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Abstract

Travel Mode Identification with Smartphone Sensors

by

Xing Su

Advisor: Hanghang Tong

Personal trips in a modern urban society typically involve multiple travel modes. Rec-

ognizing a traveller’s transportation mode is not only critical to personal context-awareness

in related applications, but also essential to urban traffic operations, transportation plan-

ning, and facility design. While the state of the art in travel mode recognition mainly relies

on large-scale infrastructure-based fixed sensors or on individuals’ GPS devices, the emer-

gence of the smartphone provides a promising alternative with its ever-growing computing,

networking, and sensing powers.

In this thesis, we propose new algorithms for travel mode identification using smartphone

sensors. The prototype system is built upon the latest Android and iOS platforms with

multimodality sensors. It takes smartphone sensor data as the input, and aims to identify

six travel modes: walking, jogging, bicycling, driving a car, riding a bus, taking a subway. The

methods and algorithms presented in our work are guided by two key design principles. First,

careful consideration of smartphones’ limited computing resources and batteries should be

taken. Second, careful balancing of the following dimensions (i) user-adaptability, (ii) energy

efficiency, and (iii) computation speed.
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There are three key challenges in travel mode identification with smartphone sensors,

stemming from the three steps in a typical mobile mining procedure. They are (C1) data

capturing and preprocessing, (C2) feature engineering, and (C3) model training and adap-

tation. This thesis is our response to the challenges above.

To address the first challenge (C1), in Chapter 4 we develop a smartphone app that

collects a multitude of smartphone sensor measurement data, and showcase a comprehensive

set of de-noising techniques. To tackle challenge (C2), in Chapter 5 we design feature ex-

traction methods that carefully balance prediction accuracy, computation time, and battery

consumption. And to answer challenge (C3), in Chapters 6, 7, and 8, we design differ-

ent learning models to accommodate different situations in model training. A hierarchical

model with dynamic sensor selection is designed to address the energy consumption issue.

We propose a personalized model that adapts to each traveller’s specific travel behavior us-

ing limited labeled data. We also propose an online model for the purpose of addressing the

model updating problem with large scaled data. In addressing the challenges and proposing

solutions, this thesis provides an comprehensive study and gives a systematic solution for

travel mode detection with smartphone sensors.



Acknowledgements

First I would like to express my sincere gratitude to my advisor Prof. Hanghang Tong for

the continuous support of my PhD study and related research, for his immense knowledge

and experience in guiding the work. His guidance helped me in all the time of research

and writing of this thesis. I am grateful for his patience, motivation and encouragement

throughtout the PhD study. I am very thankful for all of the time he spent on writing,

editing and revising papers and his help in putting together this dissertation.

Besides my advisor, I would like to thank the rest of my thesis committee: Professor Ted

Brown, Professor Qing He, Professor Ping Ji and Professor Zhigang Zhu, for their great help

in working on this thesis with insightful advise, professional suggestions and comments.

I would like to also give my sincere thanks to Professor Robert Haralick, for his generous

help in spending time work on problems with me, patiently explain the methodology and

related knowledge to me whenever I needed. I learnt a lot while working with him.

Many thanks to my department Assistant Program Officer Ms. Dilvania Rodriguez and

former APO Ms. Lina Garcia. They are kindhearted colleagues who were always there and

offer help, support and advise for us. Their beautiful personality makes the computer science

department like a big family.

Many people provided me critical assistant in this thesis work in help collecting data.

I must thank Hernan Caceres, Yu Cui, Ming Ni, Zhenghua Zhang, Xiaogong Gong, Cindy

v



vi

Wang, Jessi Chen, Li Zhong, Tingting Chen, and many anonymous volunteers for taking

time out of their busy schedules and traveled over places in the city to collect useful data.

I thank Jonathan Ben-benjamin, Arthur Parzygnat, Suman Bhunia, Xiannian Fan and

George Poppe, for the long inspirational discussions, for the weekends we worked together,

and for all the fun we have had in the past few years. It was a great honor for me to spend

PhD study with all of you.

I thank Dara Pir, Ali Ahmend, Anura Abeywickrama, Allan Zelener, Steve Vayl, Jamie

Lennox for the emotional, mental and moral support during my PhD whenever I needed.

I thank all the friends I meet in computer science department and science center. To

get to know all of you and have your company in this journey is one of the luckiest things

that happened in my life. All of you makes my New York life wonderful and full experience.

Whenever I think of the time I have spent together with you in the past years, the memory

is full of joy and happiness.

Finally I would like to thank my family: my father, my mother and my younger sister,

for their constant support and belief in me through thick and thin.



List of Figures

2.1 A Typical Procedure of Mobile Mining . . . . . . . . . . . . . . . . . . . . . 8

3.1 Flowchart of Travel Mode Identification with Smartphones . . . . . . . . . . 18

4.1 iPhone App for Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 x, y and z axis Acceleration Measure of iPhone [1] . . . . . . . . . . . . . . . 25

4.3 x, y and z axis Rotation Measure of iPhone [1] . . . . . . . . . . . . . . . . . 26

4.4 5% Winsorization of Acceleration Data along y axis . . . . . . . . . . . . . . 31

4.5 Gaussian Smoothed Rotation Rate . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Learning Accuracy by Different Segment Size and Sampling Frequency . . . 36

5.2 Using Slide Window for Data Segmentation . . . . . . . . . . . . . . . . . . 37

5.3 Solution Path of Linear Model with Group-lasso Applied. The vertical dash lines are the

moments where new group(s) of features join the whole features used for classification. Each

line of red letter(s) are the total sensor group(s) in use with a blue dash arrows pointing to

the dashline showing the moments when these group(s) of features start in use. . . . . . 41

6.1 Acceleration along the Y-Axis: Walking vs. Taking a Bus . . . . . . . . . . . 43

6.2 Hierarchical Categorization of Travel Modes . . . . . . . . . . . . . . . . . . 44

6.3 Hierarchical Online Learning Workflow . . . . . . . . . . . . . . . . . . . . . 45

6.4 Comparison of Hierarchical Model and General Model . . . . . . . . . . . . . 47

vii



LIST OF FIGURES viii

7.1 Overview of the Proposed PerTMoD . . . . . . . . . . . . . . . . . . . . . . 51

7.2 The effectiveness comparisons of PerTMoD. PerTMoD generally outperforms

the compared methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 The comparisons among PerTMoD, Generic, and Base methods with α varies.

PerTMoD is consistently better. . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1 Online VS Offline Learning Process . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 Performance Comparison of Online and Offline Model . . . . . . . . . . . . . 69

8.3 The Time Cost of Online and Offline Updating . . . . . . . . . . . . . . . . 70

8.4 Prediction Performance with Initial Training Sets of Different Size . . . . . . 71

9.1 Driving Speed at Local and Freeway . . . . . . . . . . . . . . . . . . . . . . 73

9.2 Pressure at Summer and Winter on Bike . . . . . . . . . . . . . . . . . . . . 74



List of Algorithms

1 Hierarchical Framework with Dynamic Sensor Selection . . . . . . . . . . . . 46

2 The PerTMoD algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Online Learning with Pegasos . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ix



Contents

Acknowledgements v

List of Figures viii

List of Algorithms ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Mobile Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Data Capturing with Smartphone Sensors . . . . . . . . . . . . . . . 8

2.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Travel Mode Identification System . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Key Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Thesis Overview 18

x



CONTENTS xi

4 Data Capturing and Processing 22

4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Data Collection App . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Data de-noising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Feature Engineering 34

5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Data Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Feature Analysis and Sensor Selection . . . . . . . . . . . . . . . . . . . . . . 38

6 Hierarchical Model 42

6.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 A Hierarchical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Dynamic Sensor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Personalized Model 48

7.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 The Proposed PerTMoD: Overview . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 The Proposed PerTMoD: Details . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3.1 Similarity Computation . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3.2 Distribution Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS xii

7.3.3 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3.4 Sample Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3.5 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Online Model 62

8.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.2 SVM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.3 Online Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.4.1 Online Learning VS Offline Learning . . . . . . . . . . . . . . . . . . 67

8.4.2 How much data is enough to train a initial model? . . . . . . . . . . 68

8.5 A Summary of Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Conclusion and Future Work 72

9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.1.1 Local Street or Freeway? . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.1.2 What’s the weather like along the trip? . . . . . . . . . . . . . . . . . 73

9.1.3 Daytime or Night? Sunny or Cloudy? . . . . . . . . . . . . . . . . . . 74

9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Chapter 1

Introduction

Smartphones are ubiquitous and becoming more and more sophisticated, with ever-growing

computing, networking, and sensing powers. This has been changing the landscape of peo-

ple’s daily life and has opened the doors for many interesting data mining applications,

ranging from health and fitness monitoring, personal biometric signature, assistive tech-

nology and elder-care, indoor localization and navigation, to urban computing and smart

transportation, etc. A core building block behind these applications is the study of the

raw sensor readings of the smartphones in order to learn the facts of activities, events, and

situations where the users are involved together with smartphones. In this thesis we focus

on the scenarios of identifying users’ travel modes in urban transportation with smartphone

sensors.

1.1 Motivation

Personal trips in a modern urban society usually involve multiple travel modes, including

passenger cars, buses, subway, pedestrian, bicycles, etc. Different travel modes have their

own specific characteristics, ranging from the travel speed, the volume, the fuel consump-

tion, the emission usage, the priority level, to the vulnerability. Not only is recognizing

1
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transportation modes critical to understand people’s travel behaviors [2], but also such in-

formation helps improve transportation planning, management and operations. For example,

the personal mobility accounts for about two-thirds of the total transportation energy us-

age [3]. Understanding and assessing an individual’s personal contribution to the emissions

of a city requires personal travel diaries, including accurate information of travel modes.

By leveraging travel modes information, traffic signal control systems are able to treat the

travel modes in an integrated way to achieve optimal multi-modal traffic signal control [4–7].

Moreover, travel mode information constitutes an essential part of household travel diary

data, which are indispensable for regional transportation planning. Recently, travel behavior

has also become a focus for public health research. Studies on adults’ and children’s travel

data have shown that individuals who walk or bike for transportation, or use public trans-

portation, accumulate more physical activities and are more likely to meet public health

recommendations [8].

Travel mode identification is a natural extension of vehicle classification, which only

targets motorized transportation. There are many existing technologies for vehicle classifi-

cation. The state of practice mostly leverages infrastructure based fixed sensors, including

pneumatic tubes, inductive loop detectors, piezoelectric sensors, Weigh-in-motion (WIM)

systems, radar sensors, infrared sensors, acoustic sensors, and computer vision-based sen-

sors [9]. However, traditional fixed sensors bear the following limitations: (i) high installation

and maintenance costs, (ii) inapplicability under specific situations (e.g. inclement weather)

and (iii) inadequate to obtain travel mode information in a complete trip rather than at a few

locations. In the past decade, given the reduced cost in Global Positioning System (GPS),

more and more studies have focused on collecting personal travel data using GPS loggers [10].
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GPS based floating sensors are more appealing by providing individual trip-chain data with

extremely low costs. The drawback is that GPS only provides the location and speed data,

and becomes inapplicable under certain scenarios (e.g., underground subways).

The emerging of the smartphones, as an integral part of the wearable devices with in-

creasingly sophisticated technology and ever-growing computing, networking and sensing

powers, quickly catches people’s eyes. Nowadays, smartphones can provide much more than

GPS location information. Indeed, modern smatrphones contain a myriad of sensors which

are yet to be fully utilized. Such sensors include accelerometer, gravity sensor, barometer,

light sensor, gyroscope, compass, etc. These advanced sensors, used in concert, bring a high

potential to enable a variety of smartphone data mining applications such as users’ activity

recognition, including travel activities, from simple locomotion (e.g. walking, jogging, climb-

ing stairs, taking elevator. etc.) [11] to complex activities (dining, shopping, etc.). Therefore,

the smartphone has become one of the best sources for crowdsourcing real time dynamics

while travelling.

In this thesis, we are particularly interested in exploring smartphones to automatically

classify six different travel modes: driving a car, walking, jogging, bicycling, taking

a bus and taking a subway . Smartphones, as a special form of wearable devices, travel

with the user and continuously collect personal travel activity information. Although the

collection and sharing of massive mobile data needs to overcome institutional (e.g., who

should collect the data), political (e.g., privacy issues), and technical challenges (e.g., bias of

the collected samples), they do provide comprehensive information (e.g., vehicle traces) that

promise great opportunities in many science and engineering fields [9]. As mentioned above,

a smartphone could provide a variety of sensor data which can be conveniently processed to
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further obtain information concerning the motion of the device (e.g. acceleration, rotation)

and the ambient environment (e.g. air pressure, ambient light). Different travel modes tend

to have different characteristic speed variations, acceleration rates, and even environmen-

tal pressure, and magnetic field variations. This motivates us to use smartphone data for

automatic travel mode identification.

1.2 Contributions

There are three key challenges in travel mode identification with smartphone sensors, stem-

ming from the three steps in a typical mobile mining procedure, ranging from (C1) data

capturing and preprocessing, (C2) feature engineering and (C3) model training and adapta-

tion. In data capturing and preprocessing, the accelerometer sensor, as the exclusive data

source in most existing smartphone-based activity recognition research, is inadequate to

differentiate some travel modes. And the data collected from multimodality sensing often

accompanies with various noise might overweigh its discriminative power. In feature engi-

neering, the feature extraction needs to balance a number of potentially conflicting factors

such as the recognition accuracy, the computational time, the response time as well as the

battery consumption. In model training, the main challenges are battery consumption and

model adaption. On the battery consumption, continuously sensing would drain the battery

quickly. On the model adaption, how to adapt a travel mode recognition model trained

on a generic population to a specific user? How to update/adapt a traveller-specific model

efficiently over time to accommodate newly collected labelled data for her/him?

In response to these challenges, this thesis is developed to the following three research

tasks. First (Task 1. Data Collection and Preprocessing), we develop a smartphone app
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which allows to collect a multitude of sensor measurement data from smartphones, followed

by a comprehensive set of de-noising techniques. Second (Task 2. Feature Engineering),

we design the feature extraction methods that carefully balance between the prediction

accuracy, the on-line response time and the battery consumption. Third (Task 3. Learning

Models), we design different learning models to accommodate different situations in model

training. A hierarchical model with dynamic sensor selection is designed to address the

energy consumption issue. A personalized model is proposed to adapt to each traveller’s

specific travel behavior with limited labeled data. An online model is proposed to address

the model updating problem with large scaled data. This thesis, in addressing the challenges

and proposing solutions, provides an comprehensive study and gives a systematic solution

in travel mode detection with smartphone sensors.

Challenges Proposed Solutions Publications

C1.1: Exclusively accelerometer
-based solution doesn’t work.

PS1.1: Multi-modality sensing [12,13]

C1.2: Data noise introduced by
the smartphone’s mobility

PS1.2: Apply different de-noising techniques [14]

C2.1: Data segmentation PS2.1:Slide-window segmentation [14,15]
C2.2: Feature extraction PS2.2: Dynamic sensor selection [15]
C3.1: Continuous sensing are
battery draining on smartphones

S3.1: Hierarchical learning model [14,15]

C3.2: User adaption: adapt generic
trained model to a specific user.

PS3.2: Personalized learning model [16]

C3.3: Temporal adaption: adapt
the model trained from a limited
data to future scenarios.

PS3.3 Online learning model [14,14]

Table 1.1: Thesis work and Publications

1.3 Thesis Outlines

The rest of the thesis organizes as follows. Chapter 2 introduces the details of smartphone

sensors and conducts a brief literature review of the state of the art of smartphone related
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data mining research, followed by the open challenges. Chapter 3 gives an overview of the

smartphone based travel mode identification system. Chapter 4 - 8 are the main thesis works

following the three steps of a typical mobile mining procedure. Each section of the thesis

work includes the statement of the problem, proposed solution and corresponding analysis.

Chapter 9 concludes the thesis.



Chapter 2

Literature Review

In this section, we review the related work. We start with a generic review of the moblie

mining, and then present the state of the art in travel mode recognition, followed by some

key challenges for travel mode identification based on smartphone sensors.

2.1 Mobile Mining

As an integral part of our wearable devices, smartphones become increasingly sophisticated,

with ever-growing computing, networking and sensing powers. They are usually equipped

with multiple sensors including accelerometer, gravity sensor, barometer, light sensor, gy-

roscope and compass. The role of smartphones in our daily life is no longer limited to the

texting-calling device, it is a body-worn sensor device with multi-modality sensing platform

and powerful abilities in computing, mobility and connectivity. A smartphone can be used

as an unobtrusive sensor in most applications where sensor-generated data are needed. It

is very convenient in the case where the person already owns a smartphone that it is not

necessary for them to carry additional devices for sensor data collection.

The development of smartphone techniques enables a rich variety of smartphone data

mining applications. As is mentioned above, a smartphone can provide a variety of sensor

7
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data which can be easily processed to further obtain information concerning the motion

of the device and the ambient environment. As we know, different activities tend to have

different characteristics of motion patterns(e.g. speed variations, acceleration rates, rotation)

and even the environmental patterns (e.g.magnetic field change and ambient air pressure).

The smartphone provides us a great chance to explore various possibilities with it.

A typical mobile mining procedure includes 3 parts: data capturing, feature engineering

and modeling. The Application sometimes provide feedback to the data capturing and

modeling process to update the model. The procedure is shown in Figure. 7.1.

Figure 2.1: A Typical Procedure of Mobile Mining

2.1.1 Data Capturing with Smartphone Sensors

Data capturing is the process of using the smartphone to record data. These data can be the

smartphone sensors’ reading, the activity log by certain smartphone apps that record how

the user is interactive with his/her phone, the network connection log from certain APs or

Cellular towers, etc. The users’ interaction with smartphones includes how often s/he uses

the smartphone and at each interaction what is the activity (e.g. having a phone call, using

an app, etc). Analyzing these data can help to understand the user’s social life as well as the
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function the smartphone fulfill in everyday life. The connection log provides the information

in the time and space perspective and is helpful in localization and other related scenarios.

In this work, we mainly focus on the smartphone sensors’ reading.

Smartphone sensors is classified into four categories [17]: motion sensors, environmental

sensors, position sensors and connection sensors.

• Motion Sensors. These sensors measure acceleration forces and rotational forces

along three axes of the phone’s coordinates. This category includes accelerometers,

gravity sensors, gyroscopes, and rotational vector sensors.

• Environmental Sensors. These sensors measure various environmental parameters,

such as ambient air temperature and pressure, illumination, and humidity. This cate-

gory includes barometers, photometers, and thermometers.

• Position Sensors. These sensors measure the physical position of a device. This

category includes orientation sensors and magnetometers.

• Connection Sensors. These sensors provide the solution for smartphones to con-

nect and interact with other devices with various protocols. This category includes

Bluetooth, GPS sensors, Wireless sensors, standard cellular connection modulars.

A summary of the smartphone sensors and their sensing data is shown in Table 4.1. The

data range and resolution are different from phone to phone. Some have very high resolution

sensors and cost more. Some others return a estimated result indicating the level, indicating

the exact number (e.g. some proximity sensor returns binary results indicating far or near

to user’s face).



CHAPTER 2. LITERATURE REVIEW 10

Sensor Name Data Collected Dimensions Unit

Accelerometer Acceleration x, y, z g-force
Gravity Sensor Gravity x, y, z m/s2

x, y, z,
Gyroscope Rotation Rate x calibration, y calibration, rad/s

z calibration
x, y, z,

Magnetometer Magnetic Field x calibration, y calibration, µT
z calibration

Barometer Ambient Air Pressure 1 hPa
Rotation Degree Azimuch: Rotation around z Axis

Rotation Sensor (y axis pointing to magnetic Pitch: Rotation around x Axis Degree
north as the default) Roll: Rotation around y Axis

Relative distance from an object
Proximity Senosr to the view screen of a device 1 cm

Light Sensor the ambient light level 1 lx
Humidity Sensor the relative ambient humidity 1 Percentage

Temperature Sensor Ambient temperature 1 Celcuis
Geographical description of Latitude, Longitude, Degree,

GPS Sensor current location and estimated speed Speed m/s

Table 2.1: Sensors’ Data Details

In mobile sensing the critical challenge is energy efficiency. What sensors should be

used and how to optimize the sensing (e.g. sampling frequency) so as to leverage the battery

consumption and system performance is one of the main focus in many mobile sensing related

researches and industrial development.

2.1.2 Algorithms

Smartphones, as the small, cheap, always connected devices with powerful sensing capa-

bilities open up countless possibilities for data collection and analysis for a broad range

of research. By analyzing the data from smartphones, handful informations can be dis-

covered, such as where is this person, who is accompanying him, what is he doing, what

resources are nearby, etc. The existing mobile mining literatures focuses on four areas [18]:

Location-aware analytics, context aware analytics and social analytics. Location-awareness

with smartphones are through smartphone’s connectivity or interaction with ambient envi-

ronment. Outdoor location information are obtained through GPS, cellular tower connection,
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etc. Indoor localization are usually under the constrain of no GPS and weak cellular recep-

tion. Thus other source of data are utilized such as the wifi connections and signal strength

information [19–24], RSS-space tasks of proximity detection with acustic sensors [25–27],

bluetooth connectivities [28], etc. Context awareness are the analytics of users’ activities

that is inferred from smartphones’s data. Activity recognition with smartphones is the core

technique of context awareness and is currently a hot topic. A low level activity recognition

focuses on the task of detecting what is the user’s current activity: walking on stairs, sitting,

sleeping, driving or jogging? A high level activity recognition related research usually aggre-

gate the activity information in the time manner and find some pattern. For example, the

detected walking speed may reveals the mood of a person [29], the accelerations in driving

may reveals the person’s driving style [30], and the distribution of activities may indicate

the user’s living style [31]. In the aggregation level, the activities detected by smartphones

is used for further mining of informations such as urban traffic volume [32, 33], events go-

ers [32], carbon emission [34], etc. Social analytics research focuses on the aggregation of

users’ mobility and activities and it involves the social media network. A lot of research are

using location based twitter data [35]. The interplay of human’s mobility and social ties are

modelled using smartphone data [36–38].

2.1.3 Applications

Mobile mining solutions can be applied either as the core method or an assistive technology

in many applications. For example, learning the pattern of daily smartphone locations via

cellular tower connection records in a city could help estimate the transportation volume and

predict the traffic of the city. Smartphone based activity recognition could help the public

health agency on family based outdoor activity survey. Based on the fields towards which
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mobile mining is applied, the main applications fall in the following four categories.

• Urban computing. Urban computing is an emerging field, which uses the data that

is generated in cities from different sources such as traffic flow, human mobility, geo-

graphical data to help modernization of people’s lives and tackle the urban issues such

as traffic congestion, energy consumption, etc [39]. Smartphones play an important

role in urban computing. On one hand, the interaction between humans and the ur-

ban environment is reflected by the smartphone and its connection to cellular towers

and environment WiFis. The analysis of these data could help urban planning such

as gleaning the underlying problems in transportation networks [40], discovering the

functional regions and the city boundary [41,42], etc. One the other hand, smartphone

sensors data are used to identify users’ transportation modes. This lead to applications

in urban transportation survey [34], daily traffic monitor [43], public transportation

system design [44,45], etc. A full survey of urban computing can be found in [39].

• Healthcare. Mobile mining solution is also used in healthcare related fields. In the

individual level, the activity recognition and travel mode identification using smart-

phones could reveal the user’s living style such as the working hours of the user, the

active status of the user, the main transportation tools s/he is using, etc. The activity

recognition can also help in elders’ care such as fall detection [46], rehabilitation as-

sistant. More and more health related smartphone apps are developed and launched

with latest technologies that assist users in monitoring their sleep quality [47], log the

walking steps [48], etc. In the aggregation level, the mobile mining techniques provide

health related research useful information such public physical activities [8].
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• Location-based search, social and advertising. Mobile mining are used heavily

in location based services such as maps, navigation and social search (e.g. waze, yelp,

foursquare). Social medias learn the social patterns by mining the interaction and

locations among social networks. Digital advertisements uses mobile mining techniques

to target audiences by learning the patterns of users’ behaviors such as transportation

behavior, social behavior and social networks [49–53].

• Privacy and security. Unfortunately, mobile mining are also used in malicious

ways such as probing users’ privacy, or stealing information. For example, through

the vast data of some smartphone usage, one can obtain the quite accurate activity

tracking or inferences of the user’s locations [54,55]. Some mobile malware uses mobile

mining technology to “learn” the user’s keyboard input [56]. This poses challenges in

technology related legislation.

2.2 Travel Mode Identification System

The problem of travel mode identification is tackled with both traditional approaches and

the emerging mobile related solutions. Traditional methods involve fixed sensors. Recently,

more and more studies focus on travel mode identification with floating sensors, due to their

various advantages over fixed sensors. Therefore, in this paper, we only consider floating

sensor based approaches (see [11] for a detailed review for fixed sensor based methods).

According to the types of sensors adopted, we further categorize the previous work into

GPS-based and smartphone-based classification methods.

The vast majority of the early literature in travel survey, which leverages only GPS infor-

mation (location, speeds, and derived acceleration data), belong to GPS-based classification
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methods [53, 57–60]. Support Vector Machine (SVM) is one of the most popular methods

for classification. Zhang et al. (2011) performed a two-stage classification with SVMs. In

the first stage they identify three main travel-mode classes: pedestrian, bicycle, and motor-

ized vehicles. And in the second stage they further classify different classes of vehicles into

cars, buses, trains and trams [61]. Bolbol et al. (2012) developed a moving window SVM

to classify six travel modes from sparse GPS data [62]. Another study used SVMs with

quadratic kernel functions for binary classification, which only considered passenger cars

and trucks [9]. Several studies leveraged Geographic Information Systems (GIS) for better

detection accuracy. GIS and GPS data were combined to detect five travel modes (walk, car,

bus, subway, and commuter rail) in New York City [10]. Moreover, another study proposed a

combined fuzzy logic and GIS-based algorithm to process raw GPS data. The algorithm was

applied to GPS data collected in the highly complex Greater Copenhagen Area network in

Denmark and detected trip legs and distinguished between five modes of transportation [63].

A similar study with fuzzy pattern recognition was conducted in Shanghai, China [64]. Many

algorithms presented in this category usually involve heavy data processing and transmission

load on mobile devices that may exceed its capacity.

Emerging trends in smartphone-based methods are observed in recent literature. Manzoni

et al. (2010) developed an algorithm that automatically classifies the traveller’s transporta-

tion mode into eight classes using a decision tree. The input features were computed from

the Fast Fourier Transform (FFT) coefficients of the total acceleration measured by the

accelerometer [34]. A trip analysis system that consists of mobile apps and a centralized

analyzer was developed to identify the travel mode and the purpose of the trips sensed by

smartphones, using the GPS and accelerometer [65]. It was deployed to the smartphones of
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the volunteers in Dubuque, IA, to serve both the volunteers and the transit agencies. An-

other study leveraged the same two types of sensors to classify six different travel modes in

the region of Vienna, Austria [66]. Authors proposed multivariate parametric models which

are fitted to the distribution of feature vectors extracted from the training set.

Very few studies employ a complete list of smartphone sensors for better classification

results. Frendberg (2011) designed a smartphone app to detect transportation modes by

applying a Boosted Naive Bayes classifier to the data collected from GPS, accelerometer,

orientation, and magnetic sensors [67]. However, the data were collected from a single user

and only two travel modes, walk and automobile, were considered in that study. Another

recent work collected multimodality travel data in New Delhi, India, from a variety of sensors,

including accelerometer, gyroscope, magnetometer, light intensity meter, proximity, sound

level and GPS [68]. They focused on two-wheeler and three-wheeler classification with a

threshold-based heuristic. However, no pedestrian, cyclist, or subway is considered in that

work. In [69], Jahangiri and Rakha explored the solutions with a different combination of

sensors such as accelerometer, gyroscope and GPS. They used SVM with Gaussian kernel

as the learning model and obtained high accuracy. However they did not include subway as

a travel mode. Even though much progress has been made, several key challenges remain

open such as dynamic model update, battery consumption reduction. It is discussed in the

following section.

2.3 Key Challenges

Although remarkable progress has been made, travel mode recognition using smartphones is

still in its infancy stage. This is largely due to the following three key challenges.
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Challenge # 1: Data Capturing and Preprocessing. The existing smartphone-based

travel mode recognition is almost exclusively based on the accelerometer sensor [11, 70].

While being effective in distinguishing between certain travel modes (e.g., walking, biking,

jogging), the accelerometer alone is often inadequate to differentiate other travel modes.

For example, the accelerometer reading of a traveller who is driving a car or is taking a

bus/subway might be very similar with each other, since the traveller is likely to sit on the

seat most of the time. This naturally motivates us to also collect other types of sensors

(e.g., magnetometers, barometers). However, the raw data collected from such sensors of-

ten accompanies with various noises, due to a number of reasons, ranging from the way a

traveller holds the smartphone (e.g., in a pocket vs. in the backpack vs. in hands), to the

environmental conditions (e.g. the magnetometers’ reading will be distorted by environment

circus layout.) Without being appropriately denoised, the negative impact of such noise on

the recognition accuracy might outweigh the additional discriminative power embedded in

these additional sensors.

Challenge #2: Feature Engineering. As in almost any learning model, designing the

“right” feature is often the key to the success of the travel mode recognition algorithm.

In our setting, the feature extraction needs to balance a number of potentially conflicting

factors, e.g., the recognition accuracy (the discriminative power of the extracted feature),

the computational time, the response time as well as the battery consumption. For example,

in order to segment the raw sensor reading (which is essentially a time series data), we

need to decide the appropriate sampling rate and segmentation length. A longer segment

might lead to more powerful feature (e.g., the discriminative FFT coefficients), yet it also

requires more computational time to extract such features (by FFT) and/or might delay the
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on-line response. In general, it is desirable to examine all the available sensors to have more

discriminative features. However, it inevitably comes with a cost in terms of the battery

consumption.

Challenge #3: Learning Models. Different travellers often exhibit dramatically differ-

ent travel behaviors. For example, some drives cautiously, while others might drive more

aggressively with frequent and sudden accelerations and decelerations. Some people walk

as fast as others jog. Ideally, we need to collect sufficient labelled data for each traveller

in order to train a learning algorithm that is tailored for that specific traveller, which is

almost impossible in reality. How can we adapt a travel mode recognition model trained on

a generic population to a specific user, with only limited labelled data for her/him? How

can we update/adapt such a traveller-specific model efficiently over time to accommodate

newly collected labelled data for her/him?



Chapter 3

Thesis Overview

In response to the three key challenges, we develop new methods for a smartphone-based,

real-time travel mode identification system in this thesis. Our prototype system takes smart-

phone sensors’ data as the input and the identified travel modes as the output. An important

feature that differentiates our prototype from the vast majority of the existing work is that

it does not use any location information (e.g. GPS, GSM data). It consists of three major

tasks/components, as summarized in Figure 3.1.

Figure 3.1: Flowchart of Travel Mode Identification with Smartphones

In the first task, we will develop smartphone Apps based on the latest iOS and Android

systems for data collection. Volunteers travel with the App installed on their smartphones

18
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to record the sensors’ data (e.g. accelerometers’ data, barometers’ data, etc.) during travel.

They also record their modes of transportation (e.g. bus, walk, etc) at the same time. The

data collected with correspondent travel mode are referred to as labelled data. In order

to be able to identify the travel mode from the smartphone sensors’ data, we need to first

understand their typical patterns from the above labelled data: For example, the accelerom-

eter data collected during jogging fluctuate more heavily than in other travel modes; the air

pressure detected during travelling with buses has a smaller mean value than the pressure

while travelling with cars; the magnetic field readings show some oscillatory pattern while

travelling on subways; and so forth. Some key questions we need to answer include: What

are the characteristic patterns behind these data, and how can we combine this informa-

tion with multimodality sensing to achieve real-time travel mode identification? Given the

multiple noise sources during such data collection process, we hypothesize that a single de-

noising strategy might be inadequate. Having this in mind, we design a set of comprehensive

de-noising to remove as much noise as possible.

In the second task we design the data segmentation and feature extraction methods that

carefully balance between the prediction accuracy, the on-line response time and the battery

consumption. The data collected preprocessed in step 1 is time series data of different sensors’

readings. The goal in this step is first slice the time series data into data segments and then

extract the most discriminative features from the segments. A proper segment length is

important to both feature extraction and energy consumption. A data segment of short time

span may cut off the data inside its cycle of the certain pattern that would make the learning

less effective, and a segment of long time span may not provide us extra information but

requires more resources for calculation. Besides in a real-time system, it delays the prediction
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since it needs more data to come in to construct a segment. The feature extraction is a critical

step in any model training. In our thesis, it also affects the energy consumption. While the

multi-modality sensing empowers us with discriminative information, the high dimensional

features from multiple data sources are both battery draining in sensing and calculation. To

leverage the model accuracy, the fast response and energy efficiency, we design comprehensive

methods on data segmentation and feature extraction.

In the third step, we build a learning model which recognizes the travel mode based on

extracted features in task 2. In this thesis we focus on the following six travel modes: driving

a car, walking, jogging, bicycling, taking a bus and taking a subway . The heart of this task is

the learning mechanism that could adapt to a specific user’s travel behavior, online update

with new labeled data, while maintaining a lower cost in energy as well as computational

time and resources. We tackle the problem in three angles each of which is a learning

model. The first model is a hierarchical learning model. It is based on the results of group

feature analysis in feature engineering that not all modes requires features extracted from

the data of the 5 sensors. In chapter 7 we first divide the six modes into wheeled mode and

unwheeled mode. The wheeled mode includes outdoor mode: biking, and the indoor mode:

taking a subway, driving a car and taking a bus. The unwheeled mode includes walking and

jogging. Thus the hierarchical model consists three layers. At first layer we train a model

that classify wheeled/unwheeled travel mode. In second layer we classify the travel modes

within each subcategory. Finally, we classify the car, bus or subway mode within the indoor

mode. A dynamic sensor selection mechanism is installed inside the hierarchical model that

only wheeled mode requires the full sensors data while majority of the sensors are turned

off except the accelerometer and gyroscope. The second model is a personalized learning
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model. The main idea is that for a user who has limited labeled data we “borrow” data from

users whose data is pre-collected and labeled, and their travel behavior is similar to current

user. In chapter 8 we first propose a method to calculate the user similarity scores. Then

we select data from the users that have higher similarity scores. Then we estimate the data

distribution in feature space, and uses it to reweight the borrowed data so as to minimize the

model loss with respect to the target user. Experimental evaluations on real travel data show

that the proposed method outperforms the generic method in terms of prediction accuracy.

The third model is an online learning model. It corporates with the hierarchical model and

personalized learning. The model adopts the stochastic sub-gradient descent method and

updates the learning models with small portion of the data.

In the next 5-8 chapters, we present the details of these three research tasks. For each

task, we present the problem description, the detailed solutions as well as experiment design

and results.



Chapter 4

Data Capturing and Processing

4.1 Problem Description

The first step towards a travel mode identification is collecting smartphone sensors’ readings

during travel. The raw data is then preprocessed in order to remove various noise.

In data capturing, the main question to answer is how to collect data and what to

collect. The accelerometer data and GPS/GSM data are the main data sources in most of

the existing smartphone-based travel mode identification systems [69]. The GPS and GSM

data are used for location information. However, such data is not only sensitive as it reveals

the users’ locations, but also unstable and even inapplicable in certain scenarios such as the

underground transportation in New York City. Accelerometers alone is often inadequate to

effectively distinguish all travel modes. For example, in wheeled travel modes (i.e., buses,

cars, subways), most of the time travellers are sitting in their seats, resulting very similar

accelerometer readings. This naturally motivates us to also collect other types of sensors.

However, the raw data collected from such sensors often accompanies with various noises,

due to a number of reasons, as outlined in Section 2.3. Without being appropriately de-

noised, the negative impact of such noise on the recognition accuracy might outweigh the

additional discriminative power embedded in these additional sensors. Therefore, the main

22
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task in data preprocessing is to minimize the various noise in the raw sensor readings.

4.2 Data Collection

4.2.1 Data Collection App

We have developed a smartphone app based on iOS and Android systems to collect raw

sensor data. Figure. 4.1 shows a screenshot of the iPhone App we developed. This App

allows user to collect data both in online mode and offline mode. At online mode, the App is

connected to our data server and transfer sensor data in realtime. At offline mode the sensor

data is saved on the smartphone local memory and user can choose to send it to server at the

availability of Internet connection. For each user the App generates a unique user ID (here

we assume that a smartphone belongs to a single user and only record one user’s activity).

It also provides the user an option to set the sensing frequency.

4.2.2 Data Description

Acceleration data is the most frequenctly used sensor data in smartphone based activity

recognition project. In this thesis, besides the acceleration data, we also collect data from

the environment sensors, including barometers, magnetometers and light sensors. The am-

bient air pressure detected by barometers largely depends on the space of the transportation

tools, and other factors such as the air conditioner, door opening and closing, number of pas-

sengers, etc. The magnetic field measurements detected by magnetometer of smartphones,

on the other hand, provide a good indicator of different patterns related to the environment’s

magnetic field and its changes during travel. For example, a subway system uses magnet to

brake. There are more mobile devices on a bus than in a car which would also cause the

change in the detected magnetic field. All these differences are revealed in the magnetometer
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Figure 4.1: iPhone App for Data Collection

readings and thus can be leveraged to identify the travel mode.

Accelerometer. Accelerometer readings measures the changes in velocity along the x,

y, and z axes (x,y and z) of the cellphone, as is shown in Firgure. 4.2. Acceleration data is

an important reference to detect the pattern of a user’s body movement.

Gravity Sensor Gravity sensor readings return the gravity as measured along each axis

of the cell phone. If the phone is put on the table with Y axis facing the sky, the reading on

Y axis would be roughly −9.8m/s2 while the readings on the other 2 axes would be around
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Figure 4.2: x, y and z axis Acceleration Measure of iPhone [1]

0.0m/s2.

Barometer. Barometer readings return the detected ambient air pressure. In [71],

Muralidharan et al. conducted an experiment showing that the pressure detected by the

smartphone barometer would change with the building structure and type, and such a pattern

is able to be learned. In our experiment, we also verified that the barometer reading is

discriminative with different transportation modes.

Gyroscope. The gyroscope measures the rate of rotation around the three axes. Figure.

4.3 shows the standard direction of measures for rotation along x, y and z axis.

Light Sensor. It measures the ambient light level in SI lux units. In Android phones

this value is able to obtained directly [72]. However, in iPhone it is discouraged to use in
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Figure 4.3: x, y and z axis Rotation Measure of iPhone [1]

Apps since it is a low level framework [73]. Therefore in iPhone instead of using the light

sensor, we use screen brightness reading which is the brightness level of the screen [74]. This

reading is adjusted by the ambient light level when phone is unlocked and thus it is similar

to the light senso.

Magnetometer. It measures the earth’s geomagnetic field plus bias introduced from

the device itself and its surroundings. The smartphones provide both raw readings of the

magnetic field as well as the calibrated readings. The calibrated magnetic field usually filters

out the bias introduced by the device and, in some cases, its surrounding fields [75, 76].

The magnetometer reading also returns the hard iron bias values separately for customized

calibration.

In this thesis, the data collection is conducted 3 times in the past 3 years. The first time

is in the Jul of 2014, the second time data collection happened in Dec 2014 and the last one
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Table 4.1: Sensors’ Setting

Sensor Used Data Name Freq. Dimensions

Acceleration
Accelerometer (m/s2) 16 Hz x, y, z

Gravity x, y, z
Gravity Sensor (m/s2) 16 Hz

x, y, z,
Gyroscope Rotation Rate xcalib,

(rad/s) 16 Hz ycalib
zcalib
x, y, z

Magnetometer Magnetic Field 1 Hz xcalib,
(µT ) ycalib,

zcalib
Ambient Air

Barometer Pressure (hPa) 1 Hz 1
Light Ambient Light
Sensor Level (lx) 1 Hz 1

Table 4.2: Data Collection Details

Mode #Samples Duration(Min.) Gender Dist. City Dist.

Bike 20606 72.1 1 Female, 2 Males NYC, Buffalo.
Bus 44080 147 1 Female, 3 Males NYC, Buffalo
Car 227967 760 6 Females, 6 Males NYC, Buffalo, CS
Jog 16838 56.2 2 Females, 5 Males NYC, Buffalo, CS
Subway 72643 242.1 6 Females, 3 Males NYC, Buffalo
Walk 95701 319 7 Females, 5 Males NYC, Buffalo, CS

happened in Jul - Aug 2016. In total, we have 16 volunteers collecting data in Buffalo, NY,

New York City (NYC), NY and College Station (CS) TX while travelling with the 6 major

travel modes. The collected data has variation in user’s gender, travel city, travel season, as

well as the phone models. All the collected data used in this thesis are de-identified. The

sensors and their sensing settings are shown in Table 4.1 and the data details for each mode

is shows in Table 4.2.
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De-noising Technique Noises to Remove

Data Rotation Noise caused by phones’ different positions and heading directions.
Winsorization The outliers in sensor reading such as spikes in data, or noise caused

by other sudden events (e.g. phone dropped to the floor)
Gaussian Smoothing The high frequency noise (e.g. white noise naturally exists in sensors)
Normalization Difference in data scale of different data sources

Table 4.3: De-noising Techniques and the Targetted Noises

4.3 Data de-noising

In data preprocessing, we apply a comprehensive set of techniques to remove various noise

in the raw data.

De-noising #1: Data Rotation. Among all the sensors’ readings we collected, acceler-

ation is measured along the phone axes whose coordinates are determined by the phone’s

position and heading direction. Since it is unrealistic to coordinate all the travellers to have

the same phone position and heading direction, the acceleration data is measured in a dif-

ferent phone coordinate system and needs to rotate back to a standard coordinate system

before any further calculation. Here we define the standard coordinate system to be y axis

perpendicular to the earth pointing toward the sky and z axis pointing to the magnetic north.

The x axis is determined in a right-handed coordinate system. Magnetic field and gravity

are used to rotate the readings from the phone’s coordinates to the standard coordinates.

First we rotate the smartphone’s z axis to point to the magnetic north direction and then

rotate y axis to be vertical to the earth and pointing up to the sky.

The readings of both calibrated and uncalibrated ambient magnetic field are accessible.

According to [77], the differences between calibrated and uncalibrated magnetic field data are

as follows. The hard iron calibration is reported separately in uncalibrated magnetic field,
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Sensor Field Timestamp Value Name Value(µT )

TYPE MAGNETIC FIELD UNCALIBRATED 633 xuncalib 100.7734
TYPE MAGNETIC FIELD UNCALIBRATED 633 yuncalib -53.8651
TYPE MAGNETIC FIELD UNCALIBRATED 633 zuncalib 461.7340
TYPE MAGNETIC FIELD UNCALIBRATED 633 xbias 69.1016
TYPE MAGNETIC FIELD UNCALIBRATED 633 ybias -26.0590
TYPE MAGNETIC FIELD UNCALIBRATED 633 zbias 497.7585
TYPE MAGNETIC FIELD 633 xcalib 31.6711
TYPE MAGNETIC FIELD 633 ycalib -27.8061
TYPE MAGNETIC FIELD 633 zcalib -36.0245

Table 4.4: Magnetic Field Reading

while calibrated reading includes the calibration in measurement. For example, the calibrated

and uncalibrated magnetic field measures at the same time by one of our smartphones is

shown in Table 4.4. The TYPE MAGNETIC FIELD are the ambient magnetic field mea-

sured in 3-dimensional space at time tick 633. The TYPE MAGNETIC FIELD UNCALIBRATED

are the hard iron calibrated magnetic field in 3 dimensions, as well as the bias that is cali-

brated along each dimension.

We denote the magnetic field vector by M, the magnetic field magnitude is calculated by

‖M‖ =
√
Mx

2 +My
2 +Mz

2 (4.1)

If we calculate the calibrated magnetic field using xcalib, ycalib, zcalib, the magnitude is

55.44 µT , which is close to the value 53.723 µT measured and recorded by [78] in Buffalo

on the day our data was collected. We use this fact for the first step of phone coordinates

rotation.

Gravity reading is then used for the rotation. Gravity reading is recorded along 3 axes.

For example, a sample of gravity reading in the format of [t, x, y, z] is [677,−0.850, 5.090, 8.339].
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We denote the gravity by G, and the gravity magnitude is calculated by

‖G‖ =
√
Gx

2 +Gy
2 +Gz

2 (4.2)

The gravity magnitude of the sample reading is 9.807m/s2, which is close to the gravity

9.804m/s2 of Buffalo recorded on [79].

We denote the raw gravity and magnetic field reading by G0 = [Gx0, Gy0, Gz0] and

M0 = [Mx0,My0,Mz0]. In the standard coordinate system, the earth gravity is Gs =

[Gxs, Gys, Gzs] where Gxs = 0, Gys =
√
Gx

2
0 +Gy

2
0 +Gz

2
0, Gzs = 0, and magnetic field is

Ms = [Mxs,Mys,Mzs], where Mxs = 0, Mys = 0, Mzs =
√
Mx

2
0 +My

2
0 +Mz

2
0. R1 and R2

are the two rotation matrices we use. R1 rotates the raw gravity reading G0 to the Earth

gravity Gs, and R2 rotates the raw reading of magnetic field M0 to Ms

R1G
T
0 = GT

s (4.3)

R2M
T
0 = MT

s (4.4)

Using equation (3) and (4) we can get R1 and R2. Now assume we have the raw reading of

acceleration A0 at the same time. We use equation (5) to rotate the acceleration into the

standard coordination value As.

R2R1A
T
0 = AT

s (4.5)

By rotation, the sensor reading will be position-independent.

De-noising #2: Winsorization. The winsorization is used to reduce the possible spu-

rious outliers in the data. Figure. 4.4 shows the distribution of acceleration data along y
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axis while travelling by a car. The top plot is the sorted acceleration in the ascending order,

plotted with red line. The blue dash lines indicate the 2.5% cutting point at both sides. The

bottom plot is the unsorted raw acceleration along time plotted with black solid line. The

two horizontal red solid lines indicate the upper bound (97.5%) and the lower bound (2.5%)

of the data value. We can see that in the plot, the blue dash lines cut at the point where the

red data curve on the left side starts to change from very steep to very flat, and on the right

side after the blue dash it starts to change from very flat to very steep. Meanwhile, in the

unsorted raw data plots, the red lines where the value is cutoff mostly keep the characteris-

tics of the curve and only eliminate some outliers and noise. We have a similar observation

in most of our data. Therefore, we propose to chose 5% as the fraction for winsorization.

Figure 4.4: 5% Winsorization of Acceleration Data along y axis
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De-noising #3: Gaussian Smoothing. In winsorization, we eliminate the overall out-

liers within the data. To analyzing the data value’ change in a relatively longer time period,

it is also important to eliminate the white noise and high frequency fluctuation as much as

possible. For example, if we want to learn the direction change during moving (e.g. when

does the car take a turn, which direction it turns to), we need to analyze the reading from

the rotation sensor (the red line in Figure 4.5). Roughly, the reading contains three kinds

of changes: the white noise in highest frequency, the fluctuation in second highest frequency

which is caused by the phone’s movement together with the carrier’s body, and the trend

change which is as the average value increasing/decreasing and the peak points. While an-

alyzing the reading’s trend change, we would like to eliminate the first two kinds of changes

while keeping the third one. The solution is to use Gaussian filter to smooth the data. It

works as a low-pass filter and attenuates high frequency signal periods in the data. We use

the segment length as the smooth parameter σ, which in this case is 64. The blue line in

Figure. 4.5 includes the results after smoothing. We can see that the filtration drops all the

high frequency oscillations most of which come from noises, and leaves only the main up and

down trends. We compared the smoothed line with the recorded actual turning events. All

the local extrema (1-5 points marked with a yellow line) in Figure. 4.5 are when the turning

events actually happened.

De-noising #4: Normalization Data collected by different sensors measuring different

aspects of travelling events are quite diversified in both range and value. For example, the

accelerometer data are between ±40m/s2, while the magnitude of magnetic field could reach

500mT . In order to compare the data from different sensors, we normalize them between 0

and 1.
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Figure 4.5: Gaussian Smoothed Rotation Rate



Chapter 5

Feature Engineering

5.1 Problem Description

Feature engineering is a crucial step for an effective model. The main purpose is to extract

and select features which serve the input of next step of modeling. For travel mode identifi-

cation, feature engineering has three stages, including data segmentation, feature extraction

and feature selection. The preprocessed data is time series of different sensor readings. For

convenience, we refer to the reading from all sensors at a single time as “one data sample”. It

is the unit data that is generated at one time tick. A data segment contains one or more data

samples. To extract features, the preprocessed data is sliced into small segments. Features

are derived from a segment and form a feature vector, with the principle that the feature

vector is informative and discriminative. Feature selection is the process of selecting a subset

of the features in order to reduce the computational complexity. It is crucial to the response

time.

As is mentioned in Section 2.3, the main challenge in data segmentation is to find a

proper way to slice data providing the sensor’ sampling rate. If the length of a segment is

too short, it might be less informative and result in a less effective model. On the other hand,

increasing the length of the data segments means the system requires more time to obtain
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Figure 8.3: The Time Cost of Online and Offline Updating

8.5 A Summary of Performance

We present the development of methodology and how it meets the outlined design principles

in previous sections. We now demonstrate the system performance using our experiment

results. The confusion matrix of the experiment result is in Table 8.1. The first layer classi-

fication accuracy reaches 96%. Second layer classification accuracy is 96.7% for unwheeled

travel mode and 95.4%.
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Figure 8.4: Prediction Performance with Initial Training Sets of Different Size

Table 8.1: Classification Result

First Accu Second
Layer -racy Layer Confusion Matrix

Classified as Walk Jog
Unwheeled Walk 2523 39

Modes Jog 54 260
96% Classified as Bike Bus Subway Car

Bike 1241 0 0 1
Wheeled Bus 2 159 23 621
Modes Subway 49 42 4862 115

Car 170 54 18 16877



Chapter 9

Conclusion and Future Work

9.1 Discussion

In previous sections we analyze the performance of the online learning model with different

configurations. In this section, we will show some other interesting and useful aspects of the

data we collected.

9.1.1 Local Street or Freeway?

Because the smartphone GPS sensor is quite weak in subways, inaccurate in urban areas

and is energy consuming, we did collect but did not use GPS data for the model training

and prediction. However by analyzing the GPS data on its own, it reveals to us whether the

drive is on local or highway. In Android phones, the GPS modular provides the estimated

speed [77] besides the longitude and latitude of the current position. Among all of the

differences between driving in freeway and local streets, a simple fact is that the driving

speed can drop to 0 for many times when driving on local roads. This is merely happening

during freeway driving unless there’s a traffic jam, which is rare and not considered in our

discussion. Fig. 9.1 shows the GPS estimated speed for a vehicle’s local and freeway drive,

respectively. We can see that besides the fact that freeway drive has a higher speed most

of the time, the speed of local drive reaches 0 for several times while the freeway drive does
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not show such aspects. This information does not need a very accurate speed estimation or

strong GPS signal, nor does it require a high sampling rate. Therefore, we can use GPS at

very low frequency to detect whether the vehicle is on freeway or not.

Figure 9.1: Driving Speed at Local and Freeway

9.1.2 What’s the weather like along the trip?

We use the barometer data to get the information of ambient pressure, which is an important

feature in identifying the different transportation modes. Besides, the air pressure also reveals

some weather information such as raining, sunny, hot or cold. For example winter days have

higher pressure than summer days, the barometer readings recorded in different weather

situations show this pattern. Fig. 9.2 shows the barometer reading while riding a bike in

summer and winter. This could be used as a reference for transportation survey record, as an

indication of weather. Further research is needed in order to learn more weather information

from the barometer readings.
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Figure 9.2: Pressure at Summer and Winter on Bike

9.1.3 Daytime or Night? Sunny or Cloudy?

The light sensor could sense the ambient illumination. A smartphone provides some default

value for different environment conditions such as night without light, cloudy or sunny

day [77]. This can also be a reference in transportation survey. However, one may argue

that the sensed ambient light also heavily depends on where the user put the phone: inside

a pocket or in hands, and the two ways could result in totally different readings even at the

same place. It needs further work and other information to draw the conclusion. We will

not expand the discussion here.
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9.2 Contributions

In this thesis, we propose new algorithms for travel mode identification using smartphone

sensors. The prototype system is built upon the latest Android and iOS platforms with

multimodality sensors. It takes the sensors’ data as the input and aims to identify six

travel modes: walking, jogging, bicycling, driving a car, riding a bus, taking a subway. This

thesis is devoted to three complementary research tasks. First (Task 1. Data Collection

and Preprocessing), we develop an app that alows the collection of a multitude of sensor

measurement data from smartphones, and present a comprehensive set of de-noising tech-

niques. Second (Task 2. Feature Engineering), we design feature extraction methods that

carefully balance between prediction accuracy, calculation time, and battery consumption.

Third (Task 3. Learning Models), we develop new learning models that employ a hierar-

chical framework with dynamic sensor selection mechanisms, and adapt to each traveller’s

specific travel behavior as well as to newly collected data for a given traveller. Using carefully

designed experiments, we validate our proposed methods and examine their effectiveness in

addressing the aforementioned challenges. The results in comparison studies show that our

methods are successful in tackling the problems, and that the performance of the travel

mode detection system we propose in this thesis is promising. The design of the prototype

system is operational, with optimizations that make it energy efficient, user-friendly, and

noise resilient. This thesis provides useful inputs for the multi-modal traffic signal control,

and could benefit other application domains, such as urban design, public health, emission

detection, personal travel plan, etc. Besides, the methods used in this thesis are also appli-

cable in many other smartphone sensor based machine learning applications such as indoor

localization, user activity recognition, biometric information identification, etc.
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9.3 Future Work

In this thesis we have focused on feasible solutions (dynamic sensor selection, fast response,

model adaption) in using smartphone sensors for travel mode detection. Our future work of

this thesis will keep the same principle in feasibility and it includes three main parts. First,

in energy consumption the existing work have considered the dynamic sensor selection based

on the group feature analysis. The next step of this work is on feature selection within each

sensor’s feature group to further decrease the dimensions of the feature space. Second, in

user similarity computing in this thesis we give the non-sensor factors the same weight in

calculation. In reality some factors are more important that others and there might be a

dominating factor in certain travel modes. For example in some of our experiment study it

shows that the seasonal factor is dominating in the mode of taking a bus. We will focus on

how the different non-sensor factors affect the users’ travel behavior at different scenarios in

future research. Third, in this thesis we limit the information to only use the data collected

by the 5 sensors. In future work we will introduce other augmented information such as

map information, low frequency GPS data, travel speed, etc. to improve the classification

accuracy.
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