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Abstract

Private-Key Fully Homomorphic Encryption for Private Classification of Medical Data

by

Alexander Nicolas Wood

Advisor: Professor Delaram Kahrobaei

A wealth of medical data is inaccessible to researchers and clinicians due to privacy

restrictions such as HIPAA. Clinicians would benefit from access to predictive models for

diagnosis, such as classification of tumors as malignant or benign, without compromising

patients’ privacy. In addition, the medical institutions and companies who own these medical

information systems wish to keep their models private when used by outside parties.

Fully homomorphic encryption (FHE) enables practical polynomial computation over

encrypted data. This dissertation begins with coverage of speed and security improvements to

existing private-key fully homomorphic encryption methods. Next this dissertation presents

a protocol for third-party private search using private-key FHE. Finally, fully homomorphic

protocols for polynomial machine learning algorithms are presented using privacy-preserving

Naive Bayes and Decision Tree classifiers. These protocols allow clients to privately classify

their data points without direct access to the learned model. Experiments using these

classifiers are run using publicly available medical data sets.

These protocols are applied to the task of privacy-preserving classification of real-world

medical data. Results show that private-key fully homomorphic encryption is able to provide

fast and accurate results for privacy-preserving medical classification.
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Chapter 1

Introduction

The fields of machine learning and cryptography rose to prominence and experienced rapid

development in the past few decades. Cryptography, in particular, revolutionized the world,

from Whitfield Diffie and Martin Hellman’s asymmetric encryption scheme in 1976 to the

current prevalence of online shopping. Machine learning was spearheaded in the 50s with

Alan Turing’s “Turing Test,” Arthur Samuel’s checkers program, and Frank Rosenblatt’s

perceptron. Now, machine learning permeates our lives via automatic online recommenda-

tions, self-driving cars, and more. Machine learning techniques applied to medical data have

led to great leaps forward in the medical field, with applications in personalized treatment,

disease diagnosis, radiology, and more [13, 24].

Despite this the two sub disciplines have remained relatively separate. As postulated

by Rivest, the fields of cryptography and machine learning at first appear to be opposites;

cryptography, on the one hand, seeks to hide information, while machine learning looks to

discover information [35, 58]. However antithetical it may appear at first, machine learning

and cryptography are bound to be intertwined. The more easily data is available, the greater

the need for privacy, and data is gathered faster than ever before.

The need for privacy has a direct application to medical data. Information storage costs

1
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continue to decrease while personal medical applications, such as genome sequencing, are

increasingly accessible. Websites such as 23andme, LifeNome, and Ancestry.com provide the

first wave of commercially available personalized genetic analysis. A breach in the privacy

of this data could leave a subject particularly vulnerable, as we are uniquely identified by

our genetic code. As technology advances so do the insights gained from genetic analysis,

and as time goes on the risk involved with sharing your genetic data could increase. The

implications of this data being shared in a publicly identifiable way could have an unforeseen

negative impact upon a person’s life. Strict privacy guidelines should be applied to genetic

information.

Furthermore, considered collectively these patients’ records represent a wealth of data

that has already been collected by various research institutions and hospitals. The ability

to use this information without compromising the privacy of these patients would impact

the field of computational medicine. In particular, training classification models on a single-

source data set can lead to over-fitting. This yields a learned model with excellent results on

the testing data but unpredictable results when applied to new data [51]. Medical researchers

could use private classification methods to verify that their model can generalize to an

external database.

In addition, privacy is a growing concern in medical applications as more assisted decision

making and diagnosis systems become commercially available. Owners of these systems do

not wish to share their models. Similarly, hospitals and clinicians are unwilling to share

their patients’ data due to privacy restrictions such as The Health Insurance Portability and

Accountability Act of 1996 (HIPAA) [47]. Clinicians would benefit from access to private

classification protocols which allow them to access these diagnosis systems without having

to reveal patient information. Thus, there are two opposing forces at work: the desire

to analyze all available data in order to increase knowledge and sophistication of machine

learning techniques, as well as the need for privacy and control over what information we
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share.

The field of fully-homomorphic encryption (FHE) seeks to bridge this gap. Theoreti-

cally, a fully homomorphic encryption scheme allows for computation of arbitrary functions

over encrypted data without first performing decryption. Current research into encrypted

computation over medical data employs fully homomorphic public-key cryptosystems, which

enable secure communication between multiple parties over insecure channels via asym-

metric key distribution. Private-key cryptosystems require prior knowledge of the encryp-

tion/decryption key(s). In other words, if multiple parties wish to perform decryption in a

private-key setting, they must first exchange keys over a secure channel. While this is con-

sidered a disadvantage of private-key cryptosystems when the goal is purely communication,

these cryptosystems are suitable for medical applications. Due to HIPAA restraints and the

personal nature of genomic and medical data, it makes sense that those who hold medical

data would not, in fact, want anyone besides themselves to have the option of encrypting

the data [36].

1.1 Contribution

This dissertation addresses the use of private-key fully homomorphic encryption for design

of efficient private classification algorithms in medical applications. Security of these clas-

sification algorithms, simply put, corresponds a two-party protocol between a Client and a

Model Owner. The Client should learn no unnecessary information at the end of the pro-

tocol about the model owned by the Model Owner, and the Model Owner should learn no

information about the Client’s input. “Unnecessary information” is a vague term which is

clarified in the formal security discussions. Put abstractly, this qualification references the

fact that privacy-preserving classification necessitates the sharing of some information about

the Model Owner’s model – for instance, the final classification of the Client’s data within
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that model. Beyond their classification, Clients should learn no unnecessary information

about a Model Owner’s model. Some privacy-preserving classification protocols may take

place with an intermediary Server between the Client and Model Owner. In this case, the

Server should only perform computation, and should learn no unnecessary information about

the Client’s data point(s) or the Model Owner’s model(s).

The research in this dissertation provides privacy-preserving classification algorithms

using private-key fully homomorphic encryption for Naive Bayes and decision tree classifiers.

Implementation of these algorithms requires the construction of additional protocols. In

particular, this dissertation presents algorithms for the private computation of the argmax

function, a third-party private search protocol, and algorithms for efficiently implementing

private-key FHE.

Experimental results on real-world medical data sets show that these classifiers are able to

provide fast and accurate classification results. Specifically, information gathered from breast

tumor biopsies [45] is classified as malignant or benign using the proposed privacy-preserving

protocols. Experimental results on the efficiency third party private search protocol are also

presented.

The organization of this dissertation is as follows. Terminology is defined in Chapter

2. Chapter 3 provides an overview of the history of fully homomorphic encryption and

privacy-preserving classification as well as current state-of-the-art techniques. Chapter 4

proposes methodology for implementation of private-key fully homomorphic encryption, such

as encoding methods and parallelization techniques. Chapter 5 presents a privacy-preserving

Naive Bayes protocol using private-key FHE as well as experimental results. Chapter 6

presents a third-party private search protocol, and Chapter 7 presents a privacy-preserving

decision tree classifier as well as experimental results. Chapter 8 concludes the thesis by

summarizing the contributions.



Chapter 2

Terminology

2.1 Machine Learning

Machine learning broadly seeks to learn new information from a given data set [39]. A

data set has some features which are used to use to predict some quantitative or categorical

outcomes. A supervised learning problem in machine learning operates by using a set of

training data to draw conclusions about the relationship between features of the data and

outcomes. These conclusions are used to create a learner, which predicts the outcome of any

new data points.

When selecting parameters for a supervised learning problem, it is important to keep in

mind the bias-variance tradeoff. While the goal of machine learning is to model the specifics

of the training data in a method that generalizes well to other data, it is often not possible

to do both simultaneously. As the complexity of the model is decreased, the variance tends

to decrease while the bias increases. This means that the learned model may be simpler

and will not overfit on new data, but it will underfit on the training data. On the other

hand, a more complicated model tends to have increased variance with decreased bias. This

means that there is a higher risk of overfitting the model on training data. Thus, with any

5
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supervised learning problem it is important to seek a balance between bias and variance.

Classification is the task of predicting a qualitative output value, often called a class,

from a set of input values. These input values, the dependent variables, may be discrete

or continuous. A discrete variable takes its value from a discrete, or countable, set. A

continuous variable can take on an infinite number of possible values [39]. In computational

medicine we often deal with discrete class values. A common application in computational

medicine is binary classification, where there two categories in which the data points reside,

represented as {0, 1} or {−1, 1}, often called targets. Binary classification is used for disease

prediction, for example, “has cancer” or “does not have cancer.”

Feature selection is a pre-processing method which identifies the most relevant features

of a data set. By restricting learning to these useful features and eliminating irrelevant

or redundant features, classification models’ performance may be increased [37]. Because

implementation of fully homomorphic encryption and other privacy-preserving measures can

lead to a large increase in classification time, it is important that learning is carried out on

only this relevant data.

2.1.1 Performance Measures

The performance of binary classification algorithms is evaluating using a variety of per-

formance measures. Let TP, TN, FP, and FN denote True Positive, True Negative, False

Positive, and False Negative, respectively. Let P and N denote the total number of positive

and negative data points in the testing set. One measure called accuracy is calculated as

Accuracy = TP + TN
P + N

and yields the proportion of data points that were correctly classified.

Other performance measures include sensitivity, precision, specificity, and negative pre-
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dictive value (NPV). The first two are given by

Sensitivity = TP
TP + FN

Precision = TP
TP + FP .

Sensitivity provides a measure of what proportion of positive cases were classified correctly as

positive, while precision provides a measure of what proportion of cases classified as positive

were positive in reality. Sensitivity is especially important in medical applications as it is

critical to correctly identify all true positive cases [52].

Specificity and NPV are also known as inverse recall and inverse precision, as they pro-

vide similar information for negative classifications. Specificity describes the proportion of

negative cases that were classified as negative and NPV describes the proportion of cases

classified as negative that were negative in reality. They are computed as

Specificity = TN
TN + FP

NPV = TN
TN + FN .

The F1 score provides the harmonic mean of precision and sensitivity and is given by

F1 = 2 · TP
2 · TP + FP + FN .

Other performance measures occasionally seen include the false positive rate (FPR), also

known as fallout, and the false negative rate (FNR). These measures are calculated as

Fallout = FP
FP + TN

FNR = FN
TP + FN .
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Figure 2.1: PPC Between the Client and Model Owner

These calculate the proportion of negative values which are wrongly classified as positives

and the proportion of positive values which are wrongly classified as negatives.

2.2 Privacy-Preserving Classification

We wish to specifically look at machine learning applications in the medical field. Privacy

restrictions such as the Health Insurance Portability and Accountability Act (HIPAA) neces-

sitate the development of private classification algorithms. Privacy-preserving classification

describes the collection of efficient methods for privately performing the classification stage

of a machine learning algorithm [6], while privacy-preserving data-mining describes the task

of training a model entirely over encrypted data [1]. Privacy-preserving classification is the

focus of this work. Introductory background on privacy-preserving data-mining is available

in the literature review in Chapter 3.

During privacy-preserving classification, Clients classifies their data vector using a model

owned by the Model Owner. Each party would like to keep their information private – Clients

do not want the Model Owner to learn any partial information about their data vectors, and
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t
Figure 2.2: PPC with Computation on Server

the Data Owner does not want the Clients to learn any unnecessary information about her

model.

For example, the Model Owner could be an institution that used its own collected data

to create a model. The Client could then be clinicians who use the privacy-preserving

classification in order to assist with the treatment of their patients. The Model Owner may

or may not wish to delegate computation to a cloud service provider, which we will call

the Server. Figure 2.1 shows the outline of the protocol carried out between the Client and

the Model Owner. Figure 2.2 shows the protocol as carried out between the Client, Model

Owner, and an intermediary Server.

2.2.1 Model

The discussion that follows is based off of the notation and presentations given by Hastie

[39] and Bost et al. [6]. Throughout this paper notation is as follows: The Client has data in
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Figure 2.3: The SIMD Paradigm

the form of d-dimensional vectors X = (X1, X2, . . . , Xd). X is called a feature vector, while

each Xi in X is called a feature.

The Client wishes to classify his data using a classification function f , known only by the

Model Owner, into a set of discrete classes G. Observed classes will be denoted G whereas

predicted classes denoted with a hat, Ĝ. A large amount of training data is used to construct

a classifier, say N inputs, each written as a feature vector-class pair (X,Gi).

2.3 Parallelization via SIMD

The Single-Instruction Multiple-Data (SIMD) paradigm is a class of parallel computers.

SIMD allows for computation of multiple values under a single instruction. Figure 2.2 shows

the general concept, where multiple inputs are encoded within a single vector. A single

instruction operates on this vector, and decoding the output vector yields the output of the

instruction on each of the individual inputs. A common example is that of image processing,

where a filter is applied to every pixel in an image [18].
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2.4 Fully Homomorphic Encryption

One major approach to the task of privacy-preserving classification uses fully homomorphic

encryption (FHE). Homomorphic encryption was first conceptualized in 1978 by Rivest,

Adleman, and Dertouzos, envisioned originally as a ‘privacy transformation,’ which would

enable computation of functions on encrypted data without first having to decrypt the infor-

mation [57]. This concept is known today as a homomorphic encryption scheme, informally

defined as allowing for computation of functions over encrypted data. A homomorphic en-

cryption scheme is called fully homomorphic if it allows for computation of arbitrary functions

over encrypted data.

The algorithms that comprise a public key homomorphic encryption scheme E are defined

as follows:

I. (pk, sk) = KeyGenE(n), the key generation algorithm, which distributes public and pri-

vate keys pk and sk (respectively) to all necessary parties given some security parameter

n.

II. c = EncryptE(m, pk), the encryption algorithm, which takes as input pk as well as a

message m. The output is a ciphertext c.

III. m = DecryptE(c, sk), the decryption algorithm, which uses the private key(s) sk to

recover the plaintext m given a ciphertext c.

As E is a homomorphic public key encryption system, it is able to carry out computations

over some set of circuits C by utilizing an additional algorithm:

IV. c = EvaluateE(c1, c2, . . . , cn, C, pk), an algorithm to perform computation over en-

crypted data. The input to this function is a collection of ciphertexts c1, c2, . . . , ct, a

circuit C ∈ C, and the public key(s) from the key generation algorithm.
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Formally, the encryption scheme E is called homomorphic on C if it is correct on C and

the decryption algorithm can be expressed as a circuit of size poly(n) [27]. The scheme is

called fully homomorphic if C is the set of arbitrary circuits. Because a Boolean circuit can

describe arbitrary computations, a scheme only needs to be homomorphic over addition and

multiplication to be described as fully homomorphic [50]. A scheme E is called additively

homomorphic if

EncryptE(x+ y) = EncryptE(x)⊕ EncryptE(y)

for some operation ⊕ in the ciphertext space. Similarly, a scheme is called multiplicatively

homomorphic if

EncryptE(x · y) = EncryptE(x)⊗ EncryptE(y)

for an operation ⊗ in the ciphertext space. This functionality is shown in Figure 2.4. Two

plaintexts that are first encrypted, added (or multiplied), and then decrypted, yield the same

result as adding (or multiplying) over the original plaintexts.

While computation of arbitrary functions is theoretically possible using addition and

multiplication as described above, this in itself is not sufficient for practical computation of

arbitrary functions. Any fully homomorphic encryption scheme that is suited for practical

use will only be able to compute polynomial functions and polynomial approximations of

functions, known as polynomial machine learning [35].

2.4.1 Private-Key Fully Homomorphic Encryption

The majority of previous work focuses on public-key fully homomorphic encryption. This

work implements private-key fully homomorphic encryption. A private-key cryptosystem

generates only one key, the secret key, during the KeyGen algorithm. This private key is used

for both encryption of plaintexts and decryption of ciphertexts.

A private key homomorphic encryption scheme E over a set of circuits C is defined via
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Figure 2.4: Homomorphic addition (top) and multiplication (bottom)

the following algorithms:

I. sk = KeyGenE(n), the key generation algorithm, which distributes a private key sk to

the necessary party given some security parameter n.

II. c = EncryptE(m, sk), the encryption algorithm, which takes as input sk as well as a

message m. The output is a ciphertext c.

III. m = DecryptE(c, sk), the decryption algorithm, which uses the private key sk to recover

the plaintext m given a ciphertext c.

IV. c = EvaluateE(c1, c2, . . . , cn, C), an algorithm to perform computation over encrypted

data. The input to this function is a collection of ciphertexts c1, c2, . . . , ct and a circuit

C ∈ C.

Encryption and decryption can only be carried out by keyholder(s), while evaluation can

be performed by any party possessing a ciphertext. As before, a private-key homomorphic

encryption scheme is called fully homomorphic if C is the set of arbitrary circuits, and

arbitrary computation can be reduced via Boolean circuits to homomorphic addition and

multiplication.
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2.4.2 Leveled, Somewhat, and Partially Homomorphic Encryp-

tion

A scheme that is homomorphic over one operation is called partially homomorphic. A par-

tially homomorphic scheme can be additively homomorphic or multiplicatively homomor-

phic. Partially homomorphic encryption schemes have existed for some time, such as the

multiplicatively homomorphic ElGamal scheme [23] and the additively homomorphic Pallier

scheme [48].

Schemes that can perform homomorphic addition and multiplication over encrypted

data up to some computational limit are called somewhat homomorphic encryption (SHE)

schemes. These schemes contain noise terms, which grow exponentially during homomor-

phic addition and multiplication operations, and correct decryption is not possible once

these noise terms exceed a noise bound. The first FHE schemes were constructed from SHE

schemes using a technique called bootstrapping, which manages this noise, discussed in detail

in Chapter 3.

A leveled homomorphic encryption (LHE) scheme is a scheme in which noise growth is

polynomial in the homomorphic multiplication operation. Therefore, these schemes can be

implemented to perform FHE up to some pre-specified depth without bootstrapping. Specific

LHE schemes are discussed in Chapter 3.

2.4.3 Notation

For the remainder of this work let JxKS denote the encryption of a plaintext x within an

encryption scheme S. For brevity of notation, the subscript is omitted for values encrypted

under the Gribov-Kahrobaei-Shpilrain (GKS) scheme. The fully homomorphic addition and

multiplication operations are denoted by JxK + JyK = Jx ⊕ yK and JxK · JyK = Jx ⊗ yK,

respectively. Let a $←− A denote the selection of a value a from a set a uniformly at random.



Chapter 3

Background

This chapter provides an overview of current methods in the field of privacy-preserving

classification, machine learning, and computational medicine. These methods include differ-

ential privacy, fully homomorphic encryption, and various non-fully homomorphic encryption

methods.

Leveled homomorphic encryption schemes have found some success with classification

algorithms. The Yet Another Somewhat Homomorphic Encryption scheme (YASHE) was

used in an application of neural networks to encrypted data called CryptoNets [33], and has

been implemented in the Simple Encrypted Arithmetic Library (SEAL) as well with bioin-

formatics computation in mind [21]. ML Confidential used leveled homomorphic encryption

(LHE) to run classification using Linear Means and Fisher’s Linear Discriminant classifiers

[35].

Some private classification methods do not implement homomorphic encryption. Differ-

ential privacy is one non-cryptographic approach that has been implemented, although it

lacks the utility of FHE schemes [33]. Non-fully homomorphic cryptographic methods have

been used to apply Naive Bayes and decision tree classification [5]. Vaidya et al. describe

protocols for constructing support vector machine (SVM) models using horizontally, ver-

15



CHAPTER 3. BACKGROUND 16

tically, or arbitrarily partitioned data while maintaining the privacy of their data without

FHE [63].

This chapter begins with discussion of differential privacy and privacy-preserving classi-

fication techniques. The chapter concludes with an overview of the history of public-key and

private-key fully homomorphic encryption methods as well as the current techniques.

3.1 Differential Privacy

Differential privacy is a non-cryptographic approach to private data mining that has seen

some success with training various classification algorithms [22]. Differential privacy is a

method of security that applies to databases. Intuitively, if there are two databases that

differ on only one row, a query satisfies differential privacy if there is a very high probability

that the query will produce the same result regardless of which database is queried. This

method’s security depends upon having a large database. This method loses its utility when

the goal is to classify a single data point [33].

One example of differential privacy for data analysis is given by Wang, Mohammed, and

Chen, who present a method for distributing genetic data that satisfies differential privacy

[66]. The authors provide the following formal definition of differential privacy.

Definition 3.1.1. Let A be a randomized algorithm and let D and D′ be two databases such

that

|D∆D′| ≤ 1.

In other words, there is at most one row in D′ that does not appear in D, or vice versa. Say

that A is ε-differentially private if for all possible anonymized data sets D̂,

Pr[A(D) = D̂] ≤ reε × Pr[A(D′) = D̂].



CHAPTER 3. BACKGROUND 17

In sum, one effectively cannot tell from looking at the output of A on D and on D′

whether or not one specific line of data was included in the data set. This is often achieved

by adding in random noise. The results of a query are disguised by giving an answer that is

not quite exact, but is “close enough" for the intended analyses.

The goal of differential privacy, while similar to that of encryption, is different in key

ways. The goal of encrypting information is to hide it completely. With differential privacy,

the goal is not to hide data but rather to anonymize it. Furthermore, in the setting explored

in this work, the goal is to hide not only the database from the user, but also to hide the query

from the database holder. Differential privacy only seeks to perform the former function.

3.2 Privacy-preserving Classification

3.2.1 ML Confidential

Graepel, Lauter, and Naehrig suggest a framework for private training and classfication

via machine learning that they title ML Confidential [35]. This protocol is proposed for

both the training and classification phases of machine learning and is carried out entirely

over encrypted data using an LHE or SHE scheme. The authors describe a protocol that

operates over a class of machine learning algorithms that they designate polynomial learning.

A proof-of-concept is given for the classification phase of machine learning.

ML Confidential operates between three parties. There is the Data Owner, who holds

the data to be processed, as well as the Content Provider, which uploads data to the Cloud

Service Provider on the Data Owner’s behalf. The Data Owner wishes to perform both the

training phase, ML.Train, and classification phase, ML.Classify, of some machine learning

algorithm on the cloud without giving the cloud access to their data. The protocol may be

either private key or public key. Furthermore, the homomorphic encryption scheme used may
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be either fully homomorphic, somewhat homomorphic, or a leveled homomorphic encryption

scheme. The algorithms provided by the protocol are

• HE.Keygen for generation of (public or private) keys,

• HE.Enc for (somewhat/leveled/fully) homomorphic encryption,

• HE.Dec, the corresponding decryption algorithm,

• HE.Eval for homomorphic computation and utilizes HE.Add for homomorphic addition

and HE.Mult for homomorphic multiplication.

Note that the specifics regarding the functionality of these functions depend upon whether

the scheme is private or public key as well as the method of homomorphic encryption utilized.

In particular, the authors provide examples of a leveled homomorphic encryption scheme in

which HE.Eval computes polynomial functions of a bounded degree.

ML Confidential Protocol, Private Key Version

• Key Generation: The Data Owner runs HE.Keygen to generate a private key sk, se-

curely stored locally, and shares this key with the Content Provider.

• Encryption & Upload, Training Data: For all training vectors x the Content Provider

sends HE.Enc(sk,x) to the Cloud Service Provider.

• Training: The algorithm HE.Eval runs the training phase ML.Train on the encrypted

training vectors. This computes an encrypted Learned Model that is stored by the

Cloud and available to the Data Owner.

• Classification: Next, a previously unused vector x is encrypted and HE.Enc(sk,x) is

sent to the cloud, which carries out ML.Classify and returns the encrypted classifica-

tion to the data owner.
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• Verification: The Data Owner tests the encrypted Learned Model probabilistically by

sending encryptions of test vectors to the Cloud and verifying that they are returned

with the correct classifications.

For the public key version, only the first algorithm is significantly modified:

ML Confidential Protocol, Public Key Version

• Key Generation: The Data Owner runs HE.Keygen to generate a private key sk securely

stored locally and a public key pk. It publishes the public key pk.

The algorithm HE.Encrypt uses the public key, pk, while HE.Decrypt can only be carried

out by the Data Owner using the secret key, sk.

This protocol allows a diverse range of sources to provide data while all computation

takes place on the cloud. Its security model is designed for a cloud that is honest-but-

curious, meaning it will look at the available data but will not deviate from the set protocol.

The authors point out this is a reasonable assumption for any commercial cloud service, as

once the Cloud’s reputation is damaged it will not be able to acquire new clients and hence

it has strong motivation to behave honestly. The authors describe their verification step as

a naive version of Proof-of-Storage protocols. The Data Owner must store and test enough

samples to either determine the test error of the Cloud or determine the location of any

accidental error, but has no reason to suspect that the Cloud is purposefully manipulating

their data in any way.

Furthermore, the Cloud gains access to a certain amount of information during this

protocol. The Cloud must learn the number of vectors trained upon, the number of vectors

tested, the number of vectors in each class, and an upper bound on the number of entries in

each class.

Next, the authors define a polynomial learning algorithm as follows:
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Definition 3.2.1. Let A : (Rn×Y)m×Rn → Y be a learning algorithm that takes a training

sample (R×Y)m and a test input x ∈ Rn and returns a prediction y ∈ Y. Call the learning

algorithm D-polynomial if the function A is polynomial of degree at most D in all of its

arguments.

The authors describe a leveled homomorphic encryption scheme based off of the Brakerski-

Gentry-Vaikuntanathan (BGV) scheme [11], discussed in detail in Section 3.5.2. Its security

is based in the Ring Learning With Errors (RLWE) problem, which provides strong hardness

guarantees [46]. The scheme involves a noise term that grows during homomorphic opera-

tions. This scheme can only compute D-polynomial functions. Any other function results in

noise growth that obstructs decryption.

This scheme was used to perform binary classification with inputs in Rn. The authors

test linearizations of the linear means classifier and Fisher’s linear discriminant classifier on

publicly available breast cancer data using a public-key SHE scheme based on ring-LWE.

Because the cryptosystem described is unable to perform any computations that are not

D-polynomial this method is unable to perform many of the common machine learning al-

gorithms, including perceptron, support vector machine, k-nearest neighbors, decision trees,

exact logistic regression, and more.

3.2.2 The Simple Encrypted Arithmetic Library (SEAL)

The Simple Encrypted Arithmetic Library (SEAL) was developed by researchers in the

Cryptography Research Group at Microsoft Research [21]. It is a homomorphic encryption

library that was made specifically with Bioinformatics research in mind. SEAL uses LHE

with parameters chosen to perform a predetermined number of computations. Initial im-

plementations of SEAL used a variant on the YASHE scheme described in [5]. The most

recent version [43] implements the “FullRNS” variant [4] of the Fan-Vercauteren somewhat
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homomorphic scheme [25].

The authors describe methods in which their software can be used for various biomedical

applications. Possible applications mentioned are computing minor allele frequencies, χ2-

statistics, and tests for association of a genotype with disease, among others.

Because of the nature of leveled homomorphic encryption, it can reduce the cost of com-

putation to compute an approximation in place of a more costly function. An example

provided by the authors is that of logistic regression. The authors approximate the logistic

regression function using polynomial approximations, and hence are able to use this approx-

imation with SEAL.

3.2.3 SEAL for Classification via Neural Networks

Dowlin et al. provide a methodology they term CryptoNets in order to carry out private

classification over neural networks. They use the YASHE leveled homomorphic encryption

scheme to implement their protocol [5], implemented via SEAL [21].

A neural network consists of layers containing nodes that compute functions over values

fed from the previous layer. These functions are often not polynomial functions, making the

direct application of homomorphic encryption unfeasible. Therefore, the authors describe a

class of polynomial functions that can be implemented at each layer during the classification

stage instead.

Specifically, the authors include the sigmoid function in their network, which computes

z 7→ 1
1 + exp(−z)

for a value z from a node in the previous layer. The sigmoid function is used in the final

layer of the authors’ training network. During the testing stage, this step was removed from

the network altogether, as it is a monotone function and hence does not affect the final



CHAPTER 3. BACKGROUND 22

prediction once training is complete. The authors replace the more commonly used rectified

linear activation function z 7→ max{0, z} with the square activation function z 7→ z2 in both

the training and testing stage.

Max pooling is another common layer seen in neural networks that computes the average

value of a subset of components from the previous layer. The authors replace the max

pooling layer in the classification stage with a polynomial approximation by simply taking

the sum of the components instead of the average. As a result, the output in this layer is

scaled by some factor and this scaling propagates to subsequent layers. The authors use this

scaled mean-pool function in their network in both the training and testing stages instead of

max pooling layers.

The authors train a sample network on images of 60, 000 handwritten digits then test on

the 10, 000 remaining images. They achieve an accuracy rate of 99%.

3.2.4 Other Cryptographic Methods

Bost et. al. construct protocols for privacy-preserving classification using hyperplane detec-

tion, Naive Bayes, and decision trees [6]. The protocols are constructed using two additively

homomorphic encryption schemes and one leveled homomorphic encryption scheme, HElib

[59]. The additively homomorphic schemes are Goldwasser and Micali’s Quadratic Reci-

procity (QR) cryptosystem [34], as well as the Paillier cryptosystem [48]. Let pkQ, skQ

denote a public and secret key pair in the QR cryptosystem and pkP , skP denote the same

in Paillier’s system. Let square brackets JaKP and JaKQR denote the encryption of a value a

under Paillier and QR, respectively. The security of these cryptosystems provides semantic

security for the authors’ protocols, and an honest-but-curious adversary model is used.

This subsection discusses the privacy-preserving Naive Bayes protocol presented by the

authors. In order to build their privacy-preserving classification protocol, the authors first

describe efficient protocols to perform comparison and argmax operations over encrypted
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data. They compose these operations within their schemes to construct their encrypted

machine learning protocols.

The protocols for comparison and argmax are designed by the authors to work for ad-

ditively homomorphic public-key cryptosystems and do not apply directly to this paper.

Therefore, this section discusses the authors’ private Naive Bayes algorithm in full, and

reserves discussion of comparison and argmax for Chapter 5.

Comparison

Consider two data holders, A and B, who wish to compare their data, as well as the classifiers,

a client C and server S. The authors describe several separate cases in that a comparison

protocol can be carried out.

In the first scenario, A and B wish to privately compare their values a and b, respectively.

The user B randomly selects a masking bit c and its sends its encryption under QR, JcKQR,

to A. The authors construct a scheme that uses a garbled circuit combined with oblivious

transfer to allow A to compute (a < b) ⊕ c. Because A also knows the value JcKQR, A can

use the additively homomorphic property of QR to compute Ja < bKQR.

The next cases discussed by the authors involve comparison on encrypted inputs. User

A has two encrypted inputs JaK and JbK that she would like to compare and user B has the

decryption key. The users construct a method using a modification on the protocol designed

by Veugen [64]. The last case of comparison the authors consider again has user A with two

encrypted inputs. This one proceeds as the last case, but reversed – thus B is left with the

result of the comparison while A is the one who holds the (encrypted) data.

argmax

The authors consider private computation of the argmax function, which returns the argu-

ment (position) of the maximum value in a vector. User A has access to values Ja1K, . . . , JakK,



CHAPTER 3. BACKGROUND 24

encrypted under user B’s secret key. A wants B to learn the index of the largest of the k

values without learning any other information, including other information on the ordering

of the values.

User A begins by randomizing the order of the k elements using a random permutation π

and sets the maximum index value equal to aπ(1). The idea is to iterate through each value

in the permutation, comparing Jaπ(1)K to Jaπ(2)K and setting the maximum value equal to the

index of whichever is larger. Note that this is, in fact, a sequence of k comparisons.

The authors begin each comparison by running the previously described privacy-preserving

comparison protocol. This alone is not sufficient for the privacy goal because user A will

learn the ordering of the permuted inputs. Therefore, B must implement another random-

ization step, which the authors call Refresh. The Refresh procedure is carried out by the

Paillier system’s method for randomization of ciphertexts.

This is still not sufficient, because user B holds the secret key for the Paillier system.

Therefore, instead of B performing Refresh on Jaπ(i)K, the authors use the additive homo-

morphic property of the Paillier scheme. User A sends B the value Ja′iK, which is Jaπ(i)K

perturbed by A adding random noise. User B then performs the Refresh procedure on Ja′iK.

Private Naive Bayes

The authors implement the above protocols to carry out private Naive Bayes classification.

Let G denote the set of classes and assume there is a finite number of values each attribute

can take. Let P denote the vector of class probabilities, where Pi = Pr(Gi), and let T denote

the collection of tables given by Ti,j(X) = Pr(X = Xi|G = Gi). Assume each vector X has

d features, and that there are c possible classes. The authors’ private Naive Bayes protocol

runs as follows.

1: The service provider encrypts the tables P and T using Paillier.

2: The server sends the encrypted tables to the client.
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3: The client computes JpiK = JPiK
∏d
j=1JTi,j(xj)K for i = 1, . . . , c.

4: The client uses the server to compute i = argmaxipi.

5: Client outputs i.

Note that step three of the above protocol requires only that the encryption scheme be

multiplicatively homomorphic. It is Step 4 that would ultimately require an additively

homomorphic scheme. The authors in [6] use multiple encryption methods, combined with

an algorithm for changing the encryption scheme, in order to compute the argmax.

Private Polynomial Decision Tree

The authors describe a protocol by which a user can classify her data point using a binary

decision tree without giving away any information about her data, while also not learning

any information about the path her data point took on the tree. To achieve this, the authors

use the polynomial representation of the decision tree as their learned model and describe

an algorithm, which uses both the QR scheme and a public-key FHE scheme, to classify a

data point based on this representation. Specifically, the authors used the FHE scheme in

HElib [59] to run their protocol.

3.3 Fully Homomorphic Encryption Schemes

The study of fully homomorphic encryption schemes has proceeded in three phrases described

by Peikert in A Decade of Lattice Cryptography as follows [50]. The first phase consisted

of the first publications of groundbreaking, yet impractical, FHE schemes beginning with

Gentry’s seminal thesis [27]. From there, the second wave of FHE began with a rapid series

of efficiency improvements including bootstrapping and the development of SHE and LHE

schemes. The third generation of FHE began around 2013, where practical improvements

simplified and raised the efficiency of FHE schemes [2, 9, 32]. The following sections provide
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an overview of the major breakthroughs throughout these three waves as well as security

assumptions underlying the schemes.

3.4 The First FHE Schemes

Gentry’s thesis described the first fully homomorphic encryption scheme [27]. While Gentry’s

seminal work was not a practical scheme in terms of applications, it laid the foundations

for a wealth of future work in public-key FHE. Subsequent works follow his method of first

constructing a SHE scheme then bootstrapping this scheme into a FHE scheme.

Improvements on this original framework occurred rapidly in the years following this first

publication. While improvements upon Gentry’s initial scheme provide some schemes that

are conceptually simpler, one common thread among public-key FHE schemes is the the time

and difficulty it takes to describe them. Therefore, this chapter provides an overview of the

concepts of these public-key FHE schemes and leave the details to the referenced papers.

Gentry’s first FHE scheme is built around a mathematical construct called a lattice. A

lattice L is a discrete subgroup of Rn [50]. More specifically, let L be a subset of Rn, and

let 0 denote the zero vector in Rn. Say that L is a subgroup of Rn if 0 ∈ L, and −x ∈ L

and x+ y ∈ L for every x, y ∈ L. This subgroup is called discrete if for every element x ∈ L

there exists some neighborhood Nx ⊂ Rn such that L∩Nx = {x}. For instance, the integers

Zn form a discrete subgroup of Rn, hence Zn forms an n-lattice known as the integer lattice.

3.4.1 Gentry’s Fully Homomorphic Encryption

Gentry’s seminal work proceeded in three main steps. First, a somewhat homomorphic

encryption scheme was constructed that is able to compute only a limited class of functions

homomorphically. From here, a bootstrapping method was developed in order to enable

arbitrary computation based on the limited class of functions in the previous step. Finally,
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bootstrapping is applied to the somewhat homomorpic encryption scheme in order to make

it fully homomorphic by “squash(ing) the decryption circuits” [27].

What follows is an overview of Gentry’s original scheme, which omits some of the finer

details and proofs. Gentry’s concept of a “bootstrapping” is described first, followed by an

overview of his original somewhat homomorphic scheme and the bootstrapping procedure

applied to it.

Consider a ring R = Z[x]/f(x) for monic degree n polynomials f(x) ∈ Z[x]. This means

f(x) is of the form

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

with coefficients ai ∈ Z. Gentry describes that elements v ∈ R can be thought of as

(coefficient) vectors v ∈ Zn, and the ideal generated by v yields the ideal lattice (v) generated

by

{v× xi mod f(x) : i ∈ [0, n− 1]}.

Let I denote an ideal of R and BI a basis of I. The KeyGen algorithm runs a sub-algorithm

(
Bpk
J ,Bsk

J

)
= IdealGen(R,BI)

where Bpk
J and Bsk

J are bases of an ideal J such that I + J = R.

Furthermore, let Samp(x,BI , R,BJ) represent an algorithm that takes samples from x+I.

Gentry shows that this coset has a unique representative with respect to BI that can be

computed efficiently, meaning the value x mod BI is unique. This holds for any x ∈ R and

any ideal of R.

With this in mind, the encryption scheme E ′ runs as follows, where R = Z[x]/f(x) and

ideal correspond to lattices as above.

I. (pk, sk) = KeyGenE ′(R,BI), where pk = (R,BI ,Bpk
J , Samp) and sk = (pk,Bsk

J ).
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II. c = EncryptE ′(pk,m), the encryption algorithm. This algorithm encrypts a plaintext

m by computing

c′ = Samp(m,BI , R,Bsk
J )

and returning c = c′ mod Bpk
J .

III. m = Decryptsk,c, the decryption algorithm, which computes

m = (c mod Bsk
J ) mod BI

and returning m.

IV. c = EvaluateE ′(pk, C, c1, c2) for a circuit C and ciphertexts c1 and c2. This algorithm

evaluates C over c1 and c2 using sub-algorithms

Add(pk, c1, c2) = c1 + c2 mod Bpk
j

Mult(pk, c1, c2) = c1 × c2 mod Bpk
j

The class of circuits CE ′ that can be computed are also described by Gentry. Let XEnc

and XDec be subsets of Zn, where XEnc is the set of all samples from the coset x + I and

XDec = R mod BJ
sk. Let B(r) denote the ball of radius r in R. Then, there are values

rEnc = min{r : XEnc ⊂ B(r)}

rDec = max{r : XDec ⊃ B(r)}

and permitted circuits are ones where an input in B(rEnc)t yields an output in B(rDec).

Gentry shows that this constitutes the set of circuits with depth at most

log log rDec − log log nMult(R) · rEnc
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for some constant factor nMult(R) where ‖u× v‖ ≤ nMult(R) · ‖u‖ · ‖v‖.

Gentry concludes by showing that increasing the depth of the circuits that can be homo-

morphically evaluated requires minimizing nMult(R) and rEnc and maximizing rDec.

A series of complex bootstrapping operations is carried out by Gentry in order to bring

the scheme above scheme up to a FHE scheme. Broadly, he lowers the complexity of the

decryption circuit of E ′ by reducing the size of rDec and alters the decryption algorithm to

run simplified computations. Furthermore, he reduces the work the decryption algorithm

must carry out by adding in preprocessing steps to the encryption algorithm that reduce the

amount of work that must be performed during decryption.

This original scheme is impractical in multiple ways. First of all, it is conceptually

dense and requires a large breadth of knowledge of advanced mathematics to understand.

Beyond this, and more importantly, the computation time required to implement the fully

homomorphic properties of this scheme is highly impractical.

3.5 Second-Generation FHE and Beyond

A number of papers were published in the years immediately following Gentry’s original

publication. Van Dijk, Gentry, Halevi, and Vaikuntanathan published a scheme in 2010 that

avoided the average-case assumptions of lattice-based cryptography and instead was based

simply on modular arithmetic [20]. As above, they started with a somewhat homomorphic

scheme and applied bootstrapping to achieve a fully homomorphic scheme. The security of

this scheme was based on the hardness of the approximate-GCD problem, where you must

find an integer p given a set of randomly chosen integers that lie “close” to some multiple of

p. Further work based on the approximate-GCD problem was carried out by Coron et al.,

who reduced the public key size of the scheme of Van Dijk et al. [17].

In another paper, Smart and Vercauteren describe a somewhat homomorphic encryption
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scheme, which supports SIMD (Single-Instruction Multiple-Data) operations, thus enabling

a level of parallelization in FHE [60]. As before, bootstrapping methods were used to raise

this scheme from SHE to FHE. Their scheme is lattice-based, the security of the scheme is

based on a variant of the Bounded Distance Decoding Problem (BDDP), and the security of

their bootstrapping procedure is based on the Sparse Subset Sum Problem (SSSP). BDDP

seeks to find the closest lattice vector to a given vector (not necessarily in the lattice), and

SSSP seeks to find a sparse subset of a larger set A whose sum is equal to a given number s

modulo a given N .

A number of other papers contribute to this “second generation” of public-key FHE

that follow Gentry’s SHE-bootstrap-FHE blueprint [7, 9, 8, 10, 17, 28, 60]. A series of

papers Zvika Brakerski and Vinod Vaikuntanathan published in 2011, “Fully Homomorphic

Encryption from ring-LWE and Security for Key Dependent Messages” [9] and “Efficient

Fully Homomorphic Encryption from (Standard) LWE” [8], were of particular impact. These

papers use the SSSP as well as LWE and ring-LWE. The results in these papers were improved

in a joint work with Gentry [11]. This paper, “Fully Homomorphic Encryption Without

Bootstrapping,” removed the need for expensive bootstrapping procedures entirely. Although

bootstrapping is available as an optimization procedure in this scheme, it is not necessary

to implement it to achieve FHE.

3.5.1 The Learning With Errors Problem

A major shift seen in this second generation of schemes is the use of the learning with errors

(LWE) and ring-learning with errors (ring-LWE) problems as cryptographic foundations.

The LWE problem was introduced by Regev [56] and is seen as ideal for cryptographic

applications as its average-case hardness is as hard as the worst-case, up to a polynomial

factor. Learning with errors asks us to find a vector s ∈ Znq givenm samples (ai, bi) ∈ Znq×Zq,

where ai is uniformly random in Znq , e is an error term taken from some error distribution,
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and

(ai, b) = 〈s, ai〉+ e (mod q).

Abstractly, the goal is to recover the vector s when given some set of approximate linear

equations over s. The fact that these equations are approximate rather than exact is what

leads to the presumed hardness of this problem. Furthermore, LWE is as hard in the average

case as it is in the worst case, albeit up to a polynomial factor, an ideal situation for

cryptography.

Ring-LWE is a ring-based variant on LWE introduced in [46]. Ring-LWE takesm samples

(ai, bi) from Rq × Rq for a ring R of degree n over Z, where Rq = R/qR. Again, there is

an error term e taken from an error distribution χ over R (typically an embedded discrete

Gaussian). The ring-LWE problem asks us to distinguish whether the given m samples were

taken from the uniform distribution or from the ring-LWE distribution containing samples

of the form

(a, b) = s · a+ e (mod q)

for an unknown term s ∈ Rq. The ring-LWE problem was shown to be at least as hard as

quantumly solving the shortest vector problem (SVP) [46]. SVP is a hard problem based

on ideal lattices, which has a best known solution taking exponential time in the quantum

setting [50].

Brakerski, Gentry, and Vaikuntanathan define a further problem, the general learning

with errors problem (GLWE), as a generalized and combined version of LWE and ring-LWE.

In this construction, the ring is given by R = Z[x]/(xd + 1) where d is a power of 2. LWE is

considered as a sub-case of ring-LWE, which occurs when d = 1.
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3.5.2 The Brakerski-Gentry-Vaikuntanathan (BGV) Scheme

The Brakerski-Gentry-Vaikuntanathan (BGV) scheme is a ring-based scheme based on the

assumption of the infeasibility of the GLWE problem [11]. It uses either the ring R = Z or

R = Z[x]/(xd + 1), where d is a power of 2, as a platform. The BGV scheme proved to be a

major step forward from Gentry’s original scheme. It provided a reduction in noise growth

via a technique called modulus-switching, smaller key sizes, and the introduction of SIMD

parallelization to FHE.

This section provides an overview of the algorithms in the authors’ basic scheme in the

ring-LWE case, leaving out some of the more technical mathematical details.

I. (params, pk, sk) = KeyGen(1λ, 2L), the key generation algorithm over some security pa-

rameters λ and L. This key generation algorithm contains two sub-algorithms called

({params}) = Setup(1λ, 1L) and (sk, pk) = KeyGen({params}). Defining these algo-

rithms in detail is very technical, and details on parameter and key construction can be

found in the original paper [11]. It suffices to note that the private key consists of L vec-

tors s1, . . . , sL ∈ Rn+1
q and the public key consists L matrices A1, . . . ,AL ∈ RN×(n+1)

q .

II. c = Encrypt(params, pk,m), the encryption algorithm, which takes as input the secu-

rity parameters, public key pk, and a message m ∈ Rn+1
q . To encrypt, take a random

sample r← RN
2 . The ciphertext c ∈ Rn+1

q is given by

c = (m, 0, . . . , 0) + AT
j r.

for some j such that 1 ≤ j ≤ L.

III. m = Decrypt(params, sk, c), the decryption algorithm, which outputs

m = [[〈c, sj〉]q]2.
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assuming c is encrypted under public key Aj. Note that the above notation represents

modular reduction in (−q/2, q/2] followed by reduction modulo 2.

IV. c4 = Add(pk, c1, c2), the homomorphic addition algorithm, which takes as input the

public keys along with two ciphertexts encrypted under the same secret key sj. Note

that the Refresh algorithm below will allow us to perform key switching for ciphertexts

not encrypted under the same sj. Compute homomorphic addition:

c3 = c1 + c2 (mod qj)

where qj ∈ params. The ciphertext c3 is associated with the private key s′j = sj ⊗ sj,

the tensor of sj with itself. Output c4 = Refresh(c3, params).

V. c4 = Mult(pk, c1, c2), the homomorphic multiplication operation, which again takes

as input ciphertexts encrypted under the same decryption key sj. Compute c3 as the

coefficients of the linear equation given by

〈c1,x〉 · 〈c2,x〉.

Output c4 = Refresh(c3, params).

VI. Refresh(c, params), an algorithm to perform key switching. The details of this algo-

rithm are left for [11]; the procedure involves a modulus switching procedure and a key

switching procedure to change a ciphertext from being encrypted under s′j to encryption

under sj−1 with modulus qj−1.

The Refresh procedure must be carried out during multiplication in order to perform

noise reduction. The noise added during addition is always negligible enough for this pro-

cedure to be unnecessary. Observe furthermore that bootstrapping is not required in order
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for this scheme to be fully homomorphic. A bootstrapping procedure is provided by the

authors, however, in order to increase efficiency in terms of performance.

3.5.3 HElib

Shai Halevi, a researcher at IBM, wrote a software library called HElib, which implements

a version of the BGV scheme in C++, and is publicly available on GitHub [59]. HElib

implements a number of optimizations on the BGV scheme in order to decrease runtime

of algorithms [38]. Specifically, HElib uses what is called the single instruction multiple

data (SIMD) paradigm to perform parallel computations and increase runtimes. HElib also

implements optimizations published by Gentry, Halevi, and Smart [30, 29, 31] as well as

ciphertext packing techniques published by Smart and Vercauteren [60].

3.5.4 Yet Another Somewhat Homomorphic Encryption Scheme

(YASHE)

Another popular somewhat homomorphic encryption scheme introduced around this time

was YASHE, or “yet another somewhat homomorphic encryption scheme” [5]. While the

scheme still requires key-switching methods, this does not utilize any modulus-switching

methods such as seen in the BGV scheme; the authors call this property scale-invariance.

Furthermore, YASHE uses a smaller ciphertext size than BGV as ciphertexts are given by

just one ring element (as opposed to multiple ring elements in BGV). YASHE is secure under

the ring-LWE assumption.

An overview of the scheme is provided. The ring R is given by R = Z[x]/(Φd(x)),

where Φd(x) is the dth cyclotomic polynomial. The dth cyclotomic polynomial is the unique

irreducible polynomial in Z[x] that divides xd − 1 but does not divide x` − 1 for any ` < d,

and is of degree n = ϕ(d), where ϕ denotes Euler’s totient function. Also assume there is
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some error distribution χ as well as a parameters q and t, 1 < t < q.

I. (pk, sk, evf) = KeyGen(λ), the key generation algorithm over some security parameter

λ. Run a sub-algorithm to generate the parameters d, q, g, and distributions χ, and χ′.

Given samples f ′, g ← χ′, set f = [tf ′+ 1]q and verify that f is invertible modulo q. (If

not, repeat.) The private key is f and the public key is given by h, where h = [tgf−1]q.

A further evaluation key γ is computed for use in the KeySwitch algorithm. Output

(pk, sk, evf) = (f, h, γ).

II. c = Encrypt(pk,m), which encrypts a message m as a ciphertext c ∈ R. Let [m]t be a

representative of m+ tR and let s, e← χ. Output c = [bq/tc[m]t + e+ hs]q.

III. m = Decrypt(sk, c), which outputs

m =
[⌊
t

q
· [fc]q

⌋]
t

.

IV. c3 = Add(c1, c2), which computes addition as

c3 = [c1 + c2]q.

V. c3 = Mult(c1, c2, evk), which computes multiplication as

c̃ =
[⌊
t

q
c1c2

⌉]
q

.

for a function P which embeds c1 ∈ R in R` for a parameter `. The value c̃ is an

encryption under f 2. The output is given by c3 = KeySwitch(c̃, evk), which transforms

the ciphertext c̃ into a ciphertext c3 that is can be decrypted under the original key

secret key, f .
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This leveled fully homomorphic scheme is brought up to a fully homomorphic scheme via

bootstrapping procedures as described by Gentry in his original publication [26]. As with

the other public-key FHE schemes, homomorphic computation in YASHE results in noise

that grows with each computation and imposes a limit on the number of computations that

may be carried out before the noise grows too large.

3.5.5 Fan-Vercauteren (FV) Encryption

Fan and Vercauteren introduced a scheme, commonly referred to as the FV scheme [25]. This

scheme is a version of Brakerski’s scheme [7], which is based off of the ring-LWE problem

rather than LWE. The bootstrapping procedure introduced by the authors used modulus

switching in order to create a simpler method.

In this scheme the plaintext ring is given by Rt = Zt[x]/(ϕ(x)) for an integer t > 1 and

monic, irreducible polynomial ϕ ∈ Z[x] of degree d. Let R denote the ring Z[x]/(ϕ(x)).

I. (pk, sk) = KeyGen(λ), the key generation algorithm with security parameters λ. Let χ

be a distribution on Z[x]/(ϕ(x)), described by the authors. The public key pk is given

by

(f0, f1) = ([−(a · g + e)]q, a),

where a← Rq, e, g ← χ, and [x]q denotes reduction of all coefficients of x ∈ R modulo

q. Output (pk, sk) = ((f0, f1), g).

II. c = (c0, c1) = Encrypt(pk,m), which encrypts a message m ∈ Rt as the ciphertext

c ∈ R2
q given by

(c0, c1) =
([
f0 · u+ e1 +

⌊
q

t

⌋
·m

]
q
, [f1 · u+ e2]q

)

where u, e1, e2 ← χ.
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III. m = Decrypt(sk, c), which decrypts by computing

m =
[⌊
t · [c0 + c1 · s]q

q

⌉]
t

where s = sk is the secret key.

IV. e = Add(c, d) adds ciphertexts c = (c0, c1) and d = (d0, d1) to obtain the ciphertext

e = (e0, e1) via the operation

(e0, e1) = ([c0 + d0]q, [c1 + d1]q) .

V. e = Mult(c, d) multiplies ciphertexts c = (c0, c1) and d = (d0, d1) to obtain the cipher-

text e = (e0, e1). First, compute

ē0 =
[⌊
t · (c0 · d0)

q

⌉]
q

ē1 =
[⌊
t · (c0 · d0 + c1 · d1)

q

⌉]
q

ē2 =
[⌊
t · (c1 · d1)

q

⌉]
q

Next, there are two variants on the final computation of multiplication, details of which

are highly technical and left to the original paper [25]. The first method minimizes error

due to noise accumulation, while the second method is similar to modulus-switching

methods and reduces the time and space used during computation.

This leveled fully homomorphic encryption scheme is brought up to a FHE scheme via

bootstrapping procedures.
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3.5.6 Third-Generation Public-Key FHE: Recent Developments

Around late 2012 or early 2013 marked the switchover to what Peikert terms the third

generation of FHE, marked by a shift in the internal methods used within the schemes

[50]. Gentry, Sahai, and Waters published a FHE scheme in 2013 based on LWE that

introduced the approximate eigenvector method for multiplication [32]. This method reduces

homomorphic multiplication in most cases to matrix multiplication, a much more efficient

procedure. Gentry, Halevi, and Smart revisited bootstrapping procedures to reduce the

computational bottleneck involved in these algorithms [30].

3.6 Gribov-Kahrobaei-Shpilrain (GKS) Encryption

Alexey Gribov, Delaram Kahrobaei, and Vladimir Shpilrain presented a novel approach to

fully homomorphic encryption called the Gribov-Kahrobaei-Shpilrain (GKS) cryptosystem

[36]. This ring-based scheme is able to avoid much of the computational overhead required

for fully homomorphic public key encryption. The authors define the platform ring Sn as

Sn = 〈x1, x2, . . . , xn|p · 1 = 0, x2
i = xi, and xixj = xjxi for all i, j〉. (3.1)

This ring contains a super-exponential number of idempotent elements, or elements g ∈ Sn
such that g2 = g. Some idempotent elements are given by

eF :=
∏
i∈F

xi ·
∏
j 6∈F

(1− xj)

for any set of indexes F ∈ P({1, 2, . . . , n}). The above construction yields 2n idempotent

elements that are pairwise orthogonal, meaning eF eG = 0 whenever F 6= G, and represent a

linear basis of Sn over Zp.
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The scheme is ring-based and involves a private plaintext ring P and a ciphertext ring

C, where P is a retract of C, i.e., P ⊂ C and at the same time P is a factor ring of C. Both

P and C are rings of the form of Equation 3.1. Let I be an ideal of C such that C/I is

isomorphic to P .

The data owner, D, generates C and I during the key generation algorithm. Parameters

n, r, and p are chosen such that p is a large prime, r > n, and let P := Sn. The ciphertext

ring C = Sr is randomly generated from P = Sn as {xi}si=1, where s > n. In other words,

the ring C = Sr expands upon the generators of P = Sn. The data owner then randomly

chooses an ideal I by randomly selecting elements

xm − wm(x1, x2, . . . , xm−1)

for m = n+ 1, . . . , r, where wm(x1, x2, . . . , xm−1) represents an idempotent element of Sm−1.

Observe that C/I is isomorphic to P by construction. The data owner next rewrites C in

terms of its orthogonal basis {ei}2r

i=1 and applies a random permutation π to the orthogonal

set generators. D concludes the key generation algorithm with a final transformation between

this permuted basis, given by

C = 〈e1, e2, . . . , e2r |p · 1 = 0, e2
i = ei,

and eiej = 0 for all i, j〉,

and a triangular basis. The triangular basis as described by the authors applies an invertible

linear transformation of the form

tj =
∑
i∈Fj

eij,

where Fj denotes a set of indices. These index sets satisfy the property that Fj ⊆ Fk whenever

j < k. As the elements in this basis are not orthogonal, homomorphic multiplication does
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not occur component-wise. Rather, it follows the property that titk = tk whenever j ≤ k.

A plaintext element x ∈ P is encrypted as

Encrypt(x) = x+ E0

where

E0 =
r∑

j=n+1
(xj − wj(x1, . . . , xj−1)) · hj(x1, . . . , xr)

for random hj ∈ C. This plaintext element is then converted to the published triangular

basis. To decrypt, the data owner simply converts the ciphertext back to the basis {xi}ri=1

then replaces xj with wj(x1, . . . , xj−1) for j = n+ 1, . . . , r.

The authors show that this scheme is secure against a ciphertext-only attack. This

scheme has the advantage of not accumulating noise terms during computation. Thus, the

only limit on computation in the GKS scheme lies in the value of the prime modulus p in

the definition of the ring S.

3.7 Encoding Data for Fully Homomorphic Computa-

tion

Fully homomorphic computation can only be completely utilized over data encoded in a fully

homomorphic manner. Various types of data such as strings, integers, and floats must be

encoded such that computation over these values preserves the fully homomorphic properties

of the scheme. For instance, the ASCII encoding for 0 is 48 – but 48 + 48 = 96, the ASCII

code for the grave accent. Encoding via ASCII will not suffice when encrypted addition is

required.

In addition to a fully homomorphic encoding method it is important that the method
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chosen is efficient in terms of memory usage. While the precise methods of encoding de-

pend on the structure of the encryption scheme, often what is required is an encoding with

integer values. Fully homomorphic encoding methods used in the FHE software SEAL are

described below. The fully homomorphic encoding method for GKS encryption are discussed

in Chapter 4

3.7.1 Fully Homomorphic Encoding in SEAL

SEAL, or the Simple Encrypted Arithmetic Library, is a software for performing machine

learning using FHE developed by Microsoft. A previous version of SEAL implemented a vari-

ant of the YASHE scheme developed by researchers at Microsoft’s Cryptography Research

Group [21]. The most recent version of Microsoft’s Simple Encrypted Arithmetic Library

(SEAL) [43] implements the “FullRNS” variant [4] of the Fan-Vercauteren somewhat homo-

morphic scheme [25].

Encoding Integers

Plaintexts and ciphertexts in the YASHE implementation of SEAL are polynomials in the

ring Rt = Zt[x]/(xn + 1) and Rq = Zq[x]/(xn + 1), respectively. The authors provide three

methods for encoding integer values.

The first method is the least memory efficient, but the most straightforward. A plaintext

value y ∈ Z is encoded as the constant polynomial p(x) = y. This encoding method requires

the moduli t and q to be incredibly large to avoid overflow. The second method they present

is to encode a value y ∈ Z as using its binary representation y = ∑
i bi2i for bits bi, and

encoding a plaintext polynomial

p(x) =
∑
i

bix
i.

Decoding is performed by evaluating p(2). The authors explain that this method may be
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applied to base-b encodings for larger integers b, with higher base values resulting in shorter

polynomials with larger coefficients.

The last encoding method described is based off of the Chinese Remainder Theorem

(CRT). A plaintext is encoded multiple times under co-prime moduli t1, . . . , tk. The CRT

allows for decoding by combining these individual plaintexts under a single modulus ∏ ti.
While this encoding method requires more space, it does allow for much smaller moduli.

Encoding Reals

Real values can be encoded in the YASHE version of SEAL by scaling them to integer values

and performing scaling after every use of homomorphic multiplication. However, this often

results in prohibitively large integers that must be encoded. Instead, the authors suggest

encoding floating point values again via binary representation. A floating point value y can

be represented as y+ + y−, where y+ = ∑B
i=0 bi2i and y− = ∑C

j=1 cj2−j for bits bi and cj. The

plaintext y may then be encoded as

∑
i≤B

bix
i −

∑
j<C

xn−jcj.

This method requires reserving the coefficients for the integer and fractional parts of y before

of encoding.

Plaintext Packing

The authors suggest a method called plaintext packing to decrease the number of compu-

tations that must be performed. This method involves encoding multiple small messages

as one large message in order to reduce overall run time, using what is called the single

instruction multiple data (SIMD) paradigm.

The method for plaintext packing in YASHE SEAL involves using co-prime polynomials
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Q1, . . . , Qk such that

xn + 1 =
k∏
i=1

Qi(x) (mod t).

There is an isomorphism between the ring R and a co-prime polynomial version of the ring

given by
Zt[x]

(xn + 1)
∼=

k∏
i=1

Zt[x]
(Qi(x)) (mod t).

Multiple values can be encoded at once as the constant coefficient of each of the k factors.

Above is a formulation of the Chinese Remainder Theorem over rings. The most recent

version of SEAL [43] based off of the CV encryption scheme similarly uses the Chinese

Remainder Theorem in order to provide SIMD operations, which they call “batching.”

3.7.2 Fully homomorphic encoding in GKS

Gribov, Kahrobaei, and Shpilrain provide a method for encoding integer values within the

platform ring of the GKS cryptosystem [36]. A fully homomorphic embedding of Zp into the

platform ring Sn is chosen. This corresponds to letting the element 1 ∈ Zp be mapped to

any idempotent in S.

Methods for encoding real numbers as well as implementing SIMD batching within the

GKS cryptosystem are presented in this work. Chapter 4 discusses methods for these en-

codings, as well as various other implementation methods for the GKS cryptosystem.

3.8 Conclusions

Current methods in privacy-preserving classification span non-FHE encryption methods,

FHE methods, and differential privacy. Fully homomorphic encryption developed quickly

from its first presentation by Gentry to the more efficient forms available today. Popular

schemes such as YASHE [5] and FV [25] have been implemented for machine learning tasks
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using HElib [59] and SEAL [43], respectively. The GKS scheme [36] is a conceptually simple

scheme without the noise seen in other FHE schemes. Methods for the efficient implemen-

tation of GKS encryption for real-world classification tasks will be proposed throughout the

remainder of this dissertation.



Chapter 4

Implementation of the

Gribov-Kahrobaei-Shpilrain (GKS)

Scheme

There are a number of implementation issues that must be addressed when performing fully

homomorphic encryption over real world data. The encoding method used for integers, floats,

and rationals needs to result in fully homomorphic computations within the ring.

In addition to a fully homomorphic encoding method it is important that the method

chosen is efficient in terms of memory usage. While the precise methods of encoding depend

on the structure of the encryption scheme, often what is required is an encoding with integer

values. The GKS scheme requires all elements to be embedded as ring elements with coef-

ficients in Zp. This ring structure can be taken advantage of in order to implement single

instruction, multiple data (SIMD) instructions to maximize the amount of computations

carried out in a single instruction.

This chapter outlines parameter selection for applications using the GKS scheme as well

as implementation algorithms, fully homomorphic encoding methods, and how to implement

45
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SIMD instructions within GKS in order to maximize the efficiency of the memory used by the

program. This chapter concludes by providing data on the speed of the described algorithms

in a C++ implementation.

4.1 Fully Homomorphic Encoding of Real-World Val-

ues in GKS

Because the GKS encryption scheme is based off of rings elements with coefficients in the field

Zp, any encoding used will have to be based off of integer values. Gribov, Kahrobaei, and

Shpilrain provide a straightforward method of implementing a fully homomorphic encoding

[36]. Any fully homomorphic embedding of Zp into the ring Sn will suffice. In particular, it

is sufficient to map the element 1 in Zp to any idempotent element of S.

Encoding Reals

Real-valued variables must also be encoded as elements of the plaintext ring. This method

should encode floating point values as integer values, be fully homomorphic, avoid overflow

in Zp, and not lose any accuracy compared to the unencrypted operations.

To achieve this, scale floating point values to integer values with a fixed level of precision.

Encode with n digits of precision using an encoding function Encode(x) := bx · 10nc. For

instance, if n = 3 encode x = 0.29128 as

Encode(x) = b0.29128 · 103c = 291.

Extend this to an encoding in the ring Sn by mapping x to a fixed idempotent value in S.

Decode simply by retrieving the coefficient of the fixed idempotent value in S and multiplying

by 10−n.
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This certainly yields an additively homomorphic embedding of a floating-point value

in the ring. Maintaining a multiplicatively homomorphic property requires keeping track

of the depth of each element. Consider first an example: the floating-point value 0.291

multiplied by 0.895 yields 0.260445. However, the depth 3 encoded value 291 multiplied

by 895 yields 260445, which decodes to 260.445. Hence, to achieve a fully homomorphic

encoding, keep track of the depth of each encoded value and decode accordingly. The depth

of an encoded value is initialized to d = 1, and each time multiplication is performed, it’s

depth is incremented. To decode, multiply the coefficient by 10−dn.

Note furthermore only elements which share a depth may be multiplied. To increase the

depth of an element, simply multiply by the scalar 10n. Keep proper track of the depth of

elements during implementation in order to perform homomorphic multiplication.

Furthermore, the prime modulus p must be selected properly to avoid overflow over the

modulus during computation. Note that this problem is not unique to the GKS cryptosystem,

as all of the FHE schemes surveyed encode floating points as integer values in the range

(−p/2, p/2]. The prime modulus must be chosen during parameter selection to be large

enough to avoid overflow during computation.

4.2 Parallelization via SIMD

SIMD, introduced in Chapter 2.3, is implemented in the GKS scheme by encoding multiple

plaintext values within a single plaintext ring element, i.e., by mapping each to a unique

idempotent element in the ring basis. Note, however, that not every selection of idempotent

elements results in a fully homomorphic encoding. Consider the plaintext ring Sn,

Sn = 〈x1, x2, . . . , xn|p · 1 = 0, x2
i = xi, and xixj = xjxi for all i, j〉.
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Figure 4.1: SIMD Implementation in the GKS scheme

Two values are encoded simultaneously in a ring element by mapping each to fixed idempo-

tent element, e.g. x1 and x1xn. Then,

(a1x1 + b1x1xn) + (a2x1 + b2x1xn) = (a1 + a2)x1 + (b1 + b2)x1xn

and addition is homomorphic over each element. However, multiplication via this encoding

is not homomorphic component-wise, as

(a1x1 + b1x1xn)(a2x1 + b2x1xn) = a1a2x1 + (a1b2 + b1a2 + b1b2)x1xn (4.1)

when a true SIMD operation would yield a1a2x1 + b1b2x1xn. Therefore, implementing SIMD

requires a method of encoding multiple values within a single vector that is multiplicatively

homomorphic not just over the ring elements, but also over the encoded coefficients.

In order to implement SIMD, the properties of the ring elements are used in order to

describe a multiple embedding. With that in mind as the ultimate goal, consider the following
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claim.

Proposition 4.2.1. Let I, J ⊆ {1, 2, . . . , n} be two subsets of indexes, and consider the two

idempotent elements in Sn generated by these subsets defined as

xI =
∏
i∈I
xi and xJ =

∏
j ∈ Jxj.

Encoding two elements within a vector as coefficients of xI and xJ will yield a fully homo-

morphic encoding if I ∩ J 6= I and I ∩ J 6= J .

Proof. Assume I ∩ J 6= I and I ∩ J 6= J . Then,

(a1xI + b1xJ)(a2xI + b2xJ) = a1a2xI + b1b2xJ + (a1b2 + a2b1)xIxJ .

Since I∩J 6= I and I∩J 6= J , then xIxJ 6= xI and xIxJ 6= xJ . Therefore, decoding the above

product yields a1a2 and b1b2, the correct product, and xIxJ contains a value which may be

ignored. Inductively, this extends to any collection I1, I2, . . . , Ik ⊆ {1, 2, . . . , n} satisifying

Ii ∩ Ij 6= Ii and Ii ∩ Ij 6= Ij for any 1 ≤ i, j ≤ k.

While there are many subsets of elements that satisfy this criterion, a straightforward

approach is to select distinct subsets Ii, . . . , Ik such that |I1| = |I2| = · · · = |Ik|. If |Ij| = s

for all 1 ≤ j ≤ k, then the number of SIMD slots available via this method is maximized

whenever
(
n
s

)
achieves its maximum over s. This corresponds to the maximum value for a

binomial coefficient and occurs when s = bn/2c or s = dn/2e.

Proposition 4.2.2. Assume that
(

n
bn/2c

)
integer values are simultaneously encoded in the

GKS scheme by mapping each element as the coefficient of the ring element generated by a

set of indexes I satisfying |I| = bn/2c. This embedding remains fully homomorphic when

random values are encoded as the coefficients of elements generated by index sets J where
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|J | > |I|, but fails to be fully homomorphic if there are any nonzero coefficients for elements

with index sets where |J | < |I|.

Proof. For the former case, consider two sets of indexes I and J where |I| = bn/2c and

|J | > |I|. Then, the product xIxJ = xK has an index set K where |K| > |I|. This value will

have no impact on the values of the coefficients of the encoded elements.

An example of the latter case is available in Equation 4.1. More generally, say there is

a nonzero coefficient for an element with index set |J | < |I|, called xJ . Let xI be a word

where |I| = bn/2c and J ⊂ I, which must exist for some set of indexes as |J | < |I|. Then,

(a1xI + b1xJ)(a2xI + b2xJ) = a1a2xI + b1b2xJ + (a1b2 + a2b1)xIxJ

= (a1a2 + a1b2 + a2b1)xI + b1b2xJ ,

since xIxJ = xI .

Example 4.2.3. When the plaintext ring is generated by n = 5 elements in the GKS scheme,

the described encoding method allows for
(

5
2

)
= 10 elements to be simultaneously encoded in

SIMD slots as coefficients of the elements x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4,

x3x5, and x4x5. Furthermore, the values generated by 3, 4, and 5 elements may be assigned

random coefficients during encoding.

SIMD via Orthogonal Elements

A second fully homomorphic encoding utilizing SIMD slots is attained using the orthogonal

representation of ring elements. Recall that ring elements are initially embedded in the

standard basis in the plaintext ring

Sn = 〈x1, x2, . . . , xn|p · 1 = 0, x2
i = xi, and xixj = xjxi for all i, j〉
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which is extended to the ring Sr for r > n via the method described in Chapter 3. Elements

are then converted to a representation in the orthogonal basis as

Sn = 〈e1, e2, . . . , e2r |p · 1 = 0, e2
i = ei, and eiej = 0 for all i 6= j〉

via the change-of-basis

eF :=
∏
i∈F

xi ·
∏
j 6∈F

(1− xj)

for all sets of indexes F ⊂ {1, 2, . . . , n, . . . , r}.

A set A = ai of 2n integers can be simultaneously encoded in the GKS scheme using this

transformation over the original plaintext ring. Let aF denote the element of A with index

i = ∑
f∈F 2f−1. In other words, use the binary representation of the selection of indexes F

in order to perform a one-to-one mapping of the elements of A. This transformation is given

by

Encode(A) =
∑

F⊆{1,2,...,n}
aF

∏
i∈F

xi ·
∏
j 6∈F

(1− xj)
 .

Values are decoded by inverting the orthogonal transformation in Sn. This method requires

more effort to implement encoding but allows for 2n elements to be encoded simultaneously.

With the settings recommended by Gribov, Kahrobaei, and Shiplirain, a total of 25 = 32

values may be encoded in one ciphertext via this method. Note that when implementing

encryptions via this encoding, restrictions on an acceptable encryption of zero must be put

in place to require that no coefficient in the encryption of zero is equal to 0.
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4.3 Generating the Triangular Basis Transformation

Encryption in the GKS scheme, discussed in Chapter 3, begins with elements expressed in

terms of the standard basis in the ring

C = 〈x1, x2, . . . , xr|p · 1 = 0, x2
i = xi, and xixj = xjxi for all i, j〉. (4.2)

Elements are then converted to the orthogonal basis via the transformation given by

eF :=
∏
i∈F

xi ·
∏
j 6∈F

(1− xj)

for each set of indexes F . Assign each orthogonal element eF a numerical index by setting

eF = ei where i = ∑
f∈F 2f−1. As above, this corresponds simply to converting the binary

representation of the choice of index subset to decimal.

Lastly the ciphertext is transformed into the triangular basis, which satisfies

tj =
∑
i∈Fj

eij,

for a set of indexes Fj, where Fj ⊆ Fk whenever j ≤ k for k from 1 to 2r.

Implementation of GKS encryption requires a method for randomly generating a trian-

gular basis satisfying the above conditions. The only truly invertible linear transformation

of the above form is given by

tm =
m∑
i=1

ek

for 1 ≤ k ≤ 2r.

In order to introduce randomness to this transformation, randomly repeat m of the rows.
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The final, public ciphertext ring is given by

C̃ = 〈t1, t2, . . . , t2r+m|p · 1 = 0, e2
i = ei,

and eiej = 0 for all i, j〉.

Note that in the published basis, homomorphic addition occurs component-wise and the

homomorphic multiplication operation is given by titj = ti whenever i ≤ j.

Elements in the orthogonal basis are not uniquely represented by elements in the tri-

angular basis. For example, if t1 = e1, t2 = e1, t3 = e1 + e2, and t4 = e1 + e2, then the

element e2 in the orthogonal basis can be written in the triangular basis in four ways: t3− t1,

t3 − t2, t4 − t1, or t4 − t2. When converting from the orthogonal to the triangular basis,

the user should randomly choose which representation to use during each conversion. While

this transformation is not invertible in the traditional sense, the key holder can convert back

to the orthogonal basis during decryption easily by replacing each ti with its corresponding

orthogonal basis form and combining like terms.

4.3.1 Algorithms for Triangular Basis Implementation

The triangular basis should be generated during the KeyGen phase of GKS encryption. The

proposed method for creating the triangular basis requires randomly repeating some number

of rows, say m rows. The number of rows repeated can be given as a parameter during

key generation or can be randomized during key generation. In either case, the number of

repeated rows will be published along with the ciphertext ring.

Below the necessary algorithms for conversion between the orthogonal and triangular

bases are outlined. Algorithm 1 describes the method for computing the change-of-basis

matrix to the triangular basis from the orthogonal basis. Algorithm 2 describes the method

for generating the change-of-basis matrix for the orthogonal from the triangular basis. Be-
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cause this is not a linear transformation, Algorithm 3 describes the process for converting

an element from orthogonal to triangular, and is followed by a discussion of the method for

converting an element for triangular to orthogonal.

Algorithm 1 The triangular basis in terms of the orthogonal basis

Input: The orthogonal basis e1, e2, . . . , e2r and a set of m indexes F ⊆ {1, 2, . . . , 2r}.

Output: The triangular basis t1, t2, . . . , t2r̂+m in terms of the orthogonal basis.

1: k = 1. . To index over the triangular basis elements.

2: for i = 1 to 2r +m do

3: tk = ∑i
j=1 ei.

4: k+=1.

5: if i ∈ F then . Repeat rows listed in F .

6: tk = tk−1

7: k+=1.

8: end if

9: end for

Recall that the triangular basis, without representation, is given in terms of the orthog-

onal basis by tj = ∑m
i=1 ek. As this is a linear transformation, its inverse is given by e1 = t1

and

ej = tj − tj−1

for all 2 ≤ j ≤ 2r +m. If row j is repeated then ej can be represented as

ej = tj − tj−1

ej = tj+1 − tj−1
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and if tj−1 is a repetition of the row tj−2, then ej can additionally be represented by

ej = tj − tj−2

ej = tj+1 − tj−2.

Each orthogonal element can be represented in one, two, or four ways in terms of the tri-

angular basis depending on the indexes of repeated rows. Because the transformation in

Algorithm 1 is not invertible, Algorithm 2 operates by providing four possible represen-

tations of each orthogonal generator ej = ej,1 = ej,2 = ej,3 = ej,4 in terms of triangular

generators, some of which may be duplicates.

Example 4.3.1. Consider the set of orthogonal generators {e1, e2, e3, e4}. Let F = {2, 3} be

the set of indexes to generate the repeated rows in the triangular basis. Then, the triangular

basis is generated by Algorithm 2 as

t1 = e1

t2 = e1 + e2

t3 = e1 + e2

t4 = e1 + e2 + e3

t5 = e1 + e2 + e3

t6 = e1 + e2 + e3 + e4.
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Algorithm 2 The orthogonal basis in terms of the triangular basis

Input: The triangular basis t1, t2, . . . , t2r+m, the set of m indexes F ⊆ {1, 2, . . . , 2r}.

Output: The orthogonal basis e1,1, e1,2, e1,3, e1,4, e2,1, e2,2, e2,3, e2,4 . . . , e2r,1, e2r,2, e2r,3, e2r,4

in terms of the triangular basis where ei,j = ei.

1: k = 1. . To index over the orthogonal basis elements.

2: while i <= 4 · 2r do

3: if i ∈ F then . If the currently indexed row is repeated.

4: ei,1 = tk, ei,2 = tk, ei,3 = tk+1, ei,4 = tk+1

5: else

6: ei,1 = tk, ei,2 = tk, ei,3 = tk, ei,4 = tk

7: end if

8: if i = 1 then

9: continue

10: end if

11: if i− 1 ∈ F then . If the previously indexed row is repeated.

12: ei,1-=tk−1, ei,2-=tk−2, ei,3-=tk−1, ei,4-=tk−2.

13: else

14: ei,1-=tk−1, ei,2-=tk−1, ei,3-=tk−1, ei,4-=tk−1.

15: end if

16: end while
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Example 4.3.2. The orthogonal basis is generated from the triangular basis in Example

4.3.1 via Algorithm 2 as

e1,1 = t1, e1,2 = t1, e1,3 = t1, e1,4 = t1

e2,1 = t2 − t1, e2,2 = t2 − t1, e2,3 = t3 − t1, e2,4 = t3 − t1

e3,1 = t4 − t3, e3,2 = t4 − t2, e3,3 = t5 − t3, e3,4 = t5 − t2

e4,1 = t6 − t5, e4,2 = t6 − t4, e4,3 = t6 − t5, e4,4 = t6 − t4

In Algorithm 3, the ring elements in the orthogonal basis are converted to the triangular

basis by randomly selecting one of the four possible representations of that element ei in the

triangular basis as ei,1, ei,2, ei,3, or ei,4.

Algorithm 3 Converting an element from orthogonal to triangular

Input: A ring element in the orthogonal basis, a = a1e1 + a2e2 + · · ·+ a2r̂e2r̂ , as well as the

triangular in terms of orthogonal basis of Algorithm 1.

Output: The corresponding word in the triangular basis.

1: for i from 1 to 2r̂ do

2: Select ei = ei,j for random j ∈ {1, 2, 3, 4}.

3: Replace ei with ei,j in a.

4: end for

5: Simplify by combining like terms.

The algorithm for conversion from the triangular basis to the orthogonal basis is straight-

forward and proceeds by replacing each triangular element ti with its representation in the

orthogonal basis as generated in Algorithm 2.
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4.4 Homomorphic Evaluation

Assume there are r generators in the ciphertext ring. Then, there are 2r elements of the ring

in the orthogonal basis. After the triangular transformation, with repetition of m rows, the

size of the published ring is given by r̂ = 2r +m.

Assume there are two ring elements a, b ∈ C to be added, where a = a1t1 + · · ·+ar̂tr̂ and

b = b1t1 + · · ·+ br̂tr̂. Addition occurs component-wise and is carried out as in Algorithm 4.

Algorithm 4 Homomorphic Addition in the Triangular Basis

Input: a = a1t1 + · · ·+ artr̂, b = b1t1 + · · ·+ br̂tr̂, p

Output: c = a+ b = c1t1 + · · ·+ cr̂tr̂

1: for i = 1 to r̂ do

2: ci = ai + bi (mod p)

3: end for

Next, the values a, b ∈ C are to be multiplied. To compute this product use the identity

titj = tj whenever i ≤ j. This product can be expressed in terms of the triangular basis as

follows:

a · b =
(

r̂∑
i=1

aiti

)(
r̂∑
i=1

biti

)
=

r̂∑
i=1

i−1∑
j=1

(aibj + ajbi) + aibi

 ti.
To show correctness, start by expanding the center term.

(
r̂∑
i=1

aiti

)(
r̂∑
i=1

biti

)
= a1b1t1 + a1b2t2 + a1b3t3 + · · ·+ a1br̂tr̂

+ a2b1t2 + a2b2t2 + a2b3t3 + · · ·+ a2br̂tr̂

+ · · ·

+ ar̂b1tr̂ + ar̂b2tr̂ + ar̂b3tr̂ + · · ·+ ar̂br̂tr̂.
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This product may be rewritten by grouping over ti. The coefficient terms may then be

reordered for a new expression of the product as a sum.

Grouping terms over ti yields

=a1b1t1 + (a1b2 + a2b1 + a2b2)t2

+ (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)t3 + · · ·

+ (a1br̂ + a2br̂ + · · ·+ ar̂−1br̂ + ar̂b1 + ar̂b2 + · · ·+ ar̂br̂)tr̂

=a1b1t1 + (a1b2 + a2b1 + a2b2)t2

+ (a1b3 + a3b1 + a2b3 + a3b2 + a3b3)t3 + · · ·

+ (a1br̂ + ar̂b1 + a2br̂ + ar̂b2 · · ·+ ar̂−1br̂ + ar̂br̂−1 + ar̂br̂)tr̂

=
r̂∑
i=1

i−1∑
j=1

(aibj + ajbi)
+ aibi

 ti.
With this expression of the product, one may implement multiplication via Protocol 5.

Algorithm 5 Homomorphic Multiplication in the Triangular Basis

Input: a = a1t1 + · · ·+ artr̂, b = b1t1 + · · ·+ br̂tr̂, p

Output: c = a · b = c1t1 + · · ·+ cr̂tr̂

1: for i = 1 to r̂ do

2: ci = 1 · ai · bi
3: for j = 1 to i− 1 do

4: ci += ai · bj + aj · bi (mod p)

5: end for

6: end for
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4.5 Computational Complexity

The complexity of the algorithms used for implementation of GKS will have an effect on its

performance speed. Algorithm 4 carries out addition component-wise in r̂ steps, where r̂ is

the number of generators in the published ciphertext ring. Therefore, addition occurs with

a complexity of Θ(r̂).

Multiplication, seen in Algorithm 5, occurs in a nested loop. Line 2 of this algorithm is

a step of complexity O(1) which occurs in the outer loop. The inner loop contains one step

of complexity O(1), and executes i− 1 times during iteration i of the outer loop. Therefore,

the complexity of Algorithm 5 is derived by

r̂∑
i=1

(1 + (i− 1)) = r̂(r̂ + 1)
2

and yields a complexity of O(r̂2).

4.6 Generating Encryptions of Zero

Parameters for the GKS scheme must be selected in order to avoid overflow over the prime

modulus p during computation. With this in mind a second parameter, q ∈ N, must be

introduced, where q � p. During generation of random noise within the encryption algo-

rithm, the random values chosen as coefficients to ring elements should be selected to lie

in the range [0, q). The precise size of the variable q is application-dependent and should

be selected so that overflow over the prime modulus p does not occur during homomorphic

multiplication.
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KeyGen Encrypt Decrypt Add Multiply

32-bit modulus 1.3186 0.0327 0.0585 0.0001 0.0229

64-bit modulus 1.3157 0.0337 0.0616 0.0001 0.0299

128-bit modulus 1.3905 0.0411 0.0665 0.0001 0.0311

256-bit modulus 1.5719 0.0448 0.0738 0.0001 0.0346

512-bit modulus 1.6333 0.0450 0.0758 0.0002 0.0361

1024-bit modulus 1.6373 0.0455 0.0763 0.0002 0.0402

Table 4.1: Average implementation times for the GKS cryptosystem in seconds

4.7 Experimental Performance

Experiments were run to determine average computation speed via GKS using the default

parameters combined with the implementation recommendations in this chapter. Operations

were carried out over randomly generated values. The times reported in Table 4.1 were

generated by repeating the protocol 1, 000 times and calculating the average run time.

Values for random noise generation were uniformly selected from the range [0, 2n−1) for

each n-bit prime. This is higher than what will generally need to be used, and therefore

provides a safe over-estimate of the needed computation time. Tests were run on a Macbook

Pro with a 2.3 Ghz processor and 16.0 GB memory using C++ and the GNU MP Bignum

Library [62] for arbitrary precision arithmetic. Table 4.1 shows the experimental results for

these algorithms.

Figures 4.2 through 4.6 contains several sub-figures which show the bit size of the prime

modulus on the horizontal axis and time, in seconds, on the vertical axis. Figure 4.2 shows

that key generation is the most costly step, and larger prime modulus values correspond to

larger key generation times. However, even with a 1024-bit prime modulus, the average key

generation time is below 1.5 seconds. Homomorphic addition, shown in Figure 4.4, is a very

fast operation regardless of prime modulus size and should not represent a bottleneck during
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computation. Figure 4.5 shows homomorphic multiplication, which takes longer than homo-

morphic addition with an average computation time of between 0.02 and 0.03 seconds. When

many multiplication operations are needed, this could pose as a bottleneck to computation.
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Figure 4.2: Key Generation
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Figure 4.3: Encryption and Decryption
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Figure 4.4: Homomorphic Addition
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Figure 4.5: Homomorphic Muliplication

Figure 4.6: Average Computation Time in GKS

Figure 4.3 shows the encryption and decryption times for plaintext and ciphertext values,

respectively. The plaintext values in these experiments were randomly generated by popu-

lating the coefficients in the plaintext ring with values in the range [0, 2n−1). Encryption is

a more computationally intensive process, as it involves randomization steps and generation

of random noise. Decryption consists of a series of substitutions using the private key and

the time required remains relatively constant with varying modulus sizes. While encryption

and decryption of a value takes longer than addition or multiplication, it should not pose
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a bottleneck during computation within the proposed setting. Specifically, the algorithms

proposed and implemented in this document require a database to be encrypted and stored

once prior to classification. Decryption is called only a smaller, fixed number of times during

these protocols.

4.7.1 Performance Comparison

ML Confidential [35] implements a leveled homomorpic encryption scheme using a modified

version of a scheme presented by Brakerski [7]. With a 128-bit prime modulus, the authors

report computation times as seen in Table 4.2. While key generation runs faster in this

Scheme KeyGen Encrypt Decrypt Add Multiply

ML Confidential [35] 0.279 0.659 0.055 0.001 0.853

SHIELD [41] 0.27 0.383 0.3 0.006 0.372

HElib [59, 41] 85.3 0.59 0.39 0.002 3.6

Table 4.2: Average implementation of existing FHE schemes in seconds

protocol than in the implementation of GKS-FHE in Table 4.1, all other algorithms run

more quickly in GKS-FHE. In particular, multiplication takes place in 0.026 seconds in

GKS-FHE with a 128-bit prime modulus compared to 0.853 seconds in ML Confidential,

and addition takes places in 0.0001 seconds. Key generation is typically run only once per

protocol, while addition and multiplication may need to be run many times.

Halevi and Shoup’s HElib [59], associated with IBM Research, implements the BGV lev-

eled fully homomorphic encryption scheme [11] with the Smart-Vercauteren SIMD ciphertext

packing techniques [60] and additional Gentry-Halevi-Smart optimizations [31]. Authors

provide preliminary multiplication times ranging from 25.7 seconds to 473 seconds based

on varying sizes of key generation parameters [38]. A March 2018 update to the project’s

GitHub repository claims forthcoming speedups, which make implementation 15 to 75 times
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faster.

The implementation times for HElib displayed in Table 4.2 are from an implementation

of HElib speed experiments carried out by Khedr et al. in 2015 [41]. The authors in

this work also propose an improvement on the Gentry-Sahai-Waters (GSW) scheme [32]

within a framework they title Secure Homomorphic Implementation of Encrypted Data-

Classifiers (SHIELD). The authors’ reported implementation speed data for this scheme

is also presented in Table 4.2. These experiments were run on a CPU with 4 cores, 8

threads, and 32 GB of memory. Compared to both of these schemes, GKS encryption

performs encryption, decryption, homomorphic addition, and homomorphic multiplication

significantly faster. Key generation in SHIELD is faster than in GKS, but significantly slower

in HElib. As mentioned before, key generation is performed only once, and fast homomorphic

addition and multiplication times are key to avoiding computational bottlenecks in real-world

applications.

The most recent version of Microsoft’s Simple Encrypted Arithmetic Library (SEAL)

[43] implements the “FullRNS” variant [4] of the Fan-Vercauteren somewhat homomorphic

scheme [25]. Microsoft reports that encoding and encryption of 4096 25 × 25 pixel gray

scale images within a single ciphertext occurs in an average of 44.5 seconds, and decryp-

tion of these ciphertexts occurs in 3 seconds [33]. This setting is not directly comparable

to the experiments on GKS-FHE outlined in table 4.1. Another application of SEAL re-

ports computation time in SEAL as 0.002 milliseconds for homomorphic addition and 1.514

milliseconds for homomorphic multiplication [3]. Again, this scenario is not directly compa-

rable to the results provided in Table 4.1, as their experimental setup implemented Microsoft

Azure’s powerful data centers. Specifically, they ran their tests on Azure’s H16 instances

with 16-core 3.6 GHz processors with 112 GB of memory.

The utility of GKS can be seen in the computational complexity of the multiplication

operation. Homomorphic multiplication in GKS corresponds to polynomial multiplication.
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Other ring-based schemes that include noise growth, such as FV [25] and SEAL [43], require

both a multiplication step and a “relinearization” step. While the multiplication step in

schemes of this form may at best correspond to polynomial multiplication, the relinearization

step adds additional complexity to the homomorphic multiplication operations.

4.8 Conclusion

All in all, the GKS fully homomorphic encryption scheme can be implemented efficiently for

operations over real-world data. Computation speeds for key generation, encryption, decryp-

tion, addition, and multiplication are competitive with the state-of-the-art implementations

of public-key FHE. The lack of noise during homomorphic operations in the GKS scheme

marks an advantage over leveled and somewhat homomorphic schemes.

Furthermore, SIMD may be implemented in GKS for parallelization of computation. Up

to 2n distinct values may be packed within a single GKS plaintext in a ring with n generators

while preserving homomorphic addition and multiplication operations. Real values and

floating point values are able to be encoded within the scheme.



Chapter 5

Privacy-Preserving Naive Bayes

Classification

A well-known machine learning classifier is Naive Bayes, a model which classifies a new data

point using probabilities computed during a training phase. Naive Bayes earns its “naive”

title due to the strong independence assumptions it makes between the features of the data.

This assumption yields a transparent and understandable method for classification which

often outperforms more sophisticated methods [39]. Similarly, when diagnosing a patient,

clinicians try to define conditionally independent attributes which could be indicative of a

disease [40]. Naive Bayes has outperformed more sophisticated methods and state-of-the-art

diagnosis systems on 5 out of 8 real-life medical data sets, including localization of a primary

tumor, prediction of recurrence of breast cancer, and rheumatological diagnosis [42], as well

as in applications predicting heart disease [40].

Naive Bayes is based on Bayes Theorem. Given a set of classes G to which a sample X

could be assigned, Bayes Theorem states that

Pr(G = Gi|X) = Pr(X|G = Gi) Pr(G = Gi)
Pr(X) .

67
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In this formula, Pr(G = Gi|X) represents the posterior probability of a class given an at-

tribute, whereas Pr(X|G = Gi) is the likelihood of an attribute given a class. Thus the

posterior probability is computed using prior knowledge and observed data.

The Naive Bayes model assumes that the features of the data points are conditionally

independent in each class. For a class G = Gi and a feature space of dimension d with

X = (X1, . . . , Xd), the Naive Bayes model assumes that

P (X|G = Gi) =
d∏
j=1

P (Xj|G = Gi). (5.1)

This does not often hold in the real world, hence the “naive” title.

Despite this, Naive Bayes is able to provide fast results which are often better than

more sophisticated methods when the dimension of the feature space is large. In these

situations, assuming that the features of the space are independent can help avoid clumsy

density estimations. The Naive Bayes classifier does not consider correlation among features,

thus lowering the variance while increasing the bias and hence avoiding over fitting on the

training set. Due to this, it has become a benchmark used by the community in data analysis.

Furthermore, when diagnosing a patient, clinicians try to define conditionally independent

attributes which could be indicative of a disease [40]. Naive Bayes has outperformed more

sophisticated methods and state-of-the-art diagnosis systems on 5 out of 8 real-life medical

data sets, including localization of a primary tumor, prediction of recurrence of breast cancer,

and rheumatological diagnosis [42], as well as in applications predicting heart disease [40].
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5.1 Naive Bayes Classification

The classification of a vector X is given simply by taking the maximum posterior probability

over all classes and applying Bayes’ Theorem.

Ĝ = argmax
Gi∈G

Pr(G = Gi|X)

= argmax
Gi∈G

Pr(X|G = Gi) Pr(G = Gi)
Pr(X)

= argmax
Gi∈G

Pr(X|G = Gi) Pr(G = Gi)

= argmax
Gi∈G

Pr(G = Gi)
d∏
j=1

Pr(X = Xj|G = Gi).

Note that the denominator term Pr(X) can be removed because X is fixed, while the last

step follows from the independence assumption in equation 5.1.

Commonly, in medical applications each attribute Xj of a vector X can take on only a

discrete set of values. Then, all of the information needed to classify an arbitrary data point

can be succinctly represented in a collection of vectors and matrices. This representation

will enable us to collect all data needed in order to perform a classification. The ease with

which all this data can be represented will be of great use in the protocol which follows. Let

P = (Pi) be a vector where

Pi = Pr(G = Gi)

and let T be a matrix where the (i, j)th entry Ti,j is equal to

Ti,j = Pr(Xj|G = Gi).

Given tables P and T , any new data point can be classified by looking up the probability

for each attribute given each class and computing the argmax of the resulting values.
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The Model Owner creates a

learned model using Naive Bayes.

The Model Owner encrypts her

learned model using a fully homomor-

phic private key encryption scheme.

The Model Owner publishes her en-

crypted Naive Bayes learned model.

The Client calculates his (encrypted) class

probabilities using his private data point.

The Client determines his final classification

using a privacy-preserving argmax protocol.

Figure 5.1: Private Naive Bayes Classification

Bost et al. implement private Naive

Bayes classification between a Client and a

Service Provider [6]. The Client has a single

data vector X which he would like to keep

private. The service provider owns a private

model w which she would like to keep pri-

vate. Given a classification algorithm C the

client should be able to learn C(X,w), the

classification of his vectorX using the model

w, without learning any partial information

about the model or giving away any infor-

mation about his input.

Let pkQ, skQ denote a public and secret

key pair in the QR scheme and pkP , skP denote the same in Paillier. Let square brackets JaKP

denote the encryption of a value a under Paillier. The security of these schemes provides

semantic security for the authors’ protocols, and an honest-but-curious adversary model is

used.

Assume each vector X has d features, each of which can take on a finite number of

possible values, and that there are c possible classes. The authors’ protocol runs as follows:

1: The Service Provider encrypts the tables P and T using Paillier.

2: The Server sends the encrypted tables to the Client.

3: The Client computes JpiKP = JPiKP
∏d
j=1JTi,j(Xj)KP for i = 1, . . . , c.

4: The Client uses the server to compute i = argmaxipi.

5: Client outputs i.

Note that Step 3 of the above protocol requires the encryption scheme which is multiplica-

tively homomorphic. To get around this requirement, Bost et al. implement the model using
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the logarithm of the probability distributions, where pi = log(Pr(G = Gi|X)). Therefore,

the posterior probabilities in Step 3 are computed using Paillier’s additively homomorphic

property. Computing the argmax in Step 4 requires an additively homomorphic scheme.

Bost et al. use Paillier and QR, combined with an algorithm for changing the encryption

scheme, in order to compute the argmax. In the next section, we describe our adapted

version of the protocol which performs classification using a single encryption scheme.

5.2 Proposed Method for Fully Homomorphic Naive

Bayes Classification

The protocol presented below varies in several important ways from the previous protocol.

Use of a fully homomorphic scheme adds flexibility to the computation by allowing the pos-

terior probabilities to be computed using homomorphic multiplication or in the logarithmic

model using homomorphic addition. Furthermore, the presented model assumes direct com-

munication between the Model Owner and the Client. In other words, there is not a trusted

server acting as intermediary between the parties. The protocol could easily be adapted to

include a Server to carry out computations, if desired.

The protocol is designed as follows. Assume that a Client wishes to classify his vector X

which contains d features based off of a learned model w owned by the Model Owner. The

group of classes G contains c distinct classes, G1, . . . , Gc. During this protocol the Model

Owner should learn no unnecessary information about the input provided by the Client, and

the Client should learn nothing but the predicted class index of X.

There is a certain amount of information which the Clientmust know in order to carry out

the protocol. Namely, the Client must know that the data vector X has d features and that

there are exactly c classes. However, he should not be able to deduce any information about

the conditional class probabilities associated with the d features or the c class probabilities.
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Because the Model Owner has already computed a learned model, she prepares two

tables. First, the Model Owner prepares table P represented as a column vector of degree

c where Pi = Pr(G = Gi), the prior probability on class Gi. Next she prepares a table T ,

where entry Tij represents Pr(Xj|G = Gi). The protocol is given in Algorithm 6.

Algorithm 6 Fully Homomorphic Private Naive Bayes Classifier

Client Input: A data point X.

Model Owner Input: A learned Naive Bayes model with tables P and T of prior class

probabilities and likelihoods, respectively.

Client Output: Classification of the data point X under the Model Owner’s model.

1: The Model Owner prepares the tables P and T and sends their encryption, JP K and JT K,

to the Client.

2: For each class Gi for i from 1 to c, the Client is able to compute

JPr(Gi|X)K = JPr(Gi)K ·
d∏
j=1

JPr(Xj|Gi)K

= JPiK ·
d∏
j=1

JTijK

= JPi ·
d∏
j=1

TijK.

3: The Client computes

i = argmax
1≤i≤c

JPr(Gi|X)K

using the private argmax protocol described below in Algorithm 8.

If the model was designed using logarithms of the probabilities, then the multiplication

operations in Step 2 should be replaced with addition.

There are two parties to consider when discussing the security of this protocol: the privacy
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of the Client’s information as well as the privacy of the Model Owner’s learned model.

The privacy of the learned model is derived entirely from the security of the encryption

scheme used. Discussion of the privacy of the Data Owner’s information, however, requires

knowledge of the argmax protocol called in Step 3. This argmax protocol is outlined in

Section 5.2.1, and the overall security of the protocol is discussed in Section 5.3.

5.2.1 Privacy-Preserving Argmax Protocol

Attempts at the argmax protocol that contain security leaks are first described in order to

build intuition for working up to a secure framework. Denote Ei = JPr(Gi|X)K, and the set

of all Ei as E .

First, suppose the Client sends the set of encrypted probability values E to the Model

Owner. Then, the Model Owner decrypts each value and sends the Client the index of the

highest value using asymmetric encryption. While the Client has learned nothing about the

model, in this scenario the Model Owner learns not only which class the Client’s data point

belongs to but also the exact probabilities for each class.

Suppose instead that the Client performs a permutation π on the class probabilities, then

sends π(E) to the Model Owner. Then, the Model Owner decrypts the values, determines

which is largest, and sends that index to the Client, who reverses the permutation to de-

termine his class. It is not necessary to hide the value of the index sent to the Client from

any eavesdroppers in this scenario, as the permutation π randomizes the indexes. However,

while this method prevents the Model Owner from determining trivially which probability

is associated with each class, it does not prevent her from learning the class probabilities

themselves.

Another naive attempt at argmax is considered before presenting the secure protocol.

Algorithm 7 breaks down the computation of argmax into a series of comparisons.
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Algorithm 7 A naive attempt at private argmax

Client Input: A set of indexes I = {1, 2, . . . , c}, a family of additively homomorphic

monotone functions F , and a set of c values encrypted under the Model Owner’s private

key.

Client Output: The argmax of the input values, or index of the largest of the c input

encrypted values.

1: Set I = {1, 2, . . . c}.

2: while |I| > 1 do

3: The Client computes a random permutation π on I.

4: The Client computes E∗ = Eπ(1)−Eπ(2). Because the encryption scheme is additively

homomorphic,

Eπ(1) − Eπ(2) = JPπ(1) − Pπ(2)K.

5: The Client sends E∗ to the Model Owner.

6: The Model Owner decrypts E∗ and recovers

p = Pπ(1) − Pπ(2)

= Pr(Gπ(1)|X)− Pr(Gπ(2)|X).

If this value is negative, the Model Owner sends the bit b = 0 to the Client, otherwise

send b = 1.

7: If b = 0, the Client removes π(1) from I. Otherwise he removes π(2).

8: end while

9: The Client returns I.
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Because the value computed by the Client is random, the bit 0 or 1 will appear random

to any observer. However, the Model Owner recovers some partial information about the

Client’s data. Namely, she recovers a collection of c − 1 values representing the difference

between pairs of the posterior probabilities for different i ∈ {1, 2, . . . , c}. While the permu-

tation keeps the Model Owner from knowing which pairs of elements correspond to which

values, it is not outside the realm of possibility that an attack on the Client’s private data

could be carried out by her using this information.

The following problem remains: The Client needs to compare two values encrypted under

the Model Owner’s private key. Previous approaches to this problem focus on public-key

encryption, where the Client can mask his value with random noise encrypted under the

Model Owner’s public key. However, this approach will not work with private-key encryption

because there is no way for the Client to encrypt random noise.

The proposed method for comparison in the private-key setting uses the fully homomor-

phic properties of the encryption scheme. Using the homomorphic properties of encryption,

a family F of additively homomorphic, monotone functions that commute with encryption

is constructed. These functions are used to randomize the values sent to the Model Owner.

Say that a function f : R→ R commutes with encryption if

f (JmK) = Jf(m)K.

Furthermore, the additively homomorphic property of f guarantees that f(m+n) = f(m)+

f(n).

The outline of the protocol that uses additively homomorphic encryption and a mono-

tone function to return the argmax is given in Algorithm 8. Possible families of additively

homomorphic monotone functions that can be used with the GKS encryption system are

then discussed in Section 5.4.
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Algorithm 8 Privacy-preserving argmax

Client Input: A set of indexes I = {1, 2, . . . , c}, a family of additively homomorphic

monotone functions F , and a set of c values encrypted under the Model Owner’s private

key.

Client Output: The argmax of the input values, or index of the largest of the c input

encrypted values.

1: while |I| > 1 do

2: The Client computes a random permutation π on I.

3: The Client randomly chooses f ← F and computes the values f
(
Eπ(1)

)
and f

(
Eπ(2)

)
.

4: The Client uses the additive homomorphic properties of the encryption scheme and

f as well as the commutative property of the function to evaluate

E∗ = f
(
Eπ(1)

)
− f

(
Eπ(2)

)
= f

(
JPπ(1)K

)
− f

(
JPπ(2)K

)
= Jf(Pπ(1) − Pπ(2))K

5: The Client sends E∗ to the Model Owner.

6: The Model Owner decrypts E∗ and recovers

f(Pπ(1) − Pπ(2))

If this value is negative, the Model Owner sends the bit b = 0 to the Client, otherwise

send b = 1.

7: If b = 0, the Client removes π(1) from I. Otherwise the Client removes π(2).

8: end while

9: The Client returns I.
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During this protocol, the Model Owner collects c values representing the result of a mono-

tone function applied to the difference between random pairs of the posterior probabilities.

The application of an unknown monotone function to this difference prevents the Model

Owner from learning partial information about the Client’s values.

5.3 Security

The proposed protocol is secure in the honest-but-curious setting. In this setting, all parties

are assumed to take part in the protocol honestly. However, they will use any information

they can obtain during an honest execution of the protocol in order to attempt to deduce

further information. In this model, parties should not be able to learn any information

beyond their protocol output.

During protocol execution, the Client only has access to encrypted values. The private

argmax protocol allows the Client to determine which encrypted value is the largest out of

a set of values, but does not give him access to the actual values. Therefore, the security

of the Model Owner’s data is reliant upon the security of the fully homomorphic encryption

scheme that is implemented. The GKS scheme is secure against ciphertext-only attack [36].

The only information the Model Owner receives during protocol execution is obtained

during the private argmax protocol. The Model Owner receives the value

f(Pπ(1) − Pπ(2))

during each elimination round of the argmax protocol. Because of the permutation π, she

does not know which posterior probabilities are being compared, or, in the case of binary

classification, in what order they are being compared. Furthermore, the function f , selected

from a family F of additively homomorphic, monotone functions that commute with encryp-
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tion, hides the exact value of the difference between the randomized posterior probabilities.

Therefore, at the end of protocol execution, the Model Owner is unable to determine any

ordering on the posterior probabilities the Client has computed, and cannot determine his

final classification.

5.4 Implementation

The proposed protocol was run using the GKS encryption scheme, where coefficients in Zp

were taken from (−p/2, p/2] and correspond to positive and negative integers, and

F = {f : R→ R : f(m) = km}

for a randomly chosen integer k up to 20 bits. Implementation used a 198-bit prime p.

Experiments were implemented in C++ on a Mac Book Pro using El Capitan, a 2.3 GHz

Intel Core i7, with 16 GB memory. The GNU Multiple Precision Library (GMP) [62] was

implemented to allow for integer storage above the built-in data type limits in C++. An

implementation of the Naive Bayes algorithm created a learned model. This learned model

was encrypted using the GKS Encryption Scheme. Then both encrypted and unencrypted

classification of data points, not included in the training set, was carried out. Section 5.5

describes the results of these experiments.

5.5 Evaluation

Data from the UCI Machine Learning Repository was used to test the performance of the

protocols [45]. Specifically, the Breast Cancer Wisconsin (Original) Data Set was used, which

contains 683 complete data points each containing an ID along with 9 attributes and a binary

classification.
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Accuracy Sensitivity Specificity Precision NPV F1-score
Mean 0.96007 0.93398 0.97414 0.95299 0.96546 0.94224

Stand. Dev. 0.02077 0.04861 0.02439 0.04255 0.02469 0.03026

Table 5.1: Naive Bayes Classification Results

The data gives measurements taken from fine-needle aspirate (FNA) biopsies of benign

and malignant breast tumors. These nine attributes include clump thickness, uniformity of

cell size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei,

bland chromatin, normal nucleoli, and mitoses. Each of these attributes was measured by a

clinician on a scale of 1 to 10 at the time it was collected, with lower values corresponding to

what you would expect to see in a benign case and higher values corresponding to what you

would expect in a malignant case. Previous research has found that while each measurement

holds clinical significance in diagnosing a breast tumor as benign or as malignant, a single

attribute is not enough to distinguish between the two cases [67].

A Naive Bayes algorithm was implemented to create a learned model which was then

encrypted using the GKS Encryption Scheme. Experiments evaluated the performance of the

model using 10 by 10-fold cross validation. Furthermore, because the data set is unbalanced

with a higher proportion of benign tumors, random oversampling of malignant tumors was

implemented while training the models. A positive case denotes a case where the tumor is

diagnosed as malignant and a negative case refers to a tumor which is benign.

Additive smoothing on the values in the tables of class and prior probabilities was im-

plemented during both encrypted and unencrypted testing to prevent error in the case of

zero or near zero probabilities. Specifically, each probability was increased by 0.1, and any

value which was greater than or equal to 1 after smoothing was reset to 0.999. The size of

the ciphertext ring in the experiments was 28 + 50 = 306, and the prime modulus p was 198

bits.

Classification was tested on data points not included in the training set in both encrypted
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Mean Time
Unencrypted 0.00001
Encrypted 0.40298

Table 5.2: Mean Classification Time, In Seconds

and unencrypted formats. Tables 5.1 and 5.2 show a comparison of the average performance

of the encrypted and unencrypted experiments under 10 by 10-fold cross validation. Results

include classification time for a single data point in seconds, accuracy, sensitivity, specificity,

precision, negative predictive value (NPV), and the F1 score. The model in the experiments

was trained with five decimal points precision, and the unencrypted experimental results

were obtained with five decimal points precision. In the encrypted experiments all values

were initially encrypted with three decimal points precision. No change occurred in the

reported statistics due to this change in decimal precision.

In the case of breast cancer specifically it is crucial to positively identify all malignant

tumors for timely medical intervention. The results yield high precision and show higher

sensitivity, meaning there is a low rate of false positives and an even lower rate of false

negatives. Specificity describes the proportion of negative cases which were classified as

negative and NPV describes the proportion of cases classified as negative which were negative

in reality. The results show both high Specificity and high NPV, pointing to a high rate

of true negatives and a low rate of false negatives. The experiments also yielded a high F1

score, which takes into account both the precision and the recall of the classifier.

5.6 Discussion

The proposed method performs classification in an average of 0.40298 seconds, compared to

0.479 seconds per classification in the experiments of Bost et al. [6]. Private classification

methods for more sophisticated classifiers are even more time consuming. Wu et al. perform
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private decision tree classification on a tree with 12 decision nodes in approximately 0.545

seconds [68]. Bost et al. report average decision tree classification times on a 4 node tree in

approximately 2.085 seconds [6]. Rahulamathavan et al. perform private SVM classification

on the same breast cancer data set in an average of 7.71 seconds [54].

The time increase between encrypted and unencrypted computation is expected and

occurs in all current fully homomorphic encryption methods. For the example provided

above, where a single user wishes to classify their data, classification in under half a second

is within a reasonable time range for medical applications.

5.6.1 Computational Bottlenecks

The computational bottleneck within fully homomorphic encryption schemes occurs during

homomorphic multiplication operations. Chapter 4 provides results which show that the

GKS scheme is relatively efficient at performing fully homomorphic multiplication operations.

The amount of time a clinician may expect this protocol to take will depend upon the

number of classes and the number of features within the data set being analyzed, as this

determines the number of homomorphic multiplication operations which must be performed.

Consider a data set with d features and c classes. For each data point classification, a total

of (d + 1) homomorphic multiplication operations must be performed in order to calculate

the posterior probability, calculated as

JPr(Gi|X)K = JPr(Gi)K ·
d∏
j=1

JPr(Xj|Gi)K

for each of c classes. This results in a total of c(d+ 1) multiplication operations per classifi-

cation.

Communication can also pose a bottleneck to computation, depending on the speed of the

connection between the Client and Model Owner. The argmax protocol presented requires
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that the Model Owner communicates with the Client a total of c − 1 times, and that the

Client communicates with the Model Owner a total of c − 1 times. In the common case of

binary classification, this is only one communication from Model Owner to Client and vice

versa.

5.6.2 Comparison to Other Classifiers

Naive Bayes often outperforms more sophisticated classification methods for medical diag-

nosis. Examples include prediction of heart disease [40] and rheumatological diagnosis [42].

Classification on the Wisconsin breast cancer data set using decision trees, support vector

machine (SVM), k-nearest neighbors, and logistic regression classification were implemented

in Python 3 under 10-fold cross validation for comparison of classifier performance [39].

Decision trees were limited to a maximum depth of 5, a minimum of 3 samples per split,

and a minimum of 3 samples per leaf. Gini impurity was used to measure the quality of the

split during training. Privacy-preserving decision tree classification is discussed in Chapter

7. Support vector machine (SVM) was implemented with a linear kernel. The k-nearest

neighbors classifier was implemented using the ball tree algorithm with 5 neighbors, a leaf

size of 30, and uniformly weighted points, using the Euclidean distance measure. The logistic

regression model was built using the LIBLINEAR algorithm for optimization of the learning

function [44].

Performance of the classifiers is given in Table 5.3. The highest score for each metric

highlighted in red. Naive Bayes provided the best performance for the negative predicted

value. While other classifiers outperform Naive Bayes on the other metrics, Naive Bayes

remains competitive, especially when the relative speed of privacy-preserving Naive Bayes is

considered.
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Accuracy Sensitivity Specificity Precision NPV
Naive Bayes 0.96003 0.93389 0.97410 0.95100 0.96476
Decision Tree 0.96628 0.96171 0.97500 0.98699 0.93487
Linear SVM 0.97069 0.96843 0.97500 0.98651 0.94500

k-Nearest Neighbors 0.97065 0.96838 0.97482 0.98646 0.94544
Logistic regression 0.96920 0.97298 0.96232 0.98017 0.95276

Table 5.3: Comparison to other machine learning classifiers, with the highest score for each
metric in red

5.7 Conclusions

This first experiment suggests that private-key fully homomorphic encryption can classify

medical data efficiently. Similar techniques could enable researchers and clinicians to utilize

private medical data and models which they cannot access in the clear. Hospitals and

companies with trained assisted diagnosis systems could use this technology to provide access

to their models without giving away their parameters, and doctors can use this software

without revealing their patient’s information. Medical researchers can use these methods to

determine whether their models are over fit to their own data sets.

In the next chapter, a protocol for third-party private search is introduced. This protocol

is implemented in Chapter 7 for classification via decision trees, further showing the utility

of private-key FHE for classifying medical data.



Chapter 6

Third Party Private Search via Fully

Homomorphic Encryption

6.1 Introduction

Private search describes a variety of multi-party protocols which involve the querying of

encrypted or otherwise privatized data. Private search models follow multiple paradigms.

Data outsourcing describes the model where a data owner would like to store their database

on a server in encrypted form, and wants to search it later themselves. This model does

not seek to hide the database contents from the querying party. In the data sharing model,

also known as Privacy-Preserving Sharing of Sensitive Information (PPSSI) [19], Secure

Anonymous Database Search (SADS) [55] and Private Information Retrieval (PIR) [15], a

data owner would like to allow a client to search their database without revealing their data.

This model is less common seeks to hide the database contents from the querying party [49].

Different contexts require different query outcomes. For instance, a private search protocol

can return the count of the number of times a value appears in a database, related content

to the query within the database, or a Boolean denoting the presence of a value in the

84



CHAPTER 6. THIRD PARTY PRIVATE SEARCH 85

database. The security guarantee needed in the context will vary based on the participants

in the scenario and the desired outcome of the protocol.

Private search has a variety of real-world applications. The data outsourcing model can

be used by law enforcement for cyber security, allowing an institution to store all sensitive

data in an encrypted form while allowing investigators to query the information [14]. If

this institution is reluctant to divulge the contents of their search, the data sharing model

would enable an investigator to perform a private query on an encrypted database. Similarly,

private search has applications in the realm of medical data, where legal restrictions such

as HIPAA combined with the sensitive identifying nature of the data make data privacy a

priority. For example, private search would enable a medical institution to let an outside

researcher query the medical information database for presence of some feature in order to

determine if they would like to proceed with the time-consuming process of applying to an

institutional review board (IRB) for access to that data. Private search also has application

in private medical information system protocols. An application of private search within a

Decision Tree classifier is provided in the next chapter, Chapter 7.

Raykova et al. implement what they call exact keyword match in the secure anony-

mous database search (SADS) setting. Their research focuses on searching for keywords

within documents. Therefore, their method has a strong focus on feature extraction and

natural language processing in order remove exact match requirements such as capitaliza-

tion restrictions. The method requires the setup of a Bloom filter for each document in the

database, which is built from the encryptions of all words in the document. These Bloom

filters are then used in conjunction with encryption methods in order to perform private key-

word search within the documents. The authors propose a variety of decision function and

feature extraction combination, each of which has varying success at locating all documents

containing a phrase and adaptable false positive and false negative thresholds. Databases

feature extraction time and query time are not discussed explicitly; query time is described
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as efficient.

Pappas et al. implement querying of protected data with partially trusted parties. Their

work focuses on secure document retrieval, and in the process implements an improvement on

the SADS system discussed in the previous paragraph. Their model sacrifices some privacy

for increased efficiency. Specifically, the authors allow partially trusted parties. Angel et

al. use fully homomorphic encryption in the private information retrieval model in order to

allow a Client to download a file from a Server without the Server knowing which file they

downloaded [3].

This chapter describes a method performing the data sharing method of third party

private search with a binary outcome denoting presence of an exact match. In this scenario,

a Database Owner has a private database which a Client wishes to privately query. Two

scenarios are examined. In the first scenario, a third party private search protocol takes

place between a Client and a Data Owner. This model has the advantage of performing more

quickly, and the disadvantage of requiring the Data Owner to store a cleartext database. The

second scenario takes place between a Client and a Server which is storing a Data Owner’s

encrypted database. While this protocol is less time-efficient, it has the sometimes necessary

advantage of storing the data only in encrypted form. The desired outcome in both models

is a Boolean value denoting presence (or lack of presence) of the queried value within the

database.

With higher security guarantees, a tradeoff between security and efficiency is often un-

avoidable [55]. Security relaxations are appropriate in some settings such as secure keyword

search within a database of documents discussed in the papers referenced above, but these

relaxations may not be appropriate when working with medical data due to the high level of

privacy required. The protocol proposed in this chapter does not implement any relaxation

of security requirements.
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Stronger security requirements lead to a higher implementation time than methods with

relaxed security requirements. However, implementations show that this scheme can be

implemented in an efficient manner for many applications. Specifically, security requirements

are kept strong due to potential applications in computational medicine, such as the work

in Chapter 7.

6.2 Model

In the unencrypted setting, the Database Owner does not learn the Client’s value. This

setting is seen in Figure 6.1. A Client privately queries a database held by the Model

Owner, who privately provides a query response. The Client does not learn anything about

the contents of the database other than whether or not his value is contained within it.

The encrypted setting is the same as above, with the additional restriction that the Server

does not learn the querying party’s value or any unnecessary information about the Data

Owner’s information. This setting is seen in Figure 6.2. The Server can learn the number

of values within the database by observing the number of ciphertexts. The Data Owner can

hide the number of values in their database by randomly including different values. Instead of

learning the exact number of values in the database the Server learns the maximum number

of values which may be contained in the database.
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Figure 6.1: Third-Party Private Search

Figure 6.2: Third-Party Private Search via a Server
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Figure 6.3: Secure Modular Reduction

6.3 Building Blocks

The presented third-party private search protocol implements a number of cryptographic

techniques in order to carry out its operations. The TPPS protocol implements fully homo-

morphic encryption and secure modular reduction during execution. As FHE was detailed

in Chapter 2, this section begins by describing a secure modular reduction and finish by

defining the proposed TPPS protocol.

6.3.1 Secure Modular Reduction (SMR)

Secure modular reduction describes a class of algorithms which allow for secure evaluation

of modular reduction between two parties, one of whom possesses the modulus while the

other possesses an input value reduced. The security requirements vary based upon the

application. In the proposed protocol, secure modular reduction is implemented with both

a private modulus and a private input value.

Figure 6.3 illustrates the SMR protocol implemented within the proposed TPPS. Specif-
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ically, the Client provides a modulus M and the Server provides an input X. The Client

receives X (mod M) without learning the value of X or revealing the value of M to the

Sender.

6.4 Third Party Private Search (TPPS) Protocol

The first version of the proposed protocol is implemented between the Client and the

Database Owner directly. Let D be a database with entries of at maximum q1 bits. Let

q2 be an integer such that q2 > q1. The specifics of parameter selection for q1 and q2 are

discussed further in Section 6.9.

Algorithm 9 Third Party Private Search

Client Input: A q1-bit integer x.

Database Owner Input: The database D, with entries of size at most q1 bits each.

Client Output: A Boolean b, where b = 1 if x ∈ D.

1: The Client randomly selects a q2-bit integer r and sends x = x + r to the Database

Owner.

2: The Database Owner computes

y =
∏
d∈D

(x− d).

3: The Client and Database Owner perform Secure Modular Reduction to return

y = y (mod r)

to the Client. If y = 0, output 1; otherwise output 0.

Correct evaluation occurs with some probability depending on the parameters q1 and

q2. The correctness of the above protocol is discussed in Section 6.6, and suggestions for
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parameter selection are presented in Section 6.9.

6.5 TPPS Over Encrypted Data

With the rise of cloud computing it is increasingly common for databases to be stored on

a Server. With sensitive data such as medical data the values will first be encrypted, then

stored. By using fully homomorphic encryption the Server can both store and perform oper-

ations over sensitive data. The next version of the proposed protocol is implemented between

the Client, the Database Owner, and a Server who handles the bulk of the computational

and storage tasks.
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Algorithm 10 Third Party Private Search Over Encrypted Database

Client Input: A q1-bit integer x.

Server Input: The encrypted database JDK, encrypted under a fully homomorphic

encryption scheme.

Database Owner Input: The private encryption/decryption key, k, for the database D.

Client Output: A Boolean b, where b = 1 if x ∈ D.

1: The Client randomly selects a q2-bit integer r and sends x = x + r to the Database

Owner.

2: The Database Owner encrypts x under her private key and sends JxK to the Server.

3: The Server computes

JyK =
∏
d∈D

(JxK− JdK) =
t∏
d∈D

(x− d)
|

and sends JyK to the Database Owner.

4: The Database Owner decrypts JyK to obtain y.

5: The Client and Database Owner perform Secure Modular Reduction to return

y = y (mod r)

to the Client. If y = 0, output 1; otherwise output 0.
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6.6 Correctness

In the above protocol, if a value is present in the database, then 1 is guaranteed to be

returned. This is because the product

y =
∏
d∈D

(x− d)

=
∏
d∈D

(x+ r − d)

contains the term x + r − x for some d = x ∈ D, and yields rP for some integer value P .

Because of this, rP (mod r) will always yield 1, and the Client will receive a true positive.

On the other hand, it is quite possible for a false positive value to be returned. If x 6∈ D

the product y may still be divisible by r. While requiring r to be a prime could resolve this

issue, it would introduce an unacceptable security flaw. The Database Owner could simply

find the closest prime numbers to the value sent by the Client in order to determine a small

set of candidates for the Client’s original value. Therefore, r is allowed to be uniformly

random, and in Section 6.8, we provide simulation results and suggestions for parameter

sizes to minimize the likelihood of a false positive occurring.

6.7 Security

Security for the proposed protocol is examined in the honest-but-curious model. Because

the goal of the protocol is data sharing, it is necessary that some information will be leaked

during execution of the protocol. Therefore, we discuss security of the protocol as well as

what restrictions must be put in place to avoid too much information being shared. How

much information is “too much” will depend on the setting. In the proposed setting, the

information which is shared with the Client and the Server is the size of the Database. The
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Data Owner should place a limit on the number of queries a single Client is able to execute

based on the maximum number of values contained in the database she wishes for the Client

to be able to receive. On the other hand, the Data Owner does not learn what values the

Client queries for within the database, but does learn the number of queries made by the

Client.

The security of the Client’s original value x is protected by the one-time pad r. Because

r is a uniformly random q2-bit value, the value x+ r will appear random as long as x+ r is

still q2-bits. As q2 � q1, this is a rare scenario that can easily be checked for and avoided

during computation.

In Algorithm 9, the Server maintains access to the encrypted database. The security

of the database therefore depends on the security of the encryption implemented. The

suggested scheme, the GKS scheme [36], is secure against a ciphertext-only attack and hence

satisfies the security requirements of the protocol. In both protocols, the Client never has

direct access to the database in any form. All the Client receives is the value ȳ at the end

of the protocol. The privacy of this value depends on the security of the Secure Modular

Reduction protocol. The SMR protocol suggested in Section 6.8 is secure in the honest-but-

curious model.

6.8 Implementation

Implementation requires selection of SMR and FHE protocols that satisfy the necessary

security requirements. Below we provide an overview of the selected protocols.

6.8.1 Secure Modular Reduction

The selected SMR protocol [65] implements the Paillier cryptosystem [48], a partially ho-

momorphic encryption scheme. Let JcKP denote encryption of a value c under Paillier. This
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scheme satisfies the properties that

• Jc1KP · Jc2KP = Jc1 ⊗ c2KP

• JcKaP = JacKP

for all c1, c2 and a.

In this protocol the Client possesses the private modulus b while the Server has the

private value a. The Server receives a (mod b) without learning the value of b or revealing

the value of a.
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Algorithm 11 Secure Modular Reduction [65]

Client Input: An integer b.

Server Input: An integer a.

Client Output: a mod b.

1: The Client generates the public key, secret key pair for Paillier encryption and shares

the public key with the Server.

2: The Client sends JbKP to the Server.

3: The Server chooses rd $←− (log2 N−1− log2 a) and rm $←− log2 a-bit integers, and computes

JrKP = JbKrd
P · JrmKP = Jrdb+ rmKP . It then sends

JzKP = JaKP · JrKP = Ja+ rKP

to the Client

4: The Client computes z�b = z (mod d) and sends Jz�bKP to the Server.

5: The Server computes

Ja�bKP = Jz�bKP · JrmK−1
P = Jz�b− rmKP

and sends to the Client.

6: The Client decrypts to retrieve a�b = a mod b.

6.8.2 Fully Homomorphic Encryption

The FHE scheme implemented within the protocol is the private-key GKS scheme. For more

information on this scheme see Chapter 2.
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6.9 Minimization of Prediction Error

In order to estimate the prediction error of the proposed protocol, a series of Monte Carlo

method based experiments were implemented. The Monte Carlo method is a general term

to describe the use of repeated random sampling in order to solve a problem that may or

may not be deterministic. These experiments repeatedly computed the product

y =
∏
d∈D

(x+ r − d)

for a randomly generated databases D, random q2-bit integers r, and random q1-bit integers

x. Observe that this corresponds to the product computed by the database owner in Algo-

rithms 9 and 10. In these protocols, if y (mod r) = 0, then the protocol outputs 1, telling

the Client that his value is contained in the database. The Monte Carlo experiments return 1

if y (mod r) = 0 and return 0 otherwise. These responses are counted as true positives, true

negatives, false positives, or false negatives based on whether or not x ∈ D. For instance, if

x 6∈ D but y (mod r) = 0, the response is counted as a false positive.

Each experiment consisted of 200, 000 queries given a fixed q1 and q2 for a database

containing 10 values. A method for extension to larger databases is presented in Section

6.10.

Let Q1 denote the set of all q1-bit numbers. In each iteration of the experiment two

values are randomly generated: a q1-bit number, b, and a q2-bit value, r. The first 100, 000

iterations randomly generate the values a1, . . . , an from the set Q1 r {b}, the set of all q1

bit numbers not containing b. The second 100, 000 iterations assign a1 = b and randomly

generate a2, a3, . . . , an fromQ1. These restrictions are imposed in order to ensure that exactly

half of the data should yield a positive classification and half a negative classification for an

evenly distributed data set. The experiment was run for values 2 ≤ q1 ≤ 17, 3 < q2 ≤ 50,

and n = 10. This fixed size for n was chosen with the use of the large database extension
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Figure 6.4: The observed fallout for n = 10.

method of Section 6.10 in mind. The full table of results from the Monte Carlo experiments

are available in Appendix A.

Figure 6.4 shows a series of results of this experiment for a selection of values of q1. The

x-axis on each plot represents value of q2, while the y-axis denotes the resulting fallout from

the Monte Carlo experiments. Recall that fallout is defined as

fallout = # false positives
# false positives + # true negatives .

The proposed method has no false negatives, meaning its true positive rate is 100%. In order

to avoid false positives, the value of the fallout must be minimized.
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There are two methods of approaching selection of q2 given q1. The first method is to

take a large value for q2; however, depending on computational restraints, this could lead

to expensive operations. Therefore, a smaller value may be taken for q2 and the experiment

repeated the requisite number of times in order to minimize the fallout to below the desired

threshold.

6.10 Large Database Extension

When a database is large, the value of the products computed in Algorithms 9 and 10 could

be come prohibitively large. The following extension protocol is proposed for databases with

a large number of entries.

6.10.1 Unencrypted Model

In the unencrypted model, a large database with n elements is handled by splitting it into

k distinct sub-databases, each containing up to m elements from the original database.
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Algorithm 12 Third-Party Private Search on Large Database

Client Input: A value x.

Database Owner Input: A database D with n entries, an integer parameter m.

Client Output: A Boolean b, where b = 1 if x ∈ D.

1: The Database Owner randomly shuffles her database and splits it into k distinct sub-

databases D1 through Dk, each containing (up to) m entries.

2: The Client randomly selects a q2-bit integer r and sends x = x + r to the Database

Owner.

3: for i from 1 to k do

4: The Database Owner computes yi = ∏
d∈Dk

(x− d).

5: end for

6: for i from 1 to k do

7: The Client and Database Owner perform Secure Modular Reduction to return yi = y

(mod r) to the Client. If yi = 0, set bi = 1; otherwise set bi = 0.

8: end for

9: Client outputs b = ∑k
i=1 bi.

Note that the first for loop in lines 3–5 contains instructions carried out only by the

Database Owner. The second for loop in lines 6–8 calls a sub-protocol which requires

communication between the Database Owner and the Client. The computation carried

out up to that second for loop is analogous to the computation carried out in the original

protocol, albeit with smaller integer values due to the smaller number of multiplication

operations performed. Extra time required by this protocol will occur during the required

communication for Secure Modular Reduction. However, implementing the protocol in this

model allows for implementation with large databases, a clear advantage.



CHAPTER 6. THIRD PARTY PRIVATE SEARCH 101

6.10.2 Encrypted Model

In the encrypted setting, where private search is performed over an encrypted database,

the method of model extension is almost the same as the unencrypted case. However, the

structure of the encrypted data can be used advantageously via Single-Instruction Multiple

Data (SIMD) instructions. Specifically, under the default parameters of the GKS encryption

scheme with n = 5, a maximum of 2n = 32 values may be simultaneously encoded and

encrypted in a single ciphertext.

Assume a Database Owner has a database containing n elements. During encryption of

the database the Database Owner encrypts the maximum number of values within a single

data point that SIMD allows. Say there are n′ resulting ciphertexts. The Server stores these

n′ values in ciphertext form. During execution of the extended protocol, the Server randomly

splits these n′ values into subsets via the extension method above.

The number of calls to the Secure Modular Reduction protocol is not reduced, and must

be performed for each sub-database as well as each SIMD slot. The described method pro-

vides a great boost in computation speed due to the SIMD slots as homomorphic multiplica-

tion is an expensive operation. With the default parameters of the GKS scheme containing

32 slots, the number of homomorphic multiplication operations required to be performed is

divided by 32.

6.11 Evaluation

Tests were performed to determine the performance of the proposed protocol given varying

sizes of databases in both the encrypted and unencrypted setting. Experiments were run on

a MacBook Pro with a 2.3 GHz processor and 16 GB memory. Table 6.1 shows the execution

time of the private search extension protocol. Results are given for a wide range of database

sizes, with the time in seconds for execution in the encrypted and the unencrypted settings.
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Dataset Size 160 320 640 960 1280 1600

Time (s)
Unenc. 0.016 0.031 0.063 0.098 0.128 0.170
Enc. 0.290 0.454 0.821 1.203 1.645 1.958

Dataset Size 2560 5120 7680 10240 12800 15360

Time (s)
Unenc. 0.248 0.789 0.994 1.023 1.268 1.554
Enc. 3.184 6.150 9.332 12.400 15.401 18.629

Table 6.1: Execution Time, Private Search Extension
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Figure 6.5: Execution Time, Private Search Extension

Figure 6.5 provides a visual comparison of encrypted versus unencrypted computation

times. As expected, the time taken per protocol is linear with respect to the size of the

database. Speeds in the unencrypted model took place in below half a second for small

database sizes, and below two seconds for databases with 15, 360 elements. Computation in

the encrypted model was more computationally intensive and performed in under 1 second

for small database sizes, and under 20 seconds for large databases. All experiments resulted

in a 100% true negative rate and false negative rate, meaning there were no false positives for

false negatives. This is of great importance for medical applications, where a false positive

can result in a misdiagnosis and a false negative could result in a crucially missed diagnosis.
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6.12 Discussion

6.12.1 Computational Bottlenecks

Computation time of Algorithm 12 is determined by a number of factors. In particular, a

major computational bottleneck will be homomorphic multiplication operations and com-

munication costs.

Consider a database D with n entries in the unencrypted model. Say this database is

split into a collection of smaller databases, each with m entries. Without loss of generality,

consider databases where the size n is a multiple of m, as this will provide an upper bound

on computation. This results in a total of k = n/m sub-databases. In the first for loop in

lines 3− 5, the Database Owner computes the product

yi =
∏
d∈Dk

(x− d),

where each product yi is computed via d multiplication operations. Therefore, the number

of multiplications carried out is bounded by k ·m = n/m ·m = n.

The second for loop in lines 6−8 carries out Secure Modular Reduction k times. During

Secure Modular Reduction, seen in Algorithm 11, the Client communicates with the Server

2 times and the Server communicates with the Client 2 times. This would imply that a total

of 4 · k communications are required during this for loop. However, communication cost can

be dramatically reduced by breaking up the steps along communication.

In particular, a series of k Secure Modular Reductions can be carried out in only 4 total

communications between the Client and Server. The Client first generates a single public

key, private key pair for Paillier, then encrypts all k values which are to be reduced under the

public key. The Client sends all k of these encrypted values to the Server in one message.

The Server then performs Step 3 of Algorithm 11 on all values received, and sends all k
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resulting values to the Client in one message. Steps 4 and 5 proceed similarly, where the

Client and Server perform all k computations locally and send k results simultaneously.

This method does not reduce the local computation required by the Client and the

Server. It does, however, greatly reduce communication costs. All together, TPPS over a

large database in the unencrypted model requires at most n multiplication operations and 5

communications between the Database Owner and the Client.

In the encrypted model, further optimization is possible. In particular, consider an

implementation of SIMD where ` database elements may be encoded simultaneously. Then,

a sub-database containing m ciphertexts will in fact contain as many as m · ` database

elements. Without loss of generality assume there is a database D of size n, where n is

divisible by m ·`, in order to provide an upper bound on multiplication costs. Then, splitting

D into sub-databases each containing m ciphertexts will result in

k = n

m · `

sub-databases. Therefore, homomorphic multiplication is carried out only k ·m = n/` times.

Communication costs can be minimized in the encrypted case in the same way there were

minimized in the unencrypted case. This method requires one communication between the

Database Owner and the Server, and one communication between the Server and Database

Owner. TPPS over a large database in the encrypted model therefore requires n/` homo-

morphic multiplication operations and 7 communications between Database Owner, Client,

and Server.

6.12.2 Comparison

Other research that has focused on private document retrieval is not directly comparable.

Reported times include costly preprocessing of text document databases as well as file trans-
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fer time costs. Raykova et al. provide results on their secure anonymous database search

protocol, which returns a list of documents containing a queried keyword, by listing the

number of document matches found for a variety of query and aggregate search function

configurations [55]. This model presents a variable number of false negatives based upon the

aggregate search function configuration implemented during construction of the documents’

Bloom filters.

Private information retrieval carried out by Angel et al. is evaluated using Microsoft

Azure’s powerful data centers [3]. The PIR servers are equipped with 16-core 3.6 GHz

processors with 112 GB of memory, and the Client’s servers are equipped with 16-core 2.4

GHz processors and 32 GB of memory. The majority of computation occurred on the PIR

server, and the goal of the protocol is to return to the Client the documents matching the

Client’s query.

Pappas et al. also perform experiments on a private database retrieval protocol, where

the Client seeks to download files containing a keyword [49]. They perform queries on a

data set containing 5, 000 keywords. They report the initial query response time, where

the Client receives the set of document IDs containing a queried keyword, as well as the

time for the entire document retrieval protocol. The initial query returning document IDs

containing a keyword occurs as fast as under 50 milliseconds for a database containing 50, 000

keywords. The protocol achieves a hit ratio of approximately 90% for retrieval of document

IDs containing the queried keyword. However, these results do not apply to the goal of

database membership queries explored in this chapter, as a high occurrence of false positives

or false negatives is unacceptable.

Khedr et al. perform what they call secure multiple keyword search [41]. This setting is

similar to the setting explored in this chapter. Specifically, the authors explore the scenario

where a Client wishes to query a text file for the presence of a keyword. The authors provide

timing results for partially secure database search, where the Client’s query is not hidden
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but the database itself is hidden, and later for a fully secure database search, where both

the Client’s query and the database values are hidden, using their proposed FHE scheme as

well as IBM’s HElib [59]. The authors run their experiments on a GPU with 2, 048 CUDA

cores with 4 GB of memory. Files containing 140 words are queried in approximately 10

seconds using the authors’ proposed scheme as a platform within their multiple keyword

search protocol, while queries running via HElib as a platform take over 1, 000 seconds to

query a file of the same size. The results given in Table 6.1 show significant improvement

over this performance.

6.13 Conclusions

This chapter provides results on a third party private search protocol which performs private

membership queries between a Client and Database Owner, with or without an intermediary

Server storing the database in encrypted form. Results show that large databases can be

queried quickly and accurately using the proposed method. Future work could focus on

technical improvements leading to faster performance or extension to a SADS scheme with

a high hit ratio.

This functionality has applications in a variety of fields. A potential application in

the medical field is to allow researchers to privately query a database owned by another

institution. In this scenario, the researchers could query the database to determine if it

contains information of interest to them without the institution learning their query. Email

could be monitored for spam keywords without compromising the privacy of a user’s emails.

Further applications lie in the field of law enforcement, where confidential data could be

stored protected in encrypted format while maintaining the utility to allow investigators to

query the data. For instance, a list of known offenders could be queried for the presence of

a suspect by an investigator who cannot directly access the names of people on the list, all
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without the investigator compromising the privacy of the suspect.

In the next chapter, the presented third party private search protocol is used for classi-

fication of real medical data via decision tree models.



Chapter 7

Privacy-Preserving Decision Tree

Classification

7.1 Introduction

Binary decision trees are a method of classification that can be represented in a simple di-

agram by interior decision nodes and terminal leaf nodes. The leaf nodes at the bottom of

the tree provide the final classification for a data point. Due to the representation as a tree

structure, decision trees are easily to interpret and understand. This ease of interpretability

is one clear advantage of using decision trees. In fact, this method is favored among scien-

tists in the medical community as it is easy to visualize and it “mimics the way a doctor

thinks” by “stratify[ing] the population into strata of high and low outcome, on the basis

of patient characteristics” [39]. Due to its medical utility, a privacy-preserving classification

protocol using Classification and Regression Trees (CART) is presented in this chapter, and

experiments on a real-world medical data set are performed efficiently.

The primary contribution in this chapter is the construction of a privacy-preserving

decision tree classifier. This protocol uses a variety of cryptographic primitives in order to

108
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construct private decision tree classification. It utilizes third party private search protocol,

fully homomorphic encryption, secure modular reduction, and a primitive called oblivious

transfer. This chapter begins with discussion of the background and methods required for

these primitives and related work in the field in Sections 7.2 and 7.3. Sections 7.4 and 7.5

present the proposed protocol and discusses its security. Sections 7.6, 7.8, and 7.9 discuss

implementation of the protocol and classification results on a real-world medical data set.

7.2 Classification and Regression Tree (CART)

The Classification and Regression Tree method, or CART, is a tree-based implementation

of supervised learning for classification and regression [12]. Like Naive Bayes, this method

has the advantage of being both conceptually simple and robust.
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Figure 7.1: Binary data in R2.

A tree-based method operates by choos-

ing a sequence of binary splits to apply to

the data. Figure 7.1 shows a collection of

toy data points with binary classifications

in a two-dimensional subspace of R2 on axes

X1 and X2. Each of these regions is then

assigned a corresponding class based on a

majority vote within the region. In Figure

7.6, the sub-figure 7.2 shows the region after

a sequence of binary splits into 6 final regions. Sub-figure 7.3 gives the binary tree which

represents these splits. Sub-figure 7.4 shows the sub-regions with the toy data points and

sub-figure 7.5 shows the classification tree resulting from a majority vote of classes points

within the sub-region.

While this example is for data points in R2, the concept applies to Z2 or categorical-
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valued feature vectors with more than two classes. While it is difficult to visualize these

binary partitions in M -dimensional space, the binary tree representation of the partitions

remains straightforward to draw as a binary tree in any number of dimensions.

7.2.1 Growing Classification Trees

The exposition below follows that of Hastie [39] and uses data with d features from Rd which

lies in a discrete set of c classes G = {G1, . . . , Gc}. The method can be easily extended to

integer-valued and categorical data points. Consider p input data points, each of the form

(X,Gi) where X = (X1, . . . , Xd) ∈ Rd. Training determines a sequence of binary partitions

that minimize the amount of error present in the final classification contained in each leaf.

A greedy algorithm is implemented in order to split the input space via binary partitions

in an efficient manner. This greedy algorithm will minimize the classification error in each

region at each step.

For the first split, a dimension, or splitting variable, j, and a split point s, are chosen

in order to minimize the classification error in each of the two resulting regions based on a

majority vote. Formally the two regions are defined by

R(j, s) = {X : Xj ≤ s}

R′(j, s) = {X : Xj > s}

and the goal is to minimize the classification error over the variables j and s. Let Err(R(j, s))

and Err(R′(j, s)) represent the measure of node impurity (e.g. misclassification error, Gini

index) in R(j, s) and R′(j, s), respectively. The equation

min
j,s

[Err(R(j, s)) + Err(R′(j, s))]
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Figure 7.6: The CART method

is minimized by testing all potential values for the splitting point s. This algorithm can be

carried out efficiently [39].

This process is carried out in an iterative manner on each sub-region. Determining when

to stop involves finding a balance between a tree that is too large and over fits to the data

and a tree that is too small and under fits the data. One method is to grow the tree until

each region contains only η data vectors then apply pruning methods such as cost-complexity

pruning to shrink the tree. In this case, η is called the minimum node size.

Pruning is carried out follows. First an initial tree T0 is grown until each region contains at

most η data vectors. Say there are K leaf nodes determining regions Rk ⊂ Rd for 1 ≤ k ≤ K.
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Let T denote a subtree T ⊆ T0 and define

Nk = #{X ∈ Rk},

the number of data vectors in Rk, and

pk` = 1
Nk

∑
X∈Rk

I(Gi = `),

the proportion of class ` vectors in region Rk. There are several potential measures of node

impurity:

• The classification error given by

1− pk`.

• The Gini impurity given by
c∑
`=1

(1− pk`).

• The entropy given by

−
c∑
`=1

pk` log pk`.

Gini impurity and entropy are most often used as measures of node impurity during the tree

growing stage while the misclassification error is most often used during the pruning phase

[39]. Denote the chosen measure of node impurity as Qk(T ). The cost complexity criterion

Cα(T ) =
|T |∑
k=1

NkQk(T ) + α|T |

is minimized for a tuning parameter α ≥ 0. When α = 0 the tree T = T0, and T becomes

smaller as α becomes larger. A value for α which determines the unique smallest subtree

T minimizes the cost Cα(T ). This optimization problem has a global solution [39], and the
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final model is given by the tree resulting from minimizing the cost.

7.2.2 Classification of New Data Points

Consider a data point X with an unknown class. Classifying this data point using a trained

CART model consists of applying the condition in each node of the decision tree to X and

following the branches sequentially until a leaf node is reached. The class contained in this

leaf node is the class value assigned to X. The precise method of classification of new

data points via a trained decision tree implemented in the presented protocols is given in

Algorithm 13.

7.3 Methodologies

Moving from classification of new data points in the clear to private classification of new data

points requires hiding both the tree structure from the Client and hiding the Client’s data

input from the Model Owner. One approach converts a decision tree into its polynomial form

[6, 61]. Another approach converts a decision tree into a complete binary tree and performs

a randomization procedure. These two approaches are discussed below. After this, oblivious

transfer is introduced, as it will be a necessary step within the proposed private decision

tree classification protocol.

7.3.1 Randomizing Trees

Methods which first convert a tree into a polynomial form run in the public-key setting

between a Client, Server, and Model Owner. Consider a decision tree with n decision nodes.

Each of these notes has a binary output. Denote the binary output of each node for some

input as b1, b2, . . . , bn. Let c1, c2, . . . , cn denote the corresponding leaf nodes, containing

a binary classification value. A recursive procedure allows for efficient computation of a
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polynomial P (b1, b2, . . . , bn, c1, c2, . . . , cn) such that the output of P corresponds to the class

of the input value for which the decision nodes were evaluated [6]. The methods of Bost et al.

[6] allow for private classification to occur under this model using two encryption schemes,

the Quadratic Reciprocity (QR) scheme [34] and a public-key FHE scheme. For private

classification, the Client holds the FHE private key and the Model Owner holds the QR

key. The Client computes the values [bi]QR for i from 1 to n using some privacy-preserving

protocol, encrypts these (encrypted) values via FHE, and sends them to the Model Owner.

The Model Owner then evaluates the polynomial P , encrypted under both QR then FHE.

The authors then provide a method for the Client to receive the output of this function

without revealing the output to the Model Owner.

These protocols all generally follow the broad steps, a modification on the work of Bost

et al. [6].

1: The Client publishes a public key for some public-key encryption scheme.

2: The Model Owner encrypts the polynomial form P of a decision tree T and stores this

encryption on the Server.

3: The Client and Model Owner perform a series of privacy-preserving protocols in order to

determine the binary output of the tree on each node. In this setting, privacy-preserving

means that the Client does not directly learn the evaluation of his data point on each

node, and the Model Owner does not learn the Client’s data point.

4: The Server evaluates the polynomial over the data point using fully homomorphic en-

cryption [41, 61] or some other method [6].

5: The Client decrypts the output to receive his classification.

Khedr et al. perform private decision tree classification using this polynomial repre-

sentation paradigm [41]. Their protocol allows for implementation of classification via the

polynomial form of a binary decision tree and uses public-key fully homomorphic encryption

for classification in place of the methods of Bost et al. [6]. Sun et al. also present a private
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Figure 7.7: The completion (right) of a binary tree (left).

decision tree methodology also based on polynomial forms of trees using public-key fully

homomorphic encryption [61].

In the private key setting, both parties are unable to encrypt their data under a public

key, and another method is necessary

7.3.2 Complete Tree Randomization

The methodology presented by Wu et al. [68] of complete binary tree randomization does not

require a polynomial representation of a tree. In this model, “dummy” nodes are introduced

into a tree in order to impose a uniform depth upon its structure.

The dummy nodes contain random evaluations with binary output, where each response

leads to the same outcome. When privatization of the tree structure is not a goal, this

structure is redundant. However, with a complete binary tree, regardless of the outcome on

individual nodes any data point will require the same number of evaluations to compute.

This is an important aspect of a Model Owner ultimately hiding the tree structure from a

Client. An example of a completion of a binary tree is shown in Figure 7.7. The yellow

decision nodes contain random binary evaluation functions, and the leaf nodes contain the

class corresponding to the assigned class in the original tree on the left.
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Figure 7.8: A binary tree (left) and the tree negated on the first node (right).

The authors describe a tree randomization procedure in which a complete tree is hidden

via by randomly permuting the nodes of a tree T to obtain an equivalent tree T ′ [68]. An

equivalent tree is a tree with the same depth and the same classification output for every

data point, but with a different classification path within the tree. An equivalent tree is

created by randomly flipping the outcome of the binary decision function at each node.

Their algorithm proceeds as follows, with input of a tree T and output of a randomized tree

T ′. The tree T contains n leaf nodes ti

1: Initialize T ′ = T .

2: Randomly choose s = (s1, . . . , sn) ∈ {0, 1}n.

3: For i from 1 to n, if si = 1 then negate the decision function on the node t′i of the tree

T ′ and swap the subtrees originating at the left and right child nodes.

4: Re-order the node indexes and output T ′.

And example of a binary tree which has been negated on the first node is available in

Figure 7.8.

7.3.3 Oblivious Transfer

Originally introduced by Rabin in 1981, oblivious transfer was first described as an RSA-

based cryptographic primitive which allowed a Receiver to obtain a message from a Sender

with probability of 0.5 without the Sender knowing whether or not the value was received
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Figure 7.9: 1-of-2 Oblivious Transfer

[53]. In the years since, 1-of-2 oblivious transfer has developed into a two-party crypto-

graphic primitive which allows a receiving party to obtain exactly one value out of two

values sent by the sending party without revealing to the sender her choice. Figure 7.9 pro-

vides a visualization of the usual model. The Sender and Receiver perform a key generation

algorithm which includes the Receiver’s choice of index. The sender then encrypts the two

values based on these keys and sends them to the Receiver. Decryption reveals the value

associated with the index selected during the key generation algorithm while decrypting the

other value yields an output which appears random to the Receiver, effectively masking its

true value from her.

In a 1-of-n oblivious transfer protocol, the Sender has values b1, b2, . . . , bn and the Receiver

has chosen an index i. The Sender would like to share bi with the Receiver without revealing

any of the other values to her. The Receiver wishes to hide her index from the Sender.

The protocol presented for third-party private search implements a 1-of-n oblivious transfer

protocol.
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7.4 Tree Representation and Decision Tree Classifica-

tion

A complete binary decision tree can be represented in the following manner. A complete

binary decision tree D is represented as a collection of k nodes, D = {d1, d2, . . . , dk}. A tree

with depth m has 2m − 1 nodes. For a tree with depth m, nodes with indexes from 1 to

2m−1 − 1 are decision nodes and nodes with indexes from 2m−1 to 2m − 1 are leaf nodes.

Determine child nodes based on the binary representation of the index at the node. The

root node is assigned the index 1, which corresponds to the integer value 1. Its child nodes

are given by 10 and 11, corresponding to nodes 2 and 3, respectively. Node 10 is the child

node of 1 when the outcome on that node is negative, or 0; node 11 is the child node when

the outcome is positive, or 1. Figure 7.10 provides an example of a tree with depth d = 4.

The value inside of the node represents the node index in binary, and the value on each

arrow represents the binary decision outcome on that node.

To move from decision node to its child node, evaluate the node on the input data point

and concatenate the decision to the binary representation of the node index. Convert back

to decimal to retrieve the node index number. To move from a child node to its root node,

dissociate the last value from the binary representation of the index. For example, the parent

node of 1011 is 101.
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Figure 7.10: Binary Tree Node Assignment

These values can also be represented in base 10. Let I be the index of a node. Then, the

index of its parent node is given by

Parent(I) = bI/2c.

The indexes of its child nodes are given by

LeftChild(I) = 2I

RightChild(I) = 2I + 1.

The leaf node associated with a data point may be reached using its binary representation

via the following algorithm.
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Algorithm 13 Decision Tree Classification

Input: A decision tree T in complete binary tree form with n nodes and depth m, and a

data point X to be classified via T . Let bI denote the binary evaluation output of X on the

tree node with index I.

Output: The index of the leaf node containing the classification of X.

1: I = 1 . Initialize the node index to 1.

2: J =None . Initialize an empty output J .

3: for i from 1 to m do

4: J = J‖bI . . Operator ‖ denotes concatenation.

5: I = 2I + bI .

6: end for

7: Output J .

7.5 Private Decision Tree Classification Protocol

Consider a Client, C, a Data Model Owner, D, and a Server, S. First, consider a general

overview without implementing privacy-preserving measures. The Data Model Owner trains

a binary decision tree, T , under the CART algorithm. This tree is presented as a complete

tree of depth n contains of 2n−1 nodes with index labeling as outlined above. Some of these

nodes may be dummy nodes. Denote each decision node by ti with corresponding decision

function fi for i from 1 to 2n−1 − 1. The leaf nodes are denoted by ti with class assignment

ci for i from 2n−1 to 2n−1. The The Model Owner stores this tree on the Server. The Client

has a data point with d features,

X = (X1, X2, . . . , Xd).
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The Client wishes to classify his data point using the Model Owner’s tree. The Client

computes the binary decision function fi on each decision node ti in order to determine his

tree path, then retrieves the class assignment Gi which corresponds to that path.

Each step in this procedure must be randomized. First, the tree T must be replaced

with an equivalent randomized tree T ′. Furthermore, the Client needs a privacy-preserving

method of determining his path in the randomized tree. Note that the Client must query

every node in the tree – otherwise, the Server can determine the path he followed based on

his queries, and a colluding Server and Model Owner could then determine his classification.

The proposed protocol implements third-party private search in order to perform clas-

sification. Recall that in medical applications it is common for features to take on only a

discrete set of values. If the value is some continuous measurement, it can be quantized to

take on only some discrete set of values.

This representation of a feature as a discrete set of possible values is used in order to

implement third-party private search for node evaluation. Let y be some feature which can

take on ` discrete values which are assigned numbers the numbers 1 to `. Say a decision

function splits this feature at k – all values greater than or equal to k result in True, while

all values less than k result in False. Evaluation of this decision function may be reduced

to set membership. The decision function can be represented by the set {k, k + 1, . . . , `},

and a True output occurs for all values which occur within the set.

Once the Client has determined the index of his classification on the randomized tree,

he retrieves his final classification by implementing an oblivious transfer protocol with the

Model Owner. Algorithm 14 carries out this private decision tree classification evaluation.
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Algorithm 14 Private Decision Tree Classification

Client Input: An n-tuple of q1-bit integers x = (x1, x2, . . . , xn).

Model Owner Input: The trained decision tree D.

Client Output: The assigned class of x based on the decision tree D.

1: The Client performs D′ =RandomizeTree(D). . See Algorithm 16.

2: Initialize variable y =’1’.

3: for Node i in D′ do

4: Compute bi =Node(x,D, i) . See Algorithm 15.

5: end for

6: Perform Oblivious Transfer to reveal the classification value at the tree node determined

in the loop above.

The method for performing private node evaluation using third-party private search is

outlined in Algorithm 15.

7.5.1 Private Node Evaluation

The Client must compute the binary output of the decision function on each node for his

input data point. In order to carry this out, the Client implements a version of the Third

Party Private Search (TPPS) protocol described Algorithm 9 in Chapter 6.

While in the previous chapter the Client was able to perform TPPS within a data set for

one value, the Client in this scenario has d values corresponding to the d features used within

the model. An oblivious transfer protocol is implemented within the TPPS framework in

order to mask which feature the Model Owner evaluates over during execution. This method

of oblivious transfer with TPPS is described in Algorithm 15 below.
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Algorithm 15 Private Node Evaluation Protocol

Client Input: An n-tuple of q1-bit integers x = (x1, x2, . . . , xn).

Model Owner Input: The index of the feature at the node, I, and the database for that

node, D.

Client Output: 1 if xI ∈ D, 0 if xI 6∈ D.

1: The Client randomly selects a log2(q2)-bit integer, r, according to the parameters of the

TPPS protocol.

2: The Client computes

x = (x1, x2, . . . , xn) = (x1 + r, x2 + r, . . . , xn + r).

3: The Client and the Model Owner perform an OT extension protocol in order to transfer

the value xI from the Model Owner to the Client, where I ∈ {1, 2, . . . , n} is the index

of the decision variable on the node.

4: The Client and Model Owner perform a Third-Party Private Search protocol to determine

whether xI ∈ D. If xI ∈ D, the client outputs 1; otherwise, the client outputs 0.

The private decision tree protocol in Algorithm 14 carries out Algorithm 15 to determine

the binary output on each node. This binary output is used for the final classification of the

Client’s data point.

7.6 Security

The desired security is that the Client learns nothing about the Model Owner’s learned

model, the Model Owner learns no information about the Client’s data point, and the Server

learns no information about either party’s private data.
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7.7 Implementation

The following methods were used in order to implement the Private Decision Tree Evaluation

protocol.

7.7.1 Tree Randomization

Tree randomization is implemented via the following, Algorithm 16. This algorithm proceeds

by first generating an n-tuple of random bits, bi, denoting whether a nodes decision will be

reversed or not. If the node is reversed, the subtrees stemming from the children nodes are

swapped. This differs from the protocol described in Section 7.3.2 in several small ways.

Instead of copying the tree, randomizing, then re-indexing the output tree, the algorithm

below computes a permutation π on the indexes of the nodes in T such that T ′ = π(T ) is a

randomized version of T . Because of this difference in approach, the same n-tuple of random

bits would result in different randomized tree outputs under the two algorithms. However,

both ultimately result in an efficiently computed randomized tree.
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Algorithm 16 Tree Randomization (adapted from [68])

Input: A decision tree T in complete binary tree form with n nodes and depth m.

Output: A randomized decision tree T ′ in complete binary tree form.

1: Generate a random permutation π(n).

2: Generate an n-tuple of random bits, b = {bi}.

3: for i from 1 to n do

4: if bi = 1 then

5: d = log2(i)

6: for j from 1 to m− d+ 1 do

7: for k from 0 to 2j−1 do

8: Switch the value of π(i ·2j +k−1) with the value of π(i ·2j−k+ 2j−1−1).

9: end for

10: end for

11: end if

12: end for

13: for i from 1 to n do . Create the randomized tree via the permutation π.

14: T ′(i) = T (π(i)).

15: end for

7.7.2 Oblivious Transfer

A protocol, simply called “The Simplest Protocol for Oblivious Transfer,” is implemented in

our experiments [16]. This is a group-based 1-of-n oblivious transfer protocol, the algorithm

for which is provided below in Algorithm 17. In this setting, Alice is the Receiver in Figure

7.9 and Bob is the Sender.
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Algorithm 17 1-of-n Oblivious Transfer [16]

Sender Input:

Receiver Input: The trained decision tree D.

Receiver Output: The assigned class of x based on the decision tree D.

1: The Sender and Receiver share randomly generated public keys p (prime) and g ∈ Zp

and agree upon a hash function H.

2: The Sender selects b $←− Zp and sends B = gb to the Receiver.

3: The Receiver selects a $←− Zp and sends A = BIga = gbI+a to the Sender for her choice

of I ∈ {1, 2, . . . , n}.

4: The Sender computes the keys ki = (A/Bi)b = g(I−i)b2+ab for i = 1 to n.

5: The Receiver computes the key k = Ba = gab.

6: The Sender sends ei = Mi ⊕H(ki) to the Receiver for i = 1 to n.

7: The Receiver computes MI = eI ⊕H(k).

7.8 Evaluation

Decision trees were trained using Python 3 with 10-fold cross validation. Random oversam-

pling was implemented during training on the positive classification set, as these were less

represented in the overall data set. Trees were limited to a maximum depth of 5, a minimum

of 3 samples per split, and a minimum of 3 samples per leaf. Gini impurity was used to

measure the quality of the split during training.

The protocol was implemented in C++ on a Windows 7 machine with a 3.40Ghz pro-

cessor and 32.0GB memory using the GNU MP Bignum Library [62] for arbitrary precision

arithmetic, Chou and Orlandi’s “Simplest OT Extension” protocol [16], Veugen’s secure

modular reduction protocol [65], and the GKS private-key FHE scheme [36].
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Accuracy Sensitivity Specificity Precision NPV F1-score
Mean 0.96628 0.96172 0.97500 0.98699 0.93487 0.97367

Stand. Dev. 0.02192 0.03010 0.05270 0.02700 0.04875 0.01695

Table 7.1: Decision Tree Classification Results

Time (s)
Unencrypted, Not Private 0.00001

Encrypted 0.91251

Table 7.2: Decision Tree Classification Time

Training and testing took place under 10-fold cross validation. The results are available

in Table 7.1 and Table 7.2. The results in Table 7.1 show that the decision tree classifier

outperforms the Naive Bayes classifier of Chapter 5 in terms of performance over this data

set. The results in Table 7.2 show that this classifier takes slightly longer than the Naive

Bayes classifier, however. Despite this, classification of an individual data point still is carried

out in less than one second on average on a tree with 32 decision nodes. These results show

that the proposed protocol can be fast and accurate for private classification within medical

applications.

7.9 Discussion

7.9.1 Computational Bottlenecks

The primary bottleneck during computation occurs due to the cost of homomorphic mul-

tiplication. During Algorithm 14, homomorphic multiplication is performed during node

evaluation on each node. In particular, if k is the maximum number of values any feature

of a data point X may take, then the number of homomorphic operations performed during

each node evaluation is bounded above by k. A tree with N nodes therefore requires at



CHAPTER 7. PRIVATE DECISION TREE 128

most n · K homomorphic multiplication operations. This bottleneck could be avoided by

implementing the protocol in the unencrypted third-party private search model discussed in

Chapter 6.

A bottleneck also occurs due to communication costs. During each node evaluation a

number of communications are performed. During Oblivious Transfer, the Client communi-

cates with the Model Owner two times and the Model Owner communicates with the Client

one time. In addition to the communication cost of Oblivious Transfer, private node evalu-

ation in Algorithm 15 requires 6 additional communications between the Client, Server, and

Model Owner in the encrypted model, and 4 communications in the unencrypted model.

Therefore on a tree with N nodes, communication must be performed 9 · N times in the

encrypted model and 6 ·N times in the unencrypted model.

To speed up performance, it is important that the Model Owner perform pre-processing

on the data. Properly pre-processed data could result in a smaller tree, and therefore in a

faster classification time. In particular, feature selection should be implemented on the data

in order to reduce the dimensionality before training a learned model. Feature selection is

a powerful method to implement during model construction to improve the model’s perfor-

mance by identifying only the most relevant features within the data [39]. Feature selection

can be carried out in a variety of ways, depending on the data set. Feature selection covers

a wide variety of algorithms which include filters, wrapper methods, and embedded methods

[37].

7.9.2 Comparison

Khedr et al. explain that their classifier should perform decision tree classification on a

tree with four nodes in approximately 3.477 milliseconds [41]. This is an estimate they

approximated based on the multiplication running time of their protocol, and no tests were

implemented. A full implementation of their protocol on a tree of comparable size would be
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necessary in order to provide a true comparison of results.

Wu et al. perform private decision tree classification on a tree with 12 decision nodes

in approximately 0.545 seconds [68]. Bost et al. perform decision tree classification using

encryption methods which are not fully homomorphic. They report average running times

on a 4 node tree of 1.579 seconds for the Client and 0.798 seconds for the Server, and on a

6 node tree they report running times of 2.297 seconds for the Client and 1.723 seconds for

the Server. The results in Table 7.2 show speedup over these times.

7.10 Conclusion

Third-party private search can be implemented in conjunction with various cryptographic

methods in order to perform efficient, private classification using classification trees. Future

work could extend this method to implement the large database variant of TPPS given in

Algorithm 12, as well as implementation of random forest.



Chapter 8

Conclusions

Machine learning and cryptography can be combined in order to implement a variety of

multi-party computational tasks such as third-party private search and private classification.

These methods can be efficient for computation over real-world medical data. In particular,

private-key fully homomorphic encryption can be efficiently implemented for classification

tasks.

The implementation of Gribov-Kahrobaei-Shpilrain (GKS) encryption for private-key

fully homomorphic encryption was presented with multiple speed improvements. Single-

Instruction Multiple Data (SIMD) parallelization was implemented in GKS in order to allow

for computation of multiple values at one time via multiple encodings within a single cipher-

text. In total, up to 2n elements may be encoded in a single plaintext via a fully homomorphic

embedding for a plaintext ring with n generators. Furthermore, an algorithm for generating

the required parameters and change-of-basis transformations for implementation of the GKS

cryptosystem was described. Experimental performance results show that the GKS cryp-

tosystem can be efficiently implemented via C++ using an arbitrary precision arithmetic

library.

Private Naive Bayes classification via private-key FHE was outlined and implemented
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over real-world medical data. Classification of real-world medical data via private-key FHE

using Naive Bayes was carried out in less than half of a second. Furthermore, private Decision

Tree classification was carried out over an encrypted model in under one second.

A number of other protocols with potential use in future applications were developed

within this document. A privacy-preserving argmax protocol was outlined that enables

classification using a Naive Bayes model via private-key FHE. A third-party private search

algorithm was outlined that allows a Client to privately and efficiently perform a membership

query of a database without being given direct access to the database.

8.1 Future Work

The techniques outlined in this paper could be utilized on their own or in conjunction with

similar techniques in order to build tools that allow clinicians to privately classify their

patients’ data using models, which they cannot access in the clear. Proper pre-processing

techniques could create stronger and more efficiently computed models. Furthermore, med-

ical researchers may use these models in order to determine if their models are over-fit to

their own data sets.

Further classification models of interest are Support Vector Machine (SVM) and deep

learning methods. Privacy-preserving classification methods implementing private-key fully

homomorphic encryption methods could be developed via these models and implemented

in the clinical setting along with the models described in this work. Furthermore, various

privacy-preserving bioinformatics techniques could be explored, and the privacy-preserving

decision tree classification could be extended to random forests.

Applications of interest for further study outside of the medical setting include personal

security as well as national security settings. Personal security protocols using fully homo-

morphic encryption could be spam filters for e-mail and private data mining of individual
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online behavior. Law enforcement could implement a version of third-party private search

in order to allow law enforcement officials to query a database stored in encrypted format

without access to that database or the decryption key.
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Appendix A

Third Party Private Search

Parameters

The Third Party Private Search protocol proposed in Chapter 6 includes a prediction error

in the form of false positives. Recall that the protocol implements three parameters: n,

the number of elements in the input database; q1, the maximum bit size of values in the

database; and q2, the bit size of the one-time pad implemented by the Client.

The values in the tables below display the fallout, given by

fallout = #false positives
#false positives + #true negatives .

This measure is chosen because during the protocol, no false negatives will occur. It is

necessary that parameters be chosen to avoid the case of false positives.

Experiments were run using the Monte Carlo method with various inputs for all three

parameters. During each test, 100, 000 experiments were performed. Algorithm 18 shows

the pseudocode for the experiments. In summary, for each experiment a database with n

random elements of at most q1 bits was generated for the Database Owner, and the Client’s

134



APPENDIX A. TPPS PARAMETERS 135

value was set to another q1 bit integer. The Client’s value was chosen randomly under the

constraint that the Client’s value does not appear in the database. Then, a random q2-bit

integer was chosen as the Client’s one-time pad and the third-party private search protocol

was performed. The experiment was implemented via Python 3.6.

Algorithm 18 Fallout Error Estimation

Input: Parameters n, q1 and q2. Output: A boolean value 1 denoting a false positive or 0

denoting a true negative.

1: Populate a random database D = {di}ni=1 with n random integers between 1 and 2q1 .

2: Pick a random value c between 1 and 2q1 such that c 6∈ D.

3: Pick a random q2-bit value r.

4: Compute the product

p =
n∏
i=1

(c+ r − di).

5: if r|p then

6: return 1.

7: else

8: return 0

9: end if

Tables A.1 and A.2 show the fallout resulting for input parameters n, q1, and q2.
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q2 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9
3 0.41460 0.72118 0.86253 0.89877 0.91328 0.92093 0.92449 0.92553
4 0.22381 0.52138 0.70157 0.78353 0.81255 0.82663 0.83065 0.83624
5 0.10395 0.313 0.46225 0.56652 0.62425 0.65258 0.66602 0.67098
6 0.03768 0.172 0.30843 0.40693 0.47366 0.50564 0.52955 0.53678
7 0.01547 0.09118 0.18744 0.27385 0.3303 0.37508 0.39686 0.40954
8 0.00596 0.04517 0.11069 0.17915 0.22918 0.26606 0.28726 0.30213
9 0.00183 0.02085 0.05927 0.10907 0.14979 0.18012 0.20118 0.20953
10 0.00067 0.00968 0.03355 0.06601 0.0947 0.11892 0.13754 0.14909
11 0.00014 0.00405 0.01725 0.03872 0.05983 0.07888 0.09183 0.10067
12 0 0.00186 0.00957 0.02123 0.03717 0.04983 0.06008 0.06735
13 0.00001 0.0007 0.00426 0.01153 0.02259 0.03105 0.03971 0.04398
14 0 0.00025 0.00209 0.00603 0.01226 0.01853 0.02425 0.02889
15 0 0.0001 0.00102 0.00387 0.00722 0.01186 0.01613 0.01871
16 0 0.00005 0.0005 0.00157 0.00391 0.00711 0.00965 0.01156
17 0 0.00001 0.00015 0.00085 0.00212 0.00351 0.0058 0.0072
18 0 0.00001 0.0001 0.00054 0.00119 0.00223 0.00276 0.0044
19 0 0 0.00001 0.0002 0.00068 0.00115 0.00189 0.00268
20 0 0 0.00001 0.000011 0.00039 0.00075 0.001 0.00153
21 0 0 0 0.00004 0.0002 0.00026 0.00053 0.00091
22 0 0 0 0.00003 0.00006 0.00012 0.00043 0.00052
23 0 0 0 0.00001 0.00003 0.00013 0.00016 0.00025
24 0 0 0 0 0.00005 0.00008 0.00007 0.00019
25 0 0 0 0 0 0.00004 0.00005 0.00006
26 0 0 0 0 0 0 0.00003 0.00005
27 0 0 0 0 0.00001 0.00001 0 0.00004
28 0 0 0 0 0 0 0.00001 0.00003
29 0 0 0 0 0 0 0 0.00001
30 0 0 0 0 0 0 0 0.00001
31 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0

Table A.1: Fallout for n = 10
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q2 q1 = 10 q1 = 11 q1 = 12 q1 = 13 q1 = 14 q1 = 15 q1 = 16 q1 = 17
1 0.99951 0.99944 0.99954 0.9994 0.99951 0.99953 0.99954 0.99937
2 0.9917 0.99218 0.99232 0.99229 0.99204 0.99184 0.99193 0.99179
3 0.92762 0.92759 0.92747 0.9266 0.92638 0.92845 0.928 0.92831
4 0.83613 0.83924 0.8383 0.84121 0.84102 0.83971 0.83775 0.83847
5 0.67544 0.67629 0.68143 0.67705 0.67762 0.67795 0.67924 0.67743
6 0.54115 0.54548 0.54469 0.54435 0.54454 0.54413 0.54639 0.54424
7 0.41004 0.41331 0.41516 0.41628 0.41832 0.41945 0.41608 0.41557
8 0.30585 0.31239 0.31338 0.31307 0.31209 0.31094 0.31166 0.31321
9 0.22153 0.22481 0.2257 0.22458 0.22748 0.23065 0.22765 0.22604
10 0.15357 0.15952 0.15982 0.16164 0.16195 0.16376 0.16297 0.16129
11 0.10642 0.1118 0.11059 0.11336 0.11524 0.11457 0.11459 0.11353
12 0.07145 0.07646 0.07802 0.08019 0.07843 0.07957 0.07935 0.08035
13 0.04811 0.05156 0.05182 0.05294 0.0539 0.05299 0.05415 0.05276
14 0.03175 0.03241 0.03556 0.03594 0.03569 0.03709 0.0358 0.03773
15 0.0207 0.02135 0.02363 0.0235 0.02402 0.0238 0.02505 0.02495
16 0.01285 0.01476 0.0148 0.0154 0.01509 0.01694 0.01602 0.01656
17 0.00844 0.00913 0.00959 0.00961 0.01069 0.01059 0.01075 0.01047
18 0.00523 0.00526 0.00611 0.00564 0.0066 0.00681 0.00654 0.00719
19 0.00286 0.00339 0.00357 0.00408 0.00414 0.00444 0.00423 0.0041
20 0.00168 0.00214 0.00243 0.00235 0.00297 0.00287 0.00267 0.00268
21 0.00095 0.00105 0.00157 0.00183 0.00145 0.00151 0.0019 0.00175
22 0.00074 0.0008 0.00097 0.00092 0.0009 0.00094 0.00103 0.00119
23 0.00039 0.0003 0.00055 0.00059 0.00055 0.00065 0.00066 0.0006
24 0.00021 0.00026 0.00036 0.00032 0.0004 0.00039 0.0004 0.00052
25 0.00011 0.00017 0.00023 0.00016 0.0002 0.00022 0.0003 0.00021
26 0.00002 0.00009 0.00007 0.00012 0.0001 0.00015 0.0001 0.00015
27 0.00003 0.00002 0.00008 0.00003 0.00006 0.0001 0.0001 0.00011
28 0.00002 0.00004 0.00004 0.00001 0.00003 0.00005 0.00002 0.00004
29 0.00001 0.00002 0.00002 0.00001 0.00005 0.00003 0.00006 0.00007
30 0 0.00001 0.00002 0.00002 0.00002 0.00001 0.00003 0.00001
31 0 0.00001 0.00001 0 0 0.00001 0.00001 0.00002
32 0 0 0 0 0 0.00001 0 0.00001
33 0 0.00001 0 0 0.00001 0.00002 0 0
34 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0

Table A.2: Fallout for n = 10, continued
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