
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Dissertations, Theses, and Capstone Projects CUNY Graduate Center

5-2019

Analysis of a Group of Automorphisms of a Free Group as a Analysis of a Group of Automorphisms of a Free Group as a

Platform for Conjugacy-Based Group Cryptography Platform for Conjugacy-Based Group Cryptography

Pavel Shostak
The Graduate Center, City University of New York

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/gc_etds/3239

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/gc_etds
https://academicworks.cuny.edu/gc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/gc_etds/3239
https://academicworks.cuny.edu/gc_etds/3239
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Analysis of a group of automorphisms of a free group as a platform for

conjugacy-based group cryptography

by

Pavel Shostak

A dissertation submitted to the Graduate Faculty in Computer Science in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, The City University

of New York

2019

ii

c© 2019

Pavel Shostak

All Rights Reserved

iii

This manuscript has been read and accepted by the Graduate Faculty in Computer Science

in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy.

Professor Alexei Miasnikov

Date Chair of Examining Committee

Professor Robert Haralick

Date Executive Officer

Supervisory Committee:

Professor Alexei Miasnikov

Professor Robert Haralick

Professor Vladimir Shpilrain

Professor Alexander Ushakov

The City University of New York

iv

Abstract

Analysis of a group of automorphisms of a free group as a platform for

conjugacy-based group cryptography

by

Pavel Shostak

Adviser: Professor Alexei Miasnikov

Let F be a finitely generated free group and Aut(F) its group of automorphisms. In this

monograph we discuss potential uses of Aut(F) in group-based cryptography. Our main focus

is on using Aut(F) as a platform group for the Anshel-Anshel-Goldfeld protocol, Ko-Lee

protocol, and other protocols based on different versions of the conjugacy search problem or

decomposition problem, such as Shpilrain-Ushakov protocol. We attack the Anshel-Anshel-

Goldfeld and Ko-Lee protocols by adapting the existing types of the length-based attack to

the specifics of Aut(F)1. We also present our own version of the length-based attack that

significantly increases the attack’ success rate. After discussing the attacks, we discuss the

ways to make keys from Aut(F) resistant to different versions of the length-based attacks

including our own.

1The CUNY HPCC is operated by the College of Staten Island and funded, in part, by grants from the
City of New York, State of New York, CUNY Research Foundation, and National Science Foundation Grants
CNS-0958379, CNS-0855217 and ACI 1126113.

Acknowledgments

I want to thank Professor Alexei Miasnikov for making it all possible.

Also, I want to thank my committee members Professor Vladimir Shpilrain and Professor

Robert Haralick for their valuable comments and technical support.

My special thanks go to Professor Alexander Ushakov whose help, guidance and support

went far beyond common advice and mathematical expertise.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 History of classic public-key cryptography 3

2.1 Quantum-resistant cryptography . 8

3 Preliminaries to group theory 11

3.1 Finitely presented groups . 11

3.2 Dehn problems . 13

3.3 Group of automorphisms of the free group 13

3.4 Length of an automorphism . 17

3.5 Problems in the group of automorphisms . 18

3.6 Random automorphisms generation . 20

4 Introduction to straight-line programs 22

4.1 Straight-line programs . 22

4.2 Operations on SLPs . 23

vi

CONTENTS vii

4.3 Automorphisms presented in form of SLPs 24

5 Complexity of operations on the automorphisms presented in the form of

the SLPs 26

6 Protocols of group-based cryptography 29

6.1 Protocol description . 29

7 Length-based attack 34

7.1 Fundamentals of length-based attack . 34

7.2 Length-based attack with backtracking . 36

7.3 Enhanced LBA . 39

7.4 Properties of the b̄ set . 41

7.5 Further improvements to the enhanced LBA 44

7.6 LBA with look-ahead . 46

8 Complexity estimation 50

9 Brute-force security 58

10 Important properties of Aut(F) 60

10.1 Irregular peaks . 60

10.2 Alternative normal form for the automorphisms from Aut(F) 62

11 LBA-resistant key generation 69

12 Conclusion 75

Bibliography 77

List of Tables

7.1 Success rate of classic LBA attack with backtracking 38

7.2 Failures because of specific patterns . 38

7.3 Success rate of enhanced LBA on the extended guessing set 41

7.4 Chance of |a−ε1s1
bia

ε1
s1
| ≤ |bi| . 42

7.5 Success rate of enhanced LBA on the further extended (C = 3) guessing set . 46

7.6 Performance of the LBA with look-ahead compared to the enhanced LBA.

The rank of the free group F is 20, each element of Alice’s and Bob’s set

consists of 6 Nielsen transformations. 49

7.7 Performance of look-ahead LBA and enhanced LBA for different LA. The

rank of the free group F is 20. 49

8.1 Average time to preform conjugation (in milliseconds) 55

8.2 Average time to preform reduction (in milliseconds) 55

8.3 Average time to generate an Alice’s secret key (in milliseconds) 56

8.4 Average time to generate a shared secret key K (in milliseconds) 57

11.1 Success rate of enhanced LBA and LBA with look-ahead for different LA for

a securely generated key A . 73

viii

List of Figures

10.1 NTP length differences . 67

ix

Chapter 1

Introduction

The Anshel-Anshel-Goldfeld protocol [Anshel et al., 1999] (subsequently called the AAG

protocol) is one of the major protocols in group-based cryptography. The security of the

AAG protocol was extensively analyzed for braid groups [Shpilrain and Ushakov, 2006b]

[Hofheinz and Steinwandt, 2003] [Garber et al., 2006] [Miasnikov et al., 2005]

[Miasnikov et al., 2006] [Myasnikov and Ushakov, 2007]. The AAG protocol used on the

platform of braid groups was successfully attacked [Shpilrain and Ushakov, 2006b] using the

length-based attack (subsequently called the LBA attack). However, the security of the

AAG protocol was not sufficiently analyzed for different platform groups. Here we analyze

the AAG protocol on the platform of Aut(F), the group of automorphisms on a free group

F . We want to evaluate the efficiency of the LBA attack in case of the Aut(F) platform

group.

Furthermore, the AAG protocol is based on the subgroup-restricted simultaneous conju-

gacy search problem. It means that if we show that the LBA attack is efficient for the AAG

protocol, it also would be efficient against other protocols that rely on the conjugacy search

problem including the Ko-Lee protocol and to an extent the Ushakov-Shpilrain protocol.

Also, we want to analyze the weaknesses and limitations of the LBA attack itself. It

1

CHAPTER 1. INTRODUCTION 2

might allow us to generate LBA-resistant keys.

Chapter 2

History of classic public-key

cryptography

The main purpose of computers is dealing with data so the need for efficient data encryption

for safe data storage was there from the beginning of computers. However, the invention

of networks and their subsequent rapid proliferation promoted efficient cryptography to one

of the top priorities. The cryptography itself is nothing new but due to the specifics of

networks all classic cryptography algorithms are inapplicable. All classic algorithms for

encrypting and decrypting data imply that communicating parties privately agree a secret

encryption/decryption key. It is crucial that key agreement is private and not observed by

any third-party. By classic algorithms we mean algorithms developed in pre-networking era,

all kinds of substitution and transposition ciphers that were known from ancient times.

Such private key agreement is impossible in networks where all communications are a

potential target for eavesdropping. In open sources, the first solution appeared in 1976 when

Whitfield Diffie and Martin Hellman published their paper [Diffie and Hellman, 1976] on

public-key cryptography suggesting there a procedure that is known now as Diffie-Hellman

key exchange protocol. Martin Hellman himself however suggested [Hellman, 2002] that the

3

CHAPTER 2. HISTORY OF CLASSIC PUBLIC-KEY CRYPTOGRAPHY 4

protocol should be called ”Diffie-Hellman-Merkle” since it uses a public key distribution

system, a concept developed by Merkle.

Diffie-Hellman key exchange protocol is based on the complexity of the discrete loga-

rithm problem in the finite cyclic groups, that is recovering a from g and ga. As it stands

now, this problem does not have efficient solution for a good [Menezes et al., 1996] choice

of parameters. In general, if function f is easy to compute but its f−1 is hard to compute

then such f is called one-way trapdoor function or just trapdoor function. One-way trapdoor

functions make the foundation of all public-key cryptography algorithms.

Diffie-Hellman key exchange protocol allows two communicating parties traditionally

referred as Alice and Bob to establish a shared secret key in the presence of the eavesdropper

traditionally referred as Eve. All communications between Alice and Bob are known to

Eve; Eve knows the rules of the key exchange protocol as well but still Eve is not able

to compute the shared secret key of Alice and Bob. Such key exchange protocol made

encryption/decryption possible in networks where all communications are a potential target

for eavesdropping.

Diffie-Hellman key exchange protocol

1. Alice and Bob choose a finite cyclic group G with a generating element g.

2. Alice picks a random natural number a and publishes ga. a itself remains an Alice’s

secret key.

3. Bob picks a random natural number b and publishes gb. b itself remains a Bob’s secret

key.

4. Alice computes KA = (gb)a = gba

5. Bob computes KB = (ga)b = gab

Since ab = ba, KA = KB. Thus, Alice and Bob posses the same shared secret key.

CHAPTER 2. HISTORY OF CLASSIC PUBLIC-KEY CRYPTOGRAPHY 5

Later, in 1985, ElGamal suggested a cryptosystem [ElGamal, 1985] based on Diffie-

Hellman key exchange protocol.

ElGamal cryptosystem

1. Alice and Bob choose a finite cyclic group G with a generating element g.

2. Alice picks a random natural number a and publishes ga. a itself remains an Alice’s

secret key.

3. To send a message m ∈ G, Bob picks a random natural number b and sends m′ =

m · (ga)b and gb to Alice.

4. Alice recovers m = m′ · ((gb)a)−1

ElGamal encryption has a beneficial property of being probabilistic meaning that a single

plaintext can be encrypted in many different cyphertexts. However, ElGamal is computa-

tionally intensive for Alice and Bob for the realistic parameters and the size of cyphertext is

twice as large as plaintext. As a result, usually ElGamal is used not to encrypt the message

itself but to establish symmetric shared secret key between Alice and Bob.

The original ElGamal cryptosystem later was found to be vulnerable to the chosen cypher-

text attack. Later, the advanced versions of ElGamal cryptosystem were developed to fix

that problem. One such cryptosystem based on ElGamal is Cramer-Shoup cryptosystem

[Cramer and Shoup, 1998] suggested in 1998. The Cramer-Shoup cryptosystem is proven to

be resistant to adaptive chosen cyphertext attack.

In 1978 Ron Rivest, Adi Shamir and Leonard Adleman suggested [R. Rivest, 1978] a

cryptosystem that become known as RSA. Since then, RSA has become one of the major

ways to establish private communications in the Internet.

RSA cryptosystem

CHAPTER 2. HISTORY OF CLASSIC PUBLIC-KEY CRYPTOGRAPHY 6

1. Alice’s private key is a pair p, q of large prime numbers.

2. Alice’s public key consists of the product n = pq, an integer e such that 1 < e < ϕ(n),

where ϕ(n) = (p − 1)(q − 1) is the Euler function of n and e and ϕ(n) are relatively

prime.

3. Bob encrypts the message m which is an integer number 0 < m < n by computing

c ≡ me (mod n) and sends c to Alice.

4. In order to decrypt c, Alice finds an integer d such that de ≡ 1 (mod ϕ(n)) and

computes cd ≡ (me)d ≡ med (mod n) Since ed ≡ 1 + kϕ(n),

med ≡ m1+kϕ(n) ≡ m(mk)ϕ(n) ≡ m (mod n)

The security of RSA is based on the hardness of factorization problem. If one finds an ef-

ficient method to find p and q from n = pq the RSA encryption will be broken. For example,

the Pollards ”p-1 algorithm” [Pollard, 1974] allows efficient factorization for certain specific

cases which obviously should be avoided when choosing Alice’s private key. Another promis-

ing approach is the Shor’s factorization algorithm. But the Shor’s algorithm is quantum and

requires quantum computer to run.

Another classic public-key cryptography algorithm is Rabin’s cryptosystem. It was the

first algorithm where it was proven that recovering plaintext from the cyphertext is as hard

as factoring.

Rabin’s cryptosystem

1. Alice chooses the pair of large primes p, q, where p ≡ q ≡ 3 (mod 4) and shares a

public key n = pq.

2. Bob encrypts the message m which is an integer number 0 < m < n by computing

c ≡ m2 (mod n) and sends c to Alice.

CHAPTER 2. HISTORY OF CLASSIC PUBLIC-KEY CRYPTOGRAPHY 7

3. Alice computes the following values

mp = c(p+1)/4 modp

and

mq = c(q+1)/4 modq

Then she computes

±r = (yp · p ·mq + yq · q ·mp) mod n

and

±s = (yp · p ·mq − yq · q ·mp) mod n

where yp · p+ yq · q = 1. ±r and ±s are square roots of c modulo p and modulo q, and

therefore also modulo n.

All of the above classic public-key cryptography algorithms function on the groups of

integers. The security of these algorithms is based on the complexity of different problems

like factorization and the discrete logarithm problem for the groups of integers. However,

there exist a number of quantum algorithms efficiently solving these problems and there-

fore breaking the cryptosystems based on them. As of now, quantum computers needed

to run such algorithms barely exist, but the recent advances in that field [Knight, 2017]

[Hsu, 2018] [Kelly, 2018] indicate the need for new cryptosystems resistant to quantum al-

gorithms attacks. In fact, such a need was instantly obvious since at least 1997 when Peter

Shor published [Shor, 1997] his quantum algorithm for integer factorization and discrete log-

arithm problem. Another prominent quantum algorithm is Grover’s algorithm [Grover, 1996]

CHAPTER 2. HISTORY OF CLASSIC PUBLIC-KEY CRYPTOGRAPHY 8

that allows quadratic speedup for brute-force attacks and therefore sets a new standards for

brute-force security for any future cryptosystems.

2.1 Quantum-resistant cryptography

There are a few different areas like lattice-based and multivariate cryptography from where

such quantum-resistant cryptosystems appeared. We are interested in cryptography algo-

rithms based on the non-commutative groups. These algorithms use hard group theory

problems like the conjugacy search problem and the decomposition problem as their trap-

door functions. The notable examples of such cryptosystems are Anshel-Anshel-Goldfeld

protocol [Anshel et al., 1999], Ko-Lee protocol [Ko et al., 2000] and Shpilrain-Ushakov pro-

tocol [Shpilrain and Ushakov, 2006a]. Those protocols will be defined later in the text.

Those cryptosystems can use the wide range of non-commutative groups as their base

groups as long as there is no known efficient solution to the trapdoor function problem. One

of the first candidates to such groups were braid groups. One way to define braid group is

Bn = 〈σ1 . . . σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi where |i− j| ≥ 2〉.

There was an extensive analysis of braid groups as base groups for non-commutative

group-based cryptography and as a result of this research the number of weaknesses were

discovered and the number of attacks was suggested [F.Garside, 1969] [Birman et al., 2007]

[Franco and González-Meneses, 2003] [Gebhardt, 2005] [Gebhardt, 2006] [E. El-Rifai, 1994]

[V. Gebhardt, 2008] [Hofheinz and Steinwandt, 2003] [Maffre, 2005] [Maffre, 2006]

[Myasnikov and Ushakov, 2007] [Longrigg and Ushakov, 2009] [Garber et al., 2006]

[Garber et al., 2005] [Hughes, 2002] [Lee and Lee, 2002] [J. Cheon, 2003]. The key problem

of braid groups is that they are linear [Bigelow, 2001]. For example, their linearity can be

CHAPTER 2. HISTORY OF CLASSIC PUBLIC-KEY CRYPTOGRAPHY 9

used to to solve group problems that make up the basis of AAG and Shpilrain-Ushakov pro-

tocols [Tsaban, 2013]. These finding are one of the reasons groups of automorphisms look

interesting as a platform for group-based cryptography. On the one hand, groups of auto-

morphisms are complex and do not have simple solutions for problems like conjugacy search

problem. On the other hand, groups of automorphisms are not linear. Thus, they do not

have the same vulnerabilities as braid groups even though braid groups are the subgroups

of the groups of automorphisms.

Attempts were made to redeem braid groups for the group-based cryptography by

introducing algebraic eraser [Anshel et al., 2006]. This protocol is also often called

Anshel-Anshel-Goldfeld-Lemieux. Since then, a number of attacks was suggested

[Myasnikov and Ushakov, 2009] [S. Blackburn, 2016]. After the first successful attacks, a

few improvements to the original protocol were suggested [D. Atkins, 2016] [Gunnells, 2011].

Moreover, the technique of E-multiplication used in algebraic eraser is also used for the

Kayawood key agreement protocol [I. Anshel, 2017a] and Walnut digital signature algorithm

[I. Anshel, 2017b]. Walnut and Kayawood also have been studied and some strong attacks

are suggested [D. Hart, 2017] [W. Beullens, 2018] [M. Kotov, 2018].

Other than braid groups, Thompson groups that can be presented as 〈x0, x1 . . . |

x−1i xkxi = xi+1 where k > i〉 were tried as base groups for group-based cryptogra-

phy [Shpilrain and Ushakov, 2005] but also were found to be insecure [Ruinsky et al., 2007]

[Matucci, 2008].

Yet another type of groups that look appealing is polycyclic groups. Polycyclic groups

can be defined as follows

〈a1, . . . , an | aaij = wij, a
a−1
i
j = vij, a

rk
k = ukk, for 1 ≤ i < j ≤ n, k ∈ I〉,

where I ⊆ {1, . . . , n} and ri ∈ N of i ∈ I and wij, vij, ujj are words in generators

CHAPTER 2. HISTORY OF CLASSIC PUBLIC-KEY CRYPTOGRAPHY 10

aj+1, . . . , an. Polycyclic groups were analyzed as a potential platform group for group-

based cryptography [Eick and Kahrobaei,]. Some properties of polycyclic groups (easily

solvable word problem and hard conjugacy search and decomposition problems) were shown

[Garber et al., 2015]. But eventually ways to attack cryptosystems based on polycyclic

groups were developed [Kotov and Ushakov,]. The main disadvantage of polycyclic groups

is the fact that they are linear, which proved to be a weakness for some classes of groups

like braid groups.

As mentioned above, groups of automorphism of a free group have some nice properties as

complex group behaviour and no known solutions for problems like conjugacy search problem

and decomposition problem. For some time, this group remained impractical because the

only known normal form of its elements is so massive that no practical usage was possible.

Dealing with normal forms of automorphisms comes down to dealing with very long words.

So there was a need to find a way to store, compare and reduce such very long words.

One possible way to solve this problem appeared from the compression techniques. The

idea is to compress very long words to a very high degree (exponential compression) and

perform all operations on them without fully decompressing them. Straight-line programs

(abbreviated as SLP) allow such level of compression. In a nutshell, SLP is a context-free

grammar that generates a single word. See Section 4 for more detail.

The next challenge was to develop algorithms to deal with words compressed using SLP

right in compressed for without fully decompressing them. Such techniques were proposed

for example in [Schleimer, 2008] [Plandowski, 1994].

Chapter 3

Preliminaries to group theory

In this section, we lay down the the basic group theory concepts that we use in our work.

3.1 Finitely presented groups

Definition 3.1.1. A group is a pair (G, ·), where G is a set and · is a binary operation on

G satisfying the following conditions:

1. For every two elements a, b ∈ G there exists a single element c ∈ G such that a · b = c.

Usually we omit the · symbol and write simply ab = c.

2. There exists an element 1 ∈ G such that for any a ∈ G

a · 1 = 1 · a = a.

1 is called the identity element.

3. For every element a ∈ G there exists an element a−1 ∈ G satisfying

aa−1 = a−1a = 1,

11

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 12

called the inverse of a.

4. The operation · is associative, i.e., for every a, b, c ∈ G

(a · b) · c = a · (b · c).

A subset H ⊆ G is called a subgroup of G if (H, ·) is a group itself. For a set A ⊆ G

define a set 〈A〉 of all products of elements from A and their inverses. It is easy to check that

〈A〉 is a subgroup of G, called the subgroup generated by A. If G = 〈A〉 for some A ⊆ G,

then we say that G is generated by A or that A is a generating set for G, elements of A are

called generators. We often refer to a product of generators A and their inverses as a word

in generators A.

If the element r ∈ G defines the identity element r = 1 in group G we call r the relator

of G. Since by definition every element of group G has an inverse, every generator a of the

group G produces a relator aa−1. Such relators are called trivial relators and every group

has them.

We say that the element w ∈ G is derivable from the set of relators R = {ri} if the

element w can be turned into identity by applying the number of the following operations:

• Removing relator ri or a trivial relator from w if it forms the consecutive block of

symbols in w.

• Inserting relator ri or a trivial relator in any position in w.

If any relator of group G can be derived from the set of relators R, we call such set a set

of defining relators or a complete set of relators.

Any group G can be defined as a pair 〈A;R〉 where A is the set of generators and

R is the set of defining relators. For more information see [Magnus et al., 1976] and

[Lyndon and Schupp, 2001]. We call such a pair a presentation of the group G.

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 13

If the set A of generators of a group G is finite, we call the group G finitely generated. If

the set of the defining relators of G is also finite, we call the group G finitely presented.

3.2 Dehn problems

Dehn problems are the fundamental problems of group theory, introduced by Max Dehn

[Dehn, 1911] in 1911. They include the word problem, the conjugacy problem and the

isomorphism problem. Below we present the definitions of those problems

Word problem in G. Given a word w ∈ G decide if w =G 1.

Conjugacy problem. Given two words w1, w2 ∈ G decide if there exists w3 ∈ G such that

w1 = w3w2w
−1
3 .

Isomorphism problem. Given the presentations for groups G1 and G2 decide whether G1

and G2 are isomorphic.

The one way to solve the word problem is to have a normal form for words in G. Normal

form norm() is such a way to present words from G that for two different presentations w1

and w2 of the same word norm(w1) = norm(w2). Having an easy-to-compute normal form

is also important for the AAG protocol because Alice and Bob should be able to compute

the shared secret key in the same form.

3.3 Group of automorphisms of the free group

We call group G a free group if there exists a subset X ⊂ G such that every element of G

can be uniquely (up to trivial combinations like xx−1 = ε) presented as a product of the

finite number of elements from X. We call the set X a free basis. We denote Fr or simply

F a free group with alphabet X = {x1, ..., xr}. Set X is a generating set of the group G and

its elements xi ∈ X are generators.

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 14

A homomorphism from a group G to group H is a map ϕ : G→ H satisfying:

ϕ(g1g2) = ϕ(g1)ϕ(g2)

for every g1, g2 ∈ G. An automorphism of G is a bijective homomorphism ϕ : G → G. The

set of automorphisms of the group G is denoted by Aut(G) and forms a group (Aut(G), ◦)

under composition, called the group of automorphisms of G.

In our research, we opt to understand the product of automorphisms the following way:

for a1, a2 ∈ Aut(F) and a word w ∈ F (a1a2)(w) = a2(a1(w)).

Let F be a free group of rank r on the alphabet X = {x1, . . . , xr}. The set of all auto-

morphisms of the free group F (X) (subsequently called group F) makes up a group Aut(F).

We use Nielsen transformations as a generating set of Aut(F). Nielsen transformations can

be defined as follows:

Definition 3.3.1. For a free group F on the alphabet X = {x1, . . . , xr} Nielsen transforma-

tions are all transformations of the following form:

1. xi → x−1i where 1 ≤ i ≤ r

2. xi → xj and xj → xi where 1 ≤ i, j ≤ r

3. xi → xixj where 1 ≤ i, j ≤ r and i 6= j

4. xi → x−1j xi where 1 ≤ i, j ≤ r and i 6= j

5. xi → x−1j xixj where 1 ≤ i, j ≤ r and i 6= j

Nielsen transformations were introduced in [Nielsen, 1921] and a few years later in

[Nielsen, 1924] it was proven that the set of Nielsen transformations is the generating set

of Aut(F). These results are also presented in [Magnus et al., 1976] in English. Since any

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 15

automorphism of a free group can be presented as a sequence of Nielsen transformations

we can use Nielsen transformations to generate random automorphisms. We will present an

algorithm to do so later in this paper.

Nielsen transformations are a convenient tool for purposes like automorphism generation.

However, there is another tool worth paying attention to, namely Whitehead automorphisms.

Definition 3.3.2. Whitehead automorphisms are the automorphisms of the following form:

1. xi → x−1i where 1 ≤ i ≤ r

2. xi → xj and xj → xi where 1 ≤ i, j ≤ r

3. for a fixed a ∈ X± every x ∈ X±, x 6= a± is mapped to one of the elements

x, xa, a−1x, a−1xa

By W (X) we denote the set of Whitehead automorphisms of type 3. In [Whitehead, 1936]

Whitehead solves the minimization problem for the words in a free group.

Definition 3.3.3. We say that the word w ∈ F is minimal if there exists no automorphism

φ such that |w| > |φ(w)|.

Definition 3.3.4. The automorphic orbit Orb(w) of a word w ∈ F is the set of all auto-

morphic images of w in F :

Orb(w) = {v ∈ F | ∃φ ∈ Aut(F) such that φ(w) = v}.

Minimization problem requires to find for a given word w1 ∈ G such an automorphism φ

that the word w2 = φ(w1) is minimal.

In [Whitehead, 1936] Whitehead proves the following theorem

Theorem 3.3.5 (Whitehead theorem). Let w1, w2 ∈ F (X) and w2 ∈ Orb(w1). If |w1| >

|w2|, then there exists t ∈ W (X) such that |w1| > |t(w1)|.

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 16

The Whitehead theorem allows to construct the minimization procedure that can be used

to disassemble the automorphism in normal form into a sequence of Whitehead automor-

phisms. Later, the sequence of Whitehead automophisms can be converted into a sequence

of Nielsen transformations.

However, there is a practical problem with Whitehead automorphisms - there are too

many of them for any realistically large rank of a free group F . As a result, we prefer to

use the similar result by Nielsen for the purpose of converting of an automorphism into a

sequence of Nielsen transformations.

Definition 3.3.6. Let Wi be freely-reduced words on alphabet X = {xj}. The set of words

{Wi} is called Nielsen reduced if the following conditions are met for every word V (Wi) in

symbols Wi:

• Each W -symbol occurring in the word V (Wi) contributes at least one x-symbol to the

freely-reduced form of V (Wi(xj)).

• The number of x-symbols in V (Wi(xj)) is at least as large as the number of x-symbols

in any Wi occurring in V (Wi).

Theorem 3.3.7. Let W = {W1...Wm} be a finite m-tuple of freely reduced words in the free

generators {xj}. Then we can find a sequence τ1...τk of Nielsen transformations of rank m

such that:

|W | ≤ |τ1W | ≤ ... ≤ |τk...τ1W |

and

τk...τ1W = {W̃1...W̃m}

where {W̃1...W̃t} and W̃t+1 = 1, ... ,W̃m = 1

This theorem also allows to disassemble the automorphism in normal form into a sequence

of Nielsen transformations. However, the number of Nielsen transformations is much smaller

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 17

than the number of Whitehead automorphisms for the same rank and that allows faster

conversions.

Presenting a given automorphism as a sequence of Nielsen transformations has a certain

security advantages that will be discussed further.

3.4 Length of an automorphism

In our work, we use a length-based attack to analyze the security properties of Aut(F). As it

follows from its very name, we need length measurement for the length-based attack. In this

section we define the length function for automorphisms. Initially, it feels natural to define

the length of an automorphism as a minimum number of Nielsens transformations that form

it. But such length measurement requires either storing the automorphism as a sequence of

Nielsen transformations or having an algorithm to quickly convert the automorphism to that

form. Both possibilities are discussed in Section 10.2 and they turn out to be complicated.

So we opt for a different definition of length. We define the length of an automorphism φ

as a sum of lengths of all reduced images of all the generators of the free group F . Further,

we will analyze the properties of this length measure and show that it fits the length-based

attack well.

|φ| =
R∑
i=1

|φ(xi)|,

where xi are the generators of group F .

In our paper we keep calling the suggested measure length, but strictly speaking it is

not a length. The proposed measure lacks additivity. Recall that a length function is an

additive function which means that f(gh) = f(g) + f(h) for any g and h in the function’

domain. Our function does not satisfy this condition. For our measure, it is possible that

for g, h ∈ Aut(F) the additive property is violated and |gh| 6= |g| + |h|. It might be more

correct to call this measure size, but since we use it for length-based attack we keep calling

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 18

it length for the sake of uniformity. Even though the suggested measure does not have the

additive property, it suits our needs well. It is relatively easy to compute and it preserves

the crucial property of the length of an automorphism usually increasing when multiplied

by another automorphism. In Section 7.1 we discuss why this property is important and

in Section 7.2 we discuss situations when the length-increasing property of the suggested

measurement does not hold.

3.5 Problems in the group of automorphisms

The Aut(F) group can be viewed as a promising base group for the AAG protocol because

its word problem can be efficiently solved but there is no known way to solve the conjugacy

search problem for Aut(F) efficiently. The basic version of the conjugacy search problem

can be stated as follows

Conjugacy search problem in G. Given two elements w1, w2 ∈ G find an element x ∈ G

such that w2 = x−1w1x.

As we already mentioned above there is no efficient solution to conjugacy problem in

Aut(F). But it is not enough to solve conjugacy problem to break the AAG protocol. To do

it we need to solve an even more complex version of the conjugacy problem, namely subgroup-

restricted simultaneous conjugacy problem or two different simultaneous conjugacy search

problems. This topic is discussed in [Shpilrain and Ushakov, 2006b].

Simultaneous conjugacy search problem. Given tuples ḡ = {g1, ..., gk} and h̄ =

{h1, ..., hk} of elements of G, find an element x ∈ G such that ḡ = x−1h̄x, i.e., solve the

following system of conjugacy equations

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 19

g1 = x−1h1x

. . .

gk = x−1hkx

Subgroup-restricted simultaneous conjugacy search problem in G. Given a sub-

group A generated by the set ā, tuples ḡ = {g1, ..., gk} and h̄ = {h1, ..., hk} of elements of G,

find an element x ∈ A as a product of elements of ā such that ḡ = x−1h̄x.

On the other hand, the word problem in Aut(F) has a solution. In case of the Aut(F)

group, the normal form of an automorphism φ ∈ Aut(F) can be obtained by calculating the

images φ(x) of all letters x of the alphabet X.

Definition 3.5.1. For an automorphism φ ∈ Aut(F) we define a normal form as norm(φ) =

{φ(x1), ..., φ(xR)} where X = {x1, ..., xR} is the alphabet of X.

This definition of normal form leads us to a natural way to measure an automorphism’s

length.

Definition 3.5.2. The length of an automorphism φ ∈ Aut(F) is |φ| =
∑

x∈X |φ(x)| where

X is the alphabet.

Such a normal form and length measure seem very fitting and convenient but they have

the potential problem. The problem is that for realistically complex automorphisms the

images of the letters of X are very long. If we multiply an automorphism by the Nielsen

transformations we should expect the exponential growth of its length. For example, in our

experiments we were constantly dealing with automorphisms whose images of the letters of

X had the lengths of an order of 1028. Thus, the lengths of the images of X quickly get so

large that no straight-forward brute-force approach can be feasible even on the most powerful

computers. We require special approaches and algorithms to work with images of X. Such

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 20

special approaches and algorithms can be found in the field of straight-line programs or

simply SLPs. On the one hand, SLPs allow us to store images of X in a heavily compressed

form. On the other hand, SLPs allow us to perform operations on these images right in

compressed form without decompressing them.

3.6 Random automorphisms generation

As discussed above, any automorphism from Aut(F) can be presented as a sequence of

Nielsen transformations. We use this fact to generate random automorphisms. The algorithm

to do so is

Algorithm Generation of a random automorphism

1. Set the number N of the Nielsen transformations that will make up the random auto-

morphism.

2. Choose the random Nielsen transformation of type 3 or 4.

3. Choose the random Nielsen transformation of type 3 or 4. Check for possible cancel-

lations with the already existing sequence. If nothing cancels out, add this Nielsen

transformation to the sequence. Repeat this step N − 1 times.

4. Choose a random integer number i from 1 to 2R where R is the size of the alphabet

X. If i ≤ R add xi → x−1i to the sequence of Nielsen transformations.

The method described above has some potential issues with the automorphism’s length.

We defined the length of an automorphism as the sum of lengths of images of X. The

above algorithm does not allow us to generate an automorphism of the given length. Indeed,

the same number of Nielsen transformations can generate automorphisms of different lengths.

CHAPTER 3. PRELIMINARIES TO GROUP THEORY 21

In practice we need this algorithm of a random automorphism generation to generate

the public sets of Alice and Bob. The elements of those sets are small so it is possible to

estimate their length. Our observations show that the algorithm performed sufficiently well

and produced the automorphisms of the expected length.

Chapter 4

Introduction to straight-line programs

In this section, we present straight-line programs (or SLPs for short). Straight-line programs

are our main tool for presenting automorphisms in the computations. The efficiency of SLPs

immediately affects the efficiency of the automorphisms in our experiments.

4.1 Straight-line programs

Definition 4.1.1. Straight-line program (SLP) over a terminal alphabet X = {x1, ..., xR} is

a context-free grammar G = {V,X, S, P} where V is the set of nonterminal symbols, X is

the set of terminal symbols, S ∈ V is the starting nonterminal symbol, and P is the set of

production rules where each nonterminal symbol Vi ∈ V has exactly one production rule of

one of the following forms:

• Vi → x where x ∈ X.

• Vi → VjVk where Vj, Vk ∈ V and j, k < i.

Every straight-line program describes a single word w(S). We can define the word pro-

duced by the nonterminal symbol v ∈ V the following way:

22

CHAPTER 4. INTRODUCTION TO STRAIGHT-LINE PROGRAMS 23

w(v) =

ε if P (v) = ε

x if P (v) = x ∈ X

w(A)w(B) if P (v) = AB

The length of this word can grow exponentially when we increase the number of produc-

tion rules. It allows us to use SLPs representing words in a highly compressed form.

The depth of an SLP P is depth(S). The depth of a terminal symbol v ∈ V is defined as

follows

depth(v) =

 1 if P (v) = x ∈ X ∪ {ε}

1 +max(w(A), w(B)) if P (v) = AB

4.2 Operations on SLPs

In this section we mention the existence and complexities of the important algorithms that

deal with SLPs. These algorithms make the operation on automorphisms presented as SLPs

possible. All these algorithms are nicely described in [Miasnikov et al., 2011].

Word segments algorithms. Firstly, there is an algorithm that takes an input of an

SLP P and an integer number α ∈ [1, |w(P)|] and returns an SLP P ′ such that w(P ′) =

w(P)[: α]. Symmetrically, there is an algorithm that takes an input of an SLP P and an

integer number α ∈ [1, |w(P)|] and returns an SLP P ′ such that w(P ′) = w(P)[α :]. These

algorithms allow specifying the initial and terminal segments correspondingly of a word in

form of SLP. It is important to mention that the resulting word is also presented in form of

SLP and all manipulations are carried out on SLP without any decompression.

The above algorithms for obtaining the initial and terminal segments of an SLP-presented

word can be combined to get the algorithm that produces the SLP representing a middle

segment of the word. This algorithm takes an input of an SLP P and an integer numbers

CHAPTER 4. INTRODUCTION TO STRAIGHT-LINE PROGRAMS 24

0 ≥ α ≥ β ≥ |w(P)| and returns an SLP P ′ such that w(P ′) = w(P)[α : β].

All three algorithms presented in this section have a good complexity O(depth(P)).

Word inversion. Simple algorithm allows taking an SLP P that defines a word w(P)

and returning an SLP P ′ which defines a word w(P ′) = (w(P))−1. The only thing this

algorithm does is to change all original production rules of P according to the following rule

P ′(v′) =

 x−1 if P (v) = x ∈ X ∪ {ε}

BA if P (v) = AB

The word inversion algorithm has a complexity O(|P|).

4.3 Automorphisms presented in form of SLPs

In the case of automophisms, we can use SLPs to present the images of letters of X in

compressed form. Since SLPs can potentially provide us with exponential compression it

becomes possible to store the above-defined normal forms of automorphisms in computer

memory.

One can argue that SLPs are not guaranteed to provide exponential compression. Indeed,

the SLP presentation of a random word from X∗ can provide no significant compression. But

in case of automorphisms we deal not with random words in X∗ but with words generated by

the automorphisms from letters of X. Each automorphism can be presented as the sequence

of Nielsen transformations. Nielsen transformations are very similar to production rules of

SLPs. The starting non-terminal symbol S of the SPL is similar to the letter x ∈ X that

is mapped to the word represented by the SLP. Hence, we can expect that the number of

production rules of the SLP that represents an image of a certain letter x ∈ X is similar

to the number of Nielsen transformations that make up the automorphism. Of cause, there

is no strictly defined correlation between them, but the high level of compression is to be

CHAPTER 4. INTRODUCTION TO STRAIGHT-LINE PROGRAMS 25

expected.

However, just storing automorphisms in computer memory is not enough. We need to

perform basic operations on automorphisms such as comparing two automorphisms, multi-

plying them, performing free reduction of an automorphism, computing the automorphisms

length. Since the uncompressed forms of automorphisms can be huge, we cannot deal with

the uncompressed forms. We need algorithms that allow dealing with automorphisms in

the compressed form. Because we present an automorphism φ ∈ Aut(F) as a set of images

norm(φ) = {φ(x1), ...φ(xR)}, the problem of dealing with automorphisms in a compressed

form is equivalent to the problem of dealing with words from X∗ in a compressed form. The

techniques that allow doing so (like the technique to reduce the word in the compressed

form) were described in a number of papers, for example [Schleimer, 2008] [Lohrey, 2012]

[Jez, 2015] [Lifshits, 2007].

For our experiments we used a C++ library written by Dmitry Panteleev and Pavel

Morar. This library provides classes for efficient storage and manipulations on automor-

phisms. The library is based primarily on the algorithms described in [Lifshits, 2007].

Chapter 5

Complexity of operations on the

automorphisms presented in the form

of the SLPs

In our complexity evaluations, we care mostly for reductions and multiplications (or rather

conjugations that is two multiplications at a time). The complexity of reduction operation

is discussed in [Miasnikov et al., 2011]. It it proven there that the complexity of reduction

of a word W presented as SLP P is O(|P|7) where |P| is the number of production rules in

P . This is a high complexity and later we present the actual measurements of how expensive

reduction is in practice.

Another operation on automorphisms that is theoretically complex is equality test. We

check the equality of two automorphisms by checking if the images of the letters from X

match. Since each image is presented in the SLP form, one needs Plandowski’s algorithm

[Plandowski, 1994] that decides if two SLPs PA and PB define the same word. The complex-

ity of the Plandowski’s algorithm is O((|PA|+|PB|)5) where |PA| is the number of production

rules in PA and |PB| is the number of production rules in PB. However, Plandowski’s algo-

26

CHAPTER 5. COMPLEXITY OF OPERATIONS ON THE AUTOMORPHISMS 27

rithm considers reduced and non-reduced versions of the same word to be different. Thus,

to use it, we need to reduce both words presented by the SLPs PA and PB. Considering

the complexity of reduction discussed above, we get the following total cost of comparison

O((|PA|+ |PB|)5 + |PA|7 + |PB|7) = O(|PA|7 + |PB|7).

Checking the equality of two words presented in an SLP form looks like a complex

procedure. However, in practice it is possible to do the set of simple checks that gives us the

answer fast. For example, before applying the Plandowski’s algorithm we can just compare

the length of the images of letters of X and if these lengths are different we have the negative

answer fast. After all, the equality checks can be fast most of the time especially for SLPs

presenting the already reduced words. One more observation, LBA attacks require minimal

amounts of equality checks.

The operation that LBA attacks require a lot is the length measurement. Fortunately,

funding the length of the word W presented by the SLP P is a simple straightforward task of

linear complexity O(|P|). It requires one addition operation per each nonterminal symbol.

Algorithm Computing the length of the word W described by the SLP P

1. Determine the length of the image of each nonterminal symbol Vi starting from i = 0

following the rule:

• if the production rule for Vi is of the form Vi → x then the length of the image

|Vi| = 1.

• if the production rule for Vi is of the form Vi → VjVk then the length of the image

|Vi| = |Vj|+ |Vk|

2. The length of the image of the last nonterminal symbol is the length of the word W

described by P .

It is worth mentioning that since the lengths of nonterminal symbols tend to grow expo-

CHAPTER 5. COMPLEXITY OF OPERATIONS ON THE AUTOMORPHISMS 28

nentially, the additions in the above algorithm require long integer arithmetic and are not

as fast as a usual integer addition.

The next important operation on automorphisms is inversion. There is no known al-

gorithm that allows inverting an automorphism stored in the form of SLP. We solve this

problem by keeping the inverted form of the automorphism together with its original form.

It makes the inverse of the automorphism instantly available but significantly increases the

duration of other operations like multiplication and assignment. Also, it increases the mem-

ory consumption of our program. The inverse of a new automorphism is obtained during

its generation since we generate a new automorphism by multiplying a number of Nielsen

transformations and we can easily invert the sequence of Nielsen transformations.

Another operation that is very important for LBA attacks is multiplication of two auto-

morphisms. In theory, this operation is simple O(|X|2) where |X| is the number of terminal

symbols. However, in practice the particular implementation that we are dealing with re-

quires a significant amount of memory-related operations. Later we will provide the actual

measurements of how fast the multiplication of two automorphisms is in the library that we

are using.

Chapter 6

Protocols of group-based

cryptography

Here are the examples of some typical protocols of group-based cryptography. The main

interest of our research is the Anshel-Anshel-Goldfeld protocol but the results are relevant

for all conjugacy-search-based and decomposition-based protocols.

6.1 Protocol description

Let Aut(F) be a group of all automorphisms of a free group F of rank R. The set of Nielsen

transformations {Nili} is the generating set of Aut(F). We implement the Anshel-Anshel-

Goldfeld protocol on the platform group Aut(F). Protocol steps are:

Anshel-Anshel-Goldfeld protocol

• Alice randomly generates N1-tuple of words from F

ā = {a1, . . . , aN1}

Tuple ā is called Alice’s public set. The number of Nielsen transformations used to

29

CHAPTER 6. PROTOCOLS OF GROUP-BASED CRYPTOGRAPHY 30

generate each element of this tuple is LA.

• Bob randomly generates N2-tuple of words from F

b̄ = {b1, . . . , bN2}

Tuple b̄ is called Bob’s public set. The number of Nielsen transformations used to

generate each element of this tuple is LB.

• Alice randomly generates a product A = aε1s1a
ε2
s2
. . . aεLsL , where 0 < si ≤ N1 and εi = ±1

for each 1 ≤ i ≤ L. The word A is called Alice’s private key.

• Bob randomly generates a product B = bδ1t1 b
δ2
t2 . . . b

δL
tL

, where 0 < ti ≤ N2 and δi = ±1

for each 1 ≤ i ≤ L. The word B is called Bob’s private key.

• For all 1 ≤ i ≤ N2 Alice computes b′i = A−1biA and makes them reduced. Then Alice

transmits all b′i to Bob.

• For all 1 ≤ i ≤ N1 Bob computes a′i = B−1aiB and makes them reduced. Then Bob

transmits all a′i to Alice.

• Alice computes KA = A−1a′ε1s1 a
′ε2
s2
. . . a′εLsL = A−1B−1AB.

• Bob computes KB = b′−δLtL
. . . b′−δ2t2 b′−δ1t1 B = A−1B−1AB.

One can see that KA = KB so K = KA = KB is now a shared secret key of Alice and

Bob.

The AAG protocol itself does not require any specific techniques of Alice’s and Bob’s

private keys generation. And it means that generating Alice’s secret key A for example

can be as simple as generating a random sequence of sL elements of ā and doing sL − 1

automorphism multiplications. Of course, when generating the random sequence we must

CHAPTER 6. PROTOCOLS OF GROUP-BASED CRYPTOGRAPHY 31

make sure that adjacent elements of this sequence does not cancel each other out. Strictly

speaking, things can get more complicated if a lot of elements of ā commute with each other

but controlling the length of A is still easy.

In order to obtain the shared secret key, the attacker must obtain the Alice’s private

key A and the Bob’s private key B. This will allow constructing the shared private key

K = A−1B−1AB. To do it, the attacker has to solve the simultaneous conjugacy search

problem for sets ā and ā′, and the simultaneous conjugacy search problem for sets b̄ and

b̄′. The shared secret key can be computed from the know Alice’s private key A alone by

computing K = KA = A−1a′ε1s1 a
′ε2
s2
. . . a′εLsL = A−1B−1AB. But to do it the attacker needs to

know the Alice’s private key as a word in ā, A = aε1s1a
ε2
s2
. . . aεLsL . Symmetrically, the shared

secret key can be obtained from knowing B = bδ1t1 b
δ2
t2 . . . b

δL
tL

as a word in b̄. Thus, the attacker

needs to solve only one conjugacy search problem, but since now the private key should

be found as a product of given generators, the attacker should solve a different version of

conjugacy search problem, namely the subgroup-restricted simultaneous conjugacy search

problem.

The AAG protocol can be used on different platform groups. For example,

[Myasnikov and Ushakov, 2007] analyses the AAG protocol used with braid groups. In this

paper, we analyze the AAG properties when used on the platform of Aut(F).

However, the LBA that we will describe here can be used to attack other encryption pro-

tocols that use the complexity of conjugacy search problem or even decomposition problem.

We can mention just two such protocols - Ko-Lee [Ko et al., 2000] and Ushakov-Shpilrain

[Shpilrain and Ushakov, 2006a].

Ko-Lee protocol

• Alice and Bob agree on publicly visible group G and two of its subgroups A ⊂ G and

B ⊂ G such that for any x ∈ A and y ∈ B xy = yx. Also Alice and Bob agree on a

word w ∈ G.

CHAPTER 6. PROTOCOLS OF GROUP-BASED CRYPTOGRAPHY 32

• Alice chooses her private key a ∈ A.

• Bob chooses his private key b ∈ B.

• Alice computes a normal form of a−1wa and sends it to Bob.

• Bob computes a normal form of b−1wb and sends it to Alice.

• Alice computes a normal form of Ka = a−1(b−1wb)a.

• Bob computes a normal form of Kb = b−1(a−1wa)b.

Since subgroups A and B commute, ab = ba so Ka = Kb = K where K is the shared

secret key.

The attack on the Ko-Lee protocol is similar to the attack on AAG. You just consider the

set b̄′ to contain the single element b̄′ = {a−1wa}, b̄ to contain the single element b̄ = {w} and

the set ā to contain the generating elements of the subgroup A from the Ko-Lee protocol.

Furthermore, the attack is simplified by the fact that it is enough to solve the basic conjugacy

search problem. Indeed, if we find the Alice’s private key a in any generators by solving the

conjugacy search problem for the word w and the publicly available a−1wa, we can compute

the shared secret key K = a−1(b−1wb)a because b−1wb is also public. Symmetrically, the

same applies to finding the Bob’s private key b from w and b−1wb.

The Ushakov-Shpilrain protocol deals with the decomposition problem rather than con-

jugacy problem so LBA should be less efficient. Still LBA attack can be attempted on it.

Here is the Ushakov-Shpilrain protocol itself.

Ushakov-Shpilrain protocol

• Alice and Bob publicly agree on a word w ∈ G.

• Alice chooses an element a1 ∈ G, chooses a subgroup of CG(a1), and publishes its

generators A = {α1, ..., αk}.

CHAPTER 6. PROTOCOLS OF GROUP-BASED CRYPTOGRAPHY 33

• Bob chooses an element b2 ∈ G, chooses a subgroup of CG(b2), and publishes its

generators B = {β1, ..., βm}.

• Alice chooses an element a2 in 〈β1, ..., βm〉 and sends the normal form PA = a1wa2 to

Bob.

• Bob chooses an element b1 in 〈α1, ..., αk〉 and sends the normal form PB = b1wb2 to

Bob.

• Alice computes KA = a1PBa2.

• Bob computes KB = b1PAb2.

Since a1b1 = b1a1 and a2b2 = b2a2, we have K = KA = KB the shared secret key.

The Ushakov-Shpilrain protocol adds significant complications for the attacker because

now instead of conjugacy search problem the attacker must solve even more complicated

decomposition problem. The decomposition problem is the problem of finding words x, y ∈ G

while being given the words w1 ∈ G and w2 = xw1y ∈ G.

Chapter 7

Length-based attack

We evaluate the suitability of Aut(F) for group-based cryptography by trying to solve the

conjugacy search problem using the length-based attack. If we are able to solve conjugacy

search problem, we can compute private keys of Alice and Bob and eventually the shared

secret key.

7.1 Fundamentals of length-based attack

To break an instance of AAG encryption one must find a shared secret key K = A−1B−1AB

using publicly shared data (which is the sets ā, b̄, ā′, b̄′). It is easy to see that for find-

ing the key K = A−1B−1AB it is sufficient to find A as a product of generating elements

from ā because having A = aε1s1a
ε2
s2
. . . aεLsL and set a′ we can construct K = A−1B−1AB =

A−1a′ε1s1 a
′ε2
s2
. . . a′εLsL . Symmetrically, it is sufficient to find B as a product of generating ele-

ments from b̄ to find K.

In fact, by [Shpilrain and Ushakov, 2006b], it is sufficient to find such Ã ∈ 〈a1, . . . , aN1〉

that b′i = Ã−1biÃ for all 1 ≤ i ≤ N2, i.e., to solve subgroup-restricted simultaneous conjugacy

problem, i.e., solve the following system of conjugacy equations

34

CHAPTER 7. LENGTH-BASED ATTACK 35

b′1 = Ã−1b1Ã

. . .

b′N2
= Ã−1bN2Ã

, where Ã ∈ 〈a1, . . . , aN1〉

Any such Ã can be used for computing a shared key K. Symmetrically, it is sufficient to

find such B̃ ∈ 〈b1, . . . , bN2〉 that a′i = B̃−1aiB̃ for all 1 ≤ i ≤ N1.

The length-based attack attempts finding the elements aε1s1a
ε2
s2
. . . aεLsL = A using the

elements of set b′. The underlying fact used for the length-based attack is that the

length of an automorphism usually increases when multiplied by another automorphism,

so |A−1biA| > |A−1bi| > |bi| with high probability. This brings out the problem of defining

a way to measure the length of an automorphism. We introduced the length function for

automorphisms in Section 3.4

Now lets take a look at a single element b′i

b′i = A−1biA = a−εLsL
. . . a−ε2s2

a−ε1s1
bi a

ε1
s1
aε2s2 . . . a

εL
sL

Because of the above-mentioned property that usually conjugation increases the length of

the automorphism, we can assume that

|b′i| < |aεLsLb
′
ia
−εL
sL
| = |a−εL−1

sL−1
. . . a−ε2s2

a−ε1s1
bi a

ε1
s1
aε2s2 . . . a

εL−1
sL−1
|

We can say that the conjugation of b′i by a−εLsL
peels off the outermost element that make up

b′i. We can go further and conjugate b′i by a
−εL−1
sL−1 a−εLsL

instead of just a−εLsL
. With the high

probability that depends on elements as and the way A is generated, it will decrease the

length even further because it peels off two automorphisms from each side of b′i instead of

just one, so

CHAPTER 7. LENGTH-BASED ATTACK 36

|b′i| > |aεLsLb
′
ia
−εL
sL
| > |aεLsLa

εL−1
sL−1

b′ia
−εL−1
sL−1

a−εLsL
| =

= |a−εL−1
sL−2

. . . a−ε1s1
bi a

ε1
s1
. . . aεL−2

sL−1
|

By making further steps in this direction we hope to come to the point when, after the

next step of length reduction, we end up with the sequence S of elements of Alice’s public

set that reduces the length of b̄′ to the length of b̄ when you conjugate b̄′ by it. Further,

if S−1b̄′S = b̄, then we have that S−1 = Ã ∈ 〈a1, . . . , aN1〉. As we have discussed in the

beginning of this section, it is enough to compute the shared secret key K.

7.2 Length-based attack with backtracking

The idea discussed above is used for the length-based attack (subsequently called the LBA).

The LBA we present next uses backtracking and will work even if at some point there are

multiple elements of Alice’s public set that can shorten the current automorphism. Later in

this paper, we will discuss the way to improve it further. In the algorithm below, the length

of the set of automorphisms should be understood as the sum of lengths of all automorphisms

in the set.

Algorithm LBA with backtracking

1. Initialize a set S = {(b̄′, 1)}, where 1 is the identity element of Aut(F).

2. If S = 0 then output FAIL.

3. Choose a pair (c, x) ∈ S with the least |cx|.

4. For each i = 1 . . . N1 and each ε = ±1 compute ∆i,ε = |cx| − |cxaεi |.

• If cxa
ε
i = b̄ then output the final result (xaεi)

−1.

CHAPTER 7. LENGTH-BASED ATTACK 37

• If ∆i,ε > 0 then add (c, xaεi) to the set S.

5. Delete (c, x) from the set S.

6. Go to Step 2.

As we have already mentioned the whole LBA is based on a heuristic fact that the length

of an automorphism usually increases when multiplied by another automorphism. With high

probability when we multiply aε1s1 . . . a
εL−1
sL−1 by aεLsL the length of the resulting automorphism

increases. But what happens if such multiplication actually decreases the length? It means

that on Step 4 of the algorithm ∆−εLsL
≤ 0 and consequently the algorithm will not be able

to find aεLsL component of A and, as a result, will not be able to find A.

Fail condition: if for Alice’s private key A = aε1s1a
ε2
s2
. . . aεLsL there exists 1 < i ≤ L such

that |aε1s1 . . . a
εi−1
si−1| ≥ |aε1s1 . . . a

εi−1
si−1a

εi
si
| then the length-based attack with backtracking fails.

We say that a peak happens in the i-th position in A.

There is a significant chance of the above condition being met for some parameters of

AAG. To be more specific, the above fail condition happens more often for parameters with

a large rank R of the free group F and a small amount of Nielsen transformations forming

each element of the Alice’s public set ā. In Table 7.1 you can see the results of the LBA

attack with backtracking. In each cell we put the percentage of successful attacks. Each

percentage is calculated based on 20 experiments. Alice’s private key is generated by 40

elements from Alice’s public set. Rows track the number of Nielsen transformations that

make up each element of Alice’s and Bob’s public sets. Columns track the rank of a free

group F . An experiment is successful if it finds the Alice’s private key within 30 hours.

The next interesting question is this: What makes the above-mentioned fail condition

for the LBA with backtracking become true. Based on our observations that follow the

idea from [Myasnikov and Ushakov, 2007], the most frequent pattern that activates the fail

condition is this: Somewhere in the Alice’s private key A there is a fragment a±1i aja
∓1
i such

CHAPTER 7. LENGTH-BASED ATTACK 38

Number of Nielsen
transformations

Rank 10 Rank 15 Rank 20

6 70% 40% 15%
7 90% 50% 45%
8 95% 85% 50%
9 100% 85% 65%

Table 7.1: Success rate of classic LBA attack with backtracking

that |a±1i aja
∓1
i | ≤ |a±1i aj|. The inverse of such a±1i aja

∓1
i often also causes the LBA to fail.

On the one hand, the chance for a fragment of a form a±1i aja
∓1
i to appear in a randomly

generated Alice’s private key is significant. The smaller is the Alice’s private set, the higher

this chance is. On the other hand, the chance of |a±1i aja
∓1
i | ≤ |a±1i aj| is also significant when

the rank R of the free group F is relatively large and the elements of Alice’s private set are

generated by a small number of Nielsen transformations. To check if this case really attribute

to the majority of LBA fails we have encountered in our experiments, we analyzed all failed

LBA experiments from the Table 7.1. The results of this analysis are presented in Table

7.2. In each cell we state how many times in the failed experiments Alice’s secret key had a

fragment of the form a±1i aja
∓1
i such that |a±1i aja

∓1
i | ≤ |a±1i aj|. For example, 3/6 means that

in 3 out of 6 unsuccessful experiments an Alice’s private key contained such segment.

Number of Nielsen
transformations

Rank 10 Rank 15 Rank 20

6 3/6 10/12 14/17
7 2/2 7/10 7/11
8 0/1 1/3 8/10
9 0/0 1/3 4/7

Table 7.2: Failures because of specific patterns

The initial analysis that we performed for Table 7.2 is too primitive to capture the

potentially complex behaviour of automorphisms. Therefore, we are not claiming that the

presented numbers indicate the problem precisely. Nevertheless, they show that the case

we have described above is the potential troublemaker for the LBA and it might be worth

CHAPTER 7. LENGTH-BASED ATTACK 39

it investigating it further. Also, this result explains the regularity that we observe in the

experiments with the LBA with backtracking (see Table 7.1) that the longer the elements

of the Alice’s public set are and the smaller is the rank of F the better the LBA performs.

Indeed, the longer the two automorphisms ai and aj are the smaller is the chance that

a±1i aja
∓1
i such that |a±1i aja

∓1
i | ≤ |a±1i aj|. Also, that is the reason why we tend to conduct

our experiments with shorter elements of the Alice’s public set, to focus our attention on the

most problematic area.

7.3 Enhanced LBA

From Table 7.2 it can be concluded that the case described above causes the significant part

of LBA failures. [Myasnikov and Ushakov, 2007] suggests to enhance the standard LBA with

backtracking to enable it handling this problematic situation. In this extended attack, it is

suggested to run the usual LBA with backtracking but on an extended set of Alice’s public

automorphisms, rather than on the original set ā. In our case, this extended set contains

all automorphisms of the original set ā, plus all conjugates a±i aja
∓
i of pairs ai, aj ∈ ā where

1 ≤ i, j ≤ N1 and i 6= j for which |a±i aja∓i | ≤ |a±i aj|. Also, we add to the extended set all

products a±i a
±
j of pairs ai, aj ∈ a where 1 ≤ i, j ≤ N1 and i 6= j for which |a±i a±j | ≤ |a±i |.

These elements that we use for the LBA along with the original set ā hide inside them

the most probable cases of fail condition being true. For example, if a decrease in length

happens when we multiply a−1i aj by ai (|a−1i ajai| ≤ |a−1i aj|) and if the fragment a−1i ajai

appears in the Alice’s private key, the proposed enhanced LBA is still able to handle it.

Still, it is not able to correctly find the a−1j step but it does not need to. The enhanced

LBA has the whole conjugate a−1i ajai in its extended guessing set and it can conjugate b′ by

(a−1i ajai)
−1.

The following algorithm is used to create an extended guessing set for the Enhanced

CHAPTER 7. LENGTH-BASED ATTACK 40

LBA.

Algorithm Create an extended set

1. Initialize set Ext = ā.

2. For all 1 ≤ i < j ≤ N1, and all εi, εj = ±1 for which |aεii a
εj
j | ≤ |ai| add aεii a

εj
j to Ext.

3. For all 1 ≤ i, j ≤ N1, i 6= j and all εi = ±1 for which |aεii aja
−εi
i | ≤ |a

εi
i aj| add aεii aja

−εi
i

to Ext.

Then we formulate the algorithm of the enhanced LBA:

Algorithm Enhanced LBA

1. Run the Create an extended set algorithm to create the set Ext.

2. Initialize a set S = {(b̄′, 1)}, where 1 is the identity element of Aut(FR).

3. If S = 0 then output FAIL.

4. Choose a pair (c, x) ∈ S with the least |cx|.

5. For each ξ ∈ Ext and each ε = ±1 compute ∆i,ε = |cx| − |cxξεi |.

• If cxξ
ε
i = b̄ then output the final result (xξεi)

−1.

• If ∆i,ε > 0 then add (c, xξεi) to the set S.

6. Delete (c, x) from the set S.

7. Go to Step 3.

It is to be expected that for some parameters the extended set Ext will be much larger

than the Alice’s public set ā. Because of that the extended LBA algorithm can run much

longer compared to the classic LBA with backtracking, so later we will propose some opti-

mizations to speed up the enhanced LBA.

CHAPTER 7. LENGTH-BASED ATTACK 41

Number of Nielsen
transformations

Rank 10 Rank 15 Rank 20

6 85% 75% 40%
7 100% 80% 90%
8 95% 100% 85%
9 100% 95% 85%

Table 7.3: Success rate of enhanced LBA on the extended guessing set

In Table 7.3 you can see the performance of the enhanced LBA.

Table 7.3 shows the significant improvement in efficiency of the enhanced LBA over the

standard LBA with backtracking. The improvements are most obvious on larger ranks of F

and shorter elements of ā, where the standard LBA lacks efficiency.

7.4 Properties of the b̄ set

Next, we try to decrease the computational load of the suggested LBA attacks on AAG

protocol. One way to make the LBA attacks more efficient is to use not all the public data

but only the useful part of it. We examine the public set b̄′ and try to understand what part

of b̄′ we really need for the efficient LBA attack.

In our experiments we use the public set of Bob b̄ with 10 automorpisms in it. As a result,

we have 10 automorphisms in the set b̄′. This means that when we guess the next element

from ā that decreases the total length of b̄′, we perform all 10 conjugations and reductions,

one for each element of the b̄′.

But the size of b̄′ has a very little effect on the whole procedure of LBA. Theoretically,

it is possible for some element of bi to interact with the Alice’s private key in a specific way

to interfere with the LBA. Alice’s private key can be presented as a sequence of elements

from ā: A = aε1s1a
ε2
s2
. . . aεLsL . Then the situation in which |a−ε1s1

bia
ε1
s1
| ≤ |bi| poses the potential

problem, because it does not allow LBA to correctly guess as1 . In this case, other elements

CHAPTER 7. LENGTH-BASED ATTACK 42

Number of Nielsen
transformations

Rank 10 Rank 15 Rank 20

6 0.13% 0.46% 1.31%
7 0.01% 0.11% 0.3%
8 0% 0.01% 0.11%
9 0% 0% 0.01%

Table 7.4: Chance of |a−ε1s1
bia

ε1
s1
| ≤ |bi|

of b̄′ will still show the right way for the LBA.

Intuitively, it looks like the chance of |a−ε1s1
bia

ε1
s1
| ≤ |bi| for randomly generated bi and as1

is rather small. To evaluate this intuition we have conducted the number of experiments.

For all parameters that we used in our experiments we were generating many random bi and

as1 and check if any of these pairs satisfy the condition |a−ε1s1
bia

ε1
s1
| ≤ |bi|. For a given rank

r of free group F and number of Nielsen automorphisms L the experiment can be described

the following way:

1. Generate random bi ∈ Aut(F) which is L Nielsen transformations long.

2. Generate random as1 ∈ Aut(F) which is L Nielsen transformations long.

3. If |a−1s1 bias1| ≤ |bi|, then experiment is successful. Otherwise the experiment is a failure.

The results of these experiments are presented in Table 7.4. Each cell contains the

percentage of successful experiments, based on 10000 experiments.

From the Table 7.4 it can be concluded that for a randomly generated bi and as1 the

chance of |a−1s1 bias1| ≤ |bi| is very low. Theoretically, it is also possible that |a−1s2 a
−1
s1
bias1as2| ≤

|a−1s1 bias1| while |as1as2| > |as1|, but the chance of that happening should be even smaller.

We can conclude that most of the time when we minimize the total length of the set b̄′,

problems come from the Alice’s private key A, and not from the elements of b̄. With these

considerations in mind, we can opt to use not the whole set b̄′ but a part of it. There is no

reason to use all elements of b̄′ so we modify our enhanced LBA in the following way:

CHAPTER 7. LENGTH-BASED ATTACK 43

Algorithm Enhanced LBA on partial b̄

1. Run the Create an extended set algorithm to create set Ext.

2. Choose a parameter P ∈ N such that 0 < P ≤ N2. Create a set b̄′′ out of the first P

elements of the set b̄′

3. Initialize a set S = {(b̄′′, 1)}, where 1 is the identity element of Aut(F).

4. If S = 0 then output FAIL.

5. Choose a pair (c, x) ∈ S with the least |cx|.

6. For each ξ ∈ Ext and each ε = ±1 compute ∆i,ε = |cx| − |cxξεi |.

• If b̄′
xξεi = b̄ then output the final result (xξεi)

−1.

• If ∆i,ε > 0 then add (c, xξεi) to the set S.

7. Delete (c, x) from the set S.

8. Go to Step 3.

For our experiments we use P from 1 to 5 depending on other parameters.

Since we introduced this improvement for the enhanced LBA, we also introduced it to

the classic LBA with backtracking. We have rerun all classic LBA experiments, which failed

to complete in 30 hours, but this time we used only a part of b′ set (exactly the same

part of b′ that we have used for the same enhanced LBA experiment). If the classic LBA

with backtracking is successful on the partial b′ set, we consider it successful. If the classic

LBA with backtracking is successful only on the full set b̄, we still consider the experiment

successful, though we never observed such a situation in practice. Table 7.1 already accounts

for this rule. In fact, none of the failed classic LBA experiments succeeded on partial b′, but

these additional experiments make Table 7.1 and Table 7.3 comparable.

CHAPTER 7. LENGTH-BASED ATTACK 44

We tried the enhanced LBA for the same problems that we used for the standard LBA

with backtracking. This way you can compare Table 7.1 and Table 7.3.

The idea of using just a part of b̄′ set helps to significantly reduce the computational

complexity of LBA and it works good for longer automorphisms of ā and b̄. But if these

automorphisms are short and LBA starts to struggle with extensive backtracking, ignoring

the part of b̄′ can theoretically lead to even more backtracking. This additional backtracking

can easily overweight the benefits of shrinking the set b̄′.

To avoid this problem we suggest yet another way to optimize the use of b̄′. We call it

compressing the set b̄′.

Algorithm Compressing b̄′

1. Compute the product p of all elements of b̄′.

2. Reduce p.

3. Consider p to be the only element of compressed b̄′.

Compressed set b̄′ can be used in any LBA instead of original b̄′. On the one hand, it

reduces the chance of Alice’s private key canceling out with itself in b̄′. On the other hand,

using the compressed b̄′ was about two times faster than using the original set b̄′ in our

experiments.

7.5 Further improvements to the enhanced LBA

In this section, we try to increase the efficiency of the LBA attacks further. We do it by

finding more probable peak-generating patterns to include them in the extended guessing

set Ext. The enhanced LBA already offers some significant improvement over the classic

LBA with backtracking. Still, the enhanced LBA can be improved.

CHAPTER 7. LENGTH-BASED ATTACK 45

The group Aut(F) has a complex behavior that is often hard to predict. For example, if

for two automorphism x, y ∈ Aut(F) holds |xy| > |x|, it does not automatically imply that

for every z ∈ Aut(F) |zxy| > |zx|. Symmetrically, if |xy| < |x|, it does not automatically

imply that for every z ∈ Aut(F) |zxy| < |zx|.

It was observed that the enhanced LBA often fails to guess the Alice’s key fragments

with conjugates like a−1j aiaj even if |a−1j | < |a−1j ai| < |a−1j aiaj|. It happens because when

the rank R of the free group F becomes significantly larger than the number of Nielsen

automorphisms in each element of ā, there is a chance that when you multiply a−1j ai by aj

there will be a lot of reductions going on and final increase in the automorphism’s length

will be minimal. And when the increase in length is small, it increases the probability of

length actually decreasing when it happens inside the Alice’s secret key A. We discuss such

unpredictable behaviour further in the Chapter 14.

Because of that, it makes a sense to add elements of the form a−1j aiaj to the extended

guessing set Ext even if |a−1j aiaj| = |a−1j ai|+C where C ∈ N is a small positive number. By

increasing the parameter C we include more elements in the Ext set, thus making it more

powerful. The algorithm for the set extending turns into

Algorithm Create an extended set with extra elements

1. Initialize a set Ext = ā.

2. Choose a set extension parameter C ∈ N, C ≥ 0.

3. For all 1 ≤ i < j ≤ N1, and all εi, εj = ±1 for which |aεii a
εj
j | ≤ |ai| + C add aεii a

εj
j to

the set Ext.

4. For all 1 ≤ i, j ≤ N1, i 6= j and all εi = ±1 for which |aεii aja
−εi
i | ≤ |a

εi
i aj| + C add

aεii aja
−εi
i to the set Ext.

It is natural that the introduction of C > 0 increases the computational load on the

computer. It happens in two ways. C increases the size of the Ext set. On one hand, the

CHAPTER 7. LENGTH-BASED ATTACK 46

Number of Nielsen
transformations

Rank 10 Rank 15 Rank 20

6 95% 80% 50%
7 100% 85% 85%
8 95% 100% 95%
9 100% 100% 95%

Table 7.5: Success rate of enhanced LBA on the further extended (C = 3) guessing set

larger is Ext the more conjunctions and reductions should be made every time we deal with

Ext. On the other hand, the larger is Ext the more length-decreasing choices the enhanced

LBA has and the higher is the chance of making a wrong choice. Wrong choices lead to

backtracking and increase the number of steps.

We use this new set-extension algorithm for the the enhanced LBA on partial b̄′ set. For

our experiments we have chosen the parameter C = 3. We used this parameter to rerun the

experiments from Table 7.3. The results are presented in Table 7.5.

On average Table 7.5 shows the significant increase in attack’s efficiency. However, for

rank 20 and length 7 the percentage of success actually decreased. It happens because,

as we have already discussed above, the introduction of C > 0 increases the computation

complexity of the attack. Two experiments (one for rank 20, length 7 and the other one

for rank 15 length 5) failed to complete in 30 hours for C = 3 even though they completed

successfully for C = 0. We consider such experiments failures.

7.6 LBA with look-ahead

Here we introduce a modification of the enhanced LBA attack for a better performance on

the most LBA-resistant parameters (that is large group rank and short elements of a and b).

While LBA with backtracking shows good results, its efficiency noticeably drops for

shorter elements of ā. After inspecting a number of cases where the enhanced LBA had

CHAPTER 7. LENGTH-BASED ATTACK 47

failed, it was noted that the main reason of failures is extensive backtracking. Indeed, each

LBA step is computationally intensive. To make things worse, in most cases it is possible

to make a few more length-reducing steps ahead after the wrong step, so there is a lot of

backtracking involved. The majority of the failed experiments fail not because of the inability

of the enhanced LBA to find the next step, not because of peaks, but because the experiment

fails to complete in a given time (30 hours in our case). One might speculate that having

more computational powers it is possible to successfully complete those experiments but we

suggest another approach.

In addition to the original heuristic that the correct element reduces the length of the

set b̄′ the most, we add one more heuristic property that after picking the wrong element to

reduce b̄′ it is hard to find the next length-reducing element of ā and even if such element

exists this next-step reduction will be smaller compared to the next-step reduction that

happens after the correct initial step.

We use this new heuristic to modify the enhanced LBA even further. Now we evaluate

each step by the sum of its length reduction and maximum possible next-step length reduction

if this step is taken. Such approach adds weight to the correct steps and decreases the amount

of the backtracking. We apply this new rule only to the steps which use the original elements

of ā. Also, for computing the maximum length of the next-step reduction we use only the

elements of ā. Ignoring the elements that appeared during the set extension helps to greatly

reduce the computational complexity of the algorithm. To modify the enhanced algorithm

we introduce the metric for pairs (c, x) mentioned in enhanced LBA algorithm.

Metric |(c, x)|LA

• if x, x−1 /∈ ā then |(c, x)|LA = |cx|

• if x, x−1 ∈ ā then |(c, x)|LA = min|cxy±1| where y ∈ ā

Now we can state the new version of LBA

CHAPTER 7. LENGTH-BASED ATTACK 48

Algorithm LBA with Look-ahead

1. Run Create an extended set with extra elements algorithm to create the set Ext.

2. Initialize a set S = {(b̄′, 1)}, where 1 is the identity element of Aut(F).

3. If S = 0 then output FAIL.

4. Choose a pair (c, x) ∈ S with the smallest |(c, x)|LA.

5. For each ξ ∈ Ext and each ε = ±1 compute ∆i,ε = |cx| − |cxξεi |.

• If cxξ
ε
i = b̄ then output the final result (xξεi)

−1.

• If ∆i,ε > 0 then add (c, xξεi) to the set S.

6. Delete (c, x) from the set S.

7. Go to Step 3.

We conducted a series of 100 experiments where the same problems were attacked by

• the enhanced LBA on the extended set with extra elements with the parameter C = 3

and the full set b̄′

• the LBA with look ahead on the extended set with extra elements with the parameter

C = 3 and the full set b̄′

In addition to registering the increased efficiency for the LBA with look-ahead, we observe

one more benefit. When the enhanced LBA and the LBA with look ahead attempted the

same problems, the sets of the successfully attacked problems do not fully match. And it

means that we can use both approaches on the same problems to increase the rate of success

even further. Therefore, in the following Table 7.6 we add the column “joint successes” that

shows the total number of successful experiments when attacking by both methods. In these

CHAPTER 7. LENGTH-BASED ATTACK 49

Number of experi-
ments

enhanced
LBA

LBA with
look ahead

joint suc-
cesses

100 30 49 58

Table 7.6: Performance of the LBA with look-ahead compared to the enhanced LBA. The
rank of the free group F is 20, each element of Alice’s and Bob’s set consists of 6 Nielsen
transformations.

LA enhanced
LBA

LBA with
look ahead

joint suc-
cesses

5 3 6 9
6 14 21 25
7 27 29 34

Table 7.7: Performance of look-ahead LBA and enhanced LBA for different LA. The rank
of the free group F is 20.

experiments the rank of the free group F is 20, each element of Alice’s and Bob’s set consists

of 6 Nielsen transformations.

Also, we conducted a number of experiments to see how the precision of the LBA with

look-ahead changes when the elements of ā and b̄ become shorter. We conducted 40 ex-

periments where the lengths LA and LB of each element of ā and b̄ is 5, 6 and 7 Nielsen

transformation. In all those experiments, the rank of F is 20, the number of elements in

both ā and b̄ is 10, the number L of elements of ā in A is 40. The number of experiments in

each series is 40.

Chapter 8

Complexity estimation

In this section, we estimate the computational complexity of the LBA attacks. We approach

the estimation from a slightly unusual perspective. Our main focus is on the best-case

complexity. The reason for it is the following: we design our LBA attacks to stay close to

the best-case. As we will show, the worst-case is so bad that there is no hope of solving it

with any reasonably available computational powers.

First, lets analyze the classic LBA with backtracking. The Alice’s secret key A =

aε1s1a
ε2
s2
. . . aεLsL consists of L elements. Therefore, the LBA attack should make L success-

ful iterations to find it. Since we want to compute the best-case complexity, we assume that

we do only the successful iterations. Each iteration is finding an element ai ∈ ā that yields

the product aiÃi−1b̄
′Ã−1i−1a

−1
i of the smallest length, where Ãi−1 is the product of the elements

of ā chosen on the previous i− 1 iterations. To find such an element, we must check all pos-

sible candidates, that is all elements of the set ā. To compute the length of aiÃi−1b̄
′Ã−1i−1a

−1
i

for the single element of ā, we must perform conjugation and reduction of the set Ãi−1b̄
′Ã−1i−1

by ai. The set Ãi−1b̄
′Ã−1i−1 contains N2 elements, thus we need to perform N2 conjugations

and reductions for every element of ā. There are N1 elements in ā. Thus, the number of

50

CHAPTER 8. COMPLEXITY ESTIMATION 51

conjugations]conj and the number of reductions]reduct that we need to perform is

]conj =]reduct = LN1N2.

Considering the fact that none of the parameters should be really large, this estimation

does not look bad at all. However, further we will present the actual measurements showing

that conjugations and reductions are very expensive operations. Also, we should consider

the inability of the classic LBA with backtracking to deal with the peaks in Alice’s secret

key A a trade-off for this relatively modest estimation.

Next we evaluate the number of conjugations and reductions needed in the best-case

scenario for the LBA attack on the extended guessing set. There are the following differences

compared to the complexity of the LBA with backtracking. First of all, there is the extended

set itself. It replaces the original set ā when it comes to choosing the conjugation element

for the next iteration. Thus, we replace the size N1 of the set ā by NExt – the size of the

extended guessing set. The natural question is this: how much larger is NExt compared to

N1? The answer strongly depends on the parameters been chosen for the AAG protocol.

The longer is the length of the elements of ā and the smaller is the rank R of the free group

F the closer is NExt to the N1. Subsequently we call such parameters “good” parameters,

opposed to “bad” parameters (short elements of ā and large rank R). For the set ā with 10

elements each consisting of 9 Nielsen transformations and rank R = 10, the set ā was hardly

extending at all so N1 and NExt were equal or almost equal. However, for the set ā with

10 elements each consisting of 6 Nielsen transformations and rank R = 20, NExt was 10–15

times larger than N1. Obviously, it constitutes 10–15 times growth of the computational

complexity compared to the classical LBA, because we try conjugating by every element in

our guessing set in order to make the next iteration step.

The next factor that changes complexity is the potentially different number of iteration

CHAPTER 8. COMPLEXITY ESTIMATION 52

steps L. Since the extended set contains elements that are made up of a few different elements

of ā (for example, conjugations), we can iterate towards the result a few elements at a time.

Therefore, the number of steps can be smaller than L. In practice, we observed a small

decrease of the number of iterations of the LBA on the extended set compared to the LBA

with backtracking for some parameters. The problem is the parameters that give the minor

decrease of the number of iterations are the same parameters that give the major growth of

the extended guessing set. That is why it seems reasonable to ignore the potential decrease

of the number of iterations and estimate the number of conjugations]conj and the number

of reductions]reduct the following way

]conj =]reduct = LNExtN2

If we move to the LBA with look-ahead the best-case computational complexity increases

even further. Now for every element of the original set ā that further decreases the length

of b̄′, we do the additional N1 conjugations and reductions, one conjugation and reduction

for every element of ā. So we can have up to N2
1 additional computations and reductions on

each iteration. Thus, the best-case estimation of the number of conjugations]conj and the

number of reductions]reduct for the LBA with look-ahead is

]conj =]reduct ≤ L(NExt +N2
1)N2

The LBA with look-ahead shows the worst best-case complexity. Given the realistic

parameters, the numbers themselves do not look large for modern computers. The problem

is the operations of conjugation and reduction are really computationally intense. Later

we will evaluate conjugation and reduction further, but now we can point out that their

computational intensity is the reason we use their numbers as a measure of the computational

intensity of LBA algorithms.

CHAPTER 8. COMPLEXITY ESTIMATION 53

In practice, each iteration of the LBA attack takes a lot of time. All the versions of

LBA presented above have backtracking in them but the practical cost of backtracking is

very high. As if the high cost of each iteration is not bad enough, usually the LBA attack

manages to make a few more steps after making a wrong one. Our experiments showed that

one wrong choice can take the LBA into the maze of dozens or even hundreds of iterations

before it returns on the right track.

This is the reason why we prefer the analysis of the best-case complexity. The idea is

to keep the average-case of the attacks as close to the best-case as possible. This is the

reason the LBA with look-ahead works better than the LBA with the extended set. We

agree to perform a significant amount of additional computations on each step to minimize

backtracking.

Evaluating the total number of all possible iterations on all possible paths (both right

and wrong) is really hard. Of course, it heavily depends on the parameters but also varies

greatly in different cases of the same parameters. Our experiments showed that often the

attack can never (within a given time limit for the experiment of course) go back on the right

track after making a wrong iteration. It means that each side-tree of iterations that diverts

from the correct sequence of iterations can be pretty large. Depending on the parameters,

there can be a lot of such side-trees on each iteration. For some “bad” parameters, it was

not unusual to see a dozen of possible iterations on a single step and the large part of those

iterations was wrong.

In our complexity discussion, we are mainly concerned about the number of conjugations

and reductions that is needed to be done. In addition to the general discussion about their

complexity, we carried out a number of small experiments to get better understanding of

how time consuming conjugations and reductions of automorphisms are in practice. Of

course, the specific numbers depend on the particular computer and implementation of the

algorithms. The computer we used for those experiments has Intel Core i5-6200U 2.30 GHz

CHAPTER 8. COMPLEXITY ESTIMATION 54

processor and 8 GB of RAM. Both conjugations and reductions was implemented without

multithreading. We performed 1000 experiments (conjunctions and reductions) for each set

of parameters and computed the average time of each. As for the size of the conjugated

and reduced automorphisms, we tried to keep it similar to the sizes that we deal with in

our experiments. Each conjugation approximately corresponds to the conjugation of a single

element of b̄′ by an element of ā, each reduction reduces the result of such conjugation. The

experiment can be described like this

1. Set the number Nils of Nielsen transformations. It corresponds to the number of

Nielsen transformations that make up each element of ā and b̄.

2. Set the rank Rank of the free group F .

3. Repeat 1000 times

• Generate a random automorphism α of rank Rank made of Nils Nielsen trans-

formations. α has the same size as the elements of ā.

• Generate a random automorphism β of rank Rank made of Nils ∗ (2 ∗ 40 + 1)

Nielsen transformations. β has approximately the same size as the elements b̄′

from our experiments. Keep in mind that our experiments use 40 elements of ā

to generate the Alice’s secret key.

• Conjugate β by α and measure the duration of that conjugation.

• Reduce the result of conjugation of β by α and measure the duration of that

reduction.

4. Compute the average duration of the above 1000 conjugations and also average reduc-

tion duration.

Below you can see the results.

CHAPTER 8. COMPLEXITY ESTIMATION 55

Nils Rank 10 Rank 15 Rank 20
6 143 66 35
7 214 102 53
8 289 145 74
9 384 204 106

Table 8.1: Average time to preform conjugation (in milliseconds)

Nils Rank 10 Rank 15 Rank 20
6 410 155 72
7 668 253 116
8 980 390 174
9 1377 581 262

Table 8.2: Average time to preform reduction (in milliseconds)

Those results give a nice insight in why we measure the complexity of our algorithms

in conjugations and reductions. Those operations turn out to be really computationally

intensive and time consuming sometimes even to an extent of being humanly perceivable.

Also, we can measure the time to generate the Alice’s secret key A. Random generation

of A consisting of L elements of ā requires L − 1 multiplications and 1 reduction. It also

requires the generation of a random sequence of L elements of ā, but it is reasonable to

consider that the choice of L random elements to multiply is negligibly fast compared to

multiplications and reductions. Below is the table with the actual average times it took to

generate the secret Alice’s key for different parameters. For each set of parameters there

were 100 keys generated and the average generation time computed. For those experiments

we used the same computer as for conjugations and reductions (Intel Core i5-6200U 2.30

GHz processor and 8 GB of RAM).

We choose the parameters for the above experiments to generate the keys of the sizes we

used in our experiments. One should not try to directly compare these results with the results

from the tables 8.1 and 8.2 because those tables deal with much larger automorphisms.

The last measurements we want to present here is time it takes to do all the computational

CHAPTER 8. COMPLEXITY ESTIMATION 56

Nils Rank 10 Rank 15 Rank 20
6 116 81 73
7 164 106 90
8 225 135 109
9 299 171 132

Table 8.3: Average time to generate an Alice’s secret key (in milliseconds)

job to obtain the shared secret key as Alice. This computational job includes

1. Generation of a random set ā. Generation of each of N1 elements of ā requires the

multiplication of LA Nielsen transformations.

2. Generation of the set b̄′. Generation of each of N2 elements of b̄′ requires 1 conjugation

(2 multiplications) of an element of b̄ by A.

3. Every element of b̄′ must be reduced.

4. Constructing the shared secret key K. It requires multiplication of L elements of ā′

and the Alice’s secret key A.

5. K must be reduced.

In this list we consider automorphisms inversions instantly available as it happens in our

implementation.

The Step 5, reducing K, is a very computationally intensive step. Since the complexity

of reduction is O(|P|7) and K is very long, this step takes more time than all other steps of

K generation combined. Because of it, we’ve chosen to measure the time of shared secret

key generation for smaller parameters. We reduced the number L of elements of ā in A (and

correspondingly the number of elements of b̄ in B) to 20.

CHAPTER 8. COMPLEXITY ESTIMATION 57

Nils Rank 10 Rank 15 Rank 20
6 295 89 30
7 524 178 56
8 1255 202 99
9 2949 473 164

Table 8.4: Average time to generate a shared secret key K (in milliseconds)

Chapter 9

Brute-force security

Here we discuss the possibility of replacing the LBA attacks by a straight-forward “try

all possible keys” brute-force attack. To demonstrate the impropriety of the brute-force

approach we estimate the number of possible keys that such attack should try. As before,

we are given a set ā that contains N1 elements and the number of the elements of ā in the

Alice’s secret key L. If no elements of ā commute the number]A of all possible keys is

]A = 2N1(2N1 − 1)L−1

Such number of possible keys greatly discourages the brute-force attack, however the

elements of ā sometimes commute for “bad” parameters. We conducted the following exper-

iment to evaluate the possible number of pairs of commuting elements in ā. We took one of

the worst parameters that we have dealt with in this work (the rank R = 20, the length of

each element of ā equals 6, the number of elements in ā is 10). We generated random sets

ā for those parameters and counted the number of pairs of commuting elements in each set.

For 1000 sets, the average number of commuting pairs in each set was 0.534. In other words,

we have found one commuting pair in every two sets. Thus, our evaluation of the number

of possible Alice’s secret keys A should not change a lot even for “bad” parameters.

58

CHAPTER 9. BRUTE-FORCE SECURITY 59

We can conclude that the brute-force attack is inefficient and cannot replace the LBA

attack.

It is important to mention that]A is so large that even the quadratic speedup offered by

the Grover’s algorithm does not make the brute-force attack viable.

Chapter 10

Important properties of Aut(F)

In this section, we discuss the properties of Aut(F). Those properties offer us the insight

in the already observed LBA performance and provide us with a better understanding of

Aut(F) for future research.

10.1 Irregular peaks

The LBA attack that was described above has a high percentage of successful applications

but in some experiments it still fails to find a key. For high ranks and short elements in

Alice’s and Bob’s sets, the success rate of LBA drops below 60%. Those lower results are

caused by the complex nature of the Aut(F) group.

One major reason for LBA failures is the presence of peaks in Alice’s secret key A. We

teach the LBA to handle peaks by including possible peaks in the extended guessing set Ext.

But some peaks in Alice’s secret key appear without any predictable patterns and therefore

are hard to include in the extended guessing set Ext.

Here is the example of such irregular peak to demonstrate. In this example, neither ξ−1φξ

nor ξ−1ψξ contain any peaks. Therefore, these conjugations do not seem to belong in Ext.

60

CHAPTER 10. IMPORTANT PROPERTIES OF AUT (F) 61

But the product of these conjugations produces a peak |(ξ−1ψξ) ∗ (ξ−1φξ)| = |ξ−1ψφξ| ≤

|ξ−1ψφ|.

Example 10.1.1. Consider the following automorphisms from Aut(F3)

Automorphism ψ :
a→ ca

b→ a−1b

c→ c

Automorphism φ :
a→ a

b→ ab

c→ cbb

Automorphism ξ :
a→ ab−1b−1

b→ b

c→ c

In the next example, the product ψφ does not produce a peak and |ψφ| > |ψ|. But when

ψφ is a fragment of a longer sequence ξψφ a peak occurs and |ξψφ| < |ξψ|. This example

shows that the behaviour of automorphism as a part of a larger automorphism depends not

only on the original automorphism itself but also on the context in which it is included.

Example 10.1.2. Consider the following automorphisms from Aut(F3)

Automorphism ψ :
a→ ab

b→ cb

c→ c

CHAPTER 10. IMPORTANT PROPERTIES OF AUT (F) 62

Automorphism φ :
a→ ab−1

b→ b

c→ cb

Automorphism ξ :
a→ a

b→ b

c→ caaaa

Finding such irregular peaks in order to include them in Ext is hard because it is not

obvious where to look for them. Also, the amount of such peaks is significant while the

chance of them appearing in A is very low. Thus, even if we try to account for such low-

probability peaks we end up with a very large Ext that slows down the LBA significantly

without any reasonable increase of the LBA success rate.

Because of such complex behavior, we have introduced the guessing set with extra ele-

ments in Section 7.5. Also, this is one of the reasons why there is a chance of an LBA failure

even on LBA-weak parameters.

10.2 Alternative normal form for the automorphisms

from Aut(F)

So far, we were dealing with automorphisms presented as a set of images of all letters

from the alphabet X of a free group F . This presentation of the automorphisms (which

we will subsequently call ILP that stands for Images of the Letters Presentation) provides

us with an efficiently computable normal form. However, that is not the only available

presentation. Another, and rather obvious, way to present automorphisms is a sequence

CHAPTER 10. IMPORTANT PROPERTIES OF AUT (F) 63

of Nielsen transformations. Since every automorphism from Aut(F) can be presented as a

sequence of Nielsen transformations, this presentation is quite possible.

We did not use this presentation before because of the problems with the normal form in

it. Often times, the same automorphism can be presented by a few very different sequences

so having an efficiently computable normal form is crucial. The example of such different

presentations can be two sequences:

Sequence 1: (a→ ab) ∗ (b→ a−1b) ∗ (a→ ba) ∗ (a→ a−1)

Sequence 2: a→ b

The sequences 1 and 2 both define the same automorphism but it is not immediately

obvious from the the presentations themselves.

The normal form for the Nielsen transformations presentation (subsequently called NTP)

can be obtained from the previous ILP presentation of automorphisms. Indeed, since the

images ofX can be used as a normal form of an automorphism, we can define an unambiguous

rules of converting this normal form to the NTP. For our experiments we choose the following

algorithm:

Algorithm Converting the automorphism φ from ILP to NTP

1. Set Seq to be an initially empty sequence of Nielsen transformations.

2. If the length of φ is equal to the rank r of the free group F go to Step 4.

3. From all Nielsen transformations choose transformation n that minimizes |φn|ILP .

• If |φ|ILP − |φn|ILP > 0, set φ = φn and add n to the beginning of Seq. Go to

Step 2.

CHAPTER 10. IMPORTANT PROPERTIES OF AUT (F) 64

• If |φ|ILP − |φn|ILP = 0, find the automorphism ψ of the same length as φ such

that

n1...niφ = ψ and the length of ψ can be reduced by multiplication by one of

Nielsen transformations. n1...ni is the set of Nielsen transformations of types 3, 4

and 5. Add these transformations to the beginning of Seq. φ = ψ. Go to Step 2.

4. Multiply φ by Nielsen transformations of type 1 to get rid of all inverse letters in

alphabet letter’s images. Add each such transformation to the beginning of Seq.

5. Multiply φ by Nielsen transformations of type 2 to bring φ to identity. Add each such

transformation to the beginning of Seq.

6. Replace every transformation in Seq by it’s inverse. The resulting sequence in Seq is

the NTP form of the initial φ

In step 3 of this algorithm, we try to reduce the length as fast as we can but sometimes we

can run into the situation when no single Nielsen transformation can reduce the length of the

automorphism. In this case, we know that there is an automorphism that can be obtained

from the current automorphism without changing the length and the second automorphism

can be reduced further by one of the Nielsen transformations. This fact follows from the

Nielsen reduction procedure.

The important thing to mention about the above algorithm of ILP to NTP conversion is

its complexity. This algorithm is computationally heavy. Most of the work should be done

on Step 3 when we do multiplication and reduction for every Nielsen transformation of type

3,4 and 5.

Thus, if we have an automorphism in NTP and we want to obtain its NTP normal form,

we must perform two steps. First, we must convert NTP to ILP. Second, we must convert

ILP back to NTP following the unambiguous rules of the conversion algorithm defined above.

CHAPTER 10. IMPORTANT PROPERTIES OF AUT (F) 65

The first step is fast. However, the second step is slow, and as of now there is no known way

to convert ILP to NTP efficiently. During the LBA attack, we can afford to compute such

normal form a few times but doing it all the time for realistically complex automorphisms

is not practical.

The computationally expensive normal form of NTP and two more NTP properties that

we will discuss next lead us to believe that NTP is not good for use in the LBA attacks. So

what are these two NTP properties?

The first property is the small size of an automorphism in the NTP form. The sizes

of the images of the letters of X grow exponentially with the linear growth of the number

of Nielsen transformations that make up the automorphism. We use SLP to store and

process these images because SLP promises the computationally- and memory-efficient way

to deal with them. We said before that we expect SLPs to compare in efficiency to NTP

presentation. However, in practice, because of the cancellations of the inverse letters in

words, SLP presentation of X images is memory consuming and all operations on it are

computationally intense. Therefore, if Alice and Bob use large automorphisms in NTP form

they must convert them to the expensive normal form just a few times (for shared secret key

and sets ā′ and b̄′), while attacker got to do it many times. This computational imbalance

allows to make LBA practically infeasible.

One might justly argue that LBA does not require computing normal forms often. Indeed,

most of the time LBA cares only for the length of the automorphisms. We really need to

compare the equality of the automorphisms only to check if we have reached the end of the

attack. And it does not look so bad for the attacker. However, there is the second property

that does not allow to use NTP form for the LBA easily.

The second property of NTP is instability and unpredictability of an above-discusses

normal form. Here is what we mean by “unstable and unpredictable”: If we have two

automorphisms φ, ψ ∈ Aut(F), the normal form of the product φ∗ψ can bare no resemblance

CHAPTER 10. IMPORTANT PROPERTIES OF AUT (F) 66

to neither φ and ψ nor their normal forms. This property has two immediate consequences.

First, it becomes unclear how we can deal with automorphisms in NTP during the LBA

attack without constantly converting to ILP and potentially back to NTP. Second, this

inconvenient property of NTP normal forms translates to the length measurement.

The most natural way to define the length of the automorphism in NTP is by the number

of Nielsen transformations that make up its NTP form. However, for the two fully reduced

automorphisms φ = n1 ∗ ... ∗ ni−1 ∗ ni and ψ = n1 ∗ ... ∗ ni−1 where all n are Nielson

transformations, the lengths of their normal forms can differ significantly in any manner.

For example, the length of the normal form of ψ can be significantly larger than the length

of the normal form of φ though one might expect the opposite behaviour.

To illustrate the unpredictable behaviour of the NTP, we conducted the following experi-

ment. We generate the automorphism φ39 as a sequence of 39 Nielsen transformations of type

3 and 4 (length changing Nielsen transformations). Then we generate the automorphism φ40

by applying one more random Nielsen transformation of types 3 or 4 to φ39 that does not

cancel out with the existing transformations. Thus, the lengths of φ39 and φ40 differ by 1.

Then we compute normal NTP forms for both φ39 and φ40. Here is the table showing the

difference in lengths |normNTP (φ40)| − |normNTP (φ39)|. The total number of experiments is

100. The rank R of the base free group F is 10. The length is understood as a number of

Nielsen transformations of types 3, 4 and 5 only.

As mentioned above, we expect the difference of lengths of the normal forms to be 1.

Instead of it, the difference varies greatly and goes as high as 11. In 11% of the experiments we

observe the decrease in length of the nornal form when going from 39 Nielsen transformations

to 40. The counterintuitive results in 11 out of 100 experiments should be explained by the

properties of the NTP normal form. In 8% of experiments, we observe no change of length

and it is also unacceptable from the LBA point of view.

To demonstrate the properties of the NTP presentation further we define the specter of

CHAPTER 10. IMPORTANT PROPERTIES OF AUT (F) 67

Figure 10.1: NTP length differences

NTP presentation of the automorphism.

Definition 10.2.1. The specter of the NTP presentation of the automorphism φ ∈ Aut(F)

is the number of occurrences of each Nielsen transformation in this NTP presentation.

For the above definition, the number of occurrences of a Nielsen transformation and the

number of occurrences of its inverse are counted separately. We used specter to further eval-

uate the difference of normNTP (φ40) and normNTP (φ39). It is intuitive that different specters

mean differently looking automorphisms that are hard to compare without converting them

to ILP.

We repeated the experiments for normNTP (φ40) and normNTP (φ39), but this time instead

of comparing the length of normNTP (φ40) and the length normNTP (φ39) we compare their

specters. We compute the ratio

similarity = common/total

where total is the total number of Nielsen transformations in normNTP (φ39) (in other words,

CHAPTER 10. IMPORTANT PROPERTIES OF AUT (F) 68

total is the NTP-length of normNTP (φ39)) and common is the number of Nielsen transforma-

tions that occur in both normNTP (φ40) and normNTP (φ39). For example, if normNTP (φ39)

has three occurrences of a → ab and normNTP (φ40) has only two, then normNTP (φ40) and

normNTP (φ39) have two occurrences of a→ ab in common.

Again, we conducted 100 experiments and for each experiment we computed the

similarity value. The average value of similarity for 100 experiments was 0,456. Such

a low level of similarity for the normal forms of the automorphisms that originally differed

only by one Nielsen transformation is another demonstration of the unpredictable nature of

the NTP normal forms of automorphisms.

All of the above lead us to believe that NTP form is unfitting for the LBA attacks.

However, some other uses may be possible. For example, Alice and Bob can use the fact

that NTP form is much shorter than ILP form in practice. It allows to share public data in

a condensed form when the data channel bandwidth is limited. Also, NTP form allows an

easy inversion of the automorphism, whereas there is no known efficient way to invert the

automorphism in ILP form.

Chapter 11

LBA-resistant key generation

In this section, we discuss a way to improve the resistance of AAG to the LBA attacks by

generating special non-random Alice’s secret key A.

The idea comes from the observation of the major weakness of LBA. LBA attacks do not

like peaks in the Alice’s secret key and subsequently in the elements of b̄′. In the enhanced

and look-ahead LBA attacks, we extend the initial Alice’s public set to fight those peaks.

Still, the suggested set extension fights only the peaks of the following types:

• ...aiai+1... where a part of ai+1 cancels out with a part of ai.

• ...ai...ai+2... where a part of ai+2 cancels out with a part of ai.

The extension allows the enhanced and look-ahead LBAs to efficiently attack randomly

generated Alice’s secret key A. But what happens if A contains a peak of a different type?

The LBA attack fails.

The above mentioned types of peaks are responsible for the majority of peaks appearing

in a randomly generated A and the chance of getting random peak of other type is very

low. It means that we should move away from completely random key generation in order

69

CHAPTER 11. LBA-RESISTANT KEY GENERATION 70

to reliably introduce such improbable peaks. Also, we introduce some rules for the Alice’s

public set ā, thus moving away from a completely random ā as well.

The rules presented below show just one of the possible approaches to building LBA-

resistant keys. We do not claim that they are optimal. Even more so, to present the idea

we want to build a pretty simple example.

We split the Alice’s public set ā in three parts:

• General purpose elements. They are just random automorphisms.

• “Peak” elements – the elements that are used to create peaks.

• “Fill” elements – used to fill the space between “peak” elements without spoiling their

ability to create peaks. Obviously, some restrictions should apply to both “peak” and

“fill” elements.

Now, laying down really efficient rules for creating “peak” and “fill” elements can be

quite a creative task in itself. To demonstrate how the whole construction can work, let us

build a very simple example without claiming that it is optimal. Each element of ā in the

algorithm below initially has LA Nielsen transformations in it.

Algorithm Generating the initial “peak” automorphism p of length LA

1. a = xR/2+1 → xR/2+1xi or a = xR/2+1 → xixR/2+1 where R is the rank of the free group

F and i > R/2 + 1

2. Multiply a by LA− 1 Nielsen transformations of from xk → xkx
±
l or xk → x±l xk where

k, l < R/2 + 1.

3. Reduce p = Reduce(a).

Algorithm Generating the “fill” automorphism f of length LA

CHAPTER 11. LBA-RESISTANT KEY GENERATION 71

1. a = xi → xR/2+1xi or a = xi → xixR/2+1 where R is the rank of the free group F and

i > R/2 + 1

2. Multiply a by LA− 1 Nielsen transformations of from xk → xkx
±
l or xk → x±l xk where

k, l ≥ R/2 + 1.

3. f = Reduce(a).

It is an important property of “peak” and “fill” elements that they do not fully commute

with each other. Using the above algorithms we can generate an Alice’s public set

Algorithm Creating the initial set ā for LBA-resistant keys

1. Choose a number Ngp of general purpose elements. Generate Ngp of the length LA and

place them in ā.

2. Choose a number Npeak of “peak” elements. Following the “peak” automorphism

generation algorithm, generate Npeak “peak” automorphisms pi and place them in ā.

3. Choose a number Nfill of “fill” elements. Following the “fill” automorphism generation

algorithm, generate Nfill “fill” automorphisms fi and place them in ā.

From the elements of the LBA-resistant set ā, we can generate an LBA-resistant Alice’s

private key A using the following algorithm:

Algorithm Generating an LBA-resistant key A of SL elements of ā

1. Choose the numbers head, construct,mid, end > 1 such that head+ construct+mid+

construct+ end = SL

2. A = ash1 · ... ·ashhead , where ash are the elements of ā or its inverses and no neighbouring

elements cancel each other out.

CHAPTER 11. LBA-RESISTANT KEY GENERATION 72

3. A = A · psp1 · ... · pspconstruct , where psp1 · ... · psconstruct is a random sequence of “peak”

elements and their inverses, where no neighbouring elements are the same or inverses

of each other (including ashhead).

4. A = A ·fsf1 · ... ·fsfmid , where fsf1 · ... ·fsfmid is a random sequence of “fill” elements and

their inverses, where no neighbouring elements are the same or inverses of each other.

5. A = A · p−1scconstruct · ... · p
−1
sc1

, where p−1scconstruct · ... · p
−1
sc1

is a inverted sequence of “peak”

elements and their inverses from Step 3. After multiplication by each p−1sc , perform

reduction. If after the reduction the length of A has increased, increase the psc by a

random Nielsen transformation of from xk → xkx
±
l or xk → x±l xk where k, l < R/2+1,

discards the current A and go back to step 2.

6. A = A · ase1 · ... · aseend , where ase1 · ... · aseend is a product of a random sequence of

elements of ā and their inverses, where no neighbouring elements cancel each other

(including p−1sc1) out.

7. Reduce A

The idea of the above algorithm is this: each inverse of “peak” element added on Step 5

largely cancels out with the corresponding “peak” element added on Step 3. Adding “fill”

elements on Step 4 ensures that the “peak” elements do not cancel each other out completely.

Thus, we expect each “peak” element added on Step 5 to reduce the length after reduction.

It creates a peak of height construct meaning that for construct multiplications in a row the

length of A decreases after reduction.

We conducted the series of experiments trying to break LBA-resistant Alice’s secret keys

with both enhanced LBA and LBA with look-ahead. We use the rank of a free group R = 10

because this lower rank is favorable to LBA. Other parameters: the number of elements of ā

in A is 20 (8 random elements of ā, 5 “stumble” elements then 2 “fill” elements and finally 5

CHAPTER 11. LBA-RESISTANT KEY GENERATION 73

LA 9 8 7 6
Enchanced LBA 0/20 0/20 0/20 0/20
LBA with look-ahead 0/20 0/20 0/20 0/20

Table 11.1: Success rate of enhanced LBA and LBA with look-ahead for different LA for a
securely generated key A

more “stumble” elements that are the inverses of the first 5). Table 11.1 shows the results of

the experiments. Each cell represents the number of successful attacks out of 20 experiments

for that set of parameters. One can see that none of the LBA-resistant keys was broken by

any version of LBA.

The natural question is, can we further extend the Alice’s public set ā to account for the

new type of peaks. The answer is yes, we can. But lets evaluate how large such extension

can be.

The constructions that generates the peak in A looks like this

peak = at1 · ... · atconstruct · af1 ... · afmid · a−1tconstruct · ... · a
−1
t1

where at are “peak” elements and af are “fill” elements. To avoid including in the extended

set all such constructions for all possible values of construct and mid, we can extend ā with

a smaller number of all possible elements of the form

aext = at1 · ... · atconstruct · af · a−1tconstruct · ... · a
−1
t1

Indeed, if we multiply peak construction by the corresponding aext the peak construction

looses one “fill” element.

If the number of possible “peak” elements is Npeak and the number of possible “fill”

elements is Nfill then the total number Naext of all possible aext is

Naext > construct2Npeak−1 · 2Nfill

CHAPTER 11. LBA-RESISTANT KEY GENERATION 74

The above estimation shows that the number Naext grows fast, and even small values of

construct, Npeak and Nfill extend the set ā so much that LBA attack becomes computation-

ally too difficult.

On the other hand, generating the LBA-resistant key A is not much more difficult than

generating a completely random A. Compared to generating a random A, the LBA-resistant

A can require some additional automorphism multiplications and reductions if in Generating

the LBA-resistant key algorithm there is jumping from the step 5 to the step 2. In practice,

we did not observe any significant delay in Alice’s key generation when we switched from

random keys to LBA-resistant keys.

Chapter 12

Conclusion

We have analyzed the security properties of the Anshel-Anshel-Goldfeld protocol used with

the base group of automorphisms of a free group. We found that the AAG protocol used

with Aut(F) is susceptible to different versions of the length-based attack. We showed the

efficient way to use the existing versions of the LBA attack and also introduced our own new

version of LBA which we call the LBA with look-ahead. The LBA with look-ahead provides

us with a significantly increased success rate for the most attack-resistant combinations of

parameters. All the proposed versions of LBA can be used for other cryptography protocols

based on different versions of the conjugacy search problem (notably the Ko-Lee protocol)

used with Aut(F).

However, our experiments and theoretical evaluations showed that there are the param-

eters that present additional challenges for the LBA attacks. These parameters are a high

rank R of the free group F and a low number of Nielsen transformations in the elements

that make up ā and b̄, the public sets of Alice and Bob. We showed that the success rate

of the LBA attacks drops for such parameters. Therefore, these parameters can be used to

develop a secure way to use the AAG protocol with Aut(F).

We experimented with a presentation of automorphisms in a form of the sequence of

75

CHAPTER 12. CONCLUSION 76

Nielsen transformations and suggested to use it as a compact way to exchange automorphisms

between Alice and Bob. This presentation that we called NTP allows easy inversion of the

automorphism. It is especially useful since ILP presentation does not have an efficient

algorithm for automorphism inversion.

We suggested to move away from the random key generation and use the known lim-

itations of the LBA attacks to create private keys that are resistant to such attacks. We

suggested one such method that generated secret keys, none of which was broken by any

LBA attack in our experiments.

Bibliography

[Anshel et al., 1999] Anshel, I., Anshel, M., and Goldfeld, D. (1999). An algebraic method
for public-key cryptography. Math. Res. Lett., 6(3-4):287–291.

[Anshel et al., 2006] Anshel, I., Anshel, M., Goldfeld, D., and Lemieux, S. (2006). Key
agreement, the algebraic eraserTM , and lightweight cryptography. In Algebraic Methods
in Cryptography, volume 418 of Contemporary Mathematics, pages 1–34. American Math-
ematical Society.

[Bigelow, 2001] Bigelow, S. (2001). Braid groups are linear. J. Amer. Math. Soc., 14:471–
486.

[Birman et al., 2007] Birman, J. S., Gebhardt, V., and Gonzalez-Meneses, J. (2007). Conju-
gacy in Garside groups I: Cyclings, powers, and rigidity. Groups Geom. Dyn., 1:221–279.

[Cramer and Shoup, 1998] Cramer, R. and Shoup, V. (1998). A practical public key cryp-
tosystem provably secure against adaptive chosen ciphertext attack. In Advances in Cryp-
tology – CRYPTO 1998, volume 1462 of Lecture Notes Comp. Sc., pages 13–25, London,
UK. Springer-Verlag.

[D. Atkins, 2016] D. Atkins, D. G. (2016). Addressing the algebraic eraser diffie–hellman
over-the-air protocol. Cryptology ePrint Archive.

[D. Hart, 2017] D. Hart, D. Kim, G. M. G. P. C. P. Y. Q. (2017). A practical cryptanalysis
of walnutdsa. Cryptology ePrint Archive.

[Dehn, 1911] Dehn, M. (1911). Uber unendliche diskontinuierliche Gruppen. Mathematische
Annalen, 71:116–144.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. E. (1976). New directions in cryp-
tography. IEEE T. Inform. Theory, IT-22:644–654.

[E. El-Rifai, 1994] E. El-Rifai, H. M. (1994). Algorithms for positive braids. Quart. J. Math.,
pages 479–497.

[Eick and Kahrobaei,] Eick, B. and Kahrobaei, D. Polycyclic groups: a new platform for
cryptology? Preprint. Available at http://arxiv.org/abs/math.GR/0411077.

77

http://arxiv.org/abs/math.GR/0411077

BIBLIOGRAPHY 78

[ElGamal, 1985] ElGamal, T. (1985). A public-key cryptosystem and a signature scheme
based on discrete logarithms. IEEE T. Inform. Theory, IT-31:469–473.

[F.Garside, 1969] F.Garside (1969). The braid group and other groups. Quart. J. Math.,
pages 235–254.

[Franco and González-Meneses, 2003] Franco, N. and González-Meneses, J. (2003). Conju-
gacy problem for braid groups and garside groups. J. Algebra, 266:112–132.

[Garber et al., 2015] Garber, D., Kahrobaei, D., and Lam, H. (2015). Length-based attacks
in polycyclic groups. J. Math. Crypt., z:xx–yy.

[Garber et al., 2005] Garber, D., Kaplan, S., Teicher, M., Tsaban, B., and Vishne, U. (2005).
Probabilistic solutions of equations in the braid group. Adv. Appl. Math., 35:323–334.

[Garber et al., 2006] Garber, D., Kaplan, S., Teicher, M., Tsaban, B., and Vishne, U. (2006).
Length-based conjugacy search in the braid group. In Algebraic Methods in Cryptography,
volume 418 of Contemp. Math., pages 75–88. Amer. Math. Soc.

[Gebhardt, 2005] Gebhardt, V. (2005). A new approach to the conjugacy problem in garside
groups. J. Algebra, 292:282–302.

[Gebhardt, 2006] Gebhardt, V. (2006). Conjugacy search in braid groups from a braid-based
cryptography point of view. Appl. Algebra Eng. Comm., 17:219–238.

[Grover, 1996] Grover, L. (1996). A fast quantum mechanical algorithm for database search.
In 28th Annual ACM Symposium on the Theory of Computing (STOC), pages 212–219.

[Gunnells, 2011] Gunnells, P. (2011). On the cryptanalysis of the generalized simultaneous
conjugacy search problem and the security of the algebraic eraser. Cryptography and
Security.

[Hellman, 2002] Hellman, M. E. (May 2002). An overview of public key cryptography. IEEE
Communications Magazine, pages 42–49.

[Hofheinz and Steinwandt, 2003] Hofheinz, D. and Steinwandt, R. (2003). A practical attack
on some braid group based cryptographic primitives. In Advances in Cryptology – PKC
2003, volume 2567 of Lecture Notes Comp. Sc., pages 187–198, Berlin. Springer.

[Hsu, 2018] Hsu, J. (2018). Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy.
Institute of Electrical and Electronics Engineers.

[Hughes, 2002] Hughes, J. (2002). A linear algebraic attack on the AAFG1 braid group
cryptosystem. In The 7th Australasian Conference on Information Security and Privacy
ACISP 2002, volume 2384 of Lecture Notes Comp. Sc., pages 176–189, Berlin. Springer.

BIBLIOGRAPHY 79

[I. Anshel, 2017a] I. Anshel, D. Atkins, D. G. P. G. (2017a). Kayawood, a key agreement
protocol. Cryptology ePrint Archive.

[I. Anshel, 2017b] I. Anshel, D. Atkins, D. G. P. G. (2017b). Walnutdsa(tm): A quantum-
resistant digital signature algorithm. Cryptology ePrint Archive.

[J. Cheon, 2003] J. Cheon, B. J. (2003). A polynomial time algorithm for the braid diffie-
hellman conjugacy problem. CRYPTO, pages 212–225.

[Jez, 2015] Jez, A. (2015). Faster Fully Compressed Pattern Matching by Recompression.
volume 11, pages 20:1–20:43.

[Kelly, 2018] Kelly, J. (2018). A preview of bristlecone, googles new quantum processor.
Google AI Blog.

[Knight, 2017] Knight, W. (2017). IBM raises the bar with a 50-qubit quantum computer.
MIT Technology Review.

[Ko et al., 2000] Ko, K. H., Lee, S. J., Cheon, J. H., Han, J. W., Kang, J., and Park, C.
(2000). New public-key cryptosystem using braid groups. In Advances in Cryptology –
CRYPTO 2000, volume 1880 of Lecture Notes Comp. Sc., pages 166–183, Berlin. Springer.

[Kotov and Ushakov,] Kotov, M. and Ushakov, A. Analysis of a certain polycyclic-group-
based cryptosystem. Submitted to JMC. Available at http://arxiv.org/abs/1504.

05040.

[Lee and Lee, 2002] Lee, S. J. and Lee, E. (2002). Potential weaknesses of the commutator
key agreement protocol based on braid groups. In Advances in Cryptology – EUROCRYPT
2002, volume 2332 of Lecture Notes Comp. Sc., pages 14–28, Berlin. Springer.

[Lifshits, 2007] Lifshits, Y. (2007). Processing Compressed Texts: A Tractability Border.
In Annual Symposium on Combinatorial Pattern Matching – CPM 2007, volume 4580 of
Lecture Notes Comp. Sc., pages 228–240. Springer.

[Lohrey, 2012] Lohrey, M. (2012). Algorithmics on SLP-compressed strings: A survey.
Groups, Complexity, Cryptology, 4:241–299.

[Longrigg and Ushakov, 2009] Longrigg, J. and Ushakov, A. (2009). A practical attack on
a certain braid group based shifted conjugacy authentication protocol. Groups Complex.
Cryptol., 1:275–286.

[Lyndon and Schupp, 2001] Lyndon, R. and Schupp, P. (2001). Combinatorial Group The-
ory. Classics in Mathematics. Springer.

[M. Kotov, 2018] M. Kotov, A. Menshov, A. U. (2018). An attack on the walnut digital
signature algorithm. Cryptology ePrint Archive.

http://arxiv.org/abs/1504.05040
http://arxiv.org/abs/1504.05040

BIBLIOGRAPHY 80

[Maffre, 2005] Maffre, S. (2005). Reduction of conjugacy problem in braid groups, using two
garside structures. WCC, pages 214–224.

[Maffre, 2006] Maffre, S. (2006). A weak key test for braid-based cryptography. Designs,
Codes and Cryptography, pages 347–373.

[Magnus et al., 1976] Magnus, W., Karrass, A., and Solitar, D. (1976). Combinatorial Group
Theory. Dover Publications, Inc.

[Matucci, 2008] Matucci, F. (2008). Cryptanalysis of the Shpilrain-Ushakov protocol for
Thompson’s group. J. Cryptology, 21:458–468.

[Menezes et al., 1996] Menezes, A. J., van Oorschot, P., and Vanstone, S. (1996). Handbook
of Applied Cryptography. CRC Press.

[Miasnikov et al., 2005] Miasnikov, A. G., Shpilrain, V., and Ushakov, A. (2005). A practical
attack on some braid group based cryptographic protocols. In Advances in Cryptology –
CRYPTO 2005, volume 3621 of Lecture Notes Comp. Sc., pages 86–96, Berlin. Springer.

[Miasnikov et al., 2006] Miasnikov, A. G., Shpilrain, V., and Ushakov, A. (2006). Random
subgroups of braid groups: an approach to cryptanalysis of a braid group based crypto-
graphic protocol. In Advances in Cryptology – PKC 2006, volume 3958 of Lecture Notes
Comp. Sc., pages 302–314, Berlin. Springer.

[Miasnikov et al., 2011] Miasnikov, A. G., Shpilrain, V., and Ushakov, A. (2011). Non-
Commutative Cryptography and Complexity of Group-Theoretic Problems. Mathematical
Surveys and Monographs. AMS.

[Myasnikov and Ushakov, 2007] Myasnikov, A. D. and Ushakov, A. (2007). Length based
attack and braid groups: Cryptanalysis of Anshel-Anshel-Goldfeld key exchange protocol.
In Advances in Cryptology – PKC 2007, volume 4450 of Lecture Notes Comp. Sc., pages
76–88. Springer.

[Myasnikov and Ushakov, 2009] Myasnikov, A. D. and Ushakov, A. (2009). Cryptanalysis
of Anshel-Anshel-Goldfeld-Lemieux key agreement protocol. Groups Complex. Cryptol.,
1:263–275.

[Nielsen, 1921] Nielsen, J. (1921). Om regning med ikke-kommutative faktorer og dens an-
vendelse i gruppeteorien. Math. Tidsskrift B.

[Nielsen, 1924] Nielsen, J. (1924). Om regning med ikke-kommutative faktorer og dens an-
vendelse i gruppeteorien. Mathematische Annalen.

[Plandowski, 1994] Plandowski, W. (1994). Testing equivalence of morphisms on context-
free languages. In Algorithms-ESA 1994 (Utrecht), volume 855 of Lecture Notes Comp.
Sc., pages 460–470. Springer-Verlag.

BIBLIOGRAPHY 81

[Pollard, 1974] Pollard, J. M. (1974). Theorems on factorization and primality testing. Pro-
ceedings of the Cambridge Philosophical Society, 76.

[R. Rivest, 1978] R. Rivest, A. Shamir, L. A. (1978). A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM.

[Ruinsky et al., 2007] Ruinsky, D., Shamir, A., and Tsaban, B. (2007). Cryptanalysis of
group-based key agreement protocols using subgroup distance functions. In Advances in
Cryptology – PKC 2007, volume 4450 of Lecture Notes Comp. Sc., pages 61–75. Springer.

[S. Blackburn, 2016] S. Blackburn, M. R. (2016). On the security of the algebraic eraser tag
authentication protocol. Applied Cryptography and Network Security, pages 3–17.

[Schleimer, 2008] Schleimer, S. (2008). Polynomial-time word problems. Comment. Math.
Helv., 83:741–765.

[Shor, 1997] Shor, P. (1997). Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509.

[Shpilrain and Ushakov, 2005] Shpilrain, V. and Ushakov, A. (2005). Thompson’s group and
public key cryptography. In Applied Cryptography and Network Security – ACNS 2005,
volume 3531 of Lecture Notes Comp. Sc., pages 151–164. Springer.

[Shpilrain and Ushakov, 2006a] Shpilrain, V. and Ushakov, A. (2006a). A new key exchange
protocol based on the decomposition problem. In Algebraic Methods in Cryptography, vol-
ume 418 of Contemporary Mathematics, pages 161–167. American Mathematical Society.

[Shpilrain and Ushakov, 2006b] Shpilrain, V. and Ushakov, A. (2006b). The conjugacy
search problem in public key cryptography: unnecessary and insufficient. Appl. Algebra
Engrg. Comm. Comput., 17:285–289.

[Tsaban, 2013] Tsaban, B. (2013). Polynomial-time solutions of computational problems in
noncommutative-algebraic cryptography. Journal of Cryptology, 28:601–622.

[V. Gebhardt, 2008] V. Gebhardt, J. G.-M. (2008). The cyclic sliding operation in garside
groups.

[W. Beullens, 2018] W. Beullens, S. B. (2018). Practical attacks against the walnut digital
signature scheme. Cryptology ePrint Archive.

[Whitehead, 1936] Whitehead, J. (1936). On equivalent sets of elements in a free group.
Ann. of Math., 37:782–800.

	Analysis of a Group of Automorphisms of a Free Group as a Platform for Conjugacy-Based Group Cryptography
	Contents
	List of Tables
	List of Figures
	Introduction
	History of classic public-key cryptography
	Quantum-resistant cryptography

	Preliminaries to group theory
	Finitely presented groups
	Dehn problems
	Group of automorphisms of the free group
	Length of an automorphism
	Problems in the group of automorphisms
	Random automorphisms generation

	Introduction to straight-line programs
	Straight-line programs
	Operations on SLPs
	Automorphisms presented in form of SLPs

	Complexity of operations on the automorphisms presented in the form of the SLPs
	Protocols of group-based cryptography
	Protocol description

	Length-based attack
	Fundamentals of length-based attack
	Length-based attack with backtracking
	Enhanced LBA
	Properties of the set
	Further improvements to the enhanced LBA
	LBA with look-ahead

	Complexity estimation
	Brute-force security
	Important properties of Aut(F)
	Irregular peaks
	Alternative normal form for the automorphisms from Aut(F)

	LBA-resistant key generation
	Conclusion
	Bibliography

