


Figure 5.10: An example of reference omnidirectional image (top) and new query omnidi-
rectional image (bottom)

D(α, β) =
NX

i=1

pT
i r

� E � pi l (5.6)

where pi r and pi l are corresponding points of the ith (i = 1, 2, ..., N) selected points pairs

from the matched points candidates. Fig. 5.10 shows a real localization refinement example,

where the top figure is the reference omnidirectional image from the modeling database

whose position is known, and the bottom is a new query omnidirectional image whose rough

location is provided but waiting for refinement.

Ten pairs of points are selected as the testing point pairs from these two images for

RANSAC based parameter estimation. Every time, three of the ten points are used to

calculate a set of pose parameters and and all the ten points are used to evaluate the result

during RANSAC.

Fig. 5.11 shows the estimated results of the 120 (C10
3) trials. The horizontal axis stands

for the trial index of the experiments, while the vertical axis stands for the estimated α and

β results from the triples, legended as AlphaC1V alue and BetaC1V alue. The yellow line

indicates the best estimated β value of all the trials, and the pink line indicates the best
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Figure 5.11: Estimated pose parameter results

estimated α value. As we can see that even though there are a few noisy results whose

values are away from the final α and β result (the red and blue impulse values), by utilizing

RANSAC, we can eliminate these errors and integrate the correct results. Using RANSAC

can also improve the accuracy of the estimation compared with using just mean values of

the 120 estimation results, as shown in Table 5.2. The errors between the estimated and

the ground truth are also listed in the table, while each error value is calculated as the ratio

of difference between an estimation and the ground truth, and the full range of the angles

(360).
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Parameters Ground truth Mean value and error RANSAC value and error
α 45 58.1 3.6% 52.1 2.0%
β 27 34.0 1.9% 32.8 1.6%

Table 5.2: Real data estimated results

5.3 Dense reconstruction based refinement

Previous work in the computer vision community uses 2D images for localization and nav-

igation, which may be challenging when lacking of texture in indoor environments. In this

section, we use fully 3D information automatically captured by a tablet with a depth sensor

to refine localization results.

In order to facilitate navigation for the visually impaired, we design, implement and

evaluate the system to calculate the position and orientation of the device with the following

two steps: (1) use a tablet with depth sensor to pre-build a large 3D indoor environment;

(2) apply Iterative Closest Point (ICP) algorithm [7] to a newly captured RGB-D (color

and depth) image to calculate the users new position and orientation. The system includes

three components: environmental modeling, pose estimation algorithm, and GUI design.

The experiment tested with real model within a university laboratory shows a real-time and

accurate performance.

5.3.1 System design and implementation

We construct the system with three components: an environmental modeling and optimiza-

tion module, a pose estimation module, and a GUI module. Fig. 5.12 shows the system

diagram. The environmental modeling and optimization module is to utilize the device

depth information to create 3D indoor environmental model and use corresponding color in-

formation to optimize the model. In the pose estimation module, a newly captured RGB-D

image is used to align itself with the pre-built 3D model for calculating the devices location.

An easy-to-use GUI module is designed with voice feedback for the visually impaired users.
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Figure 5.12: 3D-sensor-based indoor localization system diagram

(1) 3D modeling and optimization

With recent advance of depth and motion sensors (e.g. Google Tango Tablet8, Microsoft

Kinect9 and Structure IO10) and development of 3D reconstruction technology [18], we can

apply a dense 3D depth sensor for the localization task.

We use both 2D images and 3D depth information captured by a Google Tangle Tablet

to improve robustness of location estimation. In this section, a pre-built model of the envi-

ronment shall exist before a localization service is provided. The procedure of creating the

model is shown as follows:

(i) Capturing piecewise local 3D models of the environment and measuring the corre-

sponding pose information of the tablet;

(ii) Fusing the piecewise 3D models by transforming each model to a common coor-

dination system using the given pose information of each local 3D model, and a global

optimization framework is applied to increase the accuracy of fusion process [56].

Since Project Tangos Tablet device uses an Inertial Measurement Unit (IMU) for provid-

ing camera poses, augmented using built-in fisheye visual features, there are motion drifts

accumulated while the sensor viewing the environment. Thus, loop closure is needed to ad-

just the generated global model by traversing the same area for a second time, and distribute

8http://get.google.com/tango/
9https://developer.microsoft.com/en-us/windows/kinect

10http://structure.io
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drift errors along the motion path. In our work, we use Sparse Bundle Adjustment (SBA)

[56] for the loop closure.

The general idea of SBA is first to find a sequence of pairs of 2D image features and

corresponding 3D points, and then project the 3D points back to the 2D images using the

known camera intrinsic parameters and unknown extrinsic parameters, which includes the

cameras pose information. By minimizing the distance between the projected features and

observed features, we estimate the optimized camera motion parameters.

(2) Pose estimation

As we have discussed in previous step, the major component of the system is the accurate

3D reconstruction of the global model, which has been done offline on a separate machine.

In our implementation, we have a reconstructed global model generated by stitching RGB-D

data of all the frames together with the camera pose data of each frame. To localize the

tablet device, a user captures a new RGB-D data at a new location by holding the tablet,

and the indoor navigation system then registers the new data with the pre-built global 3D

model using the ICP algorithm [108]. The registration algorithm will return a transformation

matrix whose rotation matrix and translation vector can give us the orientation and position

of the camera, respectively.

(3) Graphic User Interface (GUI) design

In order to make the system applicable to the visually impaired, we have designed a GUI

on the tablet using audio-tactile feedback, which reminds and guides users to adjust the

tablet poses when capturing new RGB-D data for localization, and then after the matching

is done, informs user the estimated location.

Fig. 5.13 shows an image of the GUI layout. Since blind users cannot see the screen

and are usually not comfortable with complex GUI, we simplify the interface by adding a

big button on the right bottom part of the screen. Once the user presses the button, the
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Figure 5.13: GUI design. The large right button is for starting localization service, and the
rest area can be used for displaying information for administrative purpose

tablet will begin to capture surrounding 3D data, and feedback to the user via voice after

calculating the location.

5.3.2 Experiments results

The Google Tango Tablet, which has a 3D sensor onboard, is adopted in our experiments.

We have built a few large global 3D models in a campus building, as shown in Fig. 5.14a.

In Fig. 5.14a, we build a 3D model for an indoor research lab by scanning the room for 5

times, each with a different tilt angle. A short video of this model can be accessed from this

link11. In the Fig. 5.14b, half of the 8th floor of the NAC building at CCNY are scanned

and visualized.

We then captured some RGB-D frames at different locations and apply the aforemen-

tioned registration method to estimate where each RGB-D frame is captured, i.e, the location

of the user. The system can estimate correctly locations in the experiments.

11https://goo.gl/ILFlTg
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(a)

(b)

Figure 5.14: A partial global 3D model including corridors and rooms

Fig. 5.15 shows some experimental results. The green part represents the partial global

3D model of Fig. 5.14a, whereas the small red model (a corner of a lab) indicates a local 3D

model, which is a RGB-D frame captured after the global 3D model is built. Fig 5.15 shows

that newly captured frame is correctly aligned with the global model, which indicates the

location is correctly estimated. A short video of this process can be accessed via the link12.

An optimized 3D model eliminating drifts is critical for an accurate indoor localization.

In our work, we utilize the Sparse Bundle Adjustment (SBA) [56] for improving the 3D

model built with Tango device. We first extract SIFT [57] features on all color images

corresponding to each depth image, and then match them pairwise. After that, we select the

qualified SIFT features by setting a threshold to make sure each qualified feature appears at

12https://goo.gl/VqBZrp
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Figure 5.15: Applying the ICP based registration algorithm for localization. Left is a local
model and a partial global model (in green) before registration, while right figure is the
registration result

least multiple images. Then we find the corresponding 3D points for each feature from the

depth images. The SBA then accepts the features and corresponding 3D points and outputs

optimized camera poses. Fig. 5.16 shows SBA optimization on the synthetic data, where

Fig. 5.16(a) shows the camera poses and 3D points before SBA optimization, and Fig. 5.16

(b) shows the new poses and points after the optimization.
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(a)

(b)

Figure 5.16: Camera poses and 3D points before and after SBA optimization
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Chapter 6

Conclusion and Discussion

This thesis presents a vision based assistive indoor localization approach with various tech-

niques in different stages and from different perspectives for helping visually impaired people

to localize in and navigate through indoor environments. Different from many other com-

puter vision research, whose research problems are already well defined and formalized by

the community, and whose major tasks are to apply their developed algorithms on standard

datasets by tuning the parameter of models and evaluate the performance, this work studies

the navigation need of visually impaired people, and then develop techniques in data col-

lection, model building, localization, and user interfaces in both pre-journey planning and

real-time assistance.

As a summary, we use a smart phone with a panoramic camera, and a high performance

server architecture to ensure the portability and mobility of the user part and take advantage

of the huge storage as well as the high computation power of the server part. An image

indexing mechanism is used in finding the location of an input image (or a short sequences

of images/multiple images). To improve the query speed and ensure a real-time performance,

we use many-core GPUs to parallelize the query procedure.

For ensuring automatic environmental modeling using the previous omnidirectional imag-

ing system, we utilize the building AutoCAD files for traversability checking beforehand for
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finding the optimal necessary paths in navigation from point A to point B in an indoor

environment. A coarse-to-refine approach is used to obtain an initial localization efficiently

and then to further improve the localization accuracy from three perspectives: (1) we use

Structure-from-Motion (SfM) mechanism to create a 3D environment model, and use PnP

algorithm to localize a new image within the model. (2) Using pre-calibrated omnidirec-

tional images and new input omnidirectional image, as well as their geometric relationship

for refine the new image’s location and the orientation. (3) Using dense 3D scanner sensor,

for example, Project Tango sensor, to obtain local 3D model, and then matching itself with

the pre-built 3D global model for calculating the device’s accurate location and orientation.

While the refinement work is still in its early stage, it holds promising with the development

of the hardware, especially the trend that visual information acquisition device that are be-

coming more light, portable and integrated. For example smart phones and wearable glasses

are available to general public, and 3D scanner features are integrating into the smart devices

themselves, such as iPhone 7 plus and Project Tango phone. We foresee that vision based

indoor localization, and its potential applications such as assistive navigation, will attract

more researches and widely integrating into people’s daily life.
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