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Abstract

Studying the Space of Almost Complex
Manifolds using de Rham Homotopy Theory

by

Bora Ferlengez

Advisor: Dennis Sullivan

In his seminal paper Infinitesimal Computations in Topology, Sullivan

constructs algebraic models for spaces and then computes various invariants

using them. In this thesis, we use those ideas to obtain a finiteness result

for such an invariant (the de Rham homotopy type) for each connected com-

ponent of the space of cross-sections of certain fibrations. We then apply

this result to differential geometry and prove a finiteness theorem of the de

Rham homotopy type for each connected component of the space of almost

complex structures on a manifold. As a special case, we discuss the space of

almost complex structures on the six sphere and conclude a conjecture about

the ordinary homotopy type of that space.
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Chapter 1

Introduction

One can speak of the differential forms and de Rham theorem for general

spaces (that are not necessarily manifolds) in various ways. For instance,

Whitney defines differential forms on simplices of a triangulation in [Whi57]

by associating to a simplex a differential form in the affine space generated by

that simplex and by putting a coherence condition to ensure that the forms

on the neighboring simplices agree on common faces.

In §7 of [Sul77], Sullivan uses this idea to define differentiable forms on

various spaces so that de Rham theorem holds. Those forms form a commu-

tative differentiable graded algebra (like the de Rham complex of forms on a

smooth manifold), and using those forms one can compute further invariants

beyond the de Rham cohomology (such as the de Rham homotopy).
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Chapter 2

Fundamentals

2.1 Algebraic models in rational homotopy

theory

A commutative differential graded algebra, shortly a cdga, is a non-

negatively graded cochain complex with coefficients in the field Q (or R) that

has a graded commutative multiplication with a unit. In this manuscript, the

cdga’s contain only the coefficient field in degree zero (i.e. are connected).

A free cdga is a cdga whose multiplication yields no relation but graded

commutativity. A triangular cdga is a cdga that has a partially-ordered set

of generators so that the differential on a generator is a polynomial in earlier

generators. A free triangular model of a space X is a free triangular cdga and

a map into the forms on X which induces an isomorphism in cohomology.

We say a free triangular model has finite type, if in each degree it has finite

rank.

2



CHAPTER 2. FUNDAMENTALS 3

The following lifting theorem is needed for Sullivan’s theory to work:

Proposition 1 (Lifting theorem). Given a map ϕ between two cdga’s that

induces an isomorphism in cohomology and a map from a free triangular

cdga into the target of ϕ, one can construct a map from the free triangular

cdga into the domain of ϕ uniquely up to homotopy1 so the obvious diagram

commutes up to homotopy.

Remark 1. By the lifting theorem2, any two free triangular models of a

space are homotopy equivalent. In other words, free triangular models are

well-defined.

For a free triangular cdga, there is a second notion of cohomology called

the linearized cohomology where the vector spaces are the indecomposibles

and the differential is the induced dlinearized which ignores the decomposibles

in the differential d of the original cohomology.

By remark [1], it is easy to check this linearized notion of cohomology is

well-defined (i.e. model independent) and we will relate it to the de Rham

homotopy of the free triangular cdga (resp. the de Rham homotopy of the

space, if the free triangular cdga is a model for a space). We say a space X

has finite rank, if its linearized cohomology has finite total rank.

1 The notion of homotopy is defined in §3 of [Sul77].
2 The lifting theorem can be seen as the analogue of obstruction theory for cdga’s.



CHAPTER 2. FUNDAMENTALS 4

Remark 2. The natural map in each degree from usual cohomology to lin-

earized cohomology when dualized is the de Rham analogue of the Hurewicz

homomorphism from homotopy to homology. Thus the dual of linearized

cohomology is called the de Rham homotopy groups (cf. [Sul75] for the com-

parison to regular homotopy groups).

2.2 Almost complex structures on a manifold

An almost complex structure on R2n is a linear endomorphism J : R2n →

R2n such that J2 = −id, and such a J endows R2n with the structure of a

complex vector space, where the complex scalar multiplication can be defined

as (x+ iy)~v := x~v + yJ(~v).

GL(2n,R) acts on almost complex structures on R2n by conjugation. This

action is transitive and its stabilizer is GL(n,C). Therefore, the space of al-

most complex structures on R2n can be identified with GL(2n,R)�GL(2n,C)

(see page 116 of [KN96]).

An almost complex structure on a manifold is a cross-section of the bundle

associated to the space of almost complex structures on each tangent tangent

space, i.e. of the bundle GL(2n,R)�GL(n,C) → J(M) → M , where J(M)

denotes the bundle of linear frames over M modulo GL(n,C) (see page 113

in [KN96]).



Chapter 3

The main theorems

Theorem 1. Let M be a smooth, closed, connected manifold of dimension

2n with first real Betti number zero. Then the de Rham homotopy of each

connected component of the space of almost complex structures on M has

total finite rank.1

Proof. Since M is a smooth manifold, its tangent bundle is classified up to

homotopy by a well-defined map τ : M → BGL(2n,R). Using τ , we obtain

the bundle of ACS’s on M as a pullback of a nilpotent fibration2:

1 Under some known technical conditions this means the total rank of the geometric
homotopy groups is finite (page 3 of [Sul75]).

2 We call E
p−→ B a nilpotent fibration, if it can be decomposed (up to homotopy

equivalence) into a possibly infinite sequence of principal K(G,n) fibrations that converges
(see pp. 437-444 in [Spa66]).

5



CHAPTER 3. THE MAIN THEOREMS 6

GL(2n,R)�GL(n,C)
GL(2n,R)�GL(n,C)

J(M) BGL(n,C)

M BGL(2n,R)τ

For that reason, GL(2n,R)�GL(n,C) → J(M) → M is itself a nilpotent

fibration.

Note that GL(2n,R)�GL(n,C) is homotopy equivalent to SO(2n)�U(n)
3 and

also that SO(2n) and U(n) have finite rank homotopy being compact Lie

groups.4 The finiteness of the rank of SO(2n)�U(n) follows from the exact

sequence of homotopy.

Then Theorem [1] follows from Corollary [3].

Theorem 2. Let F E B
p

s

be a nilpotent fibration, where the

fiber F has finite rank and the base B has finite type. Then the Γ-construction

yields a finite type model for the connected component of s in the space of

sections of the fibration.

Proof. The Γ-construction suggested by Sullivan (see page 314 of [Sul77])

and completed by Haefliger [Hae82] yields a free model for the connected

3 SO(2n)�U(n) is the space of almost complex structures on R2n that preserve the

orientation and the metric.
4 by the Elie Cartan argument that the bi-invariant forms produce a finite dimensional

free cdga on one dimensional generators mapping into forms on a compact Lie group.
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component of the section s.

Then Theorem [2] follows from the main theorem on page 615 of [Hae82]

generalized by the remark (i) on page 620 of the same paper, after observing

that the free model of Γ(s) has only finitely many generators by degree

reasons:

An algebra generator of the free model of Γ(s) obtained by Γ-construction

has the form b′ ⊗ f , where b′ is the dual vector of a linear basis vector b in

a free model of the base and f is an algebra generator of a free model of

the fiber such that difference |f | − |b| is non-negative, where |f | and |b| are

degrees of f and b, respectively.

If the base has a finite type model and the fiber has a finite rank model, then

the free model of Γ(s) given by the Γ-construction can have only finitely

many generators.

Corollary 3. Let F → E → M be a fibration, where the base is a smooth,

closed, connected manifold with first real Betti number zero and the fiber has

finite rank de Rham homotopy. Then each connected component of the space

of sections has de Rham homotopy of finite rank.

Proof. Such a manifold M admits a free model of finite type (see page 3 in

[Sul75]).



Chapter 4

Special case: S6

We consider the special case

GL(2n,R)�GL(n,C) J(S6)

S6

Firstly, from elementary obstruction theory, we know that the space of cross-

sections is non-empty and has two components (given orientation, the stan-

dard almost complex structures given by octonion multiplication provides a

family of such a cross-section).

Therefore, Theorem 1 applied to M = S6 tells us that the space of almost

complex structures on S6 has finite rank de Rham homotopy. In this chapter,

we will show that rank is 1 (and is concentrated in dimension 7).

We replace GL(6,R)�GL(3,C) by SO(6)�U(3), as they are homotopy

equivalent. Since the space of almost complex structures on R8 fiber over

8



CHAPTER 4. SPECIAL CASE: S6 9

S6 with fibers being the space of almost complex structures on R6, we can

replace J(S6) by SO(8)�U(4).

The Γ-construction (suggested by Sullivan on page 314 of [Sul77]) works

as follows:

Given a fibration F → E
p−→ B, we consider the pairs b∗ ⊗ f , where b∗ is

a linear basis vector of the differential graded coalgebra that is the dual of

the (finite type) model B of the base and f is a cdga generator of a (finite

rank) model Λ(V ) of the fiber. The degree of the pair b∗⊗ f is defined to be

|f | − |b|. We mod out the free algebra generated by those b∗⊗ f pairs by the

ideal generated by pairs that have a negative degree and cocycles in degree

zero. That way, we obtain a connected free cdga denoted by Γ.

Haefliger shows in [Hae82] that there is a unique differential we can put

on this free cdga that makes the evaluation map ev : B ⊗ Λ(V ) → B ⊗ Γ, a

map of cdga’s:

dΓ(b∗ ⊗ f) := ±∂b∗ ⊗ f ± b∗ ⊗ ev(df),

where B⊗Λ(V ) models the total space E of the fibration, ∂b∗ is the transpose

of dB and the b∗ ⊗ ev(df) term is obtained by taking the differential of f in

the the total space and then using the coalgebra structure of B∗ to evaluate

them at B to reduce the term to a product of the generators of Γ.

The generators of Γ (with positive degrees) in the S6 case are 1∗B ⊗ x2
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(with degree 2), 1∗B ⊗ y7 (with degree 7) and w6 ∗ ⊗y7 (with degree 1). (The

indices indicate the degrees of the generators in their respective algebras.)

Λ(1B, w6, z11) is a model of S6 of finite type with dB(1) = dB(w6) = 0 and

d(z11) = w2
6.

Λ(1F , x2, y7) is a model of CP 3, which is diffeomorphic to SO(6)�U(3)

and it has finite rank linearized cohomology.

The differential of 1∗B ⊗ x2 = 0. To find the differential of 1∗B ⊗ y7 and

w∗6⊗y7, we need to figure out what dy7 is. The crucial part of the computation

is to show that the fibration

CP 3 SO(8)�U(4)

S6

is not a product fibration and that follows from the fact that SO(8)�U(4) is

Hermitian symmetric (see page 518 in [Hel76]) and hence a Kähler manifold.

Therefore, it should have a closed 2-form whose sixth power is nonzero.

The only closed 2-form in our model is x2. That means x4
2 6= 0 and therefore

0 6= c ∈ R in dy7 = x4
2 + cx2w6. Then dΓ(w∗6 ⊗ y7) = (1∗B ⊗ x2) and we end

up with one cohomology class represented by (1∗B, y7) as claimed.

This shows that the space of almost complex structures has the de Rham

homotopy type of S7 (or RP 7, which is Q-equivalent to S7).
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The octonion family of J ’s is actually S7 mod antipodal action, which is

RP 7. This leads to the following conjecture:

Conjecture. The space of almost complex structures on S6 has the octonion

J ’s as a deformation retract in ordinary homotopy theory.
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