% 82.05%
GMBS(2,3) 10 5 92.28% 85.26%
GMBS(2,3) 20 3 84.51% 82.03%
GMBS(2,3) 20 4 93.21% 83.47%
GMBS(2,3) 20 5 93.59% 87.80%
GMBS(2,3) 30 3 84.45% 83.55%
GMBS(2,3) 30 4 96.13% 67.98%
GMBS(2,3) 30 5 93.43% 87.85%
GMBS(2,3) 50 3 84.08% 85.25%
GMBS(2,3) 50 4 94.73% 82.02%
GMBS(2,3) 50 5 93.17% 87.25%
GMBS(2,3) 100 3 81.50% 82.16%
GMBS(2,3) 100 4 94.54% 81.55%
GMBS(2,3) 100 5 93.16% 86.75%

Table 5.21: NTNN Results for GMBS(2,3)

The confusion matrix for the best performing NTNN classifier on the verification set Sv is

below. Note that the classifier reserved decision for 42 conjugate pairs and 23 non-conjugate

pairs.
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Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9737 221
Non-Conjugate 489 9488

Table 5.22: Confusion Matrix for the Best Performing NTNN Classifier of GMBS(2,3)

5.2.4 SL(2,Z)

Recall that SL(2,Z) is the set of 2 × 2 integral matrices with determinant 1. This set

forms a group under matrix multiplication, and is a discrete subgroup of SL(2,R).

Representation

The group SL(2,Z) was implemented in GAP with a dual representation: for each element

x ∈ SL(2,Z) we have a pair (m,w) of the form

m =

[
a b
c d

]
, w = w1 · · ·wn, wi ∈ {S±1, R±1},

with a, b, c, d ∈ Z such that ad − bc = 1, and S and R corresponding to the matrices

below that generate SL(2,Z):

S =

[
0 −1
1 0

]
, R =

[
0 −1
1 1

]
.

In this formulation, SL(2,Z) is an amalgamated free product given by the presentation

SL(2,Z) ∼= 〈S,R | S4 = 1, S2 = R3〉.

These generators and attendant presentation were chosen so that a confluent rewriting

system could be constructed in GAP via the Knuth-Bendix algorithm.
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Word Length

In generating the data sets, the length of an element x was taken to be the length of the

word representation of the element, i.e., |x| = |w|, as suggested in [50]. When the matrix

form m of the element x is needed, the norm of the matrix, ‖m‖, can be used as a length

measure. We utilized the Frobenius norm, which is calculated as

‖m‖=
√
a2 + b2 + c2 + d2.

Note that words of relatively small length can have corresponding matrix forms with large

integral entries and, consequently, a large norm. Consider a word w of length |w| = 50 from

the training set:

w = (RS)2R−1SR−1(SR−1(SR)2)2SR−1SR(SR(SR−1)2SRSR−1)2(SR−1)3S−1.

It has the corresponding matrix form m below, with ‖m‖≈ 40360:

m =

[
3336 −15761
−7663 36204

]
.

Normal Forms

Given that there are two representations for each element, there are multiple normal forms

that can be considered. Let x = (m,w) ∈ SL(2,Z). The matrix normal form is simply the

“flattened” matrix, i.e., a vector in Z4 :

fm = 〈a, b, c, d〉.
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In the presentation of SL(2,Z) provided above, every word can be written uniquely in its

word normal form as

(−I2)aRi0SRi1S · · ·Rin−1SRin ,

with I2 the identity matrix, a ∈ {0, 1}, and ij 6≡ 0 mod 3 for 0 < j < n [10].

Decision Tree and Random Forest Results

For the decision tree classifier we used the normalized matrix normal form as the feature

vector, i.e., for a word u = (mu, wu) we have

fm =
1

‖mu‖
〈a, b, c, d〉,

and for a pair of words u, v with respective matrix representations mu,mv, we concatenate

the two unit feature vectors together to form a feature vector for the conjugacy decision

problem:

cm = 〈fm(mu) ‖ fm(mv)〉

Below are the results for testing both the decision tree and random forest classifiers with

various parameters:

Method, Split Criterion, Depth Accuracy
Tree, Gini Impurity, No Depth Limit 95.80%
Tree, Gini Impurity, Depth Limit 95.25%
Tree, Entropy, No Depth Limit 96.26%
Tree, Entropy, Depth Limit 95.27%
Random Forest, Gini Impurity, No Depth Limit 97.16%
Random Forest, Gini Impurity, Depth Limit 95.42%
Random Forest, Entropy, No Depth Limit 97.47%
Random Forest, Entropy, Depth Limit 95.37%

Table 5.23: Decision Tree and Random Forest Results for SL(2,Z)
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The random forest classifier using entropy as the split criterion and with no depth limit

performed the best, with an overall accuracy of 97.47%. The confusion matrix for this

classifier on the verification set Sv is below:

Assigned
Conjugate Non-Conjugate

T
ru

e Conjugate 9634 366
Non-Conjugate 141 9859

Table 5.24: Confusion Matrix for the Best Performing Tree Classifier of SL(2,Z)

NTNN Results

For the NTNN classifier we are looking to train on discretely valued data, thus the pre-

vious feature vector of normalized matrix entries is not applicable. Attempting to use the

unnormalized matrix normal form would be a poor choice, as the frequency distribution of

the integral values that comprise the matrix entries is highly skewed. For instance, in the

training set, we have the following relative frequencies fi for the matrix entries:

Sample Class fi = 1 fi > 1
Conjugate Pairs 99.64% .36%

Non-Conjugate Pairs 99.46% .64%

Thus in lieu of the matrix representation for an element we will use its word representation.

However, the word normal form as denoted above does not have a fixed length. Consequently,

we will use the Cayley subgraph features to transform each element to a fixed length feature

vector. In particular, we will utilize the feature vector c2 that was used for BS(1,2). Note

however that for SL(2,Z) the dimension of c2 is 40.

For SL(2,Z) the best parameters are M = 10, P = 5 using voting majority and M =

50, P = 4 using logarithm voting majority.
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Group M P Accuracy (Σ) Accuracy (log)
SL(2,Z) 10 3 50.00% 99.13%
SL(2,Z) 10 4 74.03% 75.95%
SL(2,Z) 10 5 97.72% 88.51%
SL(2,Z) 20 3 77.90% 98.37%
SL(2,Z) 20 4 96.88% 96.27%
SL(2,Z) 20 5 97.11% 96.21%
SL(2,Z) 30 3 71.19% 51.19%
SL(2,Z) 30 4 64.85% 50.11%
SL(2,Z) 30 5 97.21% 98.77%
SL(2,Z) 50 3 74.88% 99.60%
SL(2,Z) 50 4 71.33% 99.81%
SL(2,Z) 50 5 97.64% 95.57%
SL(2,Z) 100 3 75.56% 99.78%
SL(2,Z) 100 4 68.19% 90.66%
SL(2,Z) 100 5 68.68% 83.68%

Table 5.25: NTNN Results for SL(2,Z)

The confusion matrix for the best performing NTNN classifier on the verification set Sv

is below:
Assigned

Conjugate Non-Conjugate

T
ru

e Conjugate 9987 13
Non-Conjugate 25 9975

Table 5.26: Confusion Matrix for the Best Performing NTNN Classifier of SL(2,Z)

5.3 Evaluation and Analysis

5.3.1 Decision Tree and Random Forest Optimizations

In optimizing the performance of the decision tree-based classifiers, different combinations

of tree depth limits and splitting criteria were considered. For nearly all test groups, using

information gain (equivalently, greatest reduction in entropy) resulted in the most accurate

classifier. Only for GMBS(2,3) did using Gini impurity result in a higher accuracy, and only

by .1%.
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For all groups tested, the random forest classifier performed better than a single decision

tree, and again information gain resulted in the most accurate classification. Limiting the

depth of the tree (or trees in the case of random forests) to log2N − 1, where N is the total

number of samples, slightly improved the results when using Gini impurity as the splitting

criterion, but did not do so when using information gain.

The generalization error for random forests approaches zero as additional trees are included

in the forest. For example, the table below lists the classification accuracy for random

forest classifiers on the group O o U34 with different numbers of trees. Note the diminishing

marginal increases in accuracy as the number of trees increases (as this is a stochastic process,

increases in accuracy are not strictly monotonic):

# Trees Accuracy
10 98.89%
15 99.17%
20 99.07%
30 99.20%
50 99.31%
100 99.39%
200 99.41%

Table 5.27: Accuracy of Random Forest Classifiers for O o U34 with Increasingly Large
Forests

5.3.2 Accuracy with Respect to Word Length

The length of a word with respect to a generating set is a crucial measurement throughout

group theory. Word length, rather than bit length, is the standard input size parameter for

group-theoretic algorithms. As mentioned in section 2.1.7 the growth rate of a group, which

depends on word length, can determine algebraic properties such as nilpotency. Recall that

in non-commutatively cryptography, the word length corresponds to key size. Thus, it is

important to consider how well our system performs with respect to the word length.
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In analyzing the performance of our classifiers, we looked for a length threshold L that

would provide the greatest difference in accuracy between words below and above this demar-

cation. To calculate L for each group, we first calculated the accuracy of the best performing

NTNN classifier for each length and class over the verification dataset Sv. We then deter-

mined the inflection points in this data via second order finite differences. The threshold L

was then set to the length that resulted in the greatest difference in accuracy. The results

for each class and group are listed in the table below:

Accuracy
Group Class L |w| < L |w| ≥ L

BS(1,2)
Conjugate 16 30.00% 88.82%

Non-Conjugate 14 84.44% 96.75%

O o U14
Conjugate 10 94.00% 99.98%

Non-Conjugate 11 80.00% 97.69%

O o U16
Conjugate 7 95.00% 99.51%

Non-Conjugate 21 86.25% 97.59%

O o U34
Conjugate 7 55.00% 99.23%

Non-Conjugate 36 97.74% 99.93%

GMBS(2,3)
Conjugate 17 88.33% 97.48%

Non-Conjugate 9 100% 94.86%

SL(2,Z)
Conjugate 17 90.83% 99.98%

Non-Conjugate 7 90.00% 99.77%

Table 5.28: Accuracy with Respect to Word Length and Class for Tested Groups

From the above table one can readily observe that classification is more accurate on

longer words than shorter ones, with the only exception being the non-conjugate elements

of GMBS(2,3). For BS(1,2) the classifier performed very poorly on short conjugate pairs.

For the non-virtually nilpotent polycyclic groups, conjugate pair accuracy was over 99% for

words of length greater than 10, while for non-conjugate pairs the length threshold required

to achieve this performance level increased along with Hirsch length. The SL(2,Z) classifier

performed very well in both classes with words greater than 17 in length.
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Choosing a single length threshold for each group masks lesser changes in accuracy with

respect to word length. To provide a fuller sense of the accuracy-length relationship, we

present figures below that depict the cumulative rate of misclassification as word length

increases. For each group we have two graphs, one for each class of elements. For non-

conjugate elements the graphs display a roughly linear rate of misclassification with respect

to increasing word length, while for conjugate elements the rates are less uniform. Note

that in the graphs below, the x-axis ranges over the lengths of words in the verification set

([5, 1004]), while the y-axis range is dependent upon the cumulative error rate for each group

and class:

(a) Conjugate Elements (b) Non-Conjugate Elements

Figure 5.1: Cumulative Misclassifications by Word Length, BS(1,2)

(a) Conjugate Elements (b) Non-Conjugate Elements

Figure 5.2: Cumulative Misclassifications by Word Length, O o U14
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(a) Conjugate Elements (b) Non-Conjugate Elements

Figure 5.3: Cumulative Misclassifications by Word Length, O o U16

(a) Conjugate Elements (b) Non-Conjugate Elements

Figure 5.4: Cumulative Misclassifications by Word Length, O o U34

(a) Conjugate Elements (b) Non-Conjugate Elements

Figure 5.5: Cumulative Misclassifications by Word Length, GMBS(2,3)
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(a) Conjugate Elements (b) Non-Conjugate Elements

Figure 5.6: Cumulative Misclassifications by Word Length, SL(2,Z)

5.3.3 Accuracy with Respect to Class

By examining the confusion matrices for the best classifier for each group, we can observe

the accuracy for each class of elements in our data set. The accuracies depicted in the table

below are for the best performing NTNN classifier for each group, which was unanimously

the best classifier for all groups. All classifiers achieved higher accuracy on the class of

conjugate elements than the class of non-conjugate elements, with the exception of BS(1,2),

which had the lowest accuracy results of all groups tested.

Accuracy by Class
Group Conjugate Non-Conjugate
BS(1,2) 88.17% 96.64%
O o U14 99.95% 97.58%
O o U16 99.50% 97.41%
O o U34 99.14% 99.86%

GMBS(2,3) 97.37% 94.88%
SL(2,Z) 99.87% 99.75%

Table 5.29: Accuracy by Class for Tested Groups
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5.3.4 Visualizations for N-Tuple Neural Networks

A visualization of a classifier can aid in the analysis of its performance. We present two

different visualizations for the patterns used by the NTNN classifier. These visualizations,

when used in sequence, can illuminate how the patterns change over the course of the opti-

mization process. Examples for the NTNN classifier for SL(2,Z) are presented below. The

classifier was trained using 10 patterns of size 4. The feature vector used was c2, which is of

dimension 40.

Pattern Grids and Heat Maps

The left-hand graphic is a 10× 40 (10 patterns, 40-dimensional feature vector) grid, with

white and black squares representing 0 and 1 values in the pattern respectively. Note that the

patterns and indices are indexed starting from 0. The patterns are sorted lexicographically

as binary numbers. For example, if we had a set of patterns {111,101,011,010}, this set

sorted lexicographically yields {010,011,101,111}.

The right-hand graphic is a 1-dimensional heat map of the patterns. Darker colored indices

in the heat map correspond to more patterns sampling that component of the feature vector.

The bar on the right provides a mapping of colors to sampling frequency.

In the figures below, there are two patterns grids on the left and two heat maps on the

right, one for each class. The figures depict the classifier during the optimization process at

accuracy levels of 74%, 84%, 94%, and 97%. One can see from the heat maps that at 97%

accuracy, feature vector component 14 is the most heavily sampled for conjugate elements,

while for non-conjugate elements component 22 is the most sampled.
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(a) Patterns (b) Heat Map

Figure 5.7: Patterns and Heat Map for SL(2,Z), 74% Accuracy

(a) Patterns (b) Heat Map

Figure 5.8: Patterns and Heat Map for SL(2,Z), 84% Accuracy

(a) Patterns (b) Heat Map

Figure 5.9: Patterns and Heat Map for SL(2,Z), 94% Accuracy
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(a) Patterns (b) Heat Map

Figure 5.10: Patterns and Heat Map for SL(2,Z), 97% Accuracy

NTNN Optimization Progress

We can also use visualizations to evaluate the optimization progress of a NTNN classifier.

As classifiers with different numbers of patterns and pattern sizes require different amounts

of computation time, we used the percentage of patterns tested as our means of measuring

progress. In general, the optimization algorithm tends to plateau between 95%-97% for most

pattern parameters and groups. Depicted below is the optimization progress for the same

NTNN classifier for SL(2,Z) as used in the visualizations above:

Figure 5.11: Optimization Progress for SL(2,Z) with 10 Patterns of Size 4



Chapter 6

Future Applications and Conclusion

Having shown that the conjugacy decision problem can be solved using our machine learn-

ing methods, we turn to the most natural subsequent application of our system: the conju-

gacy search problem. As the solution of the conjugacy search problem requires the production

of a group element, we must perform regression analysis rather than classification, and will

make use of the N -tuple regression networks of section 4.3.4.

Beyond this application, we present additional groups for which the performance of their

trained machine learning systems is of immediate interest. We also suggest potential en-

hancements to our system with respect to feature extraction and model selection. Finally,

we conclude with a discussion of the mathematical implications of our experimental results

concerning the conjugacy problem, and more broadly on how we hope the methods described

within this dissertation will be of use to the community at large.

91
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6.1 Solving the Conjugacy Search Problem Using Ma-

chine Learning

Recall that the conjugacy search problem for a group G is to determine for any conjugate

elements x, y ∈ G if there exists a z ∈ G such that xz = y. The conjugacy search prob-

lem (CSP), and its high computational complexity in certain groups, is one of the central

cryptographic hardness assumptions in non-commutative cryptography. Analogous to the

conjugacy decision problem, algorithms for the search variant are often limited to particular

groups and specific representations. For example, in braid groups the quotient attack [40]

can solve the conjugacy search problem in time O(n2) (with respect to word length). For

polycyclic groups given by their polycyclic presentations and with low Hirsch length, the

algorithm of Eick and Ostheimer [14] can solve the CSP efficiently.

The success of length-based conjugacy search (LBCS) in braid groups, along with its

strictly combinatorial nature, suggests that it may provide a more generally applicable so-

lution for the conjugacy search problem. Unfortunately, the experimental results presented

below show that this method does not yield the same level of success for other classes of

finitely presented groups, particularly those that lack the generic free basis property.

Another potential approach is to utilize techniques from geometric group theory, specif-

ically those that have been developed for hyperbolic groups. However, of the groups we

are considering only SL(2,Z) is hyperbolic, and even relaxed forms of hyperbolicity are not

satisfied by our non-virtually nilpotent polycyclic groups.

Having been stymied in our attempt to use known methodologies, we apply our machine

learning system to the conjugacy search problem. For each platform group we train a N -

tuple regression network (NTRN) that can produce a candidate conjugator for a pair of
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group elements known to be conjugate. This candidate is then used as the initial state of a

local search for a conjugator in the Cayley graph, in what we call regression-based conjugacy

search.

The results in this section represent joint work with Robert Haralick and Delaram Kahrobaei.

6.1.1 Experimental Results for LBCS

We begin our exploration of the conjugacy search problem with a series of trial runs of

LBCS over the same groups that were tested for the conjugacy decision problem. Tests were

performed on a computer running Ubuntu 16.04 LTS with an Intel Core i7-4770K CPU. The

GAP version used was 4.8.5 [1] with 9 GB of memory allowance. We utilized the algorithm

“LBCS with Memory 2” as defined in section 2.2.3. In each test run for the group G, two

random elements x, z ∈ G in normal form were chosen whose lengths are in the range [L1, L2]

such that, for the element y = xz, |y| > |x|. For each range of [L1, L2] values, 50 tests were

run with a timeout of 30 minutes per test.

BS(1,2) and Non-Virtually Nilpotent Polycyclic Groups

Group [10, 15] [20, 23] [40, 43]
BS(1,2) 96% 90% 74%
O o U14 36% 12% 8%
O o U16 28% 2% 2%
O o U34 56% 8% 2%

Table 6.1: LBCS Results for BS(1,2) and Non-Virtually Nilpotent Polycyclic Groups
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GMBS Groups and SL(2,Z)

Group [10, 15] [20, 23] [40, 43]
GMBS(2,3) 96% 86% 54%
GMBS(3,5) 92% 86% 76%

GMBS(17,19) 56% 88% 56%
SL(2,Z) 78% 66% 62%

Table 6.2: LBCS Results for GMBS Groups and SL(2,Z)

In analyzing the above test results it is instructive to consider what makes length an effec-

tive heuristic for conjugacy search in some groups but not others. Hughes and Tannebaum

suggested [26] using a length function l(x), with the generic property that l(yxy−1) ≥ l(x),

for the purpose of selecting candidate solutions for the conjugacy search problem. Geodesic

length, the length in the Cayley graph, was chosen by default for braid groups, as no more

specific function was known. However, the optimized LBA in [38] worked well over braid

groups, which are not free. This performance was further analyzed by Myasnikov and

Ushakov in [40]. They found that the success of the LBA over non-free groups was due

to such groups possessing the generic free basis property, in which a random choice of ele-

ments generates a free subgroup with high probability. The consequences of this property

on the efficacy of LBCS are validated by the experimental results above. LBCS was much

more successful in BS(1,2), the GMBS groups, and SL(2,Z), which contain free subgroups,

than in the tested polycyclic groups, which do not.

For many non-free groups, developments in geometric group theory have provided addi-

tional insight into the relationship between group elements and their geodesic representation

in the Cayley graph. This is particularly true for δ-hyperbolic groups, introduced by Gromov

[19]. A δ-hyperbolic group is a group whose Cayley graph is a δ-hyperbolic space, i.e., a space

in which every triangle is “thinner” than in standard Euclidean space, thus implying that
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the space is negatively curved. Hyperbolic groups have an efficiently solvable word problem,

a polynomial time complexity conjugacy decision problem, and other nice group-theoretic

properties.

In particular, hyperbolic groups have the topological property that they act properly on

other metric spaces (i.e., standard hyperbolic space), so that compact sets in the mapped

space have pre-images in the Cayley graph that are also compact. Results concerning hyper-

bolic groups have been extended to other groups by relaxing the requirements of hyperbol-

icity, producing classes of groups such as relatively hyperbolic groups and semi-hyperbolic

groups. Polycyclic groups that are virtually abelian can be considered semi-hyperbolic, and

act properly on CAT (0) (Hadamard) spaces [8]. Unfortunately, the non-virtually nilpo-

tent polycyclic groups under consideration are not virtually abelian. Therefore, rather than

looking for new length functions, we will utilize supervised learning to determine potential

conjugators from known conjugate pairs.

6.1.2 N-tuple Regression Networks and Conjugacy Search

N -tuple regression networks (NTRNs), as defined in section 4.3.4, can be used to estimate

a candidate conjugator z from a given conjugate pair of elements x, y ∈ G. Once a NTRN

has been trained and optimized for a particular group G, we can use the NTRN to provide

an alternative means of performing conjugacy search. Rather than building a candidate

conjugator from the identity element, we adapt the LBCS algorithm to attempt to produce

a conjugator from an initial seed ẑ, the NTRN response to the feature vector of x and y.

In this regression-based conjugacy search (RBCS), we perform local searches in the Cayley

graph by permuting ẑ via multiplication of positive and negative generators. Like LBCS, we

impose a timeout on our search, and in local beam search fashion, maintain a set number T

of shortest candidate conjugators after each iteration:
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Algorithm 2 Regression-based Conjugacy Search

ẑ ← NTRN(fv(x, y)) . fv(x, y) is the feature vector of x and y
if ẑxẑ−1 = y then

Return ẑ as a conjugator of x to y
else

S ← {(|ẑ|, ẑ)}
while not time-out do

for (|z|, z) ∈ S do
Remove (|z|, z)
for h ∈ X, e = ±1 do

for g ∈ {zhe, hez} do
if gxg−1 = y then

Return g as a conjugator of x to y
else

Save (|g|, g) in the set S ′

end if
end for

end for
end for
Sort potential conjugators in S ′ by their length
Copy the shortest T elements into S and delete the rest of S ′

end while
Upon time-out, return FAIL

end if

6.1.3 NTRN Setup

We will train NTRNs with the same three data sets: Si, So, and Sv, that were generated

in Section 5.1.3. The set Si will be used to train the NTRN as described in section 4.3.4.

The set So will be used as in the NTNN classifier case to optimize the choice of pattern sets.

The set Sv will be used for evaluation as described below.

6.1.4 Evaluation and Analysis

In evaluating the performance of the NTRN, we will utilize two different metrics, one for

each type of network response. For the mean outputs (arithmetic and geometric) we will
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calculate the average mean squared error (MSE) over the optimization set So. The closer

the average MSE is to zero the more accurate the NTRN can be considered. For the median

output, we will calculate the average mean absolute error (MAE) over the optimization set.

Once the NTRN is trained to a sufficient level of accuracy, the performance of the RBCS

algorithm will be evaluated by both its rate of success on the verification set Sv, as well as

the speed at which it arrives at a solution relative to LBCS.

6.2 Additional Applications and Modifications

In this section we suggest additional groups that our machine learning systems can be

applied to, as well some further means of enhancing the performance of our systems.

6.2.1 Additional Test Groups

While there are many groups to which our machine learning solutions can be applied, the

two included below are of particular interest. Braid groups received considerable attention

in non-commutative cryptography as the original platform group for the AAG key exchange.

The group PSL(2,Z) is of interest as it is related to both the tested group SL(2,Z) and the

braid group B3.

Braid Groups

The braid group on n strands is given by the following presentation:

Bn =

〈
x1, . . . , xn−1

∣∣∣∣ xixjxi = xjxixj if |i− j| = 1
xixj = xjxi if |i− j| > 1

〉
.

Intuitively, elements of a braid groups represent the crossings of strings or braids that

are non-trivial (i.e., they do not become uncrossed after pulling on both ends of a braid)

and that do not result in knots. Braid groups have a number of normal forms, including
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DeHornoy and Garside.

PSL(2,Z)

The modular group is the quotient group SL(2,Z)/〈−I2〉, where −I2 is the additive inverse

of the 2 × 2 identity matrix. The group is denoted by PSL(2,Z), as it is a member of the

family of projective special linear groups. The group can be identified with the group of

rational functions over C of the form az+b
cz+d

, where a, b, c, d ∈ Z and ad− bc = 1. There are a

number of presentations for PSL(2,Z), the one below is for the free product of Z2 and Z3:

PSL(2,Z) = 〈S, T | S3 = 1, T 2 = 1〉.

PSL(2,Z) is also isomorphic to the quotient of the braid group B3 with its center.

6.2.2 Modifications to the Machine Learning System

Higher Order Features

All of the machine learning systems tested in the previous chapters rely on first order

features, that is, features extracted directly from the training data. Higher order features

are those extracted from feature vectors themselves. For instance, in the case of NTNNs, we

can create an additional layer of pattern tables that would sample the pattern tables learned

from the training set.

Decision Tree/NTNN Ensemble Method

For many applications the performance of a machine learning system can be improved

by combining multiple learning models together into an ensemble method (e.g., the random

forest model). We may be able to enhance the performance of our solution for the conjugacy

decision problem by using decision tree, random forest, and NTNN classifiers together. The
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output of an odd number of classifiers greater than 3 can be used to achieve a majority

voting classification criterion, say by having two random forests classifiers and one NTNN.

Another option would be to identify a commonality between the training samples that a

classifier misclassifies, and use another type of classifier on these samples, so as to extract

any remaining information out of the data.

6.3 Conclusion

In conclusion, we have shown how the pattern recognition techniques for free groups

developed in [23] can be extended to non-free groups. We demonstrated that the conjugacy

decision problem in a variety of groups can be solved with very high accuracy using random

forests and n-tuple neural networks, and presented a framework for solving the conjugacy

search problem in a similar fashion. We also introduced a family of metabelian groups that

may serve as a potential platform group for non-commutative cryptography. Moreover, the

relationship between the conjugacy search problem and the discrete logarithm problem in

that family links the cryptographic hardness assumptions of non-commutative and number-

theoretic cryptography.

As suggested in [23], the successful application of pattern recognition techniques to group-

theoretic problems can provide experimental evidence for new conjectures in group theory.

The decisions made by the decision trees and n-tuple neural network models used in this

dissertation are readily interpretable, thus enabling a computational group theorist to link

the results in the model back to their corresponding algebraic inputs.

We in fact have such a potential conjecture at hand. From the high accuracy of the

classifiers across the tested groups it is apparent that there is some underlying mathematical

relationship with respect to conjugacy that is responsible for the classifiers’ performance.
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We will make use of the visualizations and other methods of analysis presented within this

dissertation to tease out what exactly this mathematical relationship is; a forthcoming paper

will bring these additional results to light.

Our machine learning approach to solving the conjugacy search problem is a template for

a general method of cryptanalysis that can be applied to other platform groups as they arise.

Moreover, these methods can also be applied to cryptographic systems that utilize group-

theoretic hardness assumptions other than the conjugacy search problem. For example,

the general non-linear function interpolation of N -tuple neural networks may be applied

to protocols that utilize the endomorphism search problem, such as the Grigoriev-Shpilrain

authentication scheme [18].
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