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Abstract

TOTALLY EMPIRICAL WAVEFUNCTIONS
FROM X-RAY DIFFRACTION
by
Martin Jeffry Goldberg

Advisor: Professor Louis J. Massa

The interpretation of coherent x-ray diffraction experiments by a
quantum model is described. Adjusting the coefficients of an LCAO
expansion to best fit measured Bragg intensities results in a totally
empirical quantum wavefunction. The quantum model is compared to a
multipole expansion. The constraints imposed by quantum mechanics are
examined, and several methods of satisfying these constraints while
best fitting a wavefunction to measured Bragg intensities are
detailed. Application is made to beryllium metal, with a resultant fit
R1=.00249. Similar applications to graphite and diamond are
outlined. The formalism is extended to explicitly include solid-state
effects, and this extension is applied to a model problem of an
infinite line of hydrogen atoms. Neglect of solid-state effects can
lead to errors of as much as 1% per electron. A rmore realistic
treatment of crystal vibrations using a TLS model for external motions
and 3N-6 spectroscopic-like local modes for internal motions is
suggested. Related numerical algorithms are displayed. Directions for

future work are suggested.



to N



vi

Acknowledgements

I would like to express my gratitude to the following people.
Thanks to Dick Marsh, who taught me the importance of locking inside
"black boxes" instead of using them incorrectly; to Bill Goddard III,
who showed me when not to use approximations; to Aron Kuppermann, who
taught me how molecular motions really work; to Bob Richman, who taught
me that three-page derivations of formulas can be fun; to Lou Massa,
who allowed me the freedom to develop as an independent scientist; to
Angelo Santoro and John Lombardi, for advice and encouragement; to Sam
LaPlaca, Rick Boehme, and Carol Frishberg, for help with calculations;
to Cathy Abrams and T. Vasu, for moral support; to Sal d'Ambra, for
showing me how programs should be written; and to Nina d'Ambra, for

encouragement, aid, and general wonderfulness.



CHAPTER

Chapter I.
Chapter II.
Chapter III.
Chapter 1IV.
Chapter V.
Chapter VI,
Chapter VII.
Chapter VIII.
Appendix A,
Appendix B.
Appendix C.
Appendix D.

Appendix E.

Appendix F.

TABLE OF CONTENTS

Introduction

Mathematical Considerations
Beryllium Metal

Graphite and Diamonrd

Bloch and Wannier Orbitals
Nuclear Vibration
Computational Considerations
Conclusions

Notation

The PL/I Program TREFOIL
Beryllium Scattering Data

The PL/I Program EXAMPLE

Subroutines to Explicitly Impose the

Idempotency Constraint

Subroutines to Go to and from a

Iocal Coordinate Frame

References

vii

PAGE

27
71
94
112
130
156
169
174

178
188

1¢1

197

198

1¢9



LIST OF TABLES

Electronic Properties

Totally Empirical Wavefunctions

Error Measures and Related Quantities
Convergence Times for the Iterative Equations

Conversion Between Cartesian Forms xAszC

and Real Spherical Harmonics

Floating Spherical Gaussian Orbitals
in Dy, Symmetry

Conversion Between Cartesian Gaussians
and Hirshfeld Multipoles

The 10-Gaussian Beryllium Atom Basis
Beryllium Model One: The Free Atom
Beryllium Model Two: The Spherical Atom
Beryllium Model Three: Quantum Wavefunction
Beryllium Model Four: Multipole Expansion
Wavefuncticn Predictions of F(K)

Chen's Graphite X-Ray Diffraction Data
Symmetry of s and p Functions in Graphite

Numerical Results Using the Wannier and
Isolated-Atom Formalisms

Density Matrix Solutions of the Iterative
Equations

PAGE

10
36
44

54

58

68
73
78
79
80
81
82
98
99

125

126

viii



FIGURE

1. Gilbert's Theorem

2. Positron Regions

3. Conparison of Idempotent, Non—-Idempotent, and
Multipole P Matrices

4. The "Phase Problem" with P Matrices

5. Densities from the Wavefunctions of Figure 4

6. Scattering from the Wavefunctions of Figure 4

7. Error Measures for the Same P Matrix Compared

8. Gradients of the Error Measures of Figure 7

9. Floating Spherical Gaussian Orbitals
in D,, Symmetry

3h

10. Nuclear Positions in Beryllium Metal

11. Cumulant Expansion for Beryllium Atoms

12, Errors in Larsen's Beryllium Data

13. Chemical Bonding in Beryllium

14. Numbering of Graphite Nuclei for the
Explicitly Molecular Model Six

15. Errors Incurred by Neglecting to "Wannier-ize"
the Basis Functions

16. Indistinguishability of the Phasing of
Vibrational Motions

17. The TLS Model

18. Comparison of Harmonic, Kratzer, and RKR

LIST OF FIGURES

Potentials for the CO Molecule

PAGE

15
20

24
25
26
37
38

57

75

76

93

104

133
139

ix



Chapter I. Introduction

When a beam of x-rays shines on a crystal, some of the x-rays
bounce off in various directions and form a pattem of spots of varying
brightness called a "diffraction pattern." The positions of the spots,
and their intensities, are related to the electron distribution in the
crystals. This thesis will detail a method for interpreting the x~ray
diffraction patterns which is more valid than the theoretically unsound
method currently used.

Since most of the information published in the literature of
chemistry, physics, geology, and biology about bond lengths and angles
of nearly all elements and compounds comes from x-ray diffraction
patterns, it is crucial to interpret the data as accurately as
possible. Simple interpretation methods have an error of about five
percent, yet experimental errors in the most recent data have been far
less than one half of one percent. Thus the highly accurate data now
available deserves a highly accurate interpretation.

Quantum mechanics is a set of rules which explain most accurately
the behavior of matter on the scale of electrons, which is the size
that crystallography is concerned with. Interpretation of recent
crystallographic data must use quantum mechanics to be as accurate as

the data itself.
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Quantum mechanics puts restrictions on the number of electrons that
can travel in the same path. One electron completely fills a
particular "spinorbital" path. Negative numbers of electrons are
physically meaningless for a real cbject. Spinorbitals are like
parking spaces. One car fills the space completely; fewer than zero
cars is meaningless. The "single—determinant” approximation, which
will be used for this thesis, neglects the possibility of
"double-parking."”

The paths will have either zero or one electron in them. This is
done by a mathematical property called "idempotency." Idempotency is
based on the fact that the only numbers equal to themselves squared are
zero and one. If the matrix representing the spinorbitals equals
itself squared, the matrix is called idempotent; spinorbitals so
represented will be either empty (0 electrons) or full(l electron).

Since the Bragg experiment measures the electron distribution
within a crystal(l), the interpretation of this experiment should be
consistent with crystal symmetry and with the behavior of electrons.
Crystals are periodic, and this periodicity should be accounted for.
Electrons obey the laws of quantum mechanics, and should not be
treating as electrostatic charge clouds. Dame Kathleen Lonsdale
described the ultimate goal of a crystallographer nearly a quarter
century ago(2). She said,

"A proper determination would include exact mean positions of all

atoms, including hydrogen; a study of the electron distribution of

the atoms in a state of rest; a knowledge of the zero-point motions
and of the thermal vibrations of all atoms, analyzed with respect
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to translations and oscillations of the molecules as a whole and of
the atoms relatively to each other within the molecule; the
distribution of these with respect to amplitude and frequency, at
various temperatures; a study of imperfections, unavoidable or
deliberately introduced; and of surface modification of structure.”
The reason for doing basic chemical research is to leam about the

behavior of matter - about chemistry. The proper positioning of atoms
gives an excellent fit to x-ray data, and the bonding pattems can be
inferred from the bond lengths, to some degree of approximation.
However, the chemistry - the redistribution of electrons due to atoms
bonding to each other - is obtainable directly from the data.

Even though it is a small effect, this slight redistribution of
electron density is all that prevents the crystal from flying apart
into a mixture of monatomic gases. Thus, it is of interest to collect
crystal data of high enough quality to see the chemistry, and to
interpret the data in a way that makes chemical sense.

There are now over a dozen systems with "chemistry quality" data
(Rinternal < 1% or so), and synchrotron sources, such as the
recently-completed National Synchrotron Light Source at Brookhaven
National Laboratory, make collection of this sort of data in the future
a certainty.

A more sophisticated method of analyzing these data is called for,
since the limiting factor of the experiment is no longer poor data
resolution. The electrons of the crystal must be described guantum

mechanically, since electrons are archetype quantum objects. Our

formalism accompliches this by using an idempotent N-electron
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single~determinant reduced density matrix to describe the nuclei in an
orbital basis (LCAO), called the P matrix(3). This is corrected to
account for the non-orthogonality of the basis orbitals, and the
overlap of orbitals from adjacent unit cells of the crystal, by the
overlap matrix S. This description is related to the diffraction
experiment by an orbital product scattering factor matrix £(K). The S
matrix, if it includes overlaps between all unit cells, leads to a P
matrix which refers to Wannier orbitals. This quantum-mechanical
wavefunction description of x-ray diffraction is of an identical form
to ab initio and semiempirical wavefunctions. However the method of
arriving at this wavefunction is quite different. Unlike ab initio
non-empirical wavefunctions there are no energy evaluations and
no Hamiltonian operator. 1In addition, unlike semiempirical
wavefunctions, the basis functions are explicitly defined, and no
integrals are approximated or parametrized. The only variational
parameter that this wavefunction minimizes is the quality of fit to the
data. This is a totally empirical wavefunction. ‘It will fit the data
better than an ab initio Hartree-Fock wavefunction in the sawme basis,
but the energy calculated from a totally empirical wavefunction will
not be as low, and may nct satisfy the virial theorem(4).

An extreme advantage of a totally empirical wavefunction model over
a non~wavefunction fit to data is that, once you have a wavefunction, a
prediction can be made for any ground-state static electronic

property. In addition, data from any experiment which measures this
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sort of property can be simultaneocusly fit by the wavefunction. This
is a natural way of putting together data from several kinds of
experiment. Table 1 lists the properties which can be predicted by a
totally empirical Bragg-scattering wavefunction model, and the
experiments whose results can either be predicted by, or used as input
data to determine, this wavefunction. Excluded are experiments such as
IR/Raman spectroscopy, which involve transitions from one state to
another - the model in this thesis describes the ground electronic
state only, with a thermally-averaged and time—averaged occupation of
vibrational states. The properties in Table 1 are of four types:
classical one-electron moments, quantum one-electron expectation
values, classical two-electron properties (of which none exist), and
quantum two—-electron expectation values. Since our single-determinant
approximation neglects electron correlation, the values predicted for
this last type of property will probably not fit experiment very well.

The idea of a simultaneous fit to another experiment and Bragg
scattering is not new. Examples in the literature include x-ray plus
neutron scattering ("X+N") (5), and x-ray plus nuclear quadrupole
resonance(6,7,8). A quantum example also exists - X-ray scattering
plus directional Compton profile(9).

How can one be sure that an experimentally measured density can be
mcdeled at all by a wavefunction? This is the question of
N-representzbility — whether a density can be represented by an

N-electron quantum wavefunction. The theorem of Hohenberg and Kohn(10)
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shows that the ground-state wavefunction of a many-particle system, if
non—degenerate, is a unique functional of the particle density. Of
course, this functional is not yet known, but it does exist. Gilbert's
theorem(1l) shows that any non-negative density normalized to N
electrons can be modeled exactly by at least one N-electron
single—determinant wavefunction, using this construction. You
arbitrarily carve up the density into N/2 "regions", and each orbital
is a phase factor times the square root of one region, as shown in
Figure 1.

The x-ray coherent diffraction experiment, called Bragg scattering,
is a measure of density. Therefore by Gilbert's theorem, it can be
modeled by a single-determinant wavefunction.

Harriman(12) has shown that these "regions" need not have sharp
boundaries, and "that for any given density an arbitrary number of
functions, which are continuous, smooth, orthonormal, and extemd over
all space, exist" which exactly fit the density.

Using a limited basis set of atomic orbitals, and limited
information about the density, one can approximate the exact
Harriman's—-construction wavefunction in a least-squares sense. This
approximate wavefunction will fit the data well, using only a few
parameters.

The result is directly ccmparable to an ab initio wavefunction if

you use the same basis.



Figure 1

Gilbert's Theorem

from Reference(ll)

Non-magnetic case

If 5 o) dr =N,
then divide the density arbitrarily into N/2 equal regions Pir

%«:E‘/E/Oa(") e

such that < k//l | )f/ > = &

and define ‘;wz

i3’
and you have a quantum—mechanical single-ceterminant wavefunction.
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Not much work has been done with totally empirical wavefunctions.
Table 2 is a nearly complete list, The starting point for most

determinations of such wavefunctions has been the iterative algorithm

of Clinton et al.(13) This algorithm is

P =3 - 22 +3 %0 (1)
¢
where the expectation values <Oi> are being least-squares fit by an

idempotent density matrix P in an orthonormal basis g, using Lagrange

multipliers A determined by solving the system
_ _ op3
0 >=21r (3p% - 2p +ZzAi 0;) 0 2)
The expectation values are given by
<0;>=Tr PO, (3)

1

For Bragg data, the <O,> are called F(K), and the O matrix in the

basis g(r) is composed of elements
= oy ik"r,
rij(:() = <g;(r)l e bayln) > (4)

so that the observed values Fobs(K) are being fit by



Table 1

Electronic Properties
Connected with Totally Empirical Wavefunctions

Model Predicting One-Electron Property Two—Electron Property

X-Ray Structure
Factors F cal(K)

From References(l4,15)

NON-QUANTUM Outer Moments <r'™>
- OR dipole moment <r>
QUANTUM quadrupole moment <r™>
MODEL ces _
Inner Moments <r n
electrostatic NONE
potential [

Hellmann-Feynman force 7
electric field gradient V£
charge density _o(r)

Fermi contact term /0(0)

From Reference(l6)
Vibrational Force

Constants )

: From Reference(17) From Reference(20)
QUANTUM Momentum density o(k) Thermal Diffuse
MCDEL Compton profile /‘5(1{) Scattering DS
ONLY

Kinetic energy < Potential Energy <V>

Total Energy <H>
From References(18,19)
NMR Chemical Shifts 4 From Reference(21)
Bond orders B.O. NMR spin-spin
Diamagnetic = splittings J
susceptibility 4
Polarizability tensor «

QUALITY OF FIT GO FAIR TO POOR



System

H atom
H atom
*+ HCOOLi 'D20
Li atom
Be atom
H, molecule

H., crystal

*  Be metal

Table 2

10

Totally Empirical Wavefunctions

Experiment

Bragg Scattering
Bragg Scattering
Bragg Scattering(22)
Bragg Scattering
Bragg Scattering
Bragg Scattering
Bragg Scattering
Positron Annihilation

Bragg Scattering(56)

Authors

Clinton, Massa(26)
Frishberg, Massa(26)
Ozerov group(22,23,24)
Frishberg, Massa(25)
Frishberg, Massa(25)
Frishberg, Massa(27)
Goldberg, Massa(28)
Pecora(l7)

Goldberg et al. (29)

* denotes that the study used actual experimental data

+ denotes that the study approximated certain parameters unrelated

both to experiment and to the functional form of the wavefunction.
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Fcalculated(K) = Tr P £(K) (5)

Most ab initio studies use a non-relativistic Hamiltonian, and
neglect both spin-orbit coupling and retardation-type effects. The
totally empirical wavefunction uses no Hamiltonian, so it implicitly
includes every effect not explicitly approximated out. The
wavefunctions and P matrices of this thesis are generally spinless,
since it deals mainly with Bragg scattering of x-rays, a process that
is insensitive to spin. A P matrix in the closed-shell spin-paired
approximation is normalized to half the number of electrons, and
multiplied by two. This is equivalent,in the spin-paired case,to the

full P matrix

P, P
ot P (6)

+
B Pas

P =
plus the approximations
Px =P,e/3 and Pq/; =0 (7)

since it is rigorously true that for x-rays



12
£ = f/3 (8)

Including spin-orbit coupling means that P is nom-zero. This

“

may be necessary for modeling magnetic neutron scattering, which is a

measure of unpaired spin

K _ \ ik°r -
I‘;‘magnetic neutron scattering(K) —je (/«(r) /0/4(1‘)) dr )

For most cases, it will probably be sufficient to change (7) to

P

oy =0 but P, #P

e

(10)

The simplest possible model for the electron density of a crystal
is the Jo3 model (30,31). Since the electron density is "clumpy,"
that is, concentrated near certain points and tenuous far from these
points, one calculates that phase for each reflecticn which meximizes
the average value of some odd power of o, usually /03. Note that
the /o3 model uses Fobs as its Foal®

The next improvement is to treat these clumps of density as atams.
This approximation, referred to as the "free atoms" or "promolecule"
refinement, calculates the scattering power of a model spherically
symmetric atom or ion, using atomic HF or CI or some other(32)
theoretical atomic calculation. The model then moves these atoms
around to best fit the cbserved intensities, and as a side benefit

rredicts phases of each reflection.
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An early improvement over the free atom treatment is to treat eaach
atom as having some non—spherical shape, where the scattering in some
directions differs from that in others(33,34). This sort of
sophistication, assigning atoms aspherical electronic or vibrational
properties, was debated in the literature in a series of articles in
1957(35,36,37), with the consensus being that, if the internal
consistency of the data were better than about 10%, such treatment was
justified.

A better treatment is to expand the density in an LCAO sense, and
fit the data using a population matrix P, with each pair of orbitals in
the basis having a scattering power fij(K).

In a basis of m functions, it is found that there are
Dimension( £ )= m(mtl)/2 (11)

distinct scattering powers, and a P matrix this size has been
tried(38,39,40) without much success. The problem seems
overparametrized. This has been referred to as the PNI method(41).

The most popular method used is some form of multipole expansion of
the electron density, with each nuclear position being used as an
expansion center., There are several variants of this technique,
including the Hirshfeld deformation{(42), Coppens' X -refinement(43),
and the multipole methods of Rurki-Suonio(44,45) and of Stewart(46).

There are several problems with the multipole techniques. The most
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severe is positivity. In order for an electron density to be

physically meaningful, it must be positive everywhere.
o >o Ve (12)

A negative density, or "positron density", correspords to no
physically possible crystal. Since the density is, quantum
mechanically speaking, the square of the orbitals, one can guarantee
positivity if the density is modeled as the square of scame function.
Figure 2 illustrates the danger of "positron regions" if one models the
density as a sum of squares of basis orbitals rather than the square of
an ICAO sum of basis orbitals.

Non-quantum models can have some positron regions, and positivity
"must be taken as an extra condition restricting the possible values of
the parameters." (47)

A multipole expansion of the density is not an interpretation of
the data. It assigns no physical meaning to the multipoles - the model
merely filters the data. It is not surprising, then, that one cannot
connect a multipole model of x-ray diffraction with other experiments
on the same crystal, such as Compton scattering(48) or NMR.

Further, the multipole model experiences difficulty separating out
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Figure 2

Positron Regions
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the effects of non-spherical vibration from those of a non-spherical
charge vibrating spherically. This correlation of vibrational and
electronic parameters is not as severe in a quantum model, as shall be
seen in Chapter 3 below.

The multipole model assigns electrons to one atom or another, but
not both simultanecusly. It partitions the density in some
way (49,50). This inability to describe charge sharing, or covalency,
has severe effects. Since all interactions must be modeled as
electrostatic, that is to say, ionic, atomic charges are likely to be
exaggerated, Covalent bonding is inherently not explained by a
multipole model. Since, especially in polar bonds, nuclei are not
always found at the centroid of their electronic charge(51), the nuclei
are not positioned at the right places by a multipole model. This
Hellmann-Feynman shift of the density into the bonding and lone-pair
regions means that either nuclear positions in a multipole model are
wrong {unless fixed by a neutron-scattering experiment) or
indeterminate. (By adding a dipole scatterer, one moves the effective
nuclear position without moving the expansion center. Thus, in a large
enough multipole expansion, one can put each nucleus anywhere, and have
the density associated with it centered anywhere else. Assigning any
physical meaning to such an expansion is obviously incorrect(52).) Aan
example is that virtually all x-ray-only studies of molecules with
hydrogen atoms have bond lengths to the H atoms about .1 2 too
short (53), since the covalency shifts the centroid of the H electron

o
about .1 A into the bonding region.
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Finally it is found that certain properties that a multipole
expansion can predict are almost always in error. In particular, the
electric field gradient at the nucleus, as measured by NQOR, must be
added in as a constraint to the x-ray refinement to come out fitting
reality at all well(8). I can find no attempt anywhere in the
literature even to try comparing the Fermi contact temm L (0) from an
x-ray refinement with that of a Mossbauer experiment, although both
make a prediction of its value. It is commonly claimed that model
errors pile up at nuclear positions(54), and that maybe the atomic ls
cores are expanding or contracting, and these prevent obtaining a good
value of p(O) . In a quantum model, such claims can be
quantitatively examined, and a percent ls core expansion calculated.

The quantum description of a covalent bond involves cross-terms; a
bond between atoms 4 and V is written as a bonding electronic orbital

with basis functions g on both centers

|

¥ bond = €9 " Cy 9y (13)
leading to a P matrix
, G GG
bond © 2 (14)
CJ/C/U, C)/
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These cross—-termms S&Aca) are the bond, in a Mulliken sense. The larger
q”.cu is, the stronger a bond. Antibonding orbitals are describable

as

¥ antibora = Cu9m ~ €9y (15)
and the cross-term will be less than zero. An electrostatic
description has all cross—terms between centers zero, thus
non—bonding. This is also called a one-center description, if one
allows each center to hybridize, leading to cross-terms between basis
functions on the same center. A covalent, many-center description is
desirable,

A common variant of the multipole formalism uses the

Varghese-Mason(55) constraint. The multipoles Mj have the form

2
MJ = XZAYZBZZCe-Zar or (16)
x2Ay2B22Ce--2ar

and are considered to be uniquely related to Gaussians or Slaters

g.= Xyze or Xy ze 7)

M, = g.° (18)
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Cross-terms f gy, and P/A y £or #) are defined as zero, since(55)
"The remaining multipoles which are not identically zero for symmetry
reasons must be shown to be small since they will otherwise represent
two-centre overlap terms being projected onto the single centre."

This V-M formalism has been referred to(4l) simply as a multipole
expansion. It is an extreme generalization of the one-center
constraint., Where a one-center formalism disallows P matrix
cross-terms between basis functions on different centers, the V-M
formalism disallows all cross-terms of any sort in P, requiring

elements P

) to satisfy the V-M constraint

@MV - W/u J;“ v (19)
and reducing the equation

+ , i)
F .y (K)= Tr Pgg' = 2 2 Piy <9y | el rlgi > (20)
to ©

- - _ ik*r
F__; (K) 2wj My (r)dx ZPj3<gjle lgy > (21)
J J

The distinction is illustrated graphically in Figure 3.



Figure 3
Comparison of Idempotent, Non-idempotent,

and Multipole P Matrices

{ M by M Matrices P }

20
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Whereas a non-idempotent P has

m(m+l)/2 -1 (22)

independent elements, and an idempotent P has

N{(m - N) (23)

a V-M matrix has only

(m - 1) (24)

independent elements. Note that in the V-M procedure, some W are

allowed to go negative, and hopefully will not go so negative that a
positron region appears. Figure 2 shows positron regions. Quantum

mechanics enforces positivity by requiring all self-terms gff‘ to be
positive. If one requires

o<W (25)

n
bt

in the V-M method, it is N-representable; each of the WJ is an
eigenvalue, and each basis function is an eigenfunction.

The normal quantum refinement technique can generate V-M-type P



matrices, or more generally, block-diagonal P matrices, by going to

several configurations.

®
[
i

¢2=

Y’3 =

~
{oS
|

= Cy9 +Cy9p + G395

€191 * G292 ~ G393

Gy — Ca9p * C395

= C9) — G395 ~ (393

then
€12  C4C, C4C
1 i~2 ~1™3
= 2
C3Cy C3C2 C32
and
C 2 -C4C CyC
1 12 1*3
P3- =C Cl 022 -CZC3

simplifying,

For example, defining

2
¢ €€y -C4C4
€8y G =G0

~C4Cy =C3Cp  C32

2
C;”  =CiCy =CyC4
ed
P4= -Czcl Cz C2C3
- c.2
CiCp G653
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(26)

(27)

(28)

(29)

(30)

(31)



1/4 (P1+P2+P3+P 0 (32)

4) =B~

m-1 configurations to

In general, for m basis functions, one needs 2
block-diagonalize. Note that the diagonal elements of all four P above
are identical from cne model to the next, yet in Cl/, , all 3 basis
functions are bonded, ‘{’1 has 9 antibording, ‘l’s has g3
antibonding, and‘ ‘K{_ has 9 antibonding. Figures 4,5,and 6 show all
5 densities in an STO-3G basis for hydrogen, p(+++) from

L//l » _Pl+) from Y., p(+) from ¥,, _p(+—) from (&/' and
O (V-M); and the scattering curves associated with these 0.

A quantum model of x-ray diffraction has previously been applied to
some model systems(3,25,26,27,28). For all these, some theoretical
structure calculation of the density of an isolated gas-phase atom or
H., molecule was Fourier-transformed to give "cbserved" structure

2

factors Fob + and these were fit by equation (1) in an orbital basis,

S
or a spinorbital basis(25). This was extended(28) to a model H,
system. Ozerov(22,23,24) has used a similar model, and fit real data
with a quantum model. Chapter 3 of this thesis fits the beryllium

metal scattering data of Larsen(56) to a guantum model.
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Figure 4

The "Phase Problem™ with P Matrices
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Figure 5

Densities from the Wavefunctions of Figure 4
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Figure 6

Scattering from the Wavefunctions of Figure 4
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Chapter II., Mathematical Considerations

Usually, the basic element of quantum chemistry is the N-body

wavefunction,
~ . A /V)
V=S X als ) )456) ... 7W) .
determinants
wherecxi is the occupation number of each detemminant i, {{ is the
antisymmetrizer, and the ‘f& are N (spin-) orbitals
m

J

—

FE
built up as linear combinations (LCAQ) of the m basis functions g, and
normalized to 1.

The N-body wavefunction contains far more information than will
ever be needed to calculate any observed property. Since the full
Hamiltonian, which governs the electronic motion, and hence all
physically observable effects, contains no three-body terms large
enough to affect anything(57), reduction from an N-electron to a
2-electron description loses no information. This 2-electron
description is called the 2-electron reduced density matrix

J/j:z(l,Z;l',Z'). An acceptable model for /4%2(1,2;1',2') enables
one to simultaneously predict all electronic properties of that state.

(Notice, however, that 2-state properties, such as photon
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absorption/emission, require a model for both states involved, and this
more complicated problem is beyond the scope of this thesis.) The most
general matrix/Al(l,z;l',Z') is not acceptable. There are quantum
constraints on it. Unfortunately, the forms of some of these
constraints are unknown. A less general model, which is guaranteed to
satisfy many quantum constraints, and is computationally simpler
(although certain other constraints, such as the electron-electron cusp
condition(58) are violated) is the Independent Particle Model, or IPM.
This is known in various applications as the single-determinant
approximation, Self-Consistent Field (SCF) model, Hartree-Fock method
(HF), and the one-body approximation.

The IPM approximates the electron-electron correlation as the zero
function. That is, the probability that an electron is within a
certain region of space is independent of where the other electrons
are, Since the neglected correlation is a rather weak function, this
approximation is not too severe — ab initio calculations(59) indicate
that 799% of the energy can usuallﬁ be mcdeled by a single
determinant. The one-electron density matrix is written_/;z(l;l'), and

in the single-determinant approximation,

AN o) -
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In the general case, all the quantum constraints on the form
of J/%(l;l') are known. These constraints are collectively known as
N-representability; which one- and two-body reduced density matrices
can represent an N-body fermion wavefunction.

The density of electrons‘/o(r) is related(60) to_/cﬁ(l;l') by

Tr ( p,(1:11) P, = L) (36)

Tr (['(1) ) Pl (37)
The density matrix [7(1) is the diagonal element of Jol(l;l'). The
off-diagonal elements are connected with electron correlation. In an

orthonormal basis of atomic orbitals g

(1) = pggt (38)
The matrix of numbers P is properly called "the matrix

representative in the basis g of the one-body reduced density
matrix [(1). Since P is a square matrix, it has off-diagonal elements
Pij for i not equal to j. These are not connected with electron
correlation, as is 0, (1;1') for 1 not equal to 1'. DO NOT CONFUSE
CFP~-DIAGCNAL ELEMENTS WITH OFF-DIAGONAL ELEMENTS. Pij is not
/o,(l;l'). DO NOT CONFUSE THE DENSITY MATRIX (P) WITH THE DENSITY
MATRIX (/9“1;1')). From now on, the only density matrix referred to
will be P. Also, to avoid confusion, P.. with i not equal to j wiil

13
be called cross—tems.
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The quantum mechanical constraints on the density matrix P are:

1) The eigenvalues of P must all lie between 0 and 1.
2) P rust be Hermitian, P = P (39)

3) Tr(P) = N, the number of electrons (40)

Another constraint on the density, which will not be satisfied, is

the electron—~nuclear cusp condition(61):

J
lim (r /) - lim ‘/O(rQ -2

F—Teft arnucleus r right e Lnucleus (41)

The change in density as one approaches the nucleus must be
discontinuous, with the change in slope equal to minus the nuclear
charge. (The electron-electron cusp condition dictates a change in
slope of +1/2(58).)

In the Independent Particle Model, the eigenvalues of P are exactly
zero or one. This cordition on the eigenvalues is equivalent to the

matrix condition

1) PP=p (42)

The three conditions 1'), 2), and 3) are referred to as
idempotency, Hermitivity, and N-normalization, respectively. Cordition
3) is the easiest to satisfy. Any idempotent matrix must have an

integer norm, since its =zigenvalues C and 1 are both integer. One must
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ensure only that the trace equals the correct integer, and not N-1 or
N+l. Condition 2) is satisfied simply by constructing the lower left
 half of the matrix as the Hermitian adjoint of the upper right
triangle. This makes all the self-terms (diagonal elements) real.

Condition 1') is the most difficult to satisfy. There are two
methods in the literature of "purifying" a matrix to idempotency.
McWeeny's method(62) is

P! - 2P

3P (43)

until

2

Tr ((P2 - P) ©) < threshhold (44)

where the threshhold is roughly the square of the largest acceptable

error. (A P matrix idempotent tc 6 places has a threshhold of
~12 )

Mestechkin's method(63) is

~10

=2P-1 (45)

and



V=Y +1/2 (1+Y )Y
until

Tr ((¥2 ~-1) 2) < threshhold
and thus

PP=(Y'+1)/2 and TrY=N=-m

Mathematically, P is called idempotent with

and Y is called involutional, wiEh
v =1

The elements of P are, in general, complex. Under what

32
(46)

(47)

(48)

(49)

(50)

circumstances will constraining P to be real result in a worse fit to

data? Suppose

¥ = (Cl CfiS)(gl)

(51)
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Then

F(X) T /C C

X Y, "1 C1C2+1C1C3 (fllflz (52)
C:Cy~1iC+C foqf
1%27+1%3 €6, +C.C, 2155

if

fll = x1+1x2, f12 = x3+ix4, f22 = x5+ix6 (53)
then

A2, . , .
F(R) = Cl (xl+1x2) + (C1C2+1C1C3)(x3 1x4)

+(C1C2—iC1C3)(x3+ix4)

+(C,24C5) (xg+ixg) (54)
A2 . 2
= Cl Xy + 1Cl X, + 2C1C2x3+2ClC3x4
2, .2 .
+(C2 +C3 )(x5+1x6)
If
Py
P = ¢ CiCy (55)
real ~ X
c,C,  Cy
then

_ 2 . 2 . L
F(K) = Cl (xl+1x2)+2ClC4x3+C4 (x5+1x6) (56)
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and if
2 2 2
C4 =C2 + C3 (57)
then

Fcomprex Frea1™ 2C1 (Co%3#Cyx~Cyx3) (58)
which is zero if and only if the scattering cross—term f12 is real.
Reality of all cross-terms fij(K) is equivalent to the crystal being
centrosymmetric. Thus, one should constrain P to reality only for
cenﬁrosymmetric crystals.

The iterative equations for fitting P to data, as developed by
Clinton et al.(13) and extended by Henderson and Zimmerman(64) to

constrained variational calculations, is based on the error measure

g = > [Fy @i-IF_ ot

K (59)
Cther error measures used in crystallography are
K 0,1,2 1 or 2 Lor ipl ora
50:2 €n =Z(WK) AP @) —(Fear )
« ¥ (60)

and the robust-resistant functional(65) of Nicholson et al.,



(ZI\)I{ZR)Z ﬁz K>4)if/2xféa »
c, ___2 7 |7 |3t3

-
K /6 if]z[>a (61)

where
Zg= g (JF g (K= [F o3 K ) /GoF (62)

These error measures, their R-factors, and the iterative equations
associated with each, are listed in Table 3. The least—absolute-value
functionals seem far slower to converge, but their precision is
higher (66) .

Figure 7 shows the behavior, in a fixed basis, of some of the error

functionals as a function of P, where

o _ 1/3 7 /3> (63)

exact I/'f' /3 2/3

and

X yx(l=-x)
Prale = |/AT=)  (1-x) (64)

Figure 8 shows the behavior of JeE /ax for these functionals.



Table 3

Error Measures and Related Quantities
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(A) Fo is the observed F(X), IO is the
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and I c are the calculated values.

Sums are over all observed reflections, each with weight

~-3D¥
- Xw, D"
-5p*
~SwD
-30"
- D
-Zpf

le, (E_‘)/‘)' iy
le? €™ Jou 4T
Ve € Jopu /T
Yl
Vo € /g
S E s fiE
Ver € T iz

“Zw D

36

ap)K G a‘(p/u)(c) GoF  NUTES

'6. 45 L(D)
eNT |

BNE
ITNE
Ves/NE
/SNE [(E)
VETNT ((7)

VAT E_')/-/ g

observed FZ(K) ¢ F

VESTAT | (c)

Cc

WK .

(B) The TREFOIL number is the value of EPSWAY in Appendix B.

(©) P is defined in equation (268).

(D) 'Conventional' R-factor(l).

(E) 'Conventional' GoF, best electron density(67), used for

Hamilton's test(68)

(F) Unbiased fit to experiment(69).

(G) Best Patterson map(67).



37
Figure 7

Error Measures for the Same P Compared
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Figure 8

Gradients of the Error Measures of Figure 7
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Noting that

"‘),X! =sgn(x) = -l ,0, or 1 (65)

m m

K K
4T FK J (ZZ Fv/u) :/fu/u (66)

P /e

and that the iterative equations can be represented as

2

p! = 3p% -2p°

=2P~ + }’ 1+ XZG (67)

where

JeX
= W, ——
& ; Kap (68)

\ &

and

1, N -tr P\ [Tr 11 Tr 16\"}
- €goal ~€ Tr G1 Tr GG

Ay

(69)

For various error measures &, , Table 3 can be derived.

E goal is a number which is lowered in a super-iterative
procedure. Because the P-equations (22) are so slowly convergent, one
cannot try to lower € too precipitously. The starting value of

should be a fairly large fraction T (1/2 to 3/4) of € (P, al) and

initi
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when (22) has converged to goal’ lower it by some amount.
Computational experience has shown that, using
=T €

.75 € (70)

& goal' goal = goal

is a reasonable choice, and anything less than T = 1/2 often leads to a
failure to converge.

The idea behind the iterative equations is to solwve for an
idempotent matrix, and meanwhile, using Lagrange multipliers, to
perturb in the conditions of N-normalization and fitting the data. Why
does one use such an indirect method? Why not minimize the error
measure € while perturbing in normalization and idempotency? The
reason lies in the nature of the constraint.

For the normalization constraint
N-TrP=0 (71)

the derivative is

DN-TeP) N 3
3 Py JBw I 2’3

/,,,) (72)
and thus

X, 1 (73)
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For the idempotency constraint
Tr ((P2 - P)

) =0 (74)

the derivative is

(pt-2P3+ P7 ))

(Tr ((PA-pY) =

‘SE%V .ﬁv

<Z AB C.DPDA gpfce Bc cA PABPBA) (75)

P
_a__ae _
/B Puv Péc PeoPoa™ 2 P Pn PBf\> \

9 Pc
F
"9

9Pac
APy

+. F%B F $> - 277

9 Fs
= t P Py 9P¢v P a

ABCD

d Po
+ PaePac Pop 9?/:\))
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By noting that

V) (76)
Il

equation (75) can be reduced to

N

Pvc PCD Po;«_ TR PUC, Pc:){ N Pv/uv * Pﬁﬁ va PDA_ 2 PA/"(PUA 77

T e FauPua * Py PR — 2P, P, P

oM vy

/

and remembering that A,B,C,D are dummy variables, it reduces o

Z Pyvabe Pay ~R Pya PA/»{+ Puﬂ P Pafis \(78)
A< |

= 2 PA/—L PVA * P Pg/t Poa PvA PAB PB/( -4 PVAPAH+E//7/

Ccllecting terms, and noting that terms conmute,

P - f - )
fé (6"’ (PAB Pﬁ,u )}2;/, 2/;/7‘2/%%47‘//;3/38/ ')/PQ/«)TL;/U (79)
= % L;Fy,q @BPB/M -6 Fy/q ,Pqﬂ 7. DM

Then the constraint would be

aent 4@ - 6FH? 4 208h) ) (80)
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Unfortunately, if the P matrix is nearly idempotent,

&h3 ~ @H? ~ oh (81)

aeh3 -6(5H% -2 -~ o0 (82)

which makes the constraint almost null, and thus the procedure will not
work. In other words(70), "the distance X moved along the generated
directions tends to zero, causing jamming at a non-optimal point.”

For the same reason, many other constrained minimization methods,
which depend on the derivative of the constraint, such as the methods
of Zoutendijk(70) and Rosen(71) (see Appendix E), are inapplicable.

The P-equations (122) have no obvious extension to including the
optimization of parameters other than the P-matrix, such as atomic
positicns, basis function exponents, or vibration amplitudes Uij'

The severest disadvantage of the P-equations is that their
convergence is quite slow, although some error measures converge faster

than others. In a relative timing test, for the same model problem,

the relative convergence times, on an IBM 3033, are shown in Table 4.
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Table 4

Convergence Times for the Iterative Equations
for Case 3, Mcdel 2 of Chapter V,

Using Equation (67) for Various Error Measures

Error Measure Convergence Time (Minutes CPU Time on an IBM 3033)

Least-Absolute~Value
50.498 (this is the € used in Chapter V)

60.756

Least—-Squares
3.218

4.187
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The dramatic difference between the least-squares methods (6‘3 and
€‘_f) using the P-equations and the least-absolute-value methods( €,
and 6.1) can be rationalized as follows. Figures 7 and 8 show | 6/ (P)
to be a linear functional discontinuous at the solution, with a
piecewise constant gradient. Convergence is at best linear. 1In
contrast, 63(13) is a quadratic functional with a gradient that goes
smoothly to zero at solution. Convergence is at best second-order, and
apparently better than with a least-absolute-value criterion.

An alternative to the P-equations seems desireble, preferably one
which can be extended to simultaneous optimization of any and all
desired parameters, and which lends itself to being able to calculate
error bars and covariance matrices for the final values of all
parameters. The method outlined below fulfills all these
specifications.

An idempotent P matrix has N(m-N) independent parameters. Suppose
that one wants to also optimize some number of other variables v not in
the P-matrix, such as atomic positions, vibrational amplitudes, etc.

Define a parameter vector p as
p= (N(m-N) independent P/v) @ (v = other variables) (83)

of dimensicn’
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Dim (p) = N (m - N )} + Dim (v) (84)

In these terms, define a set of calculated x-ray scattering factors

Fcal(p) with an associated error functional e;n[p] defined as, e.g.

obhs

6’[/07:2 [IF (K)/"/Fcal(K,p)// (85)
K

and a gradient vector G with elements

_ JE
GJ B P (86)

The idempotency, normalization, and Hermitivity constraints are
enforced in two ways.

First, any independent

By =By | (87)
has bounds
0 < [may| <1 (88)

(89)
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mast be real,

Second, in an iterative procedure, or descent method, one can set up 3
or 4 stages in each iteration.

1) Calculate a descent step to move the parameters a distance d
given by

p' =p+d (p,F ) (90)

cbs
2) Using one of the purification methods, equation (43) or
equation (46), generate a P-matrix whose independent variables
p'i ¢+ 1 <1 < N(mN), are those chosen by equation (87).
3) Calculate Fcal(p') and &,[p'l.
4) (possibly) Select a new subset of N(m-N) independent P matrix
elements.
A computer subroutine for step 2) is given in Appendix F.
Which elements Puv should be selected in step 4 above? All
should be on or above the diagonal, with the Hemmitivity constraint

giving those below the diagonal simply as

K
E.=F~,, (91)

M
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All but the largest self-term Paa should be used. The largest

self-term is given by the normalization constraint as

PN Db, (92)
M4

For the one-electron case,
N(m=N) = m=-1 (93)

and all of the independent P matrix elements have been accounted for.
If N > 1, some cross-terms are also independent. I do not know
which should be used. There is no reason to think that the same choice
is appropriate both for McWeeny's method and for Mestechkin's method.
Since both McWeeny's and Mestechkin's purification processes are
iterative, a starting guess for the independent elements of P in the
idempotency step 2 is needed. On all but the first iteration, the
corresponding elements from the previous iterations can be used. Zeros

should not be used, since if, for example, one starts from

B ]
Py 0 0
Pinit™ 0 Py Pyq (94)
0 Psy (N=P; 1=P55)
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then
|
) P10 o'
3p%- 28 = | O P2 P2 (95)
0 P3p P3

P12 and P13 are always zero if one starts them out at zero, and

McWeeny's process will diverge or fail. An excellent starting quess is

=~ 96
/jw W('//“/‘” Ve, (96)
In the one-electron case, Equation (96) is the exact solution, and no
further purification is necessary.

Equation (96) introduces a new problem, or perhaps merely reveals
an old problem. Since the P-matrix is the square of a wavefunction,

P= CC+ , then

(GGl Vo e

By choosing the self-terms as independent elements, there arises a
"vhase problem.” Not all values of the phase € vyield the same
P-matrix. As a simple example, consider N =1, m = 2, with 1 complex

parameter, ?7*' defined by
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&
o M (98)

Since the total phase of the orbital ¥ is arbitrary, one can write

absolute value signs on the expression

¥ (C/u -C.CE|) I (99)

o+

then

/ C/U{a /C/"//V /"C/C/f /66@‘ (100)
/C/M//‘//“C/AE/A /g:éé}“ 1"/6///’1

In the case of P real, & 7 is either 0° or 180°, 0° correspords to

-—

c, 9, +cg, a bonding orbital. 180° correspords to C;g, ~ C9yr an
antibonding orbital.

The implication for empirical wavefunction detemmination is that one
shouild consider the self-terms as having a "hidden" phase that

manifests itself in the cross~terms. For P real,

P/u/u :(4'/73;47 )l or ("(/ P/u/u )2 (101)

for P complex,
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P/u/u:(ll/@x/u’/ 659/4 6_i6/,.) (102)

Fav __.0/?#/;,//(/%,/8&@“_9”)) (103

this results because

P =l6

The first step in determining any wavefunction is to choose the
form of the basis functions. This is especially important with totally
empirical wavefunctions. Since there are a limited number of data, one
must use as few parameters as possible, and therefore as small a basis
as possible, in order to have a larger number of data per parameter.

It is always possible to get a low € by overparametrizing the
problem, but this would not be a meaningful approach to interpretation.

Since this thesis is mainly concerned with electron densities from
x-ray diffraction, the effect of basis set on density is of more
concern than that on energy. Including electron correlation in ab
initio studies changes the density by at most about 1%(72), but basis
set effects are two to three times as large(59).

The best type of basis function to use for atomic calculations is
the Slater orbital. These can be forced to satisfy the

electron-nuclear cusp condition (which is nice, but not relevant here),
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and more importantly, they decay exponentially at large distances from
the nucleus, which is a condition known to be satisfied by the exact
wavefunction. However, many of the integrals required to calculate
molecular properties in a Slater basis are analytically intractible,
and often only numerical solutions exist(73,74,75,76,77). In contrast,
Gaussian orbitals decay too fast, have no cusps, but all integrals over
such a basis(19,21,49,77,78) are not only closed-form and analytic,
they are usually quite simple. In order to simulate the desirable
properties of a Slater orbital, one can superimpose several Gaussian
"primitives" in a fixed ratio(79). Some are made very "tight" (large
exponent) to simulate the cusp. Others are very "loose" to simulate
the gradual decay of a Slater (although this is unsatisfactory for very
large distances). The remainder of the Gaussians can be optimized in
an ab initio calculation either to least-squares fit a Slater orbital,
called STO-nG, or to minimize the enerqgy. This set of Gaussians is
treated as a single function, referred to as a "contracted" Gaussian.
To improve an atomic caiculation, one can add basis functions either of
different radial dependence, or functions with higher angular
momentum. The general formula for an atom—centered contracted

Cartesian Gaussian orbital is

(o A, B, _ C
9=(x xatom) {y-y atom) (z Zatom) X‘

2
(?cje-aj(r-ratom) ) X-//_v——l;_-;,,- (105)

wher=
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( ) (106)

Latom ~*atom "Yatom "Zatom

is the position of the nuclear center; aj is the j'th exponent (large
exponents are "tight" primitives); the cj are the contraction
coefficients;and (Nor) is the normalization factor. The sum of atb+c
is the angular momentum quantum number; with 0 being s, 1 as p, 2 as 4,
3 as f,etc. Note that the radial dependence is that of a ls orbital.
This is always taken to be the case. No analytic formulas over
Gaussian 2s,4s,... primitives exist. Huzinaga has shown(8C) that using
3s primitives has no advantages over ls primitives, and it takes more
effort to evaluate the integrals. To convert from Cartesian Gaussian
orbitals to spherical harmonic Gaussians is not overly difficult. The
matrices in Table 5 below show the process for s,p,d, and f orbitals.
For example, the 4f orbital z(xz—yz) is

-1//Z g(0,2,1)+ 1//2 g(2,0,1).

For molecular or crystal wavefunctions, atom-centered basis
functions are not necessarily appropriate. A crucial feature of the
density when two atoms bord to each other is a shift of the density
from near the nuclei and from the opposite side of the atom to the
bonding region. The Hellmann-Feynman Theorem dictates that the basis
functions in a finite atom—-centered expansion also move into the
bonding region. There are two ways of modeling this effect. One way

is to introduce higher-momentum atom—centered “"polarization" functions,
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Table 5

Conversion Between Cartesian Forms xA'szC

and Real Spherical Harmonics

A+B+C=0
(0,0,0)
1s 1
A+B+C+1
(1,0,0) (0,1,0) (0,0,1)
2p: x 1 0 0
Yy 0 1 0
z 0 0 1
A+B+C=2

(2,0,0) (0,2,0) (0,0,2) (1,1,0) (1,0,1) (G,1,1)
35 /3 /3 /3

0 0 0

3d: o 25 -1//6 -1//8 2/ 6 0 0 0
=y 17 -1//7 0 0 0 0
Xy 0 0 0 1 o 0

Xz 0 0 0 0 1 0

yz 0 0 0 0 0 1

A+B+C=3 (cubic convention)
(300) (210) (120) (030) (021) (012) (003) (102) (201) (Q11)

ac: x 143 0o _ 1//3 o 0 0 o Y3 o 0
y 0 /3 o /3 o _ 1/3 o 0 0 0
z 0 0 0 o 1//3 o /3 o 14/3 o
Af:z(x1-y>) O 0 0 0 -=1//2" o 0 0 1//2
yiz*-x* 0 =1//27 0 0 o 14/2 o 0 0 0
x(y*-z* 0 0 1//27 o0 0 0 0 -1//2° o 0
x; 2/6 0 _-1/6 0 0 0 0 -1//6 © 0
i -1//6 0o 2//60 0 -1//6 0O 0 0 0
z> 0 0 0 o -1//80 2//6 0 -1//6 0
xyz O 0 9 0 0 0 0 0 0 1
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such as 2p orbitals on hydrogen,which are combined to form hybrid
orbitals with the desired features. Another way is to introduce
functions which are not atom—centered(8l); their positions are treated
as another set of parameters to be optimized. Comparative ab initio
studies(82,83) show that equally good descriptions of molecular bonds
can be obtained with only 1/3 to 1/2 as many extra basis functions by
using these floating functions instead of polarization functions.

These floating functions are usually taken, for purposes of
simplicity(84), to be ls—type Gaussian primitives, called Floating
Spherical Gaussian Orbitals, FSGO, bond functions, or simply floaters.
The main reason that theoretical calculations don't use FSGO more often
is that using them properly requires optimizing their positions and
exponents separately for each new molecule - there is inherently no
such thing as a "standard FSGO exponent." BAlso, each time one changes
the position or exponent of a floater, or the position of an atom in a
ceometry optimization, all integrals involving floaters must be
re-evaluated. Since up to half, and commonly 1/3, of the computer time
in an ab initio Hartree-Fock calculation is spent evaluating integrals
once, recalculating many of them on each iteration is an unpopular
option. OCne compromise which is used(85) is to arbitrarily fix the
floater position at the bond midpoint, and optimize only the exponent
(to the nearest .05 a.u."2 J. Sometimes, to compensate for this
limitation, a set of 2p primitives is also placed at the bond midpoint,

either with the same exponent as the ls-type floater, or with exponent
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separately optimized. Optimizing the FSGO position makes the resultant
wavefunction easier to interpret in terms of charge partitioning, and
this partitioning is remarkably close to a separation into virial
regions(86).

In a system with symmetry higher than C, » one uses a contracted
floater, with all primitives having the same exponent, but at positions
related by symmetry. This is in contrast to a contracted atom—centered
Gaussian,where the positions are the same, but the exponents differ.
The FSGO contraction coefficients depend on the irreducible
representaticn of the symmetry group desired. For example, in symmetry
group C; , with coordinate origin at the inversion center, one would

get 2 sets of 2 floaters

)
VUA; (norm) (e=2(r=rpsc0) 24ea(r=Tpgg0) %) (107)
- (e 2 e (ye 2
\PAU=(norm) (e ar rFSGO) -a alr rFSGO) ) (108)

A more complicated example, shown in Table 6 and Figure 9, is that
of group D3h' which is the atomic site symmetry in beryllium metal
(see chapter 3 below) and graphite (see chapter 4 below). Here it is
convenient to define the floater positions in terms of the polar
coordinates r, &, 95 The 12 floater positions are placed at

Q(r,8,#), where Q is one of the 12 operations (E, 2C3 ¢ 3C5 1o



Figure 9 |

Floating Spherical Gaussian Orbitals

in D31_1 (ém2) Symmetry
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Table 6

Floating Spherical Gaussians in D3h Symme try

and Their Contraction Coefficients

for All Irreducible Representations

long- Lat-
# Distance itude itude A /
1« e 4
2 r 120-6 # 1
3 r 12000 B 1
4 r 240-0 & 1
5 r 240+6 ¢ 1
6 r -6 ¢ 1
7 r e -4 1
8 r 120-9 -4 1
9 r 12046 -¢ 1
10 r  240-6 =g 1
11 r 24046 - 1
12 ¢ -6 -4 1

(1/ Nbrmalizer)z' 12

Representation

A) B, B EjLE,
1 1 1 1 1
-1 2 0 -2 O
1 1 -1 1 -1
-1 -1 -1 1 1
1 -2 0 -2 0
-1 -1 1 1 -1
1 1 1 1 1
-1 2 0 -2 O
1 1 -1 1 -1
-1 -1 -1 1 1
1 -2 0 -2 0
-1 -1 1 1 -1
12 24 8 24 8

b

A" Ay
1 1
-1 1
1 1
-1 1
1 1
-1 1
-1 -1
1 -1
-1 -1
1 -1
-1 -1
1 -1
12 12

24

Elp

58

24
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ZS3 r 3 oy ) of D3 b All irreducible representations are spanned at
least once by the set of 12 floater primitives.
Figure 9 shows a set of 12 FSGO in D3h symmetry from two views.

In the upper view, looking down the x axis, the z axis (poles) appears
as a vertical line, and both the y axis and xy plane (equator) appear
as a horizontal line. The floaters, represented as shaded circles, are
at a distance r

F
{00,120°,240°}I &, times the two latitudes *¢& , for a total of 1

SGO from the central atom, at the six longitudes

distance times 6 longitudes times 2 latitudes egquals 12 FSGO. The
lower view, looking down the z axis (polar projection), shows the x
axis as a horizontal line. The y axis, not drawn in here, would be a
vertical line. The equator appears as the outermost circle.

The 12 floater positions, numbered 1 to 12 in column 1 of Table 6,
are explicitly related to the 3 parameters r,&,9% by colums 2,3, and
4 respectively. The 12 symmetrized representations of the point group
D3p, that can be formed from the 12 FSGO by a unitary transformation
are shown with the transform matrix in the remainder of Table 6. For
example, the floaters can be combined into an a," basis functicn as
ga'// =l/,/'f4‘7 (gl—g.z+g3-g‘f+95_95+97-gg+gq-g/o+g/, —gll) or into cne part
of a doubly-degenerate rep as
ge/: =1/ /24’ (g, +291+g3-9q-295-96-97—29€-gq+g,o +2g, +9)5) .

The use of Floating Spherical Slater Orbitals is inadvisable, since
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that would put a cusp where none belongs. Also, there is no reason to
expect exponential die—off from the bonding region towards the
constituent atoms.

Atom-centered polarization functions and FSGO are both ways of
describing "deformation density;" the difference between atoms and a
molecule., There is no easy way to convert from one to the other - a
set of floaters can be expanded in an infinite series of polarization
functions, and vice versa, but there is no one-to-one correspondence.
Although it is more convenient to think in temms of atom—centered
functions, this is an educational prejudice. Neither polarization
functions nor floaters is inherently a "fundamental" approach, nor is
one more "contrived" or ad-hoc than the other. The advantages of each
are that FSGO yield a more compact representation, while polarization
functions are less costly of computer time to use. No one has ever
actually expanded any wavefunction in a truly infinite series; where to
truncate the finite expansion, and whether to go to more centers or to
higher angular momentum, is largely a matter of taste and convenience.
For totally empirical wavefunctions of small systems, there is a
leaning towards floaters because of their relatively fewer parameters,
but for larger systems economic considerations dictate the use of
polarization functions. The strongest argument against FSGO is that to
directly compare ab initio and totally empirical wavefunctions for the
same system, one would prefer to use the same LCAO basis for both;
since the existing ab initio calculation is almost certain to not use

floaters, the totally empirical function shouldn't either.
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Another common type of basis function, used mainly in ab initio
solid-state wavefunctions, is the plane wave, either as the only
functions, as Orthogonalized Plane Waves(87) Schmidt-orthogonalized to
the atom—centered basis, or as a mixed Plane Wave/Gaussian
basis(88,89). These plane waves have been used for
crystallography(90). They are in general unsuited for totally
empirical calculations, since one must use hundreds of them to get
satisfactory convergence.

A common technique both in ab initio calculations and in
non—quantum models of Bragg scattering is the frozen-core
approximation. Only the valence orbitals of a molecule or crystal are
allowed to change; the core orbitals are all(91) kept "frozen" at the
values determined by an atomic ab initio calculation. This
approximation has at most about a 0.3% effect on the density(72).
Totally empirical wavefunctions should certainly use the frozen—-core
approximation in almost all cases — one gets the core described
excellently with no added parameters. Also in view of reference(72),
appeals to "core expansion" should be viewed with sone suspicion.

Ab initio calculations involving large atoms often use
pseudo-orbitals(92), and thus all core electrons are eliminated
entirely from the calculations. A totally empirical wavefunction could

use the same idea.
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Pseudo-orbitals are of 2 types, core and valence. The requirement
of orthogonality to the core fixes the form of the valence basis
pseudo~orbitals., The prescription for ab initio calculation of valence
pseudo-orbital bases is well defined(92). The pseudo-core is
obtainable from atomic ab initio calculations, and is used without
modification. That is, the molecular pseudo-core is an atomic core.
Note that using a pseudo-core is not eliminating the density "near" the
nucleus; it is eliminating the canonical core orbitals from the
calculation entirely. Valence electron density near the nuclei and its
modification from one molecule to the next will still be described in-
using valence pseudo-orbital basis functions.

Note that using core pseudo-orbitals exclusively — assuming that
all electrons are in the "core"™ and hence are unperturbed by molecule
formation or crystal formation - is exactly the superposition of free
spherical atoms approximation, also called the "promolecule," that is
commonly used in crystallography.

In addition to the reduction in the size of the problem from using
the frozen-core approximation, one can reduce the size of the problem
still further by symmetry-blocking of the P matrix. In a

symmetry-adapted basis, the P matrix can be written as
P=p ®F
j - fjr, (:> [ (:> . 4 (109)
! )

where each P_ satisfies

I‘l
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DB TR
and cross-terms between basis functions of different reps are
necessarily zero by symmetry - each orbital in a symmetry—-adapted basis
must belong to one and only one irreducible representation of the
group. Each rep must be assigned N r €lectrons. In the
single-determinant approximation, the N are constrained to be
integer, and each assignment of the N, corresponds to a different
electron configuration of the system. The ground state of the system,
in doubtful cases, will be the set of Np which best fits the available
data.

This symmetry-blocking has reduced the number of parameters. Since

N:Z/\/[7 ; m:Z M (111)
[ [

the nurber of P matrix parameters has gone from

)(Z m[.,, "N/*'/)'—'/%/NF (m/—-/ ‘N’-v/) (112)

to

%N}" (mF—va) (113)
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and the number of parameters symmetry-constrained to zero is

m - (114)
EZ N/”(/"’ NF)
4
[ %[
For the degenerate representations E,T,G, and H, one gets further

reduction, since if the basis functions are arranged within each

sub-representation in the same order,

Pg =P , PT}(:PTy-PTz’ etc, (115)

and thus for purposes of counting parameters, degenerate reps are
counted once only, not 2,3,4, or 5 times.

Chapter 4 below makes use of the preceding symmetry discussion to
outline a procedure for determmining totally empirical Bragg
wavefunctions for graphite and for diamord.

In the preceding discussion, it was assumed that the basis
functions were orthonormal and syxme'!try—adapted. If one uses a
non-symmetrized basis, great care must be exercised. The observablie
density ﬁ(r) always belongs to the totally symmetric representation
/‘; of any group. An orbital ¢ belonging to any irreducible
representation of the group will yield a density of the proper
symmetry. However, non-symmetrized basis functions, which belong in

general to a reducible representation, will usually yield a density of

the wrong symmetry. As a trivial example, in C o
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(0dd)?= (even)?= even, but (odd + even)?= (odd + even) (116)

If one has hybrid orbitals, say a set of sp? orbitals in a C3
environment, these must be viewed as members of a degenerate set, and
populated according to equation (115)., Better yet would be to always
use symmetry-adapted basis functions. The three sp, hybrids
mentioned above span A and E of C3, not just one rep.

It has been suggested(41) that one can further reduce the number of
parameters in the P matrix by making the approximation that certain
cross~terms are zero, not by symmetry, but because they are "expected"
to be small.

One can, for example, treat each water molecule in an ice crystal
separately, with no cross-terms in P between functions on different
waters. A refinerment of sodium azide could be constrained to have one
P matrix for Na' and another for N3_. When doing this, keep in
mind that a quantum P matrix has an integer trace - one cannot have
separate P matrices for Na L) ang N3(l-]{)—.

The two most common types of constraint are called the "two-center"”
and "one-center" approximations. In the "two-center approximation”
this expectation of negligibility comes from the two basis functions
involved in the cross-term being on atoms not considered bended to each

Hsc=0

other. For example, in the molecule F:/’
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Pyy 0 Peg O (117)
D= 0 0

} PFF PCF
F P

ue Frc fcc Feo
This can be implemented by defining p parameters which use the same

basis functions, but each correspords to either an atomic or a bording

feature, e.g.

PPcy bord™PF atom™Pcr bondPC atom*Pc=0 bonds
+pb atom +pH atom (118)

A problem with this is that, since the P sub-matrices do not refer to
disjoint sets of basis functions, one could conceivably wind up
overpopulating a particular basis function, violating the quantum
constraint of equation (88). One solution would be to check any
wavefunction refinement using equation (118) once every few iterations
to be sure that the total P matrix is idempotent, normalized, and
Hermitian; if not it should be fixed up and possibly the two-center
approach should be modified.

The most extremely constrained approach is the one-center method,
wherein the P matrix is treated as the direct sum of each atom's P

sub-matrix. In the H\C___O example,

F/
P 0 0 O
OHH Prr O 0
P= 0 0 Pcc O

0 0 0 Py {119)
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Each atom then has an integer charge, and covalent bonding cannot be
described. This is the approximation to use when comparing quantum
Bragg refinements to multipole Bragg refinements, where the one-center
approximation is almost always used to prevent over-parametrization.

A one-center quantum P-matrix is exactly equivalent to a nultipole
refinement with quantum constraints, as I will now proceed to show.
Given m orbital basis functions g;s One can construct m(m+l)/2

density basis functions, or multipole functions,

Mij = gigj (120)
Table 7 displays the corresporndence between one-center orbital products
of Cartesian Gaussians and Hirshfeld-type(42) multipoles. Thus, one
could convert a multipole refinement program to a one-center totally
empirical wavefunction refinement program with only a small amount

of effort. Note that the correspondence equation (120) is

one—>many. The results of a multipole refinement cannot unicquely be
converted to a wavefunction, not even to a wavefunction that violates

quantum constraints.
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Table 7

Conversion Between Cartesian Gaussians
and Hirshfeld Multipoles

Orbital to Multipole
Angular Exponents Orbitals Multipole Angular Exponents
M

g g
aBc AR ABC
000 000 s s Monopole 000
000 100 S Py Dipole 100
000 200 s der  Quadrupole 200
000 300 s frxy  Octupole 300
100 100 Py Py Quadrupole 200
100 010 Py B,  Quadrupole 110
100 200 Py by Octupole 300
010 100 p, P Quadrupole 110
100 200 ax Octupole 300
X xx
Multipole to Orbital
M Name 9 9y Name
ABC A BC A B
000 Monopole 000 00O s s
100 Dipole 100 000 p. S
200 Quadrupole 200 000 & s
100 100 o p
110 Quadrupole 110 000" a
100 010 p¥p
300 Octupole 300 000 £ Y
200 100 gx*x o
210 Octupole 210 000 £XX X
200 010 d;:i:yp
110 100 dxyp}:
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To take an example, we see that an orbital sp basis leads uniquely
to monopoles from s—-s terms, dipoles from s-p temms, and quadrupoles
both mixed (11 0 fron\pa-pr terms, 1 01 fronnp;-{g, and 0 1 1 from
P Y—pz) and unidirectional (2 0 0 fromp * , 0 2 0 from P> s and 0 0 2
from pzz-). However, multipoles cannot be decomposed uniquely into
orbitals. For example, we see that the mixed quadrupole 1 1 0 can be
decomposed either into a p;-pr product, or an S"dxy product,

If the basis g is not orthonormal, one must correct for this by the

use of an overlap matrix S(91) with elements

Siy =<9 [ 9. > (121)

The equation for scattering amplitude is modified to

F_ (K)= Tr ps~ L/ 2¢ gy sV 2epy 57V 2p5™1/ 2 () (122)

In eguacion (122), the two versions are correcting respectively the
basis and the P matrix. When using the P iterative equations (67), it
is more convenient to correct the basis. When using the descent method
of equation (90), either convention is equally good. To see what the
wavefunction looks like in the original basis, one can examine the

matrix R defined by
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~1/2

R=§ ~1/2

PS (123)

When adding a new basis function, the initial guess at P’should oe

| ‘N2 @ (59”/‘1
P'=5) 0 -

S-—o/, - /2

)
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Chapter III. Beryllium Metal

The only example in this thesis, or indeed anywhere in the
literature as of March 1984, of applying the method of chapter 2 to
real data from an actual experiment on a real crystal - in no sense
artificial data - is this chapter, wherein the formalism is applied to
beryllium metal.

The (as yet unpublished ) x-ray diffraction study of beryllium
metal by Larsen and Hansen(56) provides a' sensitive test of the
formalism. Beryllium crystallizes in space group P63,hmm» #194, at
the 2 positions "c" of the Wyckoff notation. There are 2 asymmetric
units per cell, with one atom in each. The site symmetry is 6m2, or

D The structure is illustrated in Figure 10. There are several

3h*
reasons why beryllium is a good first case.

First - it's a simple structure. Beryllium is nearly
hexagonal—~close-packed. There is only atom per asymmetric unit. The
position of that atom is fixed by symmetry. In the spin-paired
approximation, this one atom has only one valence orbital.

Second - beryllium is interesting. It has a very high Debye
temperature for a metal: 1440° R. The large diamagnetic
susceptibility, and the fact that beryllium is brittle at room

temperature, point to beryllium being not quite metallic. As a
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consequence of these facts, beryllium has been extensively studied both
experimentally and theoretically(56).

Third - beryllium has half its electrons in the valence shell, so
the electron redistribution miabt be easy to spot. Unfortunately, this
is not the case. 97% of the scattering power comes from the 1ls core,
and less than half of one percent can be attributed to bonding effects.

Fourth ~ because reason three didn't work out, and bording and
deformation effects are so small, the phases of all reflections are
determined by the free-atom model.

Fifth - the diffractiqn data for beryllium are excellent. Larsen
and Hansen have recently done a very careful study(56), and their 58
data extend out to 1.2 K", with an average reported error of only
0.39% in o (F)/F. In fact, the errors are even less than this, as will
be explained below.

Several models of beryllium were tried. The first was the
free-atom model. The beryllium atomic wavefunction expansion in 10
s—-type Gaussians by Huzinaga(80), shown in Table 8, was used. Only
three parameters were refined - an experimental scale factor 1/S, and

the two vibrational parameters U, and U33 . From symmetry,

Up3=Uzp ¢ Upp=U;3=U,4=0 (125)



3.66826
32.6562
117.799
532,280
1.35431
0.38905
0.15023
10,4801

W O N & U = W N

3630,38

-t
o

.052406

Table 8

The 10-Gaussian Beryllium Atom Basis

of Huzinaga(80)

1s coefficient

.43211
.08689
.02239
.00422
.33942
.03710
-.00791
.24152
.00053
.00183

@ ,aar) O ~a-rt
. :'2; (S ce
(=

2s coefficient

-.10274
~.01628
-.00414
-.00077
-.15719

.04809

.59099
-.04911
-.00010

.47194
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This lead to the results of Table 9. Refining on 63’ lead to wR; of
.00419, Ry of .00544, with a goodness of fit GO§§”== 1.67. Adding
the only symmetry~allowed third cumulant Ciin led to wRy of
.00385, R, .00532, and GOF5W=l.55, as shown in Table 9.

Thus it can be seen that any deviation from free-atom behavior in
beryllium is small. The cumulant expansion is illustrated in Figure
11, |

When approaching the limit of the data so closely, and with such
good data, it is advisable to examine closely the data itself. Larsen
and Hansen collected a full sphere of data on two wavelengths (Mo and
Ag) and yet only report 58 numbers. Appendix C contains the averaged
intensities for each radiation separately, for those symmetry-unique
reflections that were judged by the experimentalists to be of
"significant" intensity. The errors reported for the 58 fully averaged

reflections are listed with the F s values in Appendix C, and

ob
these errors are graphed in Figure 12,

The errors fall naturally into 2 groups; high angle data with
minute errors averaging .0017 electrons, and low-angle data with 4
times as much error in o (F)/F and 10 times as large an absolute error

a(F). This is not a result of the experiment itself. It is a result

of the low-angle data being artificially weighted out relative to that
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Figure 10

Nuclear Positions in Beryllium Metal

from Reference(56)

75



Figure 11

Cumulant Expansion for Beryllium Nuclei
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Figure 12

Errors in Larsen's(56) Beryllium Data
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Beryllium Model One: The Free Atom

wRa, 3 parameters

% covariance with:
Uy .022114(86)
Us3 .019438(99)
1/s .9936 (17)

R3, 3 parameters

% covariance with:
U, .02244(80)
U33.01972(96)
1/5 .9996 (69)

WR3, 4 parameters

$ oovariance with:

C 1 -0033 (10)

U, .022113(80)

Uss -019434(92)
1/8° .9936(16)

R3, 4 parameters

% ocovariance with:

Cu2—+00008 (2200)
U, .02244(80)
Uy .01972(97)
1/5” .9996(70)

U, Uss
58.9

88.8 78.0
U, Uy
11.2
60.8 52.7
Cia Uy
-5
-1.2 58.9
.01 88.8
Ciya Uy
-3.0

-1.0 11.2
_l.7 60.8

WR; 00419
R, .00544
R3 .01040
R} .00542
U
% WRy .00385
R .00532
78.0
U
3 R, .01040
R,” .00542
52.8



Table 10
Beryllium Model Two: The Spherical Atom

wWR;, 5 parameters
% covariance with: U I U33 1/s g/s

Uy, .02214(50) wR3 .00418
U5 01946 (50) 98.6 R, .00543
1/5 .9936 (60) -90.2 -89.8
S 1.000 (21) 92.9 92.4 -92.6
1.009 (73) 11.9 12.3 -5.0 -=21.6
)
Rz, 5 parameters
% covariance with: Uy — Ugj 1/s g/
U, -0225(40) s R3 .01040
Uz3.0198(38) 96.4 R, .00552
l/g .999 (19) -83.6 -83.1
5,51.00 (13) 98.3 97.6 -89.0
_;151'02 (14) 66.1 66.3 -79.5 66.7
WR;, 6 parameters
% covariance with: C;, U, ~ Uz 1/8 §/$
Cpz +0033(10) wR3 .00384
U, .02214(48) -9.7 R; .00530
Uz .01946(50) -9.9 98.6
1/S™ .9936(62) 9.1 -90.3 -90.0
1 1.00(2) -7.5 93,0 92.4 -92.6
25 1.01(6) -6.4 12.4 12.8 -5.5 -21.1
R3, 6 parameters
% covariance with: C;; U, U /s g,
C .00002(2300) / 33 ' Rz .01040
U, .0225(40) -2.4 R, .00552

Us; .0198(49) -2.1 96.4
1/5°° .999(23) 0.4 -83.6 -83.1
£,51.00013) -1.9 98,3 97.6 -89.0

B, 1-02(14) 0.5 66.1 66.3 =79.5 66.7

79
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Table 11
Beryllium Model Three: Quantum Wavefunction

Refined on Unweighted £ 3
6 Parameters

% covariance with: C r a U u
C .37(20) FoooF F 735 Rg 00247
r 3.29(24) 85.3 R} .00249
a .363(14)  -29.8 -T71.5
U .02226(29) -76.3 -74.3 23.0
U .01946(22) -49.8 -46.0 -l.1 36.4

1/5 1.000(28) -99.8 -86.2 29.7 79.0 52.1
Note that & refined to 92(7) degrees, and & was unrefineable.

The R matrix was 2s FSGO
2s 974 ,159
FSGO .159 .026
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Table 12
Beryllium Model Four: Multipole Expansion

Refined on Unweighted £ 3
6 Parameters

% covariance with: W r a U U
W .53(12) FoooF TR T35 Ry 0242
a .190(32) -95.,9 =3.0

U .02196(39) -84,5 -20.1 78.7
U .01912(38) -81.0 -11.8 73.4 72.9
1/S .9982(25) -70.2 -30.8 63.8 84.0 78.3
Note that ¢ refined to 93(8) degrees, and & was unrefineable.



82
Table 13

Wavefunction Predictions of F(K)

Type of Wavefunction Authors R / for Larsen Data

"ab initio" Chou, Lam, Cohen(93) .012

density functional

ab initio LCAO Dovesi, Pisani, Ricca, .008
Roetti (94)

atomic SCF (free atom) Huzinaga(80) .00542

totally empirical Goldberg, Massa, .00249

, Frishberg, Boehme,

LaPlaca(29)

ERROR IN DATA Larsen, Hansen(56) .00491
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at low angles. This was imposed by Larsen(56) in order, he says,to
"achieve even weighting over the total data set."

This approach tends to obscure the inadequacies of their free-atom
model in the regions where charge redistribution contributes most
heavily. In view of this, all refinements were performed on the
unweighted error €; . Goodnesses-of-fit are of doubtful value when
the data weighting scheme is in doubt, and are not reported here.

Re-refining the free—atom model led to the results of Table 9.
Note that much has changed - the largest shift in parameters is in
C//5 + which has gone from .0033(10) to -.0001(100).

To check for core expansion, and to reoptimize the 2s exponent, two
orbital scaling factors § were put in as adjustable parameters

according to

Z S ls g g ) (Norm) (126)
525=J<zlc“2 G 3e#;) (ormy (127)

§ = 1 corresponds to Huzinaga's value. Coppens(16) refers to this
model 2 as a "kappa refinement," or "spherical atams.” As Table 10
shows, the frozen core approximation holds remarkably (the core
optimizes to its free-atom value to *.01%) and the 2s shell is optimal

to within experimental error at its free-atam value. Also note that
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the 1ls scaling factor (which multiplies all 10 Gaussian exponents) is
an ill-defined parameter with enormous covariances to the other
parameters. Any appeal to core expansion is definitely not justified
in this model.

Model 3 adds a set of 12 FSGO to the basis. This model thus has &
parameters: 1/S, U// ¢ Uzs non—electronic; r,@, ?{/ a
for the floater,and its population parameter CF as electronic
parameters. Since, in the spin-paired approximation, there is only one
valence orbital, and from the excellent fit to a free-atam model, this

mist be mainly beryllium 2s, the wavefunction is written as
= a,’
= (%ls X[ ( ¢ %5 ' Clj FIJO‘/” ) (128)

and the contracted set of 12 floaters is set to the A I‘ rep, to which
the 2s orbital belongs. The frozen core approximation is invoked.
This leads to R3 = .00247, R, = .00249. Adding the third cumulant
yields no change; the third cumulant refines to 0. The results are
presented in Table 11,

The quantum model 3 uses several approximations. First, it is not
truly a molecular description. Rather it is a quasi-molecular
description of a single' asymmetric unit; basically a one-center
expansion. The effects of crystal formation are included implicitly in
a crystal-field way; the bound Be atom i;s deformed quantum—-mechanically

in accordance with the site symmetry. In other words, the model is a
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one-center quantum—constrained multipole expansion. This will
facilitate comparison with the V-M multipole model 4.

Second, the P matrix has been constrained to be real, even though
the site symmetry does not require it. This approximation could be
eliminated in a future refinement.

Third, the model uses only a single determinant, even though the Be
atom has an extremely low-lying 1s32p? excited state of the same
symmetry. The model fits the data well enough that this approximation
seems justified with the current data.

Fourth, both models 3 and 4 use a small basis set of only 2 valence
functions. As will be shown below, this was necessary.

In the quantum model 3, the density © can be written as

Tt 2 2
/O = lfﬂ?(/ - '71/[5 r R2:25325 7 lsF?ls?F (129)
p)
*+Rer IF
or, in terms of the basis of 22 primitive Gaussians,
10 12
s 2s 2 (130)
= + N 1//12" £5)
- iéi(ci *Cs®t 08y ;Eachco( O ot 1Z 73
The full expression for the structure factor is
Foap (=1 o=Up (] 24K 2=ty %2 X
e 1l x v 33 = (131)

rr (s~ E)s™/3

where
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£K)= <9l 719,55 Sun = £, (O) s

A Varghese-Mason non—quantum medel, model 4, in the same basis of
Huzinaga's STO-10G expansion of the atomic ls and 2s orbitals, and a
set of 12 floaters, was also refined - see Table 12. As expected(104),
the non-quantum model fits the data somewhat better. The density is

written as a sum of additive density pieces
10
PRIy

where the density is normalized as a constraint, but the density
pieces are not orthogonal. Each floater set is a simple sum of 12
overlapping density pieces. There are no cross—temms between the 12
FSGO, nor between any of the floaters and the 252 density piece.

The normalization condition is éimply

W, = N (1 in this case) (134)

2s ¥ WF‘SGO
The model cannot be deccomposed uniquely into orbitals. If some of
the W, were sufficiently less than zero, positron regions would
appear. This did not happen in the case of beryllium metal with this
particular basis.
Adding a second set of floaters seems to not be possible with this
data. Although an attempt was made to do so,the computer program was

unable to refine such a model. 1In the case of a quantum 2-floater

basis, covariances between parameters often exceeded 99%. The V-M
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2-floater refinement caused the program to crash due to 1003
correlations.

All calculations were done using the program TREFOIL, listed in
Appendix D.

The true test of whether a non-free-atom model is justified by the
data is Hamilton's R-ratio test(68), which is set up for refinements on
w33. The ratio of model 1 without third cumulant to medel 1 with third

cumulant is
.00419/.00385 = 1,088 : (135)

for 58 data, and adding a fourth parameter, the various significance
levels are :

1,033 = ,05 (95% certain to be significant);

1.050 = .01 (99% significant);
and the most stringent test -

1.085 = ,005;
Thus it is justified at the 99.5% level to say that the thermal motion
is anbharmonic.

Comparing model 2 to model 1, both without third cumulant,

v&{i (2)/%&33 (1) = 1, which is insignificant at any level.
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Comparing models 1 and 3, or models 1 and 4, the final refinement
added 3 parameters rFSGO’CFSGO or WfSGO' and g0 The
-significance test for adding 3 parameters requires an R-ratio of at
least 1.13 to be.99.5% sure. Both models improve 33 by far more than
this. The improvement is certainly significant at all levels.

Although Hamilton's test is not really set up for unweighted
refinements, one can use them if a standard deviation of .00l electrons
is used for all reflections. Note that use of g~ =1. electron would
cause the calculated GOF to be .00l times as large as itlshould be.
Unit wighting does not mean a weight of 1.000, it means assuming equal
errors in all data of 1 in the least significant digit.

The model 3 value of Uz agrees within the error bars of each with
the neutron value. The U,/ is 6.50°, or 3.4%, off. The free-atom
model 1 is also in agreement with the neutron-scattering value for
Uszz, and 700 off for U, . U, is .02132 from neutrons(56); Uss is
.01929,

Compare the scattering factor predictions from various wave
functions in Table 13. As you see, the totallly empirical wave
function fits the data best. The lowest energy comes from Cohen's
group, which, surprisingly, fits the data worst. This may be due to

Cohen's plane wave basis, which converges very slowly.
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The results clearly show that one can indeed distinguish
vibrational from electronic effects. The J matrix elements connecting
the 2 are quite small in most cases. An exception is ng'O‘

Compare the results of the quantum and V-M models. Since the
multipole model used has no cross-terms, and the cross~term 2s-FSGO in
the quantum model contributes about 20 times as much scattering power
as the self-term FSGOZ » one would expect the multipole floater
distance to be quite near to the quantum cross~temm distance,

QM _am

2.42 au=1:;f"1 ~ 9dF TF_ =(.363)(3.29)/(.150+.363)=2.33 au  (136)

a + M
2501 a,:

The exponent on the V-M floater, which is a density basis function,

ought to be equal to the quantum cross-term exponent,

a™ -~ 150+.363=.513 au"? =a
F _252

+a§ﬁ1 (137)
but is in fact .190 au-2, much more diffuse. This could be due to
the multipole trying to smear out so as to mimic the elongation of the
quantum model.

With a non—quantum model, the lack of cross-termms means that one
cannot say which atom "owns" which floater. The quantum model,
however, can uniquely assign FSGO to atoms since each FSGO has two

positions - a self-term and a cross-term.
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In a comparison of the results of free—atom, quantum, and
non—quantum model refinements of Larsen's data, quantum and non~quantum
both fit the data well, so a comparison of the two must be based on how
each can be interpreted. The non—electronic parameters come out about
the same, which shows that both quantum and non—quantum models can
separate vibrational and electronic effects.

The covariance matrices J are quite different. The quantum model
has far more uncoupled of electronic and vibrational parameters. That
is, no gquantum model electronic parameter can be modeled as well by a
combination of vibrational parameters as in the more correlated
non—-quantum case, However, the quantum model shows severe correlation
between floater coefficient and overall scale. Curiously, a quantum
electronic model has reduced the correlation between vibrations from
large (72.9%) to insignificant (36.4%), even though the difference
between the mecdels has nothing to do with vibration.

The non—quantum model has a much higher fraction of its charge
localized on the floaters, because the lack of cross—-terms prevents
charge from being shared between 2s and FSGO. This ability to describe
charge sharing with a quantum model leads to a more meaningful physical
interpretation, since most chemical interactions are to some degree
covalent.

A detail of both the quantum and non—quantum calculations which is
important for experimental crystallographers is the weighting scheme

employed. The usual practice in charge-density refinements is to



91
refine the nonelectronic parameters using a free—-atam model and
high-angle data, and then to hold these values fixed while refining the
electron—density parameters from "low-angle" data. This can lead to
severe errors at the nuclear positions(95) and hence poor values for
eléctric field gradients and the Fermi contact interaction. Low-angle
data also contain information on vibration and scale factor, and
high-angle intensities contain some information on charge density. The
residual error for the beryllium réfinement does not suffer from such
drastic errors. This is partly because all parameters were refined
simultaneously using the full data set, and the same data weighting
scheme for both electronic and non-electronic parameters. No artifical
high-angle or low-angle cutoffs were used, as these would have biased
the result. Every data point should be allowed to influence every
parameter(96,97,98). Let the model itself separate out vibrations and
electron density - as was shown before, it can do that.

The proper comparison is the absolute error, not the relative
error(97) - an error of .00l electrons is as severe for a strong
reflection as for a weak one. Based on these results, it would seem
that experimentalists should aim for a constant error o (F) in their
Bragg amplitudes(98). This is especially important for strong
reflections, where the extra measuring time would not be prohibitive,
and could have a large effect on the result.

The quantum model is consistent with the bonding in beryllium being



92
a five-center interaction, with all pointing to the trigonal bipyramid.
The non—quantum model is consistent with a four—center tetrahedral
interaction(99). The planes of Be atoms are 3.3866(2) au apart along
the ¢ axis. If the floater were at exactly % =90°, r=3.3866, it would
be in the middle of the trigonal bipyramidal hole, at special position
"c" of the Wyckoff notation, surrounded by 2 equidistant "axial" atoms
along the c axis, and 3 equidistant "equatorial” atams in the ab
plane. This would be a 5-center bond. The center of the tetrahedral
hole is 2,5400(2) au away, also along the ¢ axis. This position is
surrounded by a tetrahedron of equidistant Be atams. In both the
refinements of models 3 and 4, the angle of the floater refined to a
value insignificantly different from 90” ; both quantum and non—quantum
floaters refined from a set of 12 at general position "1" to a set of 2
at special position "f£" of the Wyckoff notation; in both models the
floaters are directly above and below the atoms. Since the quantum
distance refines to 3.2(2) au, and the V-M distance to 2.42(5) au, one
can say that the quantum model points to a 5-center bond, and the

non—quantum model to a 4-center bord.

See Figure 13.



Figure 13

Chemical Bornding in Beryllium
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Chapter IV. Graphite and Diamord

In this chapter, two structures will be reviewed in detail,
outlining how to obtain totaliy empirical wavefunctions for grephite,
an infinite sheet structure, and diamond, an infinite network. This is
not to say that the method cannot be applied to molecular crystals -
indeed, molecular crystals are much easier.

For a molecular crystal, the P matrix refers to one molecule, and
there aren't any complications due to intercell bonds. In graphite and
diamond, the problem is more complicated. It is not possible to
construct a unit cell with an entire molecule of éraphite or diamond
inside. Any unit cell will have bords "sticking out"™ of it. To
properly describe covalent bonding, one must have cross-terms in P
between the two bonded atoms. This means that the P matrix for one
cell must include basis functions centered on the neighboring cells.
Even if one uses a basis of Wannier functions, this is the case - what
is causing the extra complication is not the symmetry, but the
bonding. Every basis function for an atom involved in these intercell
bonds will be referred to by at least two P matrices: its own and that
of each other cell to which it is bonded. The scattering power for the
self-terms fii are identical in both cells; what allows the
refinement to succeed is the existence of cross-terms Pij and fi'

J
where i and j refer to basis functions in different unit cells. This
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scattering element fij is not the same as, nor can it be simulated
properly by, any intracell cross~temms.

In more mathematical temms, if the bonding orbital

Y bond = C191 + Co9; , | (138)

then the associated density

Px)= ( 181 ’5129 . (139)
czcl czc* ghgy 83

and if one does not include both 9, and 9, in the list of basis
functions, no adequate description of ylbond is possible.

In order to make all these considerations clearer, the two examples
of graphite and diamond will each be considered in detail.

Graphite(C) crystallizes in space group #194, P63 /mmc, the same as
beryllium. Each unit cell has 4 atoms, at positions "b" and "c" in the
Wyckoff notation ( 0 0 1/4 and 1/3 2/3 1/4 , and symmetry~-related atoms
at 0 0 3/4 and 2/3 1/3 3/4 ). Describing one of the two asymmetric
units, say the sheet at z = 1/4, is sufficient - the symmetry
completely describes one in terms of the other. Describing one of the
two atoms per asymmetric unit is not sufficient - they are not related
by any symmetry operation. Directly above and below each "b" atom is
another "b" atom. Above and below each "c" atom is the middle of a
phenyl ring. Nonetheless, one could approximate each parameter for the

two as being equal,
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~ p° (140)

either to reduce the number of parameters or as a starting quess. As
of the end of 1983, the best x-ray diffraction data available for
graphite were those of Chen, Trucano, and Stewart(lOO), with.

as= 2.461(4)§ r C= 6.706(2)3 at 293°k. A1l 99 unique reflections of
intensity >2o0° are displayed in Table 14, courtesy of Dr. Robert F,.
Stewart(101l). These values are corrected for all the appropr;ate
experimental problems, and the only experimental parameter needed to
model these data is an overall scale factor 1/S. The intemal error
R, ~ 3%,

The simplest possible model has 3 parameters : scale factor 1/S,
an in-plane vibrational amplitude U;, and out-of-plane U33 , where the
approximation has been made that equation (140) holds, and the electron
distribution of a spherically averaged free carbon atam is used.

b b, and Uy° . In

Model 2 has 5 paramters : 1/S, U~ , U“C r Uss
Chen et al's parer(100), this model is found to yield R, = 6.0%, which
indicates that the data is precise enough to merit a better treatment.

Next is a series of models which make the one-center approximation,
thus not describing covalency explicitly, but only a quantum

constrained multipole expansion. The ground configuration of carbon

is(102) 1522522px29y, and the so-called "valency" configuration
is 182252px2py2pé. It is useful to note that this implies that

the optimum configuration is
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152251 ) o 20,20, =L 2 a (141)

Note that, in point group D3h' which is the site symmetry in both the
b and ¢ sites of graphite, the various atom—-centered s and p orbitals
have symmetries as in Table 15.

Model 3 goes beyond the Independent Particle Model, and uses two

valence configurations. This model describes the atams as
2 I+Z . I"Z .
/s (a,/) (a3 (e,\/r)(e;i) (142)

In a minimal basis set of atom—centered functions approximated as
having fixed exponents, this gives 4 parameters 1/S, U v Usze and the
configuration weighting %X . It is important to note that x-rays

cannot see spin; electron configuration (142) could be

Is (q ’d)(a /3) (57 /d) (6;09(6 0() 7_0_..) spin 2 (143)

[s (q/x)(a/ﬁa ( /ﬁ) (e exd)(e},x) ...___O_> spin 1 (144)

or
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Table 14

99 Bragg Data For Graphite
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Table 15

Symmetry of s and p Basis Functions in Graphite

Representation Atom Basis

A I' s
A:L' none
[] o
By Py
E, ! 0
Y Py
A /" none
A, o
2 Pz
Ex" none
E" none

Neighbor Atoms

1/ 3 (s +s*+s)

1/'3 (py + (1/V2 py +1/V6 py)
- (/72 p+1/06 p3 )

none

1//8 (2p. -p2 -p? )
l/ﬁ (p,‘x_g‘;{ px
1/)2 (s?-s?)
1//6' (2p} -p7 =p3 )
1//Z (p2 -p%) |
/e (381-5¥s3 )
none
VIR e
23
/2 (55 —p3)
¢ _ > _ 3
1//6 (2p] -p P )
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[s*(a/x)(a /3) (a ) (e/\,d)[e /lg)_____aspm 1 (145)

or

f (a a{)(a ﬁ)( ) ('fX”()(yﬁ) -——-—-9.sp1n 0 | (146)

and all of thesc_e would scatter x-rays identically.

In a DZd (Double Zeta plus d-type polarization functions) basis
set, again atom-centered, in addition to the 4 parameters already
listed, model 3 has 5 new parameters C / through C5 in

an-

2) (147)

+C
(Nor)( tight lsloose+c2dz

%p(a" =

1 +C

43 or)(pz-tight 3pz-loose) (148)
%/(e')=—1— (p +C p +C_d)

(Nor) xv-tight 4 xy-loose 5 , (149)

and the P matrix is a direct sum of such ¥ ¢7

Obviously there is also a variant of model 3 with different
parameter values for sites b and c. Model 3 is a minimal basis
augmented with d functions (SZd) is a quantum-constrained hexadecapole

refinement. Like multipole refinements, one can add an extra parameter
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- an exponent scaling Ef for all valence Gaussians — instead of
holding it fixed at the literature value. In a DZd basis with unequal
atoms, since it is standard practice not to vary the exponent of
the"tight" orbital (which is contracted, whereas the outer "loose"
function consists of a single primitive(84), one gets as many as 8

extra exponent scaling parameters:
ST AN S S S
55’ S 7 ZPxy? “Pry Pe s 2Py 1247 2d
One could, of course, constrain some exponents to be equal to others or
to literature values.
Model 4 is a many-center model, but uses only one configuration -
% =0 in equation (137). Advantage is taken of x-ray scattering's
indifference to spin. Site b is populated with all valence electrons
spin-up, and all site c valence electrons are spin-down. This is
necessary to prevent overpopulating, as will be explained below. The
orbitals on each site are described using atom—centered
symmetry-adapted basis functions from that site and its three
(in-plane) near neighbors as in Iﬁble 15. This is not exactly a
rmolecular description, but it does allow for bonding. The a 2” orbital
is a "pi" orbital in organic molecular orbital notation. This
antiferromagnetic model ensures that no spinorbital basis function will
have more than one electron in it because all delocalization from a b
site to a c site is of opposite spin to c—>b delocalization. A

variant of model 4 constrains b and ¢ site parameters equal.

Model 5 uses two configurations but is otherwise like model 4. A



problem with this is that the a,' orbitals on each site could
conceivably overpopulate the 2s basis functions, if one is not

careful. Writing the a,’ spinorbitals as

b =l (agb c c
%aicx <N1>(25 +c1<2sai>+c2<zpai> dox

1 b c c
@b p=(25%+c_(28°,)4C, (20°,) )
31/9 (Nz) 3 a 4 a; /6

102

(150)

(151)

and similarly on site ¢ with parameters Csy to C g and normalizers N3

and N yr the populations of the basis functions are

(aPe)1(ai® o) (ai®s >7(b(ai° %

so the constraints due to the Pauli principle are that

1(c}? )( £1 b -
1] +le for the 2s°« spinorbital,
3 N (N3)2

Yp(c? 4 1 <1

for the 251}3 spinorbital,

12 w2
3EHT @Y

—b—

1 Cg 2+ X £1
—_— . 2""
3 N3 (‘\1)

and

(152)

(153)

(154)

(155)
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. (G\

<
3 \Ny /\/.1”1 N

None of the other basis functions are in danger of being overpopulated.

/ for 2s°. (156)

Model 5 is a quasi-molecular model,using a near-neighbor
approximation. If one considers each orbital to be an average over
spin states and sites, this is a quasi-molecular description of a C,
unit using basis functions on each of the 2 carbons and the four near
neighbors; the 6m2 site symmetry of each site is rigorously preserved.

Model 6 is an explicitly molecular model. Each asymmetric unit
contains 2 carbons, with 4 core electrons total, which are kept frozen,
and 8 valence electrons. The trace of the valence P matrix is 8. The
easiest way to describe the model is in a non-symmetrized basis,
centered on six atoms as shown in Figure 14.

If one appropriately rotates coordinate systems for each atam, then
certain blocks of the P matrix become equal from symmetry
considerations. The most general possible P matrix for a six—-center
system with the same basis on each center is
Fir P By Py Fs Py
P" Pax Pay Poy FPas Pog
P = /3/5: Ffi 35 P34 P35 [ (157)
g T

/5; 2; 35+ 45 55* 5
R B B RE el B |
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Figure 14

Numbering of Graphite Nuclei for
the Explicitly Molecular Model Six

\ (phenyl ring) /

| U
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With the site symmetry, this reduoes to -

FI! ’0/2 1013 P/3 2 ,12

Fzz 5 2.5

()

(158)

P = G5 &H 75 bs
s B B
“ !

E‘F 56

/D

55

W

D —

All the P submatrices must be written out, but the number of
non-equivalent elements P P uy is larger than the number of independent
parameters. If I represents an independent suwbmatrix, and d a

dependent one, then

T1daadal
drdadd
P= |[dddddd (159)
ddddadd
dddddad

ldaaaaa_

and there are at most three sumatrices that need parémetrization:
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P, and P:u, the atamic hybridizations, and P,2 , the bomd. All

Ui
other P submatrices are fixed either by symmetry or by the quantum
constraints.

The 2-center approximation as usually understood would dictate that

P have zero blocks "0" and non-zero blocks "#" as

550084 | 5, 2.0 0 B, B,
t ot
###00 P B PD_O 0
P= #000 = 1333 0 0 0 (160)
#00 | (site 1333 0 0
adjoint # 0 |symmetry){ adjoint P5_5 0
B L - Ee |
but it may not be possible to construct a matrix which is both as
sparse as that and also idempotent.
P2=
P51+sz+szzptz p121’114"?121’22 Pupzz + Plzpzz + P%lplzwlzps :“*’12”’12"55
02 ar2 sort PPl tPIoPas PoaP1a*P1aPa3 P12 t
127722+2F 19T o . 0
12712 P33 P12p+1_2 0 . (161)
P12P12+P§3 o /
+ p+ P 2 A
(adjoint) Plz"u“’%s 121255
Pog /

\ /
. i /

“
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Then

(162)

2 _ D3 p 2
/D,/ :/D[/ J /g;. - F:LJ- /@3 —/33’3 J@j :/35_5 (163)

fo= Fa (F,,f/iQ:f///‘;HZ/;j =, s 7Li_>33 fa (164)

It would be physically unreasonable to have delocalized a whole
electron out of the eight (two out of eight in a spin-paired
approximation) into the next cell in a description of the central

cell, Since idempotency requires that
Tr(P33) 1{0,1,2}; Tr(%g) & {0,1,2} (165)

then P3 3 and Ps; must be identically zero. This makes equation (164)

H;z = /51 (’?/ +/?2): F /?2 =0 faa (166)

and P/ 5 isn't just nilpotent of order 2, it's identically zero. This

reduces the two—-center approximation to
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P, 0 0 0 0 O
0 B,0 0 0 0
P = 6 0 0 0 0 O© (167)
6 0 0 0 0 O
¢ 6 0 0 0 0
(0 0 0o 0o 0 o0

and it seems that a two—center idempotent expansion for graphite does
not allow ! ar covalent bonding P

The two—center approximatioh apparently can force itself to be a
one-center approximation. Model 6 requires going beyond the two-center
approximation in order not to be a one-center expansion. The
submatrices Pl3' P15' P33, Poyr By P“, P;s+ and Py, although they
are determined entirely by the idempotency and symmetry constraints,
are not identically zero. No free parameters are needed, but
calculations of all the f suwmatrices are required.

Model 7 uses either d-type polarization functions on all centers,
or sets of 12 floaters in the appropriate reps, in addition to the s
and p atom—centered functions.

Obviously, there are many variants of models 4, 5, 6, and 7

constraining various parameters equal to each other and/or to

literature values.
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Diamond, silicon, germanium, and <X -tin all crystallize in the
diamord structure, space group #227, Fd3m, at Wyckoff position "a", of
site symmetry 43m (T,), each unit cell containing 8 symmetry-related
atoms, one in each asymmetric unit. Thus, the asymmetric unit, which
is what must be described, contains only one atom.. The 2-configuration

electron assignment of the Group IV compound above can be described as

a2 H -

(core) a th’ * ; 0Ll (168)
Keeping in mind that any basis spinorbital used can have at most

one electron in it, as in equations (161), (162), and (163), one can

write each of the orbitals a, and t, as a combination of s and p

!
(and 4 and/or FSGO) centered on the atom and its four neighbors,
appropriately symmetry-adapted. A one-center expansion in a basis with
s and p exponents constrained equal cannot refine the parameter X ,

because

-

2 4p 2 4p 2 =g~ 169
P~ P P, S (169)

14
and the densities add, being in orbitals of different reps, and thus
having zero cross—terms between them. In a two— or few-center

approximation, the parameter ¥ has meaning, because s-p bords, s-s

bonds, and p-p bonds lead to different cross-terms in scattering power.



110

In a more complicated structure, it may be necessary to use more
elaborate equivalents of equations (161) to (163), but the basic ideas
outlined above should make possible a near-neighbor treatment of any
structure. To include further neighbors, one includes basis functions
centered further away in the description of the central atom, but the
technique is about the same. For some structures, the P matrix for one
asymmetric unit will include basis functions centered on atoms there
and in the neighboring cells and asymmetric units, possibly only on
atoms near the boundary of the central unit. For diamond—type'
structures the gquasi-molecular model is adequate; the next level up
would include a central atom and its four near neighbors as the
fundamental unit, with basis funct;ons on the second shell used in the
description of this 5-atom, 20-valence-electron unit.

In the cases of graphite and the Group IV compounds, the high site
symmetry has allowed the reduction of a four- or eight-electron problem
to a series of one-electron problems. This allows one to refine
directly on wavefunction coefficients C and orbital populations:Z .
Things are not so simple when some cross-terms in the P matrix are
independent of all self-terms, as is always the case when the P matrix
is normalized to a number larger than one, in other words nearly
always. How to adapt the method to deal with this complication is not

yet known.
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In the thesis so far, each atom has been treated as having an
at-rest scattering factor appropriate to a molecular enviromment, which
is nevertheless affected by vibration as though it were rigidly locked
to the motion of a single nucleus. The vibrational smearing of
cross-terms in f between different atoms has not been discussed. In
chapter 6, the vibration problem is discussed.

The complication that the basis is not usually orthonormal at the
outset can be dealt with approximately by using an S matrix the size of
the P matrix, i.e. one asymmetric unit, one cell, or a few cells
across. In the next chapter, a more correct way of dealing with
orthogonality in an infinite lattice of basis functions is presented.
The resultant Wannier functions are treated exactly the same way as
atom-centered functions or contracted floater sets, for the ideas in
this chapter. The Wannier-izing process is irrelevant to bonding

considerations; it is purely an orthonormalization process.
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Chapter V. Bloch and Wannier Orbitals

In the case of solids, electronic structure is usally described
through the formalism of band theory. This approach is general enocugh
to encompass a wide variety of properties associated with solids
ranging from insulators and semiconductors to metals(87). It is worth
noting that there are close formal connections among quantum
descriptions of atomic, molecular, and solid systems based essentially
on their orbital structure. A fundamental result of band theory
requires that the "crystal orbitals" of solid systems may be written as
superpositions of Bloch functions which are spinorbital basis functions
having the periodicity of the lattice.

Until now our formalism has been restrictive in the sense that its
application was impractical except in the approximation that
neighboring unit cells are almost independent of each other, as is
often the case for molecular crystals.

In the present chapter the application of the formalism is extended
to the realistic description of solids. The description of interaction
among unit cells will be introduced in a way applicable to insulators,
semiconductors, and metals, by writing the form of the density matrices
that arise naturally out of the use of a Bloch or Wannier function
orbital basis. The application of the resulting formalism to the Bragg
experiment has been previously reported(3,25,26,27,28,41,103,104).

Our density matrix formalism may be applied either with Bloch
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orbitals, or with the equivalent Wannier orbitals, built from a variety
of different lattice-centered basis functions. As a numerical example
of the theory, an application is made to a model problem consisting of
a one—~dimensional crystal of hydrogen atoms.

Bloch's theorem takes the form

k°r

¢

r) = v (r)
L’Dk (D =e k (170)
where ul<(r) is any function periodic modulo a lattice translation. A
prescription for constructing the functions ukout of lattice-centered

basis functions gL is the following:

_ike(r-
uk(r—):ga ¢ L>ﬂL(r—FL) (171)

The electron density O may be constructed in a Bloch orbital basis
as follows. The list g(k,r) of Bloch basis functions all satisfy

equation (170), so that the basis matrix is
’ 7 'k.(’-" g s
ﬂ(kﬂ‘)ﬁ(’é;”) =e’ F)U/ (r) Y, (r7) (172)
< <

where the u (r) all satisfy equation (171), and the gl are basis
functions centered at lattice site 1, which themselves are not
periodic., Bloch orbitals are eigenfunctions of the lattice translation
symmetry operations of a crystal, and the final crystal orbitals %%(

will be linear combinations of the set g(k,r).



$//k(r) = C/( 9(/3)’)

Expanding the periodic g(k,r) in the nom-periodic gL ’

ﬁ(r)

or

p—
-

Then the matrix

CkZ:;ik re-ik (r-rL)gL(r)
L

¢, Zelk*riol(r)
kg

¥ @F (1y* % el (LmTDe glinglezy* ¢t

and the first-order reduced density matrix of wave vector k is

P (rsrt)=tr 1 bt = = elke (rp-rp) Trcz_'ckg"(r)gl(r)+

Defining the projector P

L1

k

as in Reference(103) by

114

(173)

(174)

(175)

(176)

(177)

(178)
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where Sk is the matrix of overlap integrals of Bloch basis functions

gk '
Ripep? Yo -1/2 L leprytaik’(ry- -
_op (T3x')=TrP S (ELEJEg (r)gl(x')Telk’ (ry rl))skl/z (179)
Expanding this explicitly,
/olf(r;r')='rr?ks;1/2(g(r-ro)g(r'-ro)"’ +
(180)

2g(r-ry)g(x'=r s¥elk 07T+ ) 5-1/2

where advantage has been taken of the fact that the ngasis is the
same in each unit cell. This form makes obvious the mutual influence

of cells separated by a distance (r/_ -r. ). Equation (179) is the

I
density matrix of wave vector k for a Bloch orbital basis.

The structure factors
F(K) = j exp(i K °r) p(r) dr (181)
may be seen to take the form

-1/ o -1/a
F(K) =Tr P/<Sl< {fao (R) + 2f01 (K)exp(ik (ra -r, ))+...}S/< (182)
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All values of k contribute to the scattering, which is measured for
a change Ak = K. One can think of fL.}. (K) as an integral over
£.. (k,K) H
¢)

£ (K)-:yn(k)f 1 Gesdi -
BZ

where the scattering component

fij (k,K)= )‘eik'rgi(kl,r)gj (k,r)*dr | (184)
and gj(k,r) is orthogonal to all gj(k',r) for k ;ﬁ k'. n(k) is the
fractional occupancy at point k in the Brillouin zone and ranges from 0
for the empty part of the band to a fully occupied 1 electron (2 in a
spin-free formalism).

As usual, the Hartree-Fock case will be specified by the condition

that
P =P and Tr ( P) =N (185)

Hence it follows immediately that the Hartree-Fock Bloch orbital
density matrix of wave vector k may be determined from the iterative

equations



117

. -1/2
RG%SEI/ZW(K) {foo(K)+2f01(x)e“'(ro'f1) + } s /

The physical significance of these equations is that they deliver a
density matrix in a Bloch orbital basis that satisfies the restrictions
of quantum mechanics and of the x-ray scattering experiment. This
generalization incorporating Bloch orbitals allows one to treat
equivalently the properties of a wide variety of solids, whether
insulators, semiconductors, or metals. Without this, one is restricted
to compounds like organic crystals, which are approximated as being
composed of non—interacting unit cells.

Bloch orbitals may be transformed into their direct-space
equivalents, called Wannier orbitals. The Wannier functions form an
orthonormal basis; the overlap matrix for neighboring unit cells is
reduced to zero, and the overlap matrix within the same cell is a unit
matrix. These are discussed next.

1

Given a set of basis functions g— in each cell 1, construct a

Bloch basis

gk=Selker; el (187)
1

Integrating over the occupied part of the Brillouin zone yields Wannier

basis functions
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g ? I{zﬂk)ei“'(rrrﬁgldk (188)

The Wannier functions can be combined to form crystal orbitals
wlecsl (189)

Notice that in equation (189) the crystal orbitals associated with
cell L have been restricted to being built only from Wannier functions
centered on the same cell. In the case of covalent bonding across cell
boundaries, as in graphite and diamond, it is necessary to relax this
constraint. In such a case, the dimension of the P, S, and £ matrices
are larger than the number of primitives gL from which the Wannier
basis is constructed., An additional constraint on the P matrix arises;
the sum of those diagonal elements correspording to the same
Wannier spinorbital basis function in different cells must be at most
one. The Bloch orbital analog of this is that the Bloch P is a
function of k. This latter point is why a Wannier representation was
considered preferable to that of Bloch for the quantum parametrization
of experiments with a limited number of data - P constant instead of
P(k).

The integration over the Brillouin zone can be performed separately

to get a Wannier phasing

. 190
u)lL: ‘S‘eik ( rL- 1‘1) dk ( )
BZ
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or in the case of a partly occupied Brillouin zone

wlL" jn(k)eik. (rL-rp) dk (191)
BZ

and now the crystal orbitals can be expressed as a function of position

only.

L s 111
L _ch @8 (192)

The single-determinant crystal orbitals may be taken as orthonormal
without any loss of generality(105). Defining the Wannier overlap

matrices

sil= J‘al(rzl‘)"'dr
. (193)
|

the orthonormal Wannier basis can be defined as
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and the crystal orbitals can be expressed in this basis as

oloc L oo J=1/25 111 196
Y €110 COJ le g (196)

where the subscript o denotes orthonormality.
Define the Fourier transform matrix at the scattering vector K for

products of basis functions as

L Ce
£ ly= (eI T Lyt (197)

J®=2Z wol3ell’ gy 5 1'L
11 (198)

In equations (194) and (198) , 1 refers to an arbitrary reference unit

cell. The calculated scattering amplitudes are given by

Fear (0= tx 272 LGy g 112 (199)

which is of the same form as equation (122). The density matrix for

the entire crystal in termms of crystal orbitals may be seen to be

P (xsx)=Z e ¢ R ¢ Ly (200)
L
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which can be written in the basis g as
A (rsxe')= ELTrPJ'l/Z(% %cof‘lgl(gls*' wl'L) 4 -1/2 (201)
Using the orthonormal Wannier representation, identify

P=C C (202)

then the iterative equations which determine the density matrix subject

to experimental constraints are
a2 a3 _ _ 1/2 -1/2/
Pr=3p2.2p% % 1+ A, %wcx) }Fabs (®)-Trp o ,;(K) 3 (203)

Note that there are two places where neighbor effects enter.
First, there is a double sum over cells in calculating %_(K) and S .
This should be extended over a few neighbors - the example below uses
10.

For many shapes of Brillouin zone, the integral (191) can be

performed analytically. For any one-dimensional insulator,

coll=sin(27 2 (eborl) / (7 (clmrl) ) (204)
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Note thatcfo= 27 . Por a spherical Brillouin zone, such as may be
found in three-dimensional metals, see the interesting articles of
Matthai et al(106,107).

In the numerical examples of some previous papers(41,104), the
stress has been on the comparison of quantum and nom-idempotent fits to
scattering data. In this chapter, all P matrices are idempotent, but
some use a one-cell basis while others refer to a Wannier basis. For
this purpose, the numerical example used will be a linear array of
equidistant hydrogen atoms, all spin-up.

For an assumed "exact" density matrix P

exact’ which includes

interactions among neighboring unit cells through the Wannier

formalism, assumed "exact" scattering factors F (K) are

exact

calculated. These "data"™ F (K) are then best~fit in the

exact
least-absolute-value sense R, » by a single~determinant N-representable
density matrix calculated in two different ways. In the first fit,
hydrogen atoms in neighboring unit cells are not allowed to interact -
the problem is treated as an isolated atom. The resulting
isolated-atom density matrix is allowed to adjust to fit as closely as

possible the scattering data F using the given isolated-atam

exact
basis. In the second fit, a Wannier basis is formed from the
isolated-atom basis, using the formalism above. The resulting Wannier
density matrix is then allowed to adjust according to equation (203).
Since the scattering data were calculated in a Wannier basis, it is

natural that the data would be better fit in the secord case. That is

what will be shown.
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The comparisons are made in terms of R, . Bs a point of reference, the

R-factors appropriate to using P within the isolated—atom basis

exact

are given. The calculations are repeated for a series of scaled basis
function exponents, which emphasize that the overlap between basis
functions in different cells detemmines the importance of the
Bloch/Wannier formalism.

The calculations were done in double precision on the CUNY IBM 3033
computer using the PL/I program EXAMPLE of Appendix D. The model line
of H atoms had a repeat distance of 1.88 atomic units, which is a
variational minimum—-energy distance(108). A basis built from three
1s-type Gaussian functions was used, with exponents a multiple of
{19.2406, 2.89915, 0.653401}. This set has been used to contract the
inner function on hydrogen in a double-zeta basis set(109). The
results are collected in Table 16.and Table 17. For all five bases, a
set of 30 "observed" structure factors was first calculated in the

Wannier formalism above, using the assumed "exact" P matrix

/3 -1/3 -1/3 |
P = -1/3 1/3 1/3 (205)
-1/3 1/3 1/3
Structure factors and the error R &ire then calculatgd for each of
the three cases:
1) p = Pexact » isolated-atom basis
2) P = Pest fit s isolated-atom basis
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Figure 15

Errors Incurred by Neglecting to "Wannier-ize"

the Basis Functions

16

]Fobs'Fcal!
IFobs[

(x10%)

ISOLATED ATOM

PERTURBED ATOM




Table 16

Numerical results using the Wannier and isolated-ato:.n approximations.

CASE  |BASIS . WOMBZR OF 7, | R~FACTOR, EXACT P | R-FPACTOR, BEST-FIT P
»10°29 | »10°6 |ISOLATED ATOM APPROX| ISOLATED WANNIEZR
+192406 1 (] 1.3 x 1072 * ]
1 .0289915
«00653401
1.92406 4 2 8.9 X 107 * .
2 0.28991S
0.0653401 !
19.2406 13 7 3.9 x 107" j2:73 X 10°%14.3 x 10°¢
3 2.89915 )
0.653401 f
192,406 »30 2 6.5 X 1079 6,3:x 10 [s.0 x 107
s 28,9918 R -
6.53401
5 1924.06 > >3 4.8 1 10713 1.2 x t0~? {1.2 x 10-?
289.915
65.3401

* Too few data, P matrix undetermined.
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Table 17

Density matrix solutions of the iterative equations.

CASE BASIS BEST-FIT P MATRIX BEST=-VFIT P MATRIX
ISOLATED ATON APPROXIMATION WANNIEZR FORMALISM
19,2406 33346 =.33269 =.33404 T 1141
3 2.89915  [|=.33269 .33191 .33327 333333 % | a1 1 1
0.653401 ||=.33404 ,33327 ,33462 -1 11
192.406 1 =11 1 -1-1
‘ 28,9915 333333332 el 11 333333338 | -1 1 1
6.53401 -1 11 -1 11
1924.06 1 =1 =} 1 »] =}
s 289.915 233333333 |-l 18 233333333 x | -1 112
63,3401 -1 11 -1 11

126
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3) P s Wannier basis

= Phest fit
The index of agreement minimized was €, .

Each superiteration was considered complete when neither A was
larger than 10"0. A run was considered complete when & < 10-(‘7 . In
case 3, an £ value of 10'? was considered acceptable because of
computer time limitations.

Case 3 is the most realistic basis considered(109), and thus merits
further discussion. In column 5 of Table 27, the R-factor calculated
with the exact P, but using an isolated-atom g, is .00039. Allowing
the P matrix to readjust to fit the scattering "déta“ as closely as
possible within the single-determinant approximation, without adjusting
the basis, the R-factor is reduced to .000275, as indicated in column
6. Now if, in addition to allowing P to adjust, the Wannier basis is
used, built from the isolated-atom basis, then the R-factor drops to
.000000043, as indicated in column 7. This is just the numerical
illustration desired. The error for case 3 is graphed in Figure 16.

If interactions among neighboring unit cells are important, then
the Bloch/Wannier formalism ought to be important for fitting the
scattering data. Cases 1, 2, 4, and 5 of Table 27 investigate thé
effects of scaling the basis. These four cases are much less realistic

as bases for hydrogen. However, they do illustrate the manner in which

overlap of orbitals among neighboring cells determines the relative
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importance of a Bloch/Wannier formalism. For very large exponents,
cases 4 and 5, the electron density is concentrated near the nuclei,
reducing any overlap amongst unit cells., The result in case 4 is that,
although the Wannier formalism is an improvement over the
non-interacting unit cell case, it is not nearly as important as in the
realistic case 3, where there was appreciable overlap. In case 5, the
atoms are so tightly bound that there is essentially no differential
overlap between cells and the more realistic Wannier calculation yields
results virtually identical to the isolated-cell case. For véry small
exponents, cases 1 and 2, the orbitals are very diffuse, and
consequently the scattering does no extend far enough into reciprocal
space to provide sufficient data to fix all the elements of the density
matrix. Notice, however, that neglecting interactions among unit cells
in cases 1 and 2 correspords to an error of about 1% as measured by the
R-factors indicated.

Table 28 lists the P matrices calculated for cases 3, 4, and 5 of
Table 27. The greatest difference between P matrices occurs for case 3,
with the most realistic basis. As discussed above, for the very
tightly bound orbitals of cases 4 and 5, the density matrices are
virtually the same with as without the Wannier formalism, differing
only after the eighth digit. For Gaussians tighter than about

exp(-lOrl ), the Wannier formalism seems unnecessary.
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A final comment concerning the numbers in Table 27 : although the
R-factors seem small, apparently exacting little penalty for the
isolated atom approximation, remember that this is only a model
problem. Thus, there are fewer Fobs than in real, three-dimensional
experiments. Also, the model problem only has ore electron per unit
cell, so valence scattering efffects are small. Thinking of the
results on an error per electron basis gives a better perspective on

the significance of interactions among neighboring unit cells.
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Chapter VI, Nuclear Vibration

In this chapter, a possible future extension of the formalism is
discussed, namely a realistic boson oscillator model for phermal and
zero-point vibrations of nuclei,

The motions of the _A nuclei in a crystal can be partially
described by the 3 A functions describing the projections of the
motions on 3 independent axes. Viewing this as the diagonal of a
matrix, the motion can be fully described by a 3A by 3 A matrix,
each element of which is a function, describing the covariances of the
above projected motions.

The independent ellipsoid model, which is the common formalism
used,and corresponds to a cumulant expansion cut off at secord order,
assumes that:

1) all 3 A diagonal functions are Gaussians.

2) off-diagonal couplings between different atoms are zero.

3) off-diagonal elements of the 3 X 3 swmatrix for each atom's
motion are such that the eigenfunctions are Gaussians along 3 principal
axes.

Spectroscopic models of nuclear motion make far fewer assumptions.
They try to determine a complete set of boson nuclear wavefunctions ?{2
where Tq; describes zero—point motions, and the higher (exciton)

functions are represented as

+
U = 5h U (206)
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in second—quantized notation. One can expand this wavefunction in a
basis of normal modes or local modes(110,111). Such a spectroscopic
description can be used for the "intemal" modes of a crystal(l1l2), but
this seems not to work(113) as well, and requires far too many
parameters. Also, a complete normal-mode analysis is not always
available, because it requires such a large amount of data. However,
it can be done(114).

Not as much data on nuclear motion is available from x-ray
crystallography as from spectroscopy. This is because the experiment
does not actually see moving nuclei, but merely instantaneous nuclear
positions. Nuclear motions are inferred from the distribution of
nuclei in the various cells, as follows. The translational symmetry of
the crystal requires that the equilibrium positions of all translation-
or other symmetry- related nuclei be identical modulo the symmetry
operation. Any deviation from exact symmetry is ascribed to either
disorder or vibration. In a quantized system of vibrations, disorder
can be thought of as motion in a multiple-minimum potential well with
insuperably high barriers separating the several local minima.

When a system is moving in several normal modews at once, it is no
longer possible to observe which nuclear motion comes from which normal
mode. In x-ray scattering, the correlations between various bornd
stretches, bends, and torsions gives rise only to thermal diffuse
scattering, called ™S(115,116,117,118). Cruikshank (115) says, "The

x-ray data give average frequencies for identifiable sets of branches,
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but not in general for the individual branches.” Dawson et al(118)
state that "it is immaterial for Bragg scattering whether the thermal
motions actually relate to independent or coupled vibrational
behavior."

For example, consider a crystal of linear triatamic molecules. For
an asymmetric stretch, one bond is shrinking while the other
elongates. For the synmetric stretch, both bonds expand and contract
simultaneously.

Since correlations between electron positions and betwéen nuclear
positions are not observed in elastic scattering, that is, they appear
only in the off-diagonal elements of’/%(r,r'); one only sees scattering
from orbitals effectively associated with one atam. One sees a
distribution of instantanecus positions, but not the correlation
between local modes of vibration, as in Figure 16.

For this reason, one can, to a good approximation, treat each atom
as an independent oscillator, if one is modeling elastic scattering of
x-rays (and/or neutrons). A potential function for this independent
oscillation can be approximated from Bragg data through a single-center
expansion of the electron density and the resultant model of the secord
derivative of the Hellmann-Feynman force(l6).

A more common approximation is merely to describe the distribution
of instantaneous nuclear positions in a vibrational multipole expansion

about each nuclear position without making any assumptions or
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Figure 16

Indistinguishability of the Phasing of Vibrational Motions
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explanations about this distribution(119). Truncating the expansion at
second order leads to the anisotropic hammonic "independent ellipsoid
model'" also called the "Debye-Waller factor"™ model. Truncating at
first order (if the expansion center is the average nuclear position,
all first-order terms are by the definition of "average" identically
zero) leads to an isotropic Debye-Waller factor = a scalar "thermal
smearing.” Expanding to higher order leads to one of at least four
different models(120), depending on the details of the expansion. All
these are known collectively as "higher cumulant models." The
cumulants have the following physical meaning:

The zero'th cumulant is the r.m.s. displacement of the nucleus from
the expansion center.

The three first cumulants are the average displacement of the
nucleus from the expansion center.

The five second cumulants are the distortion of the thermal
motion's three principal axes from equal length, and their orientation
relative to the model's axis system. (N.B. the 5 second cumulants and
the 1 zero'th cumulant are almost always combined into the anisotropic
Debye-Waller tensor U.)

The seven third cumulants,or "skew," nine fourth "kurtosis"

cumulants, etc. describe various distortions in the angular part of the
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nuclear position distribution. These have the same angular depedence
as the 7 f orbitals, 9 g orbitals, etc. where the negative lobes are
a lessening of the probability of the nucleus being there, and the
positive lobes an increasing. There is a requirement of positivity
here also; the nucleus must have at least a zero chance of being
somewhere, and "antimatter regions" are disallowed on physical
grounds. In a non-orthonormal axis system, such as the natural crystal
axis system, the relationships and mathematical formulae are more
complicated(121)., One can always convert to a Cartesian coordinate
system describing the crystal axes in a complicated way, and the atoms
themselves in the simple way above(122).

A formalism is proposed below which is more physically meaningful
than a cumulant expansion in that, by making mechanistic assumptions
about the nuclear motion, the parameters to be refined will have direct
physical interpretations. The parameters of the model will be
amplitudes of bond stretches, bends, torsions, ring bends, etc.,
following a suggestion of Pawley(122); no thermal ellipsoids will be
used, and no Debye-Waller factors will arise(123). This makes the
x~ray data very directly useful, and comparable to spectroscopic data
analyses in that, ideally, our force constants will equal theirs.
Spectroscopists also can use a local mode description of their data
analysis(110)., The concept of a group frequency in infrared
spectroscopy supports this. Recent calculations of vibrational

levels(11l) find that, even in the frequency region of excitation of
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only one normal mode to its first excited state, the normal mode
description is not much superior to that of local modes.

The independent ellipsoid model is not at all equivalent to a
normal/local mode analysis, even for the same number of parameters. As
shown below, the mechanistic model uses 3A+15 parameters for-A atoms,
as opposed to 6A thermal ellipsoid parameters. A problem with atamic
ellipsoids is that they obfuscate the data analysis so that it is
impossible to separate internal vibrations from rigid-body translations
and rotations(124,125). The assumptioh of negligible intemal motions
is incorrect, but the 2l-parameter TLS o (Translation,Libration,Screw
rotation, and center of rotation(p -tation)) model(126) (more than 24,
if one uses higher cumulants) of external rigid-body motions in a
rectilinear coordinate cumulant expansion allows separating intemal
and external. The TLS (Translation,Libration,Screw rotation) model
without higher cumulants doesn't need the 3 cumulant expansion center
location parameters "_©," so that 21 parameters are taken up by
external motions, and internal motions need a different model. This
internal motion must be described, since it was long ago shown(124)
that "there are molecular distortions which are by no means
negligible." Moreover, the ratio of intemal to extemal motions
increases with cdecreasing temperature(l1l2). Since the highest quality
Bragg data in. future years will come from synchrotron sources such as
Brookhaven's National Synchrotron Light Source, which plans to run most

of its diffraction experiments at 20° K(127), a good model for
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vibration at these temperatures must be flexible enough to accurately
describe both internal and external motions.

The 3A motions undergone by A nuclei in a crystalline environment
can be described in terms of 3 rigid translations of a unit cell
relative to its neighboring cells, 3 rigid rotations of the unit cell
relatively to others, and 3A-6 intemal vibrations which closely
resemble the vibrations of isolated gas—-phase molecules. The 6
external modes - 3 translations, or longitudinal acoustic modes; and 3
hindered rotations, or transverse modes; are described in detail by
Shomaker and Trueblood(128) in connection with the TLS model. The
modified form of the TLS model described below does not make the

unphysical (129) assumption that

Tr(S)=9 ’ (207)

which is necessary wheén converting from thermal ellipsoids,but which in
general is not needed(126). P

It is proposed to use a curvilinear coordinate(130) description of
the 6 independent external motions of the TLS model(128), rather than
an expansion in cumulants(126) of the tangential rectilinear
approximation to them.

Although the TLS o model(126) and the modified TLSI (Interal)
model described here both use 21 parameters for extemal motions, they

are different. A potential is assumed of the form
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V(CLL>:>’(.L q,* (208)

for each coo:dinate q(r and thus there are 6 force constants )‘fg as
adjustable parameters.

The g ; for translation are three orthogonal axes forming a
translational Principal Axis System, which intersect at the center of
mass. The three Euler angles for rotation of the crystal axes into the
translationai PAS are adjustable parameters.

The q_ for rotation are three helices, with three independent
pitches, or helix lengths, as adjustable parameters. The lines about
which these helices coil are orthogonal to each other, requiring 3
Euler angles to describe their PAS. These helix axes do not intersect,
and each of them require 2 parameters describing the vector
displacement of the axes at their closest approach to the center of
mass. These 21 parameters are summarized in Figure 17.

Briefly, there are 2 sets of 3 quadratic force constants X ; 2
sets of 3 Euler angles; and for each of the 3 screw oscillations, the

model requires 1 helix length and 2 axis displacements; a total of

2(3) + 2(3) + 3(1+2) = 21 (209)



Figure 17
The TLS Model
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external mode parameters. It is likely that such a model is
analytically intractible; the only solution possible is likely to be at
least partly numerical (131).

The 3A-6 internal modes of vibration of the crystal, which cause
molecular distortions, can be modeled as 3A-6 local mode quadratic
oscillators, each of which is a combination of bond stretchings, angle
bendings involving 3 atoms, torsions involving 4 atams, and possibly
ring motions involving 5 or more atoms.

Since the force constants associated with angle and torsional
variation are roughly 10 times as large as bornd stretching force
constants(132),, their relative amplitudes can be assessed as follows.
Assuming equipartition of energy among all modes, for quadratic modes

n,
S pl
E‘h =3 )v{nAczn (210)

implies that

@qbe“d>ﬂ I':bend )’3./st:1'et;c1?7

L
< stretc Estretch }{bend

(211)

ay g > I ;
Ba R (212)
<Aqs tretch? 1 1
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and bends and torsions are roughly thrice as important as stretches.
This explains the success of Hirshfeld's rigid-bond postulate(133),

which makes the approximation

= QO
}{sfrefch ' @3

For finite stretching constants, especially the smaller ones
associated with X - H stretches, or motion along a Van der Waals bord,

it is advantageous to use the dimensionless coordinate

q=(r—req)/r (214)
of Simons(134) where r is the intemuclear disatance. This partially
corrects for anharmonicity, by building into the coordinate the idea
that it is easier to stretch a bord than to compress it. For example,
q = -1 corresponds to r=1/2 Leg’ but g = +1 correspords to r=cc.

This method is the most satisfactory for expanding a potential in a
given number of parameters, as opposed to Pade approximants or
modified Morse curves(135).

There are only two 2-parameter vibrational potential functions in
the literature: a quadratic oscillator in Simon's coordinate, called
the Kratzer potential (136), and the harmonic oscillator.. For example,
the Morse function requires r__, a force constant, and a dissociation

eq
energy; only the 2 functions above require only req and X , and not a
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Figure 18
Comparison of Harmonic, Kratzer, and RKR

Potentials for the CO Molecule
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'dissociation energy. Figure 18 shows a comparison of a harmonic, a
Kratzer, and an RKR fit to the CO molecule.

The coordinates for bending can be the curvilinear
q=9—(9ect or q=¢—§22‘t | ()

where & is an angle and 55 is a dihedral angle.

Since these are internal vibrations, the unit cell as a whole must
neither rotate or translate. This invériance can be préserved by the
"riding" motion model(137), wherein the rest of the molecule preserves
as much as possible its bornd lengths, angles, and dihedrals. This
requires a definition of which atoms are bonded - either chemical
intuition is used, or the bond orders from the electronic
parametrization by the P matrix can be examined. A possibility would
be to use chemical intuition for the initial gquess, and the P matrix
thereafter.

This highly non-linear modeling of vibration does not result in
anything resembling the Debye-Waller ellipsoids(123). One could
least-squares fit a set of U to this vibrational TLSI model, in a
reversal of the idea of Shomaker and Trueblood(128). The TLSI
equations reduce to ellipsoids only at high temperatures, when the
oscillators look like pure Gaussians; and only if one treats all
motions as pure translations of unconnected spherical sub-units(123),

rather than as molecular fragments.
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In the general case, each unit cell has a certain number of
molecules, each requiring its own set of extemal and (if the molecule
has 2 or more atoms) internal vibrational parameters. The ellipsoid
model is recovered if one treats each atom as a separate molecule, as
in the beryllium model of chapter 3, with the extemal screw nptions
having zero amplitude, and the extemmal translations treated with a
truncated cumulant expansion.

Vibrations of 2-center orbital products should be treated by the
"center-of-density" method of Stevens et al.(138). The position of the
density element is that of an imagined point in space defined by the
weighted average position of the two orbital basis functions
concerned. The orbital exponents determine the weighting factor. Note
that this method is only defined with Gaussian orbitals, not STO. The
motion of this density element depends on the motions of the 2 nuclei.
If bonded, the density element is some sort of weighted average of the
2 nuclear motions. If the 2 centers are not considered bonded, the
motion of the density element is the convolution of the nuclear
motions.

The P matrix is not a function of the reciprocal lattice vector K.
However, in the general case P is a function of the vibrational
excursions g. Given

—1/2

P(q),S (q) ,£(K,q) (216)
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the scattering factors are(139)
FC(FO:E W, jvh(1)*F(K)c()Uh(z> dg (217)

for vibrational wavefunctions 1)  with temperature-dependent
weighting factors W_ .

A vast simplification has been implicitly used here. The Einstein
model for vibrations has been used. In fact, since this is a crystal,
the vibrational levels ’l%(q) are not simple functions, but bands, which
need a Bloch or Wannier description. Fortunately, phonons of vibration
are bosons, which means that it is not unphysical to say that W, in
equation (217) is a delta function on the center of the Brillouin
zone, and thus force all phonons to sit at point /[’. This
approximation is equivalent to the Einstein model(140). If desired, a
Debye model of vibration could be used, which would require a Brillouin
zone summation. Still more realistic, and less computationally
tractable, would be an experimental vibration model, using data from
Inelastic Neutron Scattering (INS), or from TDS.

The appropriate approximations are totally opposite for intemal
and external motions. Each internal motion in each cell should(14l) be
treated as totally uncoupled to all others, both those in the same cell
and those in any other cell; this correspords roughly to a uniform
distribution throughout the Brillouin zone of each intemal vibrational

level. Matrix elements connecting electronic basis functions in
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different cells should be convoluted with both intemal vibrational
excursion probabilities (amplitude squared) separately. Extemal
motions in any cell should be treated as totally correlated to all the
rest, as shown by experiment(ll7). Croés—cell matrix elements have
external motions perfectly in phase with each other; translations leave
all distances unchanged, but screw rotations correspord to the motion
of two coupled helices.

As a first approximation, one could assume that each mode is a
harmonic oscillator in the appropriate coordinate system. This is only
an approximation, since a quadratic oscillator is not a harmonic
oscillator if the coordinate g is not the same as a simple distance;
the kinetic energies are not the same. However, this approximation
makes things much simpler.

Assuming each mode is a quantum boson harmonic oscillator, then

W, Unx(%) U, (ié) (218)

can be represented as a probability of an instantaneous excursion

Q é“i)' which can be expressed in closed form(142) as

Q(Aq)q, =2 "JXL(AC(‘ dg, (219)

where the ‘Yé are related to spectroscopy by(142)
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2V, )

) = . <
Y, F tanh (hy, 72k, (220)
for a frequency VY, and a temperature T. These frequencies ) are
the parameters comparable to an IR/Raman experiment. Thus,

3A
-’72 -i/2 . y"
FR)=( T PQS QRS @ [[[E et ds oo
1 T

| Now models are needed for P(q), S~“*(q), and £(K,q). The model for
SY%q) and for £(K,q) has no adjustable parameters, since these
matrices are determined strictly by the nuclear positions, and by the
basis functions used. They could thus be evaluated explicitly as a
power series expansion about the equilibrium value, or at a series of g
values, and then spline fit, or something similar. Although these
alternatives both require a lot of computer time, same approximations
or simplifications might be possible. A Taylor series expansion in

(r ) would be aided by the fact that the derivative of

~ Fequilibrium
a scattering matrix element

(K)o K
L9 G K>

is related to the scattering by the derivative of the basis

% /Q;K'F/9y> | (223)
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The derivatives 2 P/J q are not detemmined by P, but must be varied

to fit the experiment. However, there are" constraints on & B/2 q.
First, there is the constraint system that can be derived from the
electrostatic and virial theorems(143) if the energy implied by a‘
particular P matrix and other derived quantities are solved for iﬁ
order to apply the constraints. These derived quantities involve as
much time and approximations as an ab initio solid-state wavefunction
not based on the data, and will not be considered further in this -

thesis. More importantly, for any value of q,
(P(q))? =P and Tr (P(q)) = N (224)
In a Taylor series expansion of P(g), this means that

(P(0))” = P(0) and Tr ( P(0)) = N (225)

G(O)+ fq +1 1§j‘ DaiP q J-q fq +..)

1 2%
i gai qi 21 1 jaqi d a3 i

Expanding, and setting d g=0, - ( ¥ (' , yields

024 ( PO 2 (0) ). 225
P(0)*+ ( P(0)—=+—P(0) )a, +..., = 4=
30 2q: PO aqiqi+

(227)
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In addition to the equilibrium term (225), results can be cbtained

from equating terms of the same order in 8 g. In particular,

@(0) @P/Pqy)+(IP/p qi)P(O))qui=(3P/9 a; ) a; (228)

P" (P')%+,5P (0)P"+P"P(0) )qui=.5P"qui (229)
and so forth, leading to equations of constraint like
(3P /2q)=P(0) (9P/2q)+(3P/2q) P(0) (230)

from the linear term (228), and another for each order of 4 q, which
equations must be applied separately to each type of motion q; .
Let us examine the simplest case - two orbitals and one electron.

Then

P(0) =

cos2d ~-sinfcosO 7 /ab
( (231)

and—=
-sinPcosd sin%0 dqg b ¢

From formula (230) above, it can be seen that
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G, 9:( )(cosza -sin?cos@)
b sinfcos® sin +

. (232)
cos“O —sigecose ab
-sinfcosf sin“d b e
Multiplying out gives
B [ 2a cos®D-2b sinfcosf b- (a+c) sinfcosd
(a (> ( -(a+c)sin9cose 2¢csin®9-2bsinfcos® (233)
which leads to the values
a=-c=b tan® (234)
where b is a free parameter. Put another way,
JP _ [a a cot26
Jq a cot2f -a (235)

and the number of new parameters for each q; is the same. In order to

stem the proliferation of parameters to be fit, the approximation
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2p/dq =0 (236)

should be used unless there is likely to be a really good reason not
to, such as a high-spin/low-spin transition as a result of a particular
vibrational motion. Approximation (236) is similar to the convolution
approximation(1l44), but superior, since the overlap matrix is allowed
to adjust in the TLSI model, but not in that of Coulson and

Thomas (144) .

The result of equation (221) is that, even with approximation
(236) , the model takes vibronic effects partially into account, without
any new free parameters. The total number of parameters to optimize is
3A nuclear position projections onto the 3 axes, 21 extemal mode
parameters (assuming no added cumulants), 3A-6 intemal vibration force
constants, and N(m-N) P matrix parameters (assuming a fixed basis); a
total of 6A+15+N(m-N). This reduction in the dimensionality of the
parametrization is the ultimate justification for approximation (236),
even though it is inconsistent with, and worse than, the adiabatic
approximation(137). Note that all 6A+l5 non-electronic parameters
could be refined from neutron scattering, or an X+N joint refinement.

If approximation (236) is made for all vibrational modes, the

effective matrix Pave rage is not in general the same as

Pequilibrium’ since the data being fit is vibrationally averaged.

Rather;

, —{ D)

Pcw‘:’mgcﬁd\ Fiq) ‘(L"/jt) dq; (237)
14
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and consedquently
Fcal(K)-*-Trf{ J'P(q')ﬂ(q')dq')(
q q

(238)
s‘1’2<q>f(x.q>s‘”2<q>ﬂt<§dq

Replacing equation (238) with

£ | =T B> TEmHL 57> (239)

is a worse approximation, since the three latter terms ought to be
averaged exactly in phase with each other, and scrambling this phasing
throws out information that can be retained without any extra effort.
Compare this¢P) to the following;
1) ‘The "perfectly following” approximation(145) wherein the
electron density is partitioned amongst the nuclei and each piece is
assumed to move unchanged with its nucleus.

2) The "convolution" approximation(144), wherein
<
olrg)= Zf P (- ~equilibrium L YJ/UL) (240)
M

where the pieces /O/M of the density assigned to atom k in cell L
move with the vibrations /Uk L of the nuclei k. This approximation
has been studied for N P CO, BF, and HF(146), and Epstein and Stewart

find that
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<:t"'“7>- £ 179 d S og (241)

e (as‘-(‘/c efc4 stic /

compared to vibrational anharmonicity errors of -.26%. The much larger

errors found for the H monopole(l47) may be due to using a multipole
expansion about nuclei rather than about charge centroids. X-H bords
are known to be troublesome since the bond is weak, and H atoms have no
core electrons. Epstein and Stewart £ind(147) a 5.0% anharmonicity
correction for the H monopole. Any errors made by using approximation
(236) are four or five times less severe than the errors made in
truncating the vibrational cumulant expansion.

A simple analogy is a camera mounted on a moving truck. Any
blurring in the picture due to imperfect lenses in the camera is
negligible compared to the problems caused by poor shock absorbers on
the truck.

As suggested by Mills(148), all vibrational parameters ought to be
in dimensionless coordinates so that the units for stretching and
bending will be identical. Bond stretches could be expressed in the
dimensionless Simon's coordinate(132), angle variations in A& ,
and torsions in ‘4395 . There is an added advantage to this in that
least-squares fits vary with the coordinate system(149), sé that the
less arbitrary the coordinate system, the less arbitrary the point of

best fit. Coordinates must, however, be in arbitrary units, with
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dimensions of length. Following Pawley(122), atomic positions can be
expressed in 6rthogonal X, or orthogonal au, coordinates.

This vibration model in curvilinear dimensionless coordinates uses,
in the approximations of this chapter, 3A-6 local-mode quadratic force
constants. This can lead to, at most, errors of 5%(150). Mills(148)
feels that ignoring anharmonic bending forces is "80% valid."
Scheringer (151) finds that the riding model (137) underestimates the
spectroscopically calculated amplitudes by .004 to .01l Z, but that
ignoring the intramolecular response to a vibration entirely

("uncorrelated atoms") yields amplitudes that are far too larée. A
"damped" riding model might be useful, but the damping factor
parameters cannot be refined from Bragg scattering. The riding model
is the best alternative.

The various parameters could be refined sequentially, as in
TREFOIL, or simultaneously, as shown by Rae for the 2X2 case(152). The
refinement should be started with a fairly good (as judged by R-factor)
model. An initial guess for intemal mode amplitudes is that they are
all zero. The PAS of translation and libration could start out as the
unit-cell-fixed frame. The P matrix of the free atom model is a good
starting guess. Ruysink and Vos(153) recommend assigning as much
thermal motion as possible to the 6 extemal modes of the crystal. The
bond-stretch amplitude should be refined last, since it is likely to be
smallest, and make the least difference in the R-factor.

This chapter is not complete or detailed enough of information to
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write a computer program implementing this TLSI model. The chapter is

only a suggestion — a very detailed suggestion - for future work.



156

Chapter VII., Computational Considerations

The Lowdin orthonormalization procedure(154) takes an arbitrary
basis g' and converts it to an orthonormal set g. This is very
convenient, beéause the P matrix must refer to an orthonormal set, or
else the requirements of idempotency, normalizatién, and Henﬁitivity

take on a very complex form(103). This procedure is simple:
9o =5 g (242

The scattering tensor £ K is given by

£ 2 g2 g0y e K ¢ g'! s V* (243)

or alternatively one can use the nomorthonormal basis and use, not P,

but instead

R=5"2pgl"2 (244)

Either requires evaluation of S'l/). The overlap matrix has

elements

Suy = <Gu | 9, (245)
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which can be calculated in a Gaussian basis as the forward scattering
matrix £( 0 0 0 ) using the formulas of reference(78). The inverse
square root of a matrix can be calculated from the matrix by the

iterative procedure of Igolkin and Mestechkin(155). Start with a guess

at S"/2 given by
~172 /
_ (246)
"S (@] (/D;m9)7 .Z
and iterate on the formula
(8™ = 3/2 (s7*) - /8 ((s7*)s(s7*) 7+
(s~2)* 5(s7"*) ) (247)

until

(E ST (S"/’i;‘(S WZNDIT, § is sufficiently small. (248)
MV

=20 and Dim(g)=3, this takes

If the convergence criterion is about 10
about 10 iterations.

Reference has been made above to changing the local coordinate
system so that P submatrices are equal. This requires rotating and
translating the coordinates into a Principal Axis System. Rotation of

coordinates is a bit tricky. It requires three parameters. OCne way of

defining the rotation is by Euler angles(156), but this process has
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problems with 180C7 angles. Another way is described by
Scheringer(157), and coded in PL/I in Appendix F, and this has problems
at 90° . The best thing to do is to use one method sometimes, and
another at other times, depending on the rotation angles involved. The
ab initio program GAUSSIAN-80 uses only Euler angles, and when an angle
being optimized hits 180%, the program crashes, Any rotation method
has a singularity somewhere, so at least two must be used.

In a cubic crystal, the crystal coordinate system is Cartesian.
All 3 axes are of equal length, and 90 ° apart. The other six Bravais
lattices require a metric tensor to convert to a Cartesian system.
Alternatively, one can use fractional coordinates x. The same
considerations apply to the reciprocal lattice. Pawley(122) gives a
conversion procedure, and propagandizes in favor of a Cartesian system.

From a computational viewpoint, the problem of this thesis is:
Given some highly non-linear functional €& [p], and some equality and

inequality constraints

7 Y
L eq (p)=0 ., (p) 20 (249)
minimize € subject to .

Non-linear optimization theory(158) is a rapidly expanding field of
applied mathematics concerned with exactly this problem - to minimize a
functional, with or without some constraints. Methods for non-linear

optimization fall into three categories: Newton-Raphson methods, where
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second derivatives are used; quasi-Newton methods, where first
derivatives are used, and direct search methods, where no derivatives
are used.

Derivatives can be calculated in two different ways. In some
cases, Y& can be derived analytically from € . In almost all cases,

VE can be approximated numerically as the finite difference

€ el ptAp;l-elp]
a/’é d/p,

It is recommended that if the parameter vector p is defined to an

(250)

accuracy of 7] digits,

. _ L
é& - /0 = n (251)
P;
For example, if p is defined as DECIMAL FLOAT(12), then
FAY:?
i 10-¢ (252)
.

Numerical derivatives are less accurate than analytic derivatives.
If a number z is accurate to 7o, then a rough estimate is that 7z is
good to Fo, and Az to £ 100 .

What is desired is a global minimum in € . However, no method of
non-linear optimization can guarantee that. Only local minima can be

found. A local minimum is defined(159) in Newton-Raphson methods as
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Ve =0 (253)
\ 2 € >0 - (254)

In quasi-Newton methods, equation (253) is satisfied, and an
approximation to equation (254) is sometimes used. For direct
searches, one aims for convergence (p' = p), rather than testing for
(253) or (254). The program EXAMPLE of chapter 5 eventually gives up
when it can't lower € to € goal in 3000 iterations. The program
TREFOIL for chapter 3 never gives up; one controls it by only giving it
a finite amount of computer time. TREFOIL, which uses a direct-search
method, seems quite susceptible to local "false" minima(160).

The only way to feel confident that a global minimum may have been
found is to start with several initial guesses widely separated in
parameter space, and if all converge to the same place, it's probably
the global minimum. If not, choose the lowest local minimum, and maybe
try some more initial guesses.

Direct search methods work by controlled trial and error. One

varies the parameter vector p a distance 4\ in direction s, to lead to

p'=p+d= p+/s (255)
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If €[p'] is less than &[p], the step is accepted, and if not,
rejected. After that, a step in some other direction is tried. The
various méthods differ in the ways in which they detemmine A and s.
Some take steps along each parameter in turn. The program TREFOIL does
this, and when no step along any direction is accépted, TREFOIL divides
A by 10. In other methods, steps are taken along certain preferred
directions, say along eigenvectors of the covariance matrix(161), or in
directions that had been most successful previously and orthogonal to
that.

Quasi-Newton and NewtonRaphson methods update the parameter vector

by a change d given by

p'=p+d=p+AHG (256)
where
" Je

- 6=Ve-

alo (257)
and H is related to, or an approximation of, the inverse Hessian
matrix. For a recent article, which reviews many of the quasi-Newton
methods, see reference(l62). An excellent textbook is Bazaraa and
Shetty(159).

The method of steepest descents is defined by equation (256) and
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H=1 ' (258)

Although this method works, it is slow. The problem is that it is far
too sensitive to local changes in slope, and the Markov chain of the
'steepest descent path usually zigzags toward the solution, rather than
following a smooth or regular trajectory. Minimization methods need
not throw out all memory of previous iterations. The path so far can
give clues as to which direction s to update in. The various -
quasi-Newton methods fold in information about previous function and
gradient values to the H matrix, and the steepest—-descent path G is
deflected in a plausible direction. The best H seems to be that of
Broyden, Fletcher, Goldfarb, and Shanno (BFGS or BFS) (163).

The steplength /\ is determined in one of several ways. The
"acceptable~point”" method tries A =1, and if this leads to lower € ,
the move is accepted, and if not, /A =1/2, then 1/4, etc. are tried.
The cubic interpolation of Davidon(164) finds a nearly optimal /1, but
takes so much extra computer time to do so that the acceptable-point
method is often preferred. The program TREFOIL uses the method of
Davies, Swann, and Campey(165). It steps some predetermined /1, and if
this lowers €, another 2 A, and then maybe 4, and so on until the
step is unsuccessful. &€ is then evaluated at a point midway between
the two most recent steps, and quadratic interpolation is performed.

Several other variants are known.
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Due to the peculiar nature of the idempotency constraint, only one
method of imposing the constraints of idempotency, normalization,
Hermitivity, symmetry, and positivity of the vibrational cumulant
expansion will be mentioned here. Normalization and Hermitivity are
imposed by the method in which dependent P,y are calculated; symmetry
by construction also; I don't know about positivity of U. The
idempotency cannot be imposed by Lagrangian multipliers nor by any
other one-step method. A two-step tangential approach(166,167) is

required.
STEP l: p"=p+ AHG (259)
' = consteal n n
STEP 2: p' = constraints( p" ); evaluate & [p"] (260)

Many of the programs and subroutines mentioned in this thesis are
coded in PL/I in the Appendices. As yet, no quasi-Newton programs for
quantum crystallography have had fast enough computation times to be
useful - this is likely to be due to programming errors, and not
inherent defects.in the methods. Also, quasi-Newton methods and
least—absolute~values error measures are incompatible(164) due to a
singularity in the gradient at convergence. Most quasi-Newton methods
assume the existence of € '"[p]; the singularity at ¢ '"[po pti mal]
means, by definition, that least-absolute-value measures are not

well-behaved in an optimization theory sense.
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All parameters should be refined simultanéously. Just because a
free-atom refinement comes up with certain positions and thermal
parameters, this doesn't mean that a quantum (or even a nomquantum)
refinement should keep v fixed while refining electronic parameters.
This fixing of v is commonly done, either due to computer time
limitations, or because of fear that certain elements of J, éspecially
those connecting dipoles with position, and monopoles and quadrupoles
with vibration, will be enormous (>95%) and then the parameters aren't
independent; the problem has become overparametrized. However, the
electronic and non—electronic parameters have quite a differeﬁt
dependence on K, and this hopefully will alleviate the correlations if
a sufficient nunber of reflections are measured(133). A commonly used
technique is called the "X minus X-high" refinement(8l), where some
mcutoff" is taken, usually .65 A~ , and the F,ps (K) are divided into

"high-angle" and "“low—-angle" scattering factors by

< 6581 ¢ (261)

K Khigh

low
High angle reflections are used to refine v with free atoms, and then
low angles are used to fix P. This procedure has a few problems.
First, there is no justification for throwing out perfectly good data
for some parameters, and pretending that J has no elements between v
and P. By definition, it will find a false minimum which may or may

not be close(8l) to the true minimum. All data should be used to fix
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each parameter, and if a certain datum has no effect on a parameter, it
won't affect the refinement. Second, X-X~high arbitrarily refines
first v, then P, in effect pretending that the X-high experiment is
infinitely more important than X-low. Third, Price et al.(38) find
that "residual two—centre scattering, i.e. that which is not accounted
for accurately by one-centre temms, is a high-Braég angle phénomenon."
In other words, cross-tems in P show up mainly above the cutoff, where
a free—atom model is being used.

Another questionable refinement technique is the "X minus N"(168)
method. Here, neutron scattering is used to find v, which is then held
fixed while x-rays are used to refine P. This assumes that neutron
data is infinitely better than x-ray data. Contrast this with the
laudable "X plus N" method(5) where one refines both data sets with the-
same model, with an overall weighting ratio Wk/wN based on
experimental considerations, internal consistency of each data set,
etc.

A measure of internal consistency is needed. One is the comparison
of experimental numbers which ought to be equal, say F(K) and F(-K) in
a centrosymmetric crystal. This is not entirely satisfactory, since
the absorption in an odd-shaped specimen is not centrosymmetric. A

very nice measure is the intermal R-factor, which is an R-factor where

Fcal(K) = FobS(K) +chobs(K) (262)
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Despite Scherinmger's caveat(151) that mixing data sets of
different quality "has a disastrous effect" on refinements, one should
follow Hirshfeld(133) and use all reflections for refining all
parameters. Preferably, reflections will be measured out as far as
possible. No data should be thrown out, even if t;he measured intensity
is negative(169). 0ldfield(104) has shown the remarkable insensitivity
of P to random error in measured Bragg intensities. Arnberg et al(97)
refined the structure of C30H1802 until it "converged to
acceptable coordinate values" based solely on data with o (I)/I >
0.30. They conclude(97) that "no set of reflections should therefore
be excluded from a least-squares refinement on the pretext of having
too large o (I)/I values."

Error bars and covariance matrices are a necessary part of any
interpretation of experiméntal data(170), which data always have error
bars of their own. The propagation of errors from data to
parametrization proceeds as follows.

Define G/f as the gradient of one Foa1 (K) with respect to a
parameter P«

K
@/f = f7£“_'_(,—-) (263)

E is a square matrix Dim(p) by Dim(p) with elements

EﬂpzzéfGyKa-(l-;bs(K)) (264)
K
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Then the error bars O (p) and covariance matrix J are, for 6_3’ ’

a(/oﬂ)q/;?(E‘%u e (265)

,=(ED,,

Y T, LED, o
where E~} is the inverse of E. The goodness of fit is
GOF = JE/ & (267)
where
$ = pim(F) - Dim(p) (268)

A GOF of 1.00 is as good as the data itself. Any method which gets
a GOF<1 with "chemistry quality" data is unlikely. The goodness of fit
will get worse as the model becomes overparametriéed. GOF is what
really should be minimized in a totally empirical wavefunction; the
dependence on f , the number of observations minus the number of
parameters, should be kept in mind. Be sure that each extra parameter
is justified. A good discussion of statistical sloppiness is

Lonsdale's article(171).
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Some directions for future work have been suggested above. The
application of the fitting procedure in cases of more than one orbital
of the same symmetry is still not fully delineated. Although beryllium
metal has been modeled, no semiconductors or insulators have had their
x-ray diffraction data fit by totally empirical wavefunctions.
Possibilities are graphite; the series diamord,silicon, germanium, and
A -tin; and the organic crystal oxalic acid dihydrate. Whether it is
more efficient to use McWeeny's or Mestechkin's purification method is
still an open question. The Wannier formalism has not been applied to
any real 3-dimensional crystals. The vibrational TLSI formalism of
Chapter VI is totally lacking in computational considerations. The
thesis does provide a fairly complete framework for these

investigations, however.
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VIII. Conclusions

Molecular systems can best be modeled by a quantum mechanical
wavefunction. It is possible to obtain a wavefunction purely from
experimental data, without recourse to energy evaluations, by imposing
quantum constraints on the interpretation of one or more experiments.
This totally empirical wavefunction formalism is applicable to
insulators, semiconductors, and metals.

Information from many different kinds of experiment can
simultaheously be fit by a totally empirical wavefunction. In this
thesis, attention has been focussed on Bragg scattering. Two-state
experinents;li.e. absorption or emission spectroscopy, have not been
treated in this thesis; the formalism is thus restricted as of now to
resonance and scattering experiments. Only two types of measurement
provide a large enough sample of unambiguous data for use as the only
experiment to Ee fit. The fundamental object to be modeled, according
to the Hohenberg-Kohn theoreﬂ(lO), is the electron density. Bragg
scattering measures the real space electron density AO(r); Compton
scattering and positron annihilation measure the momentum space density
/p(k). The scope of coherent scattering measurements is certainly
sufficient for determining a totally empirical wavefunction. Magnetic
resonance, inelastic scattering, and the like do not of themselves
measure the electron density unambiguously at all points in space;

although useful in conjunction with Bragg diffraction, they are not
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sufficient in themselves. Neutron scattering cannot see paired spins.
Compton scattering and positron annihilation have not been dealt with
in this thesis simply because my predecessors(13,103,104) have
concentrated on Bragg scattering.

The totally empirical wavefunction must be detemmined frqm the data
using some fitting procedure. The iterative equation method of Clinton
et al.(13), using.the unweighted least-absolute-value error measure
ey » has been the only fitting procedure used until now., Table 3 and
equations (67) to (69) detail the extension of Clinton's algorithm to
all 8 crystallographic error measures: weighted or unweighted;
amplitude-based or intensity-based; least—absolute-value or
least-squares. The measure most faithful to a properly designed
experiment is the unweighted intensity-based least-squares measure
€q. The "best" electron density is given by €3 or«%' . Due to the
nature of the idempotency constraint, a one-step minimization method
must treat idempotency as a quality to be maximized, and smallness of
the error as an auxiliary constraint. A two-step method has been
devised, which alternates between unconstrained optimization of € and
satisfaction of the quantum constraints. Although this method is
related to generalized reduced gradient techniques found in the
literature(71,166,167), its use in quantum crystallography is new. The
advantages of this two-step method over the iterative equations (67)
are:

1. any parameter, not just P matrix elements, can be optimized.
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2, the number of independent fitting parameters is explicitly
shown, as opposed to the old method which updated the entire P
matrix as a unit regardless of how many B“” were entirely
determined by the constraints and the other P elements.

3. error bars and a covariance matrix can easily be cbtained for
the parameter values.

4, far less computer time is needed than for the iterative equation
method.

5. any unconstrained optimization method in the computer science
literature can be used without major modifications, if the
(i11-behaved) least—absolute-value error measures are avoided.

The totally empirical wavefunction model has been extended to

include three effects not found in the case of isolated gas-phase
atoms., First, the requirements for describing a bond or antibord
between two atoms have been discussed, and in the case of Model 6 for
graphite, an explicitly molecular wavefunction model including

. intercell and intracell bonds has been delineated. The dangers of a
"two-center” approximation, in which some P matrix elements, assumed on
the basis of chemical intuition to be zero, have been described. A
distinction has been drawn between bonding and antibording terms in the
P matrix.

Second, in Chapter V, solid-state effects on the orbital basis have

been explicitly described by means of a Wannier formalism. Associated

with each cell is a damped wave of isolated—atom basis functions
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extending out into neighboring unit cells. Although the details of the
damping depend on the Compton profile of the orbitals being modeled, an
approximate treatment of the band structure leads to a simple and
computationally tractable model, equations (191) to (199), for the
"Wannier-izing" of the basis.

Finally, a TLSI (Translation, Libration, Screw rotation, and
Internal vibration) model for thermal and zero—-point nuclear motions
has been outlined. The TLSI model combines the 2l-parameter TLS model
of Schomaker and Trueblood(128) with a 3A-6 - parameter
spectroscopic-like model of internal motions in a curvilinear(130)
Simons'-coordinate(134) local-mode(110) description.

For the first time, the totally empirical wavefunction model has
been applied to actual experimental data — the beryllium metal Bragg
data of Larsen and Hansen(56). Several approximations were made. The
data was assumed free of errors due to absorption, extinction, etc.,
and only an overall scale factor was optimized. The gquantum
wavefunction was restricted to a frozen core plus.a single determinant
of spin-paired orbitals with real coefficients. The core was taken
from the atomic calculation of Huzinaga(80). The valence orbital was
modeled in a basis of only 2 functions: the atomic(80) 2s orbital and a
set of 12 Floating Spherical Gaussian Orbitals. The effects of crystal
formation were approximated by a sum of overlapping perturbed atams.
The nuclear motion was assumed rigidly coupled to the electron density

of each atom, and totally independent of the motion of all other
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atoms. A vibrational cumulant expansion truncated at third cumulants
was used. Thus, the electronic problem was reduced to the modeling of
a single electron, using 5 parameters; the nuclear problem to a single
nucleus modeled with 3 parameters; the experimental problem reduced to
a single parameter.A Two of the electronic pérameters and one of the
vibrational parameters were dropped from the refinement. the resultant
quantum wavefunction is shown in Table 1l. An excellent fit, with
conventional R-factor .00249, was obtained. For comparison, a
Varghese~Mason multipole model,model 4, was refined in the same basis.,
The fit to experiment was even better - R, was .00237. The two models
were compared. The non—quantum model does not lend itself as readily
to the interpretation or prediction of other phenomena or experiments,
As shown in Figure |3, the quantum model suggests a trigonal
bipyramidal 5-center bonding unit, and the non—quantum model a

tetrahedral 4-center interacfion.
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Appendix A - Notation

MEANING

nurber of nuclei

wavefunction coefficient

vibrational third cumulant
de /3P

Error Matrix

Scattering Amplitude

Gradient Vector

inverse Hessian Matrix

Scattering Intensity

Covariance Matrix

Reciprocal Lattice Vector

A Lattice Site

Multipole Basis Function

Number of Electrons

Normalizer

Operator Matrix for a Property

Density Matrix

Symmetry Operation

Error Measure

Scattering Weight Matrix
Overlap Matrix
Experimental Scale Factor

Reduction Factor

Temperature

EQUATION

34
Figure 10
Table 3
257

5, 175
68, 250
249

175

266

166
16
23
145

38

Table 3
123

121
Figure 20
70

213

174
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Q

Vibrational Tensor

Potential Function

Weight of a Multipole Function

Wannier Function
Vibrational Weighting
Mestechkin Residual
Robust/Resistant Functional
Number of Nuclei in a Crystal
Antisymmetrizer
Wannier Overlap Matrix
Exponent, Usually Gaussian
Contraction Coefficient
Change in Parameters
exp(l) = 2.718...
Scattering Tensor
Basis Function
/=1
Reciprocal Space Wavevector
in the Brillouin Zone
Boltzmann's Constant
Lattice Site
Number of Basis Functions
Fractional Occupancy of a Band
Orthonormal
Observed

Parameter Vector

125
201

181
210
45
62

187
17
106
90

17

165
213
170

176

235
Table 3
83

175
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Vibrational Excursion Coordinate
distance

Direction for Changing p
Periodic Function
Variables Unrelated to P
Weight of an OCbservation
Wannier Scattering Tensor
Unit Matrix

Next Iterate

Dot Product

Dirac Bra

1-Body Density Matrix
Irreducible Representation
Center of Brillouin Zone
Change

Gradient

Steplength

Constraint Function
Product

Sum

Many-Body Wavefunction
Degrees of Statistical Freedom

176

248
165
83

190

38
109

248
242

33
268
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Probability of an Instantaneous
Excursion

Spin-Up

Spin=-Down

A Fitting Parameter Related to
Spectroscopy

Kronecker Delta

Variation

Partial Derivative

Error Functional

Exponent Scaling

Number of Significant Figures

Angle

Vibrational Force Constant

Lagrange Multiplier

General Matrix

Vibrational Frequency

3.14159,..
Physically Meaningful Density

Error Bar

Boson Nuclear Wavefunction
Dihedral Angle

Weight of 1 Determinant

Orbital

Wannier Phasing

177

212

213

219

60
126
244

201

69
Page 28

220

12
265

206

33
13

10
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Appendix D

The PL/I Program TREFOIL
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Appendix C

Beryllium Metal Structure Factors from Various Sources

Reference (172) (172) (56) (29) (29) (29)
Totally Empirical

Silver Molybdenum Average Free Quan- Multi

Atom tum -pole

ot
Q

# hkl I-obs Error I-obs Error F-obs Frror F-cal PF-cal F-cal
1002 11.219 .283 11.527 .288 3.348 .029 -3.365 -3.348 -3.349
2004 4.954 .126 5.012 .126 2.216 .019 2.209 2,211 2,209
3006 1.470 .018 1.495 ,009 1.212 .003 -1.213 -1.,214 -1.212
4008 .362 .024 .353 ,004 .590 .003 .589 ,591 ,593
5010 3,408 .086 3,452 ,087 1.839 .016 -1.761 -1.840 -1.839
6011 7.983 .200 8.096 ,203 2.815 .024 2.857 2.814 2,816
7012 2.194 .05 2,209 .05 1.473 .013 1,458 1.469 1.466
8013 4.651 .117 4,735 .119 2,151 ,019 -2,144 -2.149 -2,150
9014 .999 .026 1.009 .025 ,995 .008 -.993 -.,993 -,991

615 1.728 .015 1,734 ,010 1,307 .003 1.307 1.308 1.305

116 .313 ,005 .308 ,002 ,551 .001 .552 .552 .551

017 .474 .006 .469 004 .680 .002 -.678 -.679 -.679

[
B b

188

(93)  (94)
Ab Initio
Plane

Wave LCAO
F-cal P-cal

~3.330 -3.398
2.173 2.202
-1.184 -1.215
* *
~1.829 -1,892
~2.816 -2.798
1.442 1.434
2,105 2.132

-.977 -.990

-1.280 -1.307
.539 .553
* *



13
14
15
16
17
18
19
20
21
22
23
24
25
26

28
29
30
31
32
33

35
36

OO ODOCOOO0OO0O0O0O0OODODOOCOOOO0O
BN bt b e et et g B s D R W WWWNRDNDNNNNDDDNDND -
HFOOASNOAWNHOAABNONAAOI®RWNDEOCO

.085
1.421
4.080
1.092
2.433

.532

970

.169

.272
2,015
1.605

*® 822

.302

.149

.393

.114

<266

.054
7.221
5.507
2.609

.866

+220

«755
2,137

.010
.036
.103
.028
.016
.008
.014
.007
.009
.014
.016
.008
.006
.007
.008
.005
.006
.006
.183
.138
. 018
.007
.006
.006
.014

.076
1.447
4.093
1.121
2.449

«539

.969

.178

.280
2.009
1.583

.827

.307

.134

.395

113

267

.062
7.220
5.561
2,623

.853

.218

« 756
2,127

.001
.036
.102
.029
.027
.004
.006
.002
.002
.012
.010
.005
.002
.002
.003
.001
.002
.001
.183
.141
.015
.057
.022
.050
.115

273
1.188
2.007
1.044
1.550

. 727

977

.418

.524
1.408
1.251

.902

.549

364

.623

.334

.513

.247
2.668
2.335
1.606

.919

.463

1.449

.001
.010
.017
.009
.004
.002
.002
.001
.001
.003
.003
.002
.001
.002
.002
.001
.001
.001
.023
.020
.003
.002
.002
.002
.003

=272 -,273 -.273 *
-1.192 -1.193 -1,193 -1.168
-1.999 -1.998 -2,000 1,975

1.050 1.049 1.049 1.036

1.556 1.556 1.553 -1.534

-.728 -,728 -.726 -,714

=975 -.975 -,974 956

419  .420 .420 *
.526 .527 ,528 *

1.412 1.410 1.407 1.390

-1.257 -1,256 -1.254 -1.238
.904 .904 904 *
-.549 -,551 -,552
-.368 -,368 -.368

.621 .621 ,621
333 .333 .333

-.510 -,510 -.511

-.250 -,250 -.250 *

2,658 2,665 2.672 2.621
-2.338 -2.338 -2,340 -2,303

1.611 1,611 1,608 1.582

-.917 -,918 -,918 *

.464 .466  .467 *

-.866 -.865 -.863 -.854

1.454 1.453 1.450 -1.434

* ¥ % ¥ *
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*

-1.182
1.998
1.050
-.730

.980
*

*
1,421
*

I
= NN
L ] L

AW % % % % % %

=W W
MO

*

-.868
-1.459



190

38122 .588 .004 .592 ,035 .762 .001 .767 .766 .,765 .755 770
39123 1,319 .011 1.328 .091 1.142 .002 -1.147 -1.147 -1.144 1.129 1.154
401 2 4 «297 .004 .297 .034 .541 .002 -,544 -,544 -,543 -,535 -,548
41125 .558 .005 557 .040 .741 .002 .740 ,741 ,740 * *
42126 .102 .004 109 .011 ,327 .001 .324 .325 .325 * *
43127 .174 .005 .176 .015 .416 .001 -.413 -,414 -.415 * *
44130 .235 .003 .239 .018 .484 .001 -.,481 -.,480 -.480 * *
45131 676 .006 .664 ,042 ,811 .,002 -,811 -,810 -.809 * *
4613 2 .201 .004 .192 015 .436 .001 .432  ,432 ,432 * *
47133 .435 .007 .439 .029 .657 .001 .68 .658 ,658 * *
481 3 4 .094 .003 107 .012 .321 .001 -,319 -,319 -,320 * *
49135 .205 .005 .205 016 .449 ,001 -=.446 -.447 -.448 * *
50140 .245 .004 .241 ,019 .,488 .001 .485 ,486 486 * *
51142 .201 .004 .200 017 .443 .00} -,442 -,443 -,444 * *
52220 1.141 .010 1,126 .076 1.0 .002 1.055 1,054 1.053 1.041 1.068
53222 .927 .012 .909 .058 .948 .002 -.,947 -.946 -.945 * *
54 224 .502 .008 .494 ,044 .699 .002 .695 ,695 .695 * *
55230 .080 .004 .083 .012 .28 .001 -.,285 -,285 -.286 * *
56 2 31 .235 .004 .236 .018 ,481 .001 .482  ,483 ,483 * *
57 232 .072 .004 .068 .008 .260 .001 259  .260 .260 * *
58233 .162 .004 .164 .016 .402 .,001 -,400 -.401 -.402 * *
Unweighted residual R3 .00578 .01044 ,00247 ,00242 ,01500 ,00555
Unweighted residual Rl .00491 .00542 .00249 ,00237 .01225 ,00827
Number of reflections used to :
calculate residuals 58 58 58 58 27 27

* denotes reflection not reported
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Appendix D

The PL/I Program EXAMPLE

]
1
1 wv (113 >
] -l “w 0
t o [ 4 -
1 - w -~
1 b > L
1 (%) w > ¥
t z — X
. ] o Q 2
wi = [=] w1
2 < w
. ”~ X Qv v ~ >
- o « o 7 . = own - e
~ iUV = Vi z < Vo )
- 2 wrrAr w Wy o q4 gd OX q XX .
- W Zow v > Xer ] - ' w © ~0 & e~ T W
O - o Wk O N a g ~ - Qo % w a& W oy U e
7 Qe - ———nwg e T Wl« - < - FPW w > e o
We O -4 o =g [ g=1=} o -t w w =l W <gies N
Zzx am Y 2ZNAZ TDwy v =] W o e @ W IOV W
-2 W <0 X2 O QU= | I\ (14 (= 7] x O (a3 4 - oa =z
AN, W TU DULWJOWND Lt ® -y - -4 lgler 44 le] LS Lol STV I
VIR~ N VIxh ITue=a K AN Q. < w AWNDudire VB=AZ Lo =
Qg X RPNISSTI PY .- Xl gy a.a LA > 200Uy Wil DwD = D
- Md = UG Z -t o 2y N g ~ — L N e =D Ve "W O
T Wy o<t -~ TL:\TASRhUHP [ e VI QU - $ 4 - o~ -l —— NNt e =D Ty &
Uramu © [ - At y- L (=) d=]=] iy &«> I (8] o X t U= Xmown o Lo wr s
& W=y m Qgy; Xrow xa -l O L1yt t= i g AR # GEFOx W H=1L£20 uw 2
WL == s [Tl 4 LIS N~ o ez < Y z X OxxOVexImnO>»x < swnldD
MU=~ O OWAEVINXZZ & -/ ZX ey »X w 1 XZPe-Quinn=~ ¢Z 93 IZVNO>*
13 20 o W el et AL L Y Wb O - X ADCAAL (1R XXUUN pat? ) 1 Zmpy X O
ZXWxMmm NV = XXIXX Y Sl YT -8 w X =Lk = Luanl =aw Z
Ol N * T3 DX PID0 ¢ V) e Ower - = bl 11} - ' &« waeesdaga OODW WeZ c <
XX =AOmm OFIOWICIN - . aC NXUTY S ®w P-4 P ey E=AZA WX I-D-agamnZ
w b Il SOmE NIV ot QU v - t O=0W dgd I T FYi-dqW=d (-~
QW@ D0 UL gqqal . - O_W = «n v ! qu o DT OO X NS=E DV Zz
e gauw D 1~ L =0 2ZX XN [V =] I XAAJT * O £Z0 DI-OwZzuw W
QL VerettIng b (A DX o.x gt Odee ok o | WO FaQA®N s U WO IS We=T T =
VO VIV *® VIOE e e W -ttt b OXE Ue i oo = 1Xe ZOW qUUn WTJOI ol -
V) aimllle o~y = N2 OV O N -~ wQwer xv o~ o~ w 1 200w T WNIX2edqO o= & v
Oj=t) s=maNdZ @ < -1 w 7] wa> O Weew = X f dwar TrQmeid =9 Dladmylen <
»DZga~~0— 0O O Mg - Vi ea @ wuer D N o€ w AT emd S Wit SNV I IdInI Jw D
g WOMmmMeWwn Qi L ut~ IO WL v oo ] OYSR O WomWe QWIs nT= o
ZL e evu= P W Wt D [3TY]-SENTS = Ve SO L) b 1 VueWVINuX Ok - XO | =g
) —=Ur-MmmOogae= < Xka X3 23 TS S OnxD<d O 0wl o _PPUIJOE —NZgagavhia s >0 g o
-0 VT oy et b= L) - aDX = ozo O Xr=m 2 o QM f Daz FONCW T IR D
Z Mre_xmgnviag n <= N QL O we w o w wzanagy = 12 OmlWWaIWS 5= D™= DD N 1yl viyy <«
—y WU dW sUlmQ >3 ZXmE @ VIede = POXUL Ny 3d X2 View s QU IS UGeX U VAR Z DW=y 2
[=] TS0 oSN JUV & Owe L 1yl om¥ o~ gUIMm 2 VAU 100 Wil Wy dd ZX=qJIuDNd==8 JZZW< v
3 2 ~AXNLXTE - U [17) NI Serili= X Xwell MY LS S - ZuD | FTUITXEZJGWEL ! =adD>OCO08 DVDI0UN
n - QZMmA =g 17 o ] vk giayt DWWODVIee =LV A X IV mee [ Neree I IldaanV0R000|]VITV -
w N oX * em _=UWE Wik-QWVN < Oy 0 b=t 2 >y LDV G o O = o -4
a LAUM~ALOIITT XTIZWIE o Orexuats e = _Jeenen SUIQ QAU o1 (%) <
-t Vi T sy T /A= pn = =ld ey I &) e e AR Y el) OO =l I U
- —_XEO = eMID> Z2 o Wh Wy WA UG U e A xXhal & %)
Y] e fMwUnRd iy -t (Lol L [Ty [WT XUAUNA WUVIGXE oD & o= @O ] “
ow QAVICAQ=—Ly ~W oOwaaQviy < | L SNV X Uiy w - WppiAsres T | - —
=t N Ol Zwdm= o« TVl daera RNg I r., - AL OQ el VIGUINVIUWL ST Veelll § . s
W QARVPIE OOl W~ A0 e ath T U Q WAUVINVIN oA a# L | ~QNOD Dkt P TINOWOD O O
W ww VIALOM O OV U dxVi=a > W QM XD e PUALICN L™ | NOTT AWROOT OLVOOWUOROO o
Tt XARAVNSIM, s NIWLLWT X s =N WIOWND - AV ameilyy Oured | ittt ottt it NN OO D
G W d Td eBUI O Qv AT T A"y WINP IR D= Tw? o MmUDX =0 ** Y | ¢ N M eNT O
OFadl m o~0 = x bmbebope T aeviUuQ g9 o & JODWLIVIe 3 W, o - w
”Go WP Z O~ ) oM ww L] ety L VIL KAl Il NNNDA L Ve ~
Q™) I Vivm « QUM » ~ - - QO Lewin— M 2 AIA=-InNnoxe o 1 [od w
DX GLITImAMMNE oM 'S [T 1S Jryrp) wavyg-—a EUMA- @ Aol S ] P
Qe OV 00 o M= el )<L X TOHOWW = TTIX e [ = JRET N T Ry -
MW Aar= O0mw NI j Ty, TS TR § QUime ZIhULODL > g
AZZ aJWea~NO= AW eux b q N0 <ane » DaLXX 4JX I ] -
} otianied Q.ﬁE%lRR waad O vinanigd o - O b= »=OUCW = Vise | ~
X VAU Ol w g 20090 L 0OZLen # JITNNUV— — 1 or
AWMLY ety VIO - NN D Z0 Vg NJIXd >a0 WR2Zx Wi L]
JWZValu e —ilqy b ot x - WLy < ded e Wee | WU e -t a b - 4al¥]
TX= on -0d ~Ow aq AN - o O edad gl e AZVPULWUN =ID=aJ uwhloukOua
Nwd—xd T I ] D = dedetd Md O Wall | EDmeb=J1 3> AFTEID JTT ==l
D XdaN uddad I dggqar - LYV O T, XL aINVIIdgay OF-d-M JUWINEZcx
T 23w Y s i NID ~ ths X} B, WAL Tt Dt LA o e D T
NNaNw o o v a v N Z t WO FEVVINLOSD>A VA
AN ]
TN e MOTNAD—~ e MO
- nwho w w CO00VOCOO e NANNMMME & TN AN DO
L N L N N N R N N R A N N N N N N N A N N N N N N N N N A N AT I I I A R A B B B B R B A I AL S I AL I B A I
LOND=NMTN DI O OmNMLINARDCCaNMAMNIM T NOTDOO~uMENNOOO~NMPTrdIred et rerrTodTerdordosrd Lo
IZZ_Slllllllllll22222222223333333)333333446.~65666S55.)5555555555555555555555555555555

000k gl Pt 4 g oy guot s ot it 9

pp -t

T ol it et gl et ot P g i A il g O et it ) Pt ol 7 g et =

o 0 g et 4 e et 8 el gy S ot g 0t P} e



192

w -
v
w
i
o
w
73
>
.
- w -
7] . v ~
w - 4 1) -
- =~ w - b d L) -
L - > - - Z 2
« [ Zw o Q = <
ur o i\ L) ) -~ W= Q =]
a pol ol ae ) < - ~ Ok « - -4
s O 2 [ - b -] - o QWG N TS
W 0N & L-4 T=A [« — PY T3 1
Ww - o Hd - we (%) (=] =] —F e - *
x 2 T %] 2z w 4 w VIR L) = w
~ T o ON [ [rerve — (=] < Y DO < -2
- - Zs I oxI«a w - < Quawe W a
¢ Qn - (8- 4 x < o saue o X
x “ N [ w) w < - . » =2 wza = u o
- O n v ul wizw < - - 2 %] - QAOE -~ s
- 473 - Za Z -~ A t ¥ - ~N - Q LL ] iy Lt w» Teom
- v N Q@ aw so - WX -~y 2 L X x »x < =gy < NOO
N AN~ = loteng 1 - » Edad FIRTY x - w -l D O = EeretiNes
| ™ NV N NI x - - z w [ - 2t O e E B
- R - VO —r—— ~ @ Elal ] [=3 % s O > X a Ve == N0 Lid
>~ @ vi Z o, u - - -3 O~ x *N - - Qo o Vi Dot -
- ~ Dq (21 - < wi= X X [ s < X QDAL =N o
=1 oNg *ZV [ x IR o o> o L) 4 X o DWW Qr~ g - =]
v Qs e z O <~ e W P-4 O w W VDO *gne -
vy +0 wo Sum U e sex ~b it b a @ O ALa X mp oM -
w wme S x - —~ e wn< -l s (=] w X wn L wZ QX g ]
(ST Ise 4aQT [wit)a b X = ¥ ' — z Ld w [TTY Y QUMD sl Uit -
m—ty X —z o W NG W o ) Wes Z el -4 (W TR W e W EZVUYY = e e (%]
L) -y o < W e O Ma o [T JEFN . O o — — F R Qg E> & XAAM =
- -0 O e d il W I ) o » 0N - -_NO e [S%°4 O o O - T e X H# e w
v OV <« wsZ —wE T = Y~ - * —— Mty Qy Ml - ZAWLY & JO=m ~ =
Qew Loy &0 - [-9 [ 4 - P P e v F. L] ~ D ad W = UOWN VLCIDY = Y0 - @
P Lt Ve 2D SN A« oa [ 3 adp= Y™ e (V1% Oy Ze Vi AN Y o .
wnN NS ) == Q 0 (=] ‘e o w oW = 0 wE W™ ef "Mee vir a #O0M™eys *» .
- - 0w Wt iy UL Z ww > Waxmes o wnX XZ o X Xis o sUX g —~O~OF 0 o
-n Ztv g [- 4l o w wow Lok T I N R Ty e d A= e O>Wa= 2 #» *u x -
QX" e [y Werrme U2 OX e - atge .. -y N - XU.Z e - Z2HD2 Q= Do U *N e a -
Wer = [X} Zzawn 12 Wmrs Vigyema ww -~ WerXL ~ = — 'S 2= -~ YRW =0 SW W VIR e a -
20 | iarew UNegy o = oW B L JNm A ™ D - - Sl - [ o] = e e NUVNDy VW =N « -
2D M2 eeDium e e QN P2 N o & e =ty Oxus < oo . UWICOU »esbw= v
AL, ~H D ~X S TWZE o N D~ * XX s NNWm~ g a3 Qe A e oW eL B N omd N R, T orvm
-~ A=) VNN OY Wt e )™ Pl D M >xy) #U W mERR ) @ Lol N =0 g & b Omur
g M e LN VI sl eel) W) D e - T s el X (S =l UNee o M=o a YA g~ e 0L - q
U = meet Aldeeeg = U0V 0 XUWWX WX OwQte O Wit o ewiy W N e QLU — 8T Ore Qs
AUSO~NM QT DUN VXD TJé xL=* NID0- 4 WL o€ ORoe Wde OZONE mm  OagpmZi=) =X IG™ =~
T o0 l) WhaiNe g oA sl Qo ompall = N~ o KRTON™ ape iy e OO ag, -~ Seet=Oyy AN M I2a Qa0 O
WrgWoaglE ~» VIqNMT & OR=QGeyn X N ™ ety ke~ g o & e QBRI OF ate e [l P [TRYTI N T B It YY)
A Moy V0N T =R} S e A WZM —% ed ™ em Qe K~ eQ W ZWD N WNEL OV P e
diaal o WWADONAFD W=ONW WN\WN =Ny D duE~ e WSRO0 PO Wk OUNNoe X gy IONLd Nt o) ANg3TD
Wy ImMe g e EZOU *ZT>Z o et F e W g ULZT IM Qe X w@E MK & X~ EINm D = = Vo e g VI
XZ AP X e OdWW W= o AX X MM VIOEQ awieithies J @ O Om IJwmes O Od XIFAaAVIY =8 00%ar DV}
DRMNISNE Qlauy=~it Qb= O A+ D ¢ =) WL N ¢V O D 0 w WI s~ OU * WO |QWIL - =LV N
VLW e oD WWAR~AZOe Whea™ W Oa i) ke dw=20n0_ 80> W ~ZOAXY Wr~0 20Xe Ua =AU OO0V # 0% - X
Ayg M IO wmwaZ O ~0d 3 U= W - XUQV e *ATJEN> U Rl Ol O # & wrOuw Ou VIOWN - e ® N MmT)
UD sl U FFa-OXE ONTJ (=] - O e DX (FPATUIXT= O ediiMIdm Of s My — LS b VUL B N e -0
Q ~mAatd oV |=N WD dedut of =~ U am O =U-ainwen x o WS EN®w 3 ULl fGa U AIUONIDe = s ® Uw
[- 47 LT PYRTyL] QUeshA=Z e O = = A B & v WLWE 3% 0o O =g O ¢ O il gUlxe *® Zw = =  NEZU emaAIN -
Qs o tmjm e WT™INIMUI G AURXY ¢ X Q o UEUO _ im *Det 92 * QALY p=lliee * g 3=l "% e WTw NUIJAIEZXD)wlie Qv
ecrmal g HQ = g o M B o B O0x D=0 ) HOW M o O X a3 Oe =8 s-asrand DWW o7 Oy
Qe Sou g U N Z w oW —_T e » -y —Z oy W= ipg * o Ow il o QO WetZmt X £ TNwg WE wtAN=l A = 1 wC
WapAtmamm W o UL WOUOk W Xy W XX A W AN I3=2 O =T 1D D il INDw Qa XX Qe Uy eldgd=~ND
2N~ et AN O - e DU 2 O D el | w-NZNxr A - - 2 LR & I g 20w a VI ~agndag W
2 o e o J ek o o L Qe NOGE Jd oy D = e 4 - . 2z Ny =7>n —Qudh) VanD
Vg =NaX wn W s  Jw @ QW DULIE IO = = g O 00 a O ~0o L Ws D U I0-d CSO
VY A e o “a ~ N  Ow = A PRECOATIND A w T m ~ T o (a) ~ooaN [~ To SR
a4 O ada © -~ O -3 =1
N O N n
000 n LI Y -\ —~ny 11112336558 " N 1233465567 - - "

--..-¢-.-ooo--.-o.oo--.-.-oo.o.--.o-n.-o--ooo-o-oac-a....Aoco.---ocao-o-ou
O OdNALNONDFOCOOu™NNMP N O AV OO DO OCOPCOPROOT OO =AM S TIANNOIIP P o e e QPP OO M PN LA DO =M Y
55bbbbb66666777777777777777777777777777777777888888888888688888888889999999999990000000
20t et s P et g Sl S ] o T gy el P ) ) P il cat 8 g st G P s o P g et P el s 50 ol st 978 TS ) 5l o gt g 54 el g 4 ot ol e et o st g ot o NI TS N 0 N




193

w
. =
- o
< x
~ W o~ Lo
« a Do Ld
[T > X &L -
S . o~ O -]
Q. S Qa toQs o - -
o [ waZum o (o] ~
- N X w -t 9 N g -
x @ [Ty o e we m ~=0 o
w [ w o QqIrJd »n -0 W
- - w w =z W D W NO 8 x wy
(WY, ] . %] woy N> N o~ - Iw
(=4 (14 ey o O - w . _——c
o it el satere Z ~dZm e W -ee - «qZ ®
« > . » -l O w o ~dyrarre = qw t - a TS
0« - o oee - 4 ar w=> B R NIZuwn ¥ .. OIdy QO " x>
@ w g (13 - W 20 Vi [ - -~ S - n -ty X e~ ” - (=R
Aol est= = - Xy N D= B o -0aQxE v ~ W e e e~ - N U ok e &
e U mmUise™) x® > e - - o >2 ZXWW ™ ] W e U xx ~N L- ]
O =N T - i XTREY GO e N we q W 0 bl R®OLa W P - - Xy -
7 WD s> - e O WO —— ' = OO0 —d - - W Z~ L e - - < Y
W e gl < - = [4]- 9] W o AXTEr O - S aAD D - SJWES
N —E RZ x -z UV (= o " . O == 10 e [ [+2] < O DN
T AW it alld - Ow  eone W90 * > ~ -~ T -~ md o~ aQ OV ¥ o= .- QO o 0 t =
[STelSE 2 Tol=s - e ) O =~ O~ v w wnex N o~ (=1 ) [K-3 [ o) W Qrgoe=
& =Wt =N - WO & &Ny (=2 ¢ O - ZW Wy = gewoa Qe « <8 > -t () o w
el N ) - NZ  tre LN Vies | e -~ (%] WOND =~ 0.0 —~Z 3 ~ ga 0N eeX % e » Qwon
80 CI I o p ) 10N Vs W Q& WrXes =yn . P a4 DEer - Enad NLLMN N H Q P e T R ~LAPIo
~Z LAN0Oe=2 - NWee @ " TrwmdX O eirm - 0O = 2e | MDD ZE d - XS - kol -t a I e Z e e L
~UO XL e~ § N~ -~ QD= NNNEDIO Y X WWwody O R0 x=0 -y w sWw e D 2 - raq O
¥ & e g @ Ox OaAZ s~mg=* XX » WZ ERFPUM o $490 D U e k= =X # QAN - W aQ e N~
e D) PYNT? U e 0t a JRW O™ A~ W X Peeilild .4 U s~ X Qd ARy = QA ~0Q - W=VimWE
AQQTATI— - - *X mies L 1PONOE X PO G Sl - aw @av W) O oot anyyiom "SEFQY = e w2un>J
eL dee Ve ¢ F a0 NN g% D ® = Wl atNee ¢ RACID = geld X™UI> e g™NO - Dw n a [l = Saniendd
S ) B (Y D=Ver oM Hdl S~ =nVigiegmw s~ X JXE O (|#RZ ~AUX UWNNaZp— oo WXm TeaX —cr O~
—_ O »Z ey C WD UZXAXH N et T X FG QA gawWw KmLC Pl R A N PN (=158 SO A
N COUIET U X tm) Dl UR W e T & abd @MW X Ll o LN RE Joma=uUm OQZ e a s
L ra oW 7= i, ATl P N DI AZ M WL M s «>QULEW LA QNG XiINARD dqms=™ * Owe— LW _0Z5
W QUMD w2y sl «~ONGZIVIOA N WA =T »lU. * o QAW Uhw o # O ¥ e *gih 0| ™p Qwo. MM sose 3™ wxogQaev
Niodw==NIQN e VW amiiliing © sl | D> S mVIU Pl e ™ X 0O » Q' WX OURg~N Ll s MmOCL. X1 D
MmO sntortm o shemtarbmil 100ft)Ppg™ $ O T o toi}rd o~ Ve vrlle MUWNL sANDE DT QO oy WAKT oSNNS £ oX  toallgi =)

=Y UEMASART WYL €U 1 P RImO* = faNieDZ e ¢ TS "NemQ X ahmV) =AY AUX N ? QAU SO W O iy
[CT Y, YV - e VWO OON PO~ O™ RV~ O W™ ~ WTA GANOXD QU VIXING o8 P awy AT the wihe OQOWAIEX"
>t T O oD Ve W= OO R AW U~ JOL anZ sttt ot T (Y beieX s W= XADJOULmX AL LY «TWZO XK\ g OZ =~ |
ZTEAUI ™ S TR PUM ke | Xt I WA | JZUU VI V2 Y 0 AR el QAWH X NN sVt st # X0 7Y
QUG | =aeZordwy KA o= ¢ TR >N >OW= e Uiy DWW 1dOX ~ X [y, *Ja |~ NN AV JW  QWR T~
O _JL eI wtiOdhMis § 0 am WU T~WNZ DA e a2 AL OF(33A 8 *(3fAw wq Omnattn & 0 X o smNw=XaU0 %L whe<dg
MHAG N EDPZrM A Qb & W oY) Wt QYO ) ve gt WA AV QA w—0 WIVINE Lo =Ta Wieod X *xAdQolvim =)
ANUFWIWOWY) aft 1L s)m JooN=1 A DUNaVWUI Ow e OJNW X Ak X PAYNDEE EHw® eniONAXO P LIm=l AL
XNIdh NP OR e | UNUCOPN e mis ] 0008 ayeM>anNZ WIZD>Q0 *OXaN Y UqUM# T Dol X O *U=JWUWIaq> D
el U 3=OVNNIm, o5 T "l Ll =S 0 OXJIOa~0R00 N " ay~=w, TUE=ZFOAWIVI LJIAgOX A= L oM 5 00 e~ I =
e W ORMARY X el YT P WO T oy 53U 206 Qg™ & ((Nee W) *Y O | NREZ Waomnwr IR T0wuX i ?D NiCe
et B QR e | D Sy st W AODODVAVW~ W NN N GAD DI EAR e DUNSDIZTOUWN =R Cew DJIWQ s emy 49 Xy W T--
TDENAOMOIE ¢ D e dmiQiaO=~ Wi | X >0 OO0 slw p X AQAUNWEI=~OLA0 O mIl e elWw Ud eZwd®J HDWeE IEN=AdIDL
-z esemy P e QLU IO K MW XMt UgmiND o DAWWLIIX i~ CAIX-ICZNA Nl TURW i UnT LN W nC
Use =0 N a¥ 237 e OFO Nl e WO HE™ e DPACNIAIULUGLE QU it X A T Ay ebel N it W ¢ D

FZEROC 1)I,KA <FT (8051$(1),Q,,83515(3),a.,k);

<
XOHFU o ¢ om o ow@ AV = Al W 12 =Wty O=OWO Ow ot “TILX D SW'™D vaN~duid od=~ U XZu O
Wer o o) YU ZZ P sy o QI RNWedNN Y € LAy NT 2> WEAD =ty WU mtA Nl UN\w OJDO~IXD T W
NY I8 == ZRUZ =W XWNIQ I XN~ Z2 ~ OoW—a wi- dD Qe kb OWOOD *XNEW U J-QUZle —Z & "
VNI NN ZZ2W It Ui=d JUWR 200~ OVWWVID o x dad'’] BZIZ QMwmlX -4 UU O™Xa Jddw ~ =11
WU g =Whinke wk=uinM Vied V=T AF MDA WY » ) (-4 N =D Hia b < N X ¥yad > Q
(% e = 0 L= > V00 0 4D o wa 217 ~ an —-rpZ W i1 ds )
[a I 1110 L S} Xl=-lalal - -ily " > Q > O e = [aBERI'N
Q [=] w (] (=]
wo non Ly " non "

L L R L A R N e A N R N I N N N I I A N A A N N R A A N N A N N A N N N A B N B AN N I S LI S O B I B B O S L AT B N B I B Y I
WDFO=NMLINH~DPO~MNMINBDPO=NMTNODCPOCOHNNMMNEDP O NNENNIND Pt NN SN O DR P OO mNMA FNO VOO mim s NO~ DO O
DO O ot ot = g ot 2t b =t it ;N N AN N AIN A M AN A AT T3 T3 SV S S NNNIDANNAANMAD O T N0V OO0 gD It e A DO DR 0o DU D0
AN AIATNI TN AN N AN N A AT NN AN N AN N AN N AT AN A AT AIAT N N AU N N AT ATIN AL AN A AN N AT N ATAT N AT AT AL AN TN OO N AR QLA N LA N AUt TN A N At O A N AL A



194

- o -
- - -
- - - ~
. - -t - . ta
- " - « — -
~ - - - - - w
— - - [ B a i >
~ I - > A -~ )
- o o - 4 - - ~N .-
“ [} wv () > [ - . P
[=] .. < L a g I Q - (LY
- x e w . o w » [T - w ~ w o
'S x o [ 4 o0 » - - P T -t n - - 2Z
- Xl 2 Zz W - o - — X DO~ - ~ - -
X Weew L)) W - I [S w 2w - w O w
- e a L3 - x - T NN - « - = a T
g U -t~ us .. e - - W= e ™ d (=] ZL . - .
A - QI X vem - W - o -t - v O« - V0o e O -— = -~
= - - -0 - N e L e . Qmw . w b4 ~ - 3 -
" a X ~icf 1o x o M e ~0 - N W : WM . x ©
- - X0Ous; -~ [ v - -~ -~ - vip ‘e [ - DTm > o Q =z
» AN e & e - X M x ma e O Cd o~ o o - = o - Y - IS -
M < aljee— & = - € O O el & 2w oNd m ~m w w wa e n ol - ~N
yoo. “xg - w Ay - = e e = O Z e w (=1 ZWI~N B (LTI 4 - ~
w oo i x NOX e () & wo A e X g mdMX O [=1%} 2 . —ZO ~> g - -
- O X dUs X ZR e g O AT ML e W = o - a4 w eI ¢+ M T vy . ]
L xXOQ e+ o g buw e X UL O wW g <X LWEXD w W e e Db - -
Ll N o w N N e = X0 -4 Qw [~XT3 x O [ Zm -l W - »
« x —— O Q™ X A O " QA Ky D eI VIQOZwe CAL LI W V22U e onx > =) -
w e ~w N ZNag = o W Q- = AU a X W2~ X 1] I~ VW= 0y (1=l 1 <
[~ e ~eeX o dRBT X S = 2D DD Q@ * O A e > w [ xam N OLANT oo . op b -~ e n
< ——_ ool oy e AN g g QU ~Ax ~ g2 ZL~a Lles ow . . -] WO O™ = - -~ @
3 x wad & amgy T . J X o'W X AW gEmNn QO QL £ M e ORI Ut - “n atremen &
g W w3 - ATy X e D W el O v OF TA et Y " - 8 = - Ll o= D2 TS ——Z e — DA
“w [ il ® QY sadd - ) ™A U ey o O OOM™ mD [l 4] & M o= ® TN - d Qe - el
= we Qus wse & e o Q. P e ) wy wm - -3 - Ze e a 0 - W Wi ey DIMAD
LI 4 a2 = M=t = O & ™ X I e TWw VIZNA Q o~ [e P2V N e N WY NITA -TNZW -—
o W=D QrUXY = d () DD T Ve s O ~dND =2¥ e @ ~ - >2Jw [ T T NV TR
~ W N & O & N X NS WX e ) = T o U - ~N M -~ Quee ¢ e T LD eakm M= +Nw
e » R 3™ Ne «dFR e £ W R S are MWew =4 g g =) 418 -y -V »x LYY IVT] QWX V2N [ad - 359 P15 P .}
-~ — Vw4 UitUmew W A = O oo Ok o B Nim are Heoyd — M X WUgWI= 4 » < —~ 0WeNZ—
ﬂo . . qwaq VIQQy o0 e X o NXE Y & AD N T e LY Ry - L1 BT & et G Z XN T el W *OL
dee o P00y =) e e - oty ~d O WG «wNuns N Z W) @ QD> g>x - Xk s —d O g
DAX D emmu.x O.MNGNOS = g g > X P sem| a* UN¢ O I1X2 W d e XZadbdy QOO - 291 b
8= R ~eg WXy S Rl o X SR Qe sy X qNESR g QI*~ Qevis M- 2 e Ny D e el ST ] naa
WX A =™ FUSdXl) i) ey =0 W I EQO B~ ROl SR LIVE X N N> ZNRILIY O T P - L g ooy td
AIOY & e el OXoUleEd > > i V) ww 0O Wgv) e} Mt & Memay WML ZWI ynUZO ¢ )™ o [T TR
WXY VI SRR QeONGEX e M e QL g W ey, B e - a3 e W T et (O Qe CLM momiany [y
G e o NDWeAE gl X DWW W o W W AX X Q2 oX s OV e OIX o™ VI e [Ka[Ta s ] Lheh= ttesee D~CIO@D~ O suad
= ¢« SOLVXE™ Wr=0Jd*E T N Ve Q =X D RO e e o) e @ - WNOUO=UONCK s | -t [ PR
LX® 0 SUVIOZ I> A~ *y °* X 2 X W HE ® ey O o™ O e Bl ol -la™ ) NI ORr XUy W el ™ [rapr=n
~- W e~ ey =0~ Qe W W O Iw QW “XINCUI D% mXNE m Pm=~ T Sy - U= g e Nnemy ome o €} 2
e It im—2 e O 1 QB Rw A M iy =T =N IFrQAUwdQmwell oW H~wD y o= ~AMAEOOMAD Q@ D ~ sldmad nO—n
e et OV e Z CNQA O = o =l ot =X ke WEKINK 113 ZZ 0TIt QIO® *TOOITmey | Oma~ Awm o> - ey >
“e AN=NNTwNUIEW I B LIV > =PV = AK VAo LU0 s~h0 EnROZ .40 sms v EZ ¢ AceD=D e 1y
‘LC‘, o Y N ) 56 DNE‘RFI (v,

M v SN WLEIA e JNOUX N PDWIFETE Wl X ZTLP =g s [od S I e [T T
SMOLLANINO D2 =AW o = U V) ) SN0 A AeAlOZL (WD i) =l s =D XNZ | it md MAaATW

1 sl T O O & :m(r- See Mo NT W e . o=t D dW I FLIoolh X 00l Yomoobe [y A JITTNTIOW s WO seem -~ -
Q=X ¢+ DN = DAmgmiiia QrepmQis JNNQAM AX b *0OCMN O *OM OXOW OC}QE * * s im=-tO>>~ QFI-MU O Z+~ W
= R AN A N F INE OO0t ) el ppmre ol o WOWE IO wZMP = oL WO ™mw ] - b | b ey T
XL~ By XA T ] Ay WX AN =X ~X DOy XOOXRA~ZE> st O sIUV = W ITem Qe g —~ e RO e 200~
MOV I AT ANH T E=ARAY) XA VDZ AP At 0O8 N D wme it s UV & e ¢ 3 s — VUNERS =D = N ool

Q=0 X a SN QAL A een =WUXa W vt w =X q@ =0 g =0 Lo (O ot rmt Ot [~ ]=3 N qA0ON LD 8
ToO VOmu=—=O Xk gyt n e SNt e A oy QI N et B2t -2 QW] | g2 00t 3™ N =ZEND
Wk D D= W JOUVII™=In D=0 ¥ DH0ODW o W ~IJoEru wWity = = QA AN yNg ‘O g W owo =
Al 4 o] = Qoaa Da CasNZrnNpoa=Za - b= A W Tty O EBN*wZZZL QuECAN =Xy 102 a0y

=] [T £, > Na =0 "HWS O w D= = YT wo e WN= e -t # N OUD =M [ J~1
-t ~ [=] -] ar N ad d aAnVkm =20 wZ x N TR TN TR 17} Qrn n* PNZyy
oy - ~ - ~ a s XY ~ a] ne ~ R AL T ] us~ ~. "e WG
o o a wvi a oQ o o
nwo

,...o.-a.-..-..-.-.-oa-.o...-oo--.g-....-o.-..-.-.-..o-..c..-o....-.-..-.-o.-..‘.
(2345678901234557892345678901234567890[200000001300023500001234567890!23656790[![23567890
q999999990000000000111[][[1222222227_23330123656667899990190000000000111111111222222222223
22).22?.?_27.33333333353333333333333333333335.)555555555_)555661222222).227.22).222222).22222222221

MMM AAATNAN MMM OO MO A e @



195

.
-
-
N
<
. 2 3
= a -
- a . .
p=s
I
m ~ 7,9 wM - -
Qqur e [ -4 -~ z
gl Co (=] [ ~N - 4 o
[ [=]) < ~ - W -
< - [ T - —— (%3
> = . - Ya "
T AT X S » « o Lo
0 U= — -4 - -~ wo g I
- - - xe . X o s >
W 2 = - 4 (%S -~ Ll N - -
W XN= w < - - T xe Y
Sw> < > a . e U~ - . x
SN0 e o ~N O Vime D - - .
~ agwy -~ — o~ Q —~— —— WLD> ['7] [ -—
- WU o . » -~ w . < WX o <« -~ = - ~
XTI T>OqA - 4 < Q vias " x v £ -~ nre z e -
~— - -2~ D ~ o 2 - ia -~ - Wee g~ Qu ~ - = indiibie
- N N Ladend-YET--] o - [= v wea ~ -~ L A M ’d « -~
- .o . e . - - -3 w < - (ST J - =z — W 13" -9 Y A .-
S mad N - —3a (=) e (] Q On ” - Q- x O o~ w o] *
- = e M twW>Za $ [ (5 (8] -] - m_y (4] - - - s = N
- 0 O LTSI & (%1 0 - M e X AN g U W P ial ] - - VI
A MR oy e Wy~ w zx Py . * s - <ED o Clee A -~ D -
o S T o - -0 ANx ¥ X > M 4 XLNLX U0 W N X u o
N e D —-r>u -] a Oftw N W Zag <™ -t L L) LAWLZ W & -~ T
X e . 8 urer= -~ [L1%) - N a2 W oo £~ K et s ald W e w - A
D AN N o~ [YRITY v e, [ Qqus w & -~ B W oy e 2I0Nee  ve = Z e ™ o a e 0 -2} . W
e, = M _—L U - + a ~ 2x Ly N - Vies 8, QI N Dreaw = 4 O ~N a
M 6D O - aqw o ) Own - 0 N W O™t aay N OQOw RATEUd = = O J X 4y -~
o e o - ST NI -t [ S | A XAy (TS vy =0 U -~ 2 L TS B ] w AN
WO en e D T 'Z um < W 3 Wi = wan - BRLIA b A - T e I
Q= mMammm Qe ~a DV o = * . [T Sadalad [ Xgl'9=F% O L _ anar V ., X~ P
AN BN Al e X . mx L= -~ - - IOt o T el - 2 Owea Desdwm O L w=m= e =
oA ® st B gl - AR 2] X 2® N Lok - P b 14} seln - FLNTAO DA WWVI W D Jdles AW
WV N e T O o w Mg P DA~ - VI Ve 2 e o~ ssemdll) mITiad * WDw o s X°*°X g~ )
T RBanwr A~ o N e e AN —WE O e “a,e >V =g e Y L= BN MAVIIes b= ()W ST
- X" 2- & . L] >wWyDJd QX ale s g -~ [t X - £ TWwWQy* m W WMew sl e e WD e
hikad udiad X3 L S 5 L Y T o w R o [= I3 ] - A~ Syt~ QArR2LIDD e sy W L X WL
A .~ - SAZUY s a >> ¢ Q [K) NZ~ ™ PN =1 M UUl AT eaZ gl Z oL Wi e
Om *esas aca < ety ‘g % PULS R ) R IS [w] WOMed 948 WT D) » Ml WA GBS e NDim SV (At DU 00y b e
a’ & afy *m WA= NI O _-_gs ] X o —— —— ol RS ey VI it RPN e b tnew 0LD e = N o L
AN M- N XD XL oy eamOgr Z D™ Neese mMmB g W=t oJWM o AL BQ>U Wwe o@OMISIWAmVIUL & XX swtDuw
DN~ e o ~W I mEMOQA Aitn & o M@ ™~ — L el T » Qo™ oW urN —an |l L ad I MM WMNDINSND
Taeseqaeg~ QIR N ex O W il |V = =y Y gee EDMmiep W =O— AW == m ape™ OB AW =DOW WU mmn
—femy - o wrWw ARyt =K QA= NT MM MMy DD WM ST XOMamA™WY 6= 1 JOOIN D [RU =~
W 2 XN =R T0 =D AR OGN e Gy SN N e > URENLe™ oMM ZLIm QI hwX ¢ EIONV ~ =
T afNM ary e NP L reemOIA QA Td fen v DIl S e 1ot ot - BN - - [T R d U e eem ® o= T oo 3V} CYOU e st -
oM o pny s Wear e Dl & ompmy U NI § LD Uiy SND e a0 NS =M Ve A WADAW = VIN™ e
W g e O *adr wOr= 1O URWNeNaiutim emigu ) =YD Cdewd WA o W™ IZWINH~w stlq==e Wi *220 JD—ww—"
It de » QT 2D PPAXNRGOD AT =D OITMIMM VS WDwean S QW (Y~ « 0O XT™y) PwWiy *0 =AW OW= Q9D wWA
—~Qs gQs g~ WAt Ny s WSS =M NaiNe g Q Q=g s IOMUMN™ VI Dddq ZUWUZFMann™ *~ *t==Xowyu~0IIn—
LI P NIodmE RIZNLY o e MM | P | DWUENME OUWO= F OXh td™ sy sNIODZU=NNVI AT I~TAVNIWN
f T Y D L | > T ANV o cMANeIANY DX GE W eOroN ey W e VImE oW s giemm apmawrs gD 0 0 *ANLDND
Ny St 2 TaQd ~ wo~Z QIVOLTIOMMLN ¢ WOW *g*# D U= MULDr UZ0 2 ol lrawN J00V=mIy O e~a=0] | O9
oN e pow o =EFIN edY 60 Wh=dQ® e/ » 0Q~ | o Vo) m D | & UWZITO0 0 o080 s w A= UMNQA=NNw N I X
& Ne= Nt ot O | =l moW0 W AL I G2 R O A UL~ INY & oXO~WE KO~E  a®  oXraWmiOsbd UL e s twyme—a=m,
N QA ot ~ Moo= 0 UANT ~NaURIO*NNT =X AS =Tz O yOO0Ov & AHCMIZXUWND) 2 ~mNOmrn=~ry | an
QI gD g DNQUN g Lot AMTqumn g U=ww QAL AN 0= QW MNULWL o F kT DA IR UM =T s e
RN g RN p-ZE > VIO Y eammdag s Q 8 T JUV )~ EX ) **mIwlq LN Pt s mespuitrme A DN el g W 00 ad gy I N = e N e 22y
_——a e ~ndOy Z 000l T F QX RII [ PR g R A >Tmdad & Ol W2 =~TrZd ol ——tAI O = ¢t OO O~ 1l 4y
N ANMN RN e VI WmMOW & W Of ‘WA Tmcmmyy = =g SI(IZ:m UrQqym= o Log) YOINOQIIT Wit m g,
A e amD > _-gdACAAIIND - MG =" NN T, Padad o UXer=— M d gnQdw e A dC D iy
Doty By W THAN IR re=g i QF Juwtl e % dgn WM Z™ Oasvirrtad Wt gy W AODWIITII~or
e APy (D mANENWE N TN sk B0 Y o b= LNERPEYRY - WIS AR A D) M~ alalalo Yot Y -
—-0naono Q GO= « v adq@ = a [~] x o oo o a=vuwd o8

E A R R L I I I I e O e N N A N B A N N R N T A N N A N B R N A A N A A N A B N N A S R A B R 2 B L S N N I A R L I I D U I B I S B I I I B Y IR S Y

NP pr R DCO SN PN ORDT O aNnM e 00000 AN 0O0ROOCOONANOUOOO00COOCCONDNONOINDNCMNS ANSADANDND A0
AR AANANTE T I ST LT NAANATP O M PN O DO ~AM P QAN TNN OO O NN OGN T NANO O DDV O NN s N NANCDTTOR
AN AIAI RN AT N A RN AR I ATA IR N AN AT P e P P p P P A e D ND D DD COOCC AL ON O it st ot s NN A N INAT A N AT TN N AT PV LN A n Pt o (R A o o1 T o
Ral alaale U Taalaal Vs Da T b Loal T Tag VT T T PV Y T WY PP YL P T Y T P T P TP AT SURCE SURTE R U G 2ot 2 U A SUIE T UL X FUS X SUTL L SV JC I JUPCRT JUSTAN J8 grards



196

-
-
. - v
x ron <
L1V, IIH Q
(=] (=] —
>z — —
Wiea ZXT bad
el -2 - 4 a0
(=] Ve w -
E4S] . o Lt ~N
Ve 13 b b — bl
et XY -A o}
paor Pt - (3] w
- - a9 (=] x
.. =L (%] o —
(=} 4 -ty o ua fad o
Fd o -T - e LY
" ~ Z — o a VY z -
- s [~ a m J [ — L ]
- T »O 2 O a Q -4 x
.- N B -~ e o o (TR T tw -~ e
- . B> = Z1 O 2 © =D (%) 1y O
v “ aqg o Qg O L 5 Ui e 2 w 2
- S DX - [ - X <ao - w o w
¥ - gD - - - 0 Lwz v L] [id
Neseweomg el “Iv o - wmxXWw a —~ y -~
PematnEnQ o - N 2eeXl to aw -
ONANS g =Py - I C Quw @ I -~ X
——_—eds W -ty Q Wy oo 0 > . [ it
VE D a8 Qecom [ - -y ¢ sdfN O ao o wv
e g _IgIem - - [T L wo LT
—ree%upg Qe NN ur vV e O4de= n - - 0
XNUNE Uy Py 1D Vi =~ =~ Oun »n <qx ~NoWw
-t ew Xy UuT—L Q2 ad ~ Vi .« A 8 o Lo di ]
AT R e Qu eda wwva a a gy o o -~
e mgims ey e O yy *PUWeese x o~
U=rwang =~ e O W e TN az Vit ~
UQew =g smiyi= IV > Nees e b=t -0 aQ
1LT®*QRgO~=TX Hmest 2P b P -_y Wy «
SUDYURA e Ly O VNEVN L Erzz = . WU
VEINLFg e~ P Wet) U LU Ll Lol T g, ] -t 'S
CmaAvIm= 8 Umd O Wl VSV qa Qo - "
T DY amte o Z | VN 6 aoa ow [ST7. Y] w
D= ® JB =X AD> = OO wOWWW wa o -t
LATw 8wy, -l O WWO —=Z # e [ % 3 -y w
VUt sougrCmu O ™ i QwailbVIE —) Ne ¢ -
itatl B2 {- T I ot wnIes =m0 T o=~ v -
Nea—w Uy~ * ) 00 N At~ QUVrWJ Vies oo o% a *
B *ow g8 2N ~EV O M= O = 2 W~ W
S at™N® A D LK - ) Ve P =t - N
X=—®an QAad Ty > = apTCes JTW wa via O
—t—— U ey -y VS —WZO-Q asx Xy QW Zw
nNkgqedemmyd QOQViLaI OO0 WS VST cowly W X W
CUTTI*A8 *eg) QMr~tbe AV VN Al | ) e some
DI DN ® 000 Lot o LY e AVIEO ot e~ ey, (o]
Tutuere ~AN M DXQ WVIA RNUA RO e L% em o
SO D W lWO s Ju~uRdy AJD O=-0 0
DT AP Q) Dl W= A 0 z NI
A B M, Feis fem G ) Q0 U Oy aMnatew V=
-l ® O # el o tmedil m (ALY SO MmN e B =1- TR
SUOOR H B g Lodem XYLy >VW T =Aya ax<e ViLidem> Jin
NHEHEA =0y O pWALW L= NYQIUNO v A~ Wor d>
X~2TeXS At N e 2O OW™ et O ¥ D wa X3 vn
R L IIT 2alttl U AW ) E e [ Lt > | i
N=d e Z#DINNODM Q ——22 <Dy -2 Ow <N
~n SN 8 UAMIYAU 0 > ([ l- N ma o " s TN
~ N w - - o -~
S~
- u

AR AEAE AR N A L R N T )

SN ONONOMITONONONONOADNADTOATNAONONCOCO00O0DM

emNAUAALT S FTNND [ O DTAFN OO OO O i NNMM T FNO oy MA QDO

POLTEAIT LTS LRI F TN mANIAANIAARDANRD NN ONADO D

6%64544654‘4465655445#44%44565544564334550”%
Lol



197

Appendix E
Subroutines to Explicitly Impose the
Idempotency Constraint
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endix F

App

Subroutines to Go To and Froﬁ,a Local

Coordinate Frame

A
Yy

) W
- Ie
~ | od
-l h
- w
1 Loted
-< el
(W] Loade
-d oW
[ (4 F1
-0
P
- wey)
Lo to
- b e e
() [ =13
® - P L 1)
- v Lol Dad
Mae [- 4l
-t em )
Kenen quwol
W e~ L aldwr
F{ it <
o LI & 1 ]
Ll - DXV oo
ww e D =at O
[ W N Y - b O
v emuv V) Ioveg .
- S R ey od 9 49 o0
~Nanmo Nt QIVE g e em ™
o ewryy BME O v = oo
eI [ Viewm M w0 W@ w
R [N =) QYriem © N VI N
wxay {5 dwe o 4 ) @
pIoT N - porTas Twepgtey tvy
P et~ ) " iem o g e
~R e 8P DA eVt
LI 133 > 4T WY N e N
- Smtee o e jewiwr LUYPHRININ
)™ Otlw VNAVISS Sl il
almawelilrd PN L D)L e e N
WV & @ & WIS N e mr i
ewhm N _Jee3X AJWR 0 & g ol o
Ut VIVILY e NI et B ANR.
VWERNIN Dhad et § w00 qome 58
OW SR LS WIS VI e (T TS\ Y
WD e? ZF R DCee ) bt P ot (b )
e (st t0be e R VO U, of 0 W o L

~ & aqwis w7y

ST YL Y
B I CI O oo o gy o e amy

WA > SN LI

WML NLVIEV

a® ey 8 ol

Der st I 0  Woww 000 ¢ b fou ot (N PA A IV acd )

] ~Ng
I Q™ VIN oo ot 2 0
~ LA X Al

Q eegptegn
Lt TAT N LT L]
B S e
S gt ot "0 g 0] 4 N TRV O

T B o o e % g

gL
WPP LRaxe &

e

[~}

<

“w

”»

0" -
-—tty gg J
n o -~
" x
L iV w
xxr <
L Y bt ]

FI ot S0
setDX ?

U

C

1

{

C
ANSENC TOPAS;

L
Y

(1] WS
bt &
~ [
-4 x
bl wo
[ 1
- Q-
S oo
e nm.'
-
“Q. L
- L) e tld
T
- [ L
3 'U\‘
® LY X
- v - -
Masw [ Y.
- [ad N~
Lt Ul
W e~ A I
FLITE] <
owr E % et
Lot d Jeewy e
D e —~ N W
OR, e [l T R Y]
@ ernv aftmes ¢
IR By pm—Per wa 4 s s»
Ny WDV g ew =~ -
> wyy € e ™ e N ™
E LIS N~ M o -
b T «qree e Vi W v
Wwxay, dovs 3 B W R
4.1 3 PR gam O gpem
awm & W P I et o
ool on g afdely) Pmed TN O &
01 MY el Wl meny
- Sant gp PO P {E TS L8 T
€ ML) VIRVICE o =t ) (\F B )
B e Ll R A LDl ol LY
WMANG ® QUIVWivMm ™G
wwrhm N (JWH e e "R ok Y
ban 41 S 4 P om AN Y] 10w sa iy PO
VEIVIIC P g ) 5 s Ty =
OW SR W) VIL T NN el TN N\
VPEmOa) O = P o o = o

e ) s L) se U RAVIQUVICYI

[ Bl S S 1'% -

P BNy

MEIAIXIX)
e ml o oy

WM = o™ o LILINS o o oy o e
o 0t L3000 "L P b ol (N ) (1Y ) P TN

IS adadl LN ]
O™ VIn o
- o Xl
WAy
- P |l = g
e e _gx
[~ ] DR -

g eete,
00 I b (0] N () gl et 0
[ S Y e
[T PPy NTYLIT Y

Lol amtiad adontad o
VUgagquagqa
ATX2E L

(XY -

z -

prv) -

e w
se e Lad <
o Y13 - weewn
» ™ - AR
[ [ ] ]
aqc - "0
L. g Q &=t
L oy =
M Vet epm®™s () smon
b~ b ] [ 4
CIAY ) e S,
WO .
VagL)es o YO~
Rl ing  pepyrg oo
e de o > v
N XX % «
R eilied VAL A
|WAUYLD £X~ X
BLE= ol I O
WM P e wpe B o
load ot T 0 CON oL o VN
-t BA - .
WIS & =
ARELImChmpe N  Fy
e Yy S oy
ALt ot N ooy
REL T N vy

Wer g3 o W RW

alod™d g o™ L)veD)

oD WAUOW —IOn

QAWVLOWWLZTIIZWI

wv Q U \y N
-



199

- References

(1) Stout, G.H.; dJensen, L.H. "X-Ray Structure Determination: A
Practical Guide"; MacMillan: New York, 1968; page 222

(2) Lonsdale, K. Revs, Mod, Phys. 1958, 20, 168
(3) Frishberg, C.A.; Massa, L.J. Int, J. Quantum Chem, 1978, 13, -
801 o

(4) Chelikowsky, J.R. Phys., Rev. lLett, 1981, 47, 387

(5) Coppens, P.; Boehme, R.; Price, P.F.; Stevens, E.D. Acta

Crystallogr, Sect, A 1981, 37, 857

(6) Schwartzenbach, D.; Thong, N. Acta Crystallogr. Sect, A 1979,
35, 652 .

(7) Thong, N.; Schwartzenbach, D. Acta Crystallogr, Sect., A 1979,
35, 658

(8) Lewis, J.; Schwartzenbach, D. Acta Crvstallogr, Sect. A 1981,
37, 507

(9) Schulke, W.; Kramer, B. Acta Crystallogr, Sect, A 1979, 35, 953
(10) Hohenberg, H.; Kohn, W. Phys, Rev. 1964, 136, B864

(11) Gilbert, T.L. Phys., Rev, B 1975, 12, 2111
(12) Harriman, J.E. Phys, Rey, A 1981, 24, 680
(13) Clinton, W.L.; Galli, A.J.; Massa, L.J. Phys, Rev, 1969, 177, 7

(14) Stewart, R.F. J, Chem. Phys. 1972, 57, 1664
(15)  Stewart, R.F. Chem, Phvs, Lett, 1879, 65, 335

(16)  Stewart, R.F. Chem, Phvs., Lett, 1974, 26, 121
{17) Pecora,L.M. BRull, Amer, Phys, Soc, March 28,1983, 307 (Abstract
BQ3)

(18) Mukherji, A.; Karplus, M. J, Chem., Phvs. 1963, 38, 44

(19) Chandra, P.; Buenker, R.J. J. Chem, Phys, 1983, 79, 358
(20) Stewart, R.F. Isr, J, Chem, 1977, 16, 112 (equatiocon 12)
(21) Chandra, P.; Buenker, R.J. J, Chem, Phvs, 1983, 79, 365



200

(22) Tsirel'son, V.G.; Zavodnik, V.E.; Fomicheva, E.B.; Ozerov, R.P.;
Kuznetsova, L.I.; Rez, I.S. Kristallografiya 1980, 25,735

(23) Tsirel'son, V.G.; Parini, E.V.; Ozereov, R.P. Dokl. Akad, Nauk,
SSSR 1980, 254, 370

(24) Ozerov, R.P.; Tsirel'son, V.G.; Korkin, A.A.; Ionov, S.P.;

%Zavodnik, V.E.; Fomicheva, E.B. Kristallografiya 1981, 26, 42
(25) PFrishberg, C.A.; Massa, L.J. Phys, Rey, B 1981, 24, 7018
(26) Clinton, W.L.; Massa, L.J. Phys, Rev, Lett, 1972, 29, 1363

(27) Frishberg, C.A.: Massa, L.J. Acta Crystallogr, Sect, A 1982,
38, 93

(28) Goldberg, M.J.; Massa, L.J. Int. J, Quantum Chem, 1983, 24, 113

(29) Goldberg, M.J.; Massa, L.J.; Frishberg, C.A.; Boehme, R.;
LaPlaca, S.J. (Unpublished)

(30) Stanley, E. Acta Crystallogr, Sect, A 1979, 35, 966

(31) Grant, D.F.; Killean, R.C.G. Acta Crystalloar, Sect, A 1981,
31, C-330

S(’?)g) Hansen, N.K.; Coppens, P. Acta Crystallogr., Sect, A 1978, 34,
(33) McWeeny, R. Acta Crystallogr, 1951, 4, 513

(34) Rae, I.M.; Maslen, E.N. Acta Crystalloar, 1965, 19, 1061

(35)  Kitajgordskij, A.I. Nature 1957, 179, 410

(36) Lonsdale, K.; Mason, R.; Grenville-Wells, J. Nature 1957, 179,
856

{37) Cox, E.G.; Cruikshank, D.W.J. Nature 1957, 179, 858

(38) Price, P.F.; Maslen, E.N.; Delaney, W.T. Acta Crystallogr,
Sect, A 1978, 34, 194

(39) Coppens, P.; Pautler, D.; Griffin, J.F. J,_Am, Chem, Soc, 1971,
93, 1051

(40) Coppens, P.; Csonka, L.; Willoughby, T.V. Science 1970, 167,
1126

(41) Clinton, W.L.; Frishberg, C.A.; Goldberg, M.J.; Massa, L.J.;

(42) Hirshfeld, F.L. iIsr, J. Chem, 1977, 16, 226



201

(43) Coppens, P. Isr, J., Chem, 1977, 16, 159

(44) Kurki-Suonio, K. Isr, J, Chem, 1977, 16, 119
(45) Kurki-Suonio, K. Isr. J. Chem, 1977, 16, 132
(46)  Stewart, R.F. Isr, J, Chem. 1977, 16, 124
(47) Rurki-Suonio, K. Isr. J, Chem, 1977, 16, 136

(48) Benesch, R.; Singh, S.R.; Smith, V.H., Jr. Chem. Phys, lett,
1971, 10, 151

(49) Iwata, S. Chem, Phvs. Iett, 1980, 69, 305

(50) Hirshfeld, F.L. Thecr, Chim, Acta 1977, 44, 129

(51) Pant, L.M. Acta Crystallogr, Sect, A 1978, 34, 1021

(52) Coppens, P.; Hansen, N.K. Isr, J, Chem, 1977, 16, 163

(53) 1Ibers, J.A. Acta Crystallogr., 1961, 14, 853

(54) Coppens, P. Acta Crystallogr, Sect, A 1975, 31, S218

(55) Vvarghese,J.N.; Mason, R. Proc, R, Soc, London Ser, A 1980,
A372, 1

(56) Larsen, F.K.; Hansen, N.K. (Unpublished)
(57) Present, R.D. Contemp, Phvs, 1971, 12, 595
(58) Thakkar, A.J.; Smith, V.H. Chem, Phys, lett, 1976, 42, 476

(59) Lauer, G.; Meyer, H.; Schulte, K.-W.; Schweig, A.; Hase, H.-L.
Chem, Phys, Lett, 1979, 61, 503

(60) Kurki-Suonio, K. Isr, J. Chem, 1977, 16, 117
(61) Steiner, E. J, Chem, Phys, 1961, 39, 2365
(62) McWeeny, R. Phys. Rev, 1959, 114, 1528

(63) Mestechkin, M.M. "The Density Matrix Method in the Theory of
Molecules"; Naukova Dumka: Kiev, 1977

(64) Henderson, G.A.; Zimmerman, R.K., Jr. J. Chem, Phys, 1976, 65,
619



202

(65) Nicholson, J.; Prince, E.; Buchanan, J.; Tucker, A. Acta
Crystallogr, Sect, A 1981, 37, C-330

(66) Frishberg, C.A. private communication, July 1983

(67) Derewenda, Z.S.; Brzozowski, A.M.; Stepien, A.; Grabowski, M.J.

Acta Crystallogr, Sect, A 1982, 38, 432
(68) Hamilton, W. Acta Crystalloar, 1965, 18, 502

(69) Wilson, A.J.C. Acta Crystallogr, Sect, A 1978, 34, S23

(70) Zangwill, W.I. "Nonlinear Programming: A Unified Approach”;
Prentice-Hall: Englewood Cliffs, 1969; page 381

(71)  Rosen, J.B. SIAM J, Applied Math 1969, 9, 514

(72) Bentley, J.; Stewart, R.F. Acta Crystalloar., Sect, A 1974, 30,
60 ‘

(73) Awvery, J.; Watson, K.J. Acta Crystallogr, Sect, A 1977, 33, 679
(74) Avery, J. Acta Crystallogr, Sect, A 1978, 34, 582

(75) Avery, J.; Ormen, P.-J. Acta Crystalloar, Sect, A 1979, 35, 849
(76) Rae, A.D.; Wocd, R.A. Acta Crystalloar, Sect, A 1978, 34, 724
(77) Taketa, H.; Huzinaga, S.; O-ohata, K. J, Phys. Soc. Jpn. 1966,
21, 2313

(78) Chandler, G.S.; Spackman, M.A. Acta Crystallogr, Sect, A 1978,
34, 341

(79) O-ohata, K.; Taketa, H.; Huzinaga, S. J. Phys, Soc., Jpn, 1966,_
21, 2306

(80) Huzinaga, S. J. Chem, Phys, 1965, 42, 1293

(81) Almlcf, J.; Otterson, T. Acta Crystalloar, Sect, A 1979, 35,
137

(82) Hase, H.L.; Schweig, A. Angew, Ch, Int. Ed, Fngl, 1977, 16, 258

(83) Rothenberg, S.; Schaefer, B.F., III J, Chem., Phvs, 1971, 54,
2764

(84) Andre, J.M.; Bredas, J.L. Chem, Phys, 1977, 20, 367
(85) Wright, J.S.; Williams, R.J. J, Chem, Phys, 1983, 78, 5264
(86) Simons, G.; Talaty, E. Chem. Phys, Iett, 1976, 38, 422



203

(87) Quinn, C.M. "An Introduction to the Quantum Chemistry o
Solids"; Clarendon Press: Oxford, 1973 C

(88)  Euwema, R.N. Int, J., Quantum Chem, 1971, 3, 471
(89) I.Ouie, S.GQ;HO, K.-M.; COhen, M.L. Pk!yg. EV. B 1979, lj' 1774

(90)  Brown, P.J. Philos, Mag, 1972, 26, 1377

(91) Cock, D.B. Theor, Chim, Acta 1972, 27, 161

(92) Basch, H.; Topiol, S. J. Chem, Phys. 1979, 71, 802
(93) Chou, M.Y.; Lam, P.K.; Cohen, M.L. (Unpublished)

(94) Dovesi, R.; Pisani, C.; Ricca, F.; Roetti, C. Phys. Rev, B
1982, 25, 3731 *

(95) Stevens, E.D.; Coppens, P. Acta Crystallogr., Sect, A 1976, 32,

915
(96) Hirshfeld, F.L.; Rabinovich, D. Acta Crystallogr, Sect, A 1973,
29, 510

(97) Arnberg, L.; Hovmoller, S.; Westman, S. Acta Crystalloar, Sect,
A 1979, 35, 497

(98) Killean, R.C.G.; Lawrence, J.L. Acta Crystallogr, Sect, B 1979,
25, 1750

(99) Hansen, N.K.; Pattison, P.; Schneider, J.R. Acta Crystallogr,
Sect, A 1981, 37, C-132

(100) Chen, R.; Trucano, P.; Stewart, R.F. Acta Crystallogr, Sect, A
1977, 33, 823

(101) Stewart, R.F. private communication, July 1983

(102) Karplus, M.; Porter, R.N, "Atoms and Molecules"; W.A. Benjamin:
Menlo Park, 1970; page 368

(103) Frishberg, C.A. Ph.D. dissertation, City University of New
York, 1975

(104) oOldfield, P,A. Ph.D. dissertation, City University of New York,
1975

(105) Goddard, W.A., III; Dunning, T.H.; Bunt, W.J.; Hay, P.J. Accts,
Chem, Res, 1973, 5, 368

(106) Matthai, C.C.; Grout, P.J.; March, N.H. Phvs, Lett, A 1978, 68,
351

(107) Matthai, C.C.; Grout, P.J.; March, N.H. J, Phvs, F 1980, 190,
1621



204

(108) Kertesz, M.; Koller, J.; Azman, A. Theor, Chim, Acta 1976, 41,
89

(109) Snyder, L.C.; Basch, H. "Molecular Wavefunctions and
Properties"; Wiley: New York, 1972; page 22

(110) Henry, B.R. Accts. Chem, Res, 1977, 10, 207

(111) Beller, E. Chem. Phvs. Lett, 1979, 61, 583

(112) 1Ishii, P.; Scheringer, C. Acta Crystalloar, Sect, A 1979, 35,
618 . -

(113) Swaminathan S.; Craven, B.M.; McMullan, R.K. Amer,
ographi sn. Winter Meeti Pro tracts March 1983,

1o
Ser, 2, Vol 11, No. 1, 35 (Abstract PCl2)
(114) Eriksson, A.; Hermansson, K.; Lindgren, J.; Thomas, O. Acta

Crystallogr. Sect, A 1982, 38, 138" _
(115) Cruikshank, D.W.J. Revs, Mod, Phvs, 1958, 30, 163
(116) Halford, R.S. J. Chem. Phys, 1946, 14, 8

(117) Scheringer, C. Acta Crystallogr, Sect, A 1973, 29, 70

(118) Dawson, B.; Hurley, A.C.; Maslen, V.W. Proc, R, Soc, London
Ser, A 1967, A298, 289

(119) Johnson, C.K. Acta Crystalloar. Sect, A 1969, 25, 187

(120) 2ucker, U.H.; Schulz, H, Acta Crystallogr, Sect, A 1982, 38,
568

(121) Burns, D.M.; Ferrier, W.G.; McMullan, J.T. Acta Crystallogr,
1967, 23, 1098

(122) Pawley, G.S. Adv, Struct, Res, Diffr, Meth, 1972, 4, 1

(123) Scheringer, C. Acta Crystalloar, Sect, A 1978, 34, 905

(124) Lonsdale, K.; Milledge, H.J.; Rao, C. Proc, R. Soc, ILondon Ser,
A 1960, A255, 82

(125) Cruikshank, D.W.J. Acta Crystallogr, 1960, 13, 1103
(126) Scheringer, C. Acta Crystallogr, Sect, A 1978, 34, 702
(127) Koetzle, T. private communication, August 1981

(128) Schomaker, V.; Trueblood, K. Acta Crvstalloar, Sect, B 1968,
24, 63

(129) Petricek, V. Acta Crystallo Sect, A 1975, 31, 694



205

(130) Hoy, H.R.; Mills, I.M.; Strey, G. Mol, Phys, 1972, 24, 1265
(131) Scheringer, C. Acta Crystallogr, Sect, A 1979, 35, 838
(132) Simons, G.; Choc, P. Chem, Phys, Lett, 1974, 25, 413

(133) Hirshfeld, F.L. Acta Crystalloar. Sect, A 1976, 32, 239
(134) Simons, G. J. Chem. Phys, 1974, 61, 369

(135) Kafri, O. Chem, Phys, Lett, 1979, 65, 538

(136) Kratzer, A. Aun. Phys. (Ileipzig) 1922, 67, 127

(137) Busing, W.R.; Levy, H.A. Acta Crystallogr. 1964, 17, 142

(138) Stevens, E.D.; Rys, J.; Coppens, P. Acta Crystallogr, Sect, A
1977, 33, 335

(139) Epstein, J.; Stewart, R.F. Acta Crystallogr, Sect, A 1979, 35,
476

(140) Pines, D. "Elementary Excitations in Solids"; W.A. Benjamin:
New York, 1964; page 91

(141) Lonsdale, K.; Milledge, H.J. Acta Crystallogr., 1960, 13, 499
(142) Bloch, F. 2, Phvs. 1932, 74, 309

(143) Clinton, W.L.; Henderson, G.A.; Prestia, J.V. ZPhys., Rev, 1969,
177, 13
‘ |

(144) Coulson, C.; Thomas, O. Acta Crystallogr, Sect, B 1971, 27,
1354 .

1

(145) Bonham, R.A. In "Electron and Magnetization Densities in
Molecules and Crystals"; Becker, P., Ed.; Plenum: New York, 1980; page
153

(146) Epstein, J.; Stewart, R.F. In "Electron and Magnetization
Densities in Molecules and Crystals"; Becker, P., Ed.; Plenum: New
York, 1980; page 549

(147) Epstein, J.; Stewart, R.F. In "Electron and Magnetizaticn
Densities in Molecules and Crystals"; Becker, P., Ed.; Plenum: New
York, 1980; page 560

(148) Mills, I.M. ecialist Periodi R ts —~ oretic
Chemistry 1972, 1, 110

(149) Morrison, N. "Introduction to Sequential Smoothing and
Prediction"; McGraw-Hill: New York, 1969; page 200

(150) Turrell, G. "Infrared and Ramen Spectra of Crystals"; Academic
Press: New York, 1972



(151)
(152)

(153)
497

(154)
(155)
5
(156)
1959
(157)
(158)
(159)

206

Scheringer, C. Acta Crystallogr. Sect. A 1980, 36, 814

Rae, A.D. Acta Crystallogr. Sect. A 1973, 29, 74

Ruysink, A.F.J.; Vos, A, Acta Crystallogr. Sect. A 1974, 30,

Lowdin, P.-O. J. Chem. Phys. 1950, 18, 365

Igolkin, V.N.; Mestechkin, M.M. Vestn. Leningr. Univ. 1965, 4,

Goldstein, H., "Classical Mechanics"; AddisonWesley: Reading,

Scheringer, C. Acta Crystallogr. 1963, 16, 546

Powell, M.J.D. SIAM Rev. 1970, 12, 79

Bazaraa, M.S.; Shetty, C.M. "Nonlinear Programming: Theory and

Algorithms"; Wiley: New York, 1979; page 126

(160)

Bazaraa, M.S.; Shetty, C.M. "Nonlinear Programming: Theory and

Algorithms"; Wiley: New York, 1979; page 274

(161)
(162)
(163)
(164)
(165)
(166)
(167)
(168)
(169)
(170)
(171)

Rosenbrock, H.H. Comp. J. 1960, 3, 175

Luksan, L. Computing 1982, _2_§, 155

Shanno, D.F. SIAM J, Numer, Anal, 1970, 7, 366

Fletcher, R.; Powell, M.J.D. Comp. J. 1963, 6, 168

Fletcher, R. Comp. J. 1965, 8, 33

Gabay, D.; Luenberger, D.G. SIAM J. Control Opt. 1976, 14, 42

Scheringer, C. Acta Crystallogr. Sect, A 1982, 38, 618

Thomas, J.0. Acta Crystallogr. Sect. A 1978, 34, 819

Wilson, A.J.C. Acta Crystallogr. Sect. A 1978,34, 474

Southwell, W.H. Comp. J. 1974, 19, 69
Lonsdale, K. Nature 1959, 184, 1545



	Totally Empirical Wavefunctions from X-Ray Diffraction Data
	00001.tif

