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Abstract

On the Complexity of Computing Galois Groups of Differential Equations

by

Mengxiao Sun

Advisor: Professor Alexey Ovchinnikov

The differential Galois group is an analogue for a linear differential equation of the classical

Galois group for a polynomial equation. An important application of the differential Galois

group is that a linear differential equation can be solved by integrals, exponentials and

algebraic functions if and only if the connected component of its differential Galois group

is solvable. Computing the differential Galois groups would help us determine the existence

of the solutions expressed in terms of elementary functions (integrals, exponentials and

algebraic functions) and understand the algebraic relations among the solutions.

Hrushovski first proposed an algorithm for computing the differential Galois group of a

general linear differential equation. Recently, Feng approached finding a complexity bound

of the algorithm, which is the degree bound of the polynomials used in the first step of the

algorithm for finding a proto-Galois group. The bound given by Feng is quintuply exponential

in the order n of the differential equation. The complexity, in the worst case, of computing

a Gröbner basis is doubly exponential in the number of variables. Feng chose to represent

the radical of the ideal generated by the defining equations of a proto-Galois group by its

Gröbner basis. Hence, a double-exponential degree bound for computing Gröbner bases was

involved when Feng derived the complexity bound of computing a proto-Galois group.

Triangular decomposition provides an alternative method for representing the radical of

an ideal. It represents the radical of an ideal by the triangular sets instead of its generators.

The first step of Hrushovski’s algorithm is to find a proto-Galois group which can be used
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further to find the differential Galois group. So it is important to analyze the complexity for

finding a proto-Galois group. We represent the radical of the ideal generated by the defining

equations of a proto-Galois group using the triangular sets instead of the generating sets.

We apply Szántó’s modified Wu-Ritt type decomposition algorithm and make use of the

numerical bound for Szántó’s algorithm to adapt to the complexity analysis of Hrushovski’s

algorithm. We present a triple exponential degree upper bound for finding a proto-Galois

group in the first step of Hrushovski’s algorithm.
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Chapter 1

Introduction

The differential Galois group is an analogue for a linear differential equation of the classical

Galois group for a polynomial equation. An important application of the differential Galois

group is that a linear differential equation can be solved by integrals, exponentials and

algebraic functions if and only if the connected component of its differential Galois group

is solvable [19, 35]. For example [20, Appendix], the differential Galois group of Bessel’s

equation t2y′′ + ty′ + (t2 − ν2)y = 0 over C(t) is isomorphic to SL2(C) (not solvable) when

ν 6∈ 1
2

+Z. In other words, Bessel’s equation cannot be solved by integrals, exponentials and

algebraic functions unless ν ∈ 1
2

+Z. Computing the differential Galois groups would help us

determine the existence of the solutions expressed in terms of elementary functions (integrals,

exponentials and algebraic functions) and understand the algebraic relations among the

solutions.

Hrushovski in [14] first proposed an algorithm for computing the differential Galois group

of a general linear differential equation over k(t) where k is a computable algebraically closed

field of characteristic zero. Recently, Feng approached finding a complexity bound of the

algorithm in [10], which is the degree bound of the polynomials used in the first step of the

algorithm for finding a proto-Galois group, but not for the whole algorithm. The bound

1
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given by Feng is sextuply exponential in the order n of the differential equation.

In this paper, we present a triple exponential degree bound using triangular sets instead

of Gröbner bases for representing the algebraic sets. In general, the degrees of defining

equations of a differential Galois group cannot be bounded by a function of n only. For

example [29, Example 1.3.7, page 12], the differential Galois group of y′ = 1
mt
y over C(t)

is isomorphic to Z/mZ where m is a positive integer, which implies that the degree of the

defining equation xm − 1 is m.

A crucial point of Hrushovski’s algorithm is that one can find a proto-Galois group

which is an algebraic subgroup of GLn(k), provided that the degree bound of the defining

equations of the proto-Galois group is computed. The differential Galois group can then be

recovered from the proto-Galois group (more details in [10, 14]). Therefore, a bound for the

proto-Galois group plays an important role in determining the complexity of Hrushovski’s

algorithm. Following Feng’s approach, we prove that such a proto-Galois group exists by

constructing a family F of algebraic subgroups such that the identity component of any

algebraic subgroup H ′ ⊆ GLn(k) is contained in some H of F and [H ′H : H] is uniformly

bounded. We also prove that the degrees of the defining equations of any element of F are

bounded by d̄ depending on the order n of the given differential equation. This is stated as

Theorem 4.4.1. Then by collecting the algebraic subgroups H̄ such that there is some H of

F such that [H̄ : H] ≤ d̄, we obtain a family F̄ of algebraic subgroups in which one can

always find a proto-Galois group for any linear differential equation. Moreover, we give a

numerical degree bound of the defining equations of any algebraic subgroup of F̄ . This is

stated as Corollary 4.4.1.

Using degrees of defining equations of algebraic subgroups to bound F̄ , one needs an

upper degree bound of the defining equations of the algebraic subgroups of F and an upper

bound of [H̄ : H]. Hence, a double-exponential degree bound for computing Gröbner bases

would be involved if one chooses to represent an algebraic subgroup by the generating set
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of its defining ideal (generated by the defining equations). In order to give a better bound,

we represent an algebraic subgroup by the triangular sets instead of the generating set in

the process of constructing F . In such a process, we need to take the differences between

Gröbner bases and triangular sets into account. We apply Szántó’s modified Wu-Ritt type

decomposition algorithm [31, 33] which has been proved to be more efficient than computing

a Gröbner basis and make use of the numerical bound for Szántó’s algorithm [2] to adapt

to the complexity analysis of Hrushovski’s algorithm. In doing this, we are able to avoid

working with Gröbner bases to get a better bound of the degrees of the defining equations of

the algebraic subgroups of F which is triple exponential in the order n of the given differential

equation. Additionally, we are able to not increase the degree bound of the defining equations

of the algebraic subgroups of F̄ . Each element H̄ of F̄ is a union of at most d̄ cosets of

some element H of F . The degree bound for the generating set of the ideal generated by

the defining equations of H̄ would be raised to an exponent at most d̄, which results in a big

increase on the degrees of the defining equations of the algebraic subgroups of F̄ . However,

this issue has been resolved when expressing the algebraic subgroups by triangular sets.

Besides Hrushovski’s general algorithm, there are other algorithmic results in the Galois

theory of linear differential equations. Kovacic in [21] presented an algorithm for comput-

ing the Galois group of a second order linear differential equation. The Galois groups of

second and third order linear differential equations were studied by Singer and Ulmer in

[30]. Compoint and Singer in [6] proposed an algorithm for computing the Galois group

if the differential equation is completely reducible. The numeric-symbolic computation of

differential Galois groups was presented by van der Hoeven in [34].

This thesis is organized as follows. In chapter 2, we introduce the notations, definitions

and facts from triangular representation. In chapter 3, we introduce the notations, definitions

and facts from differential Galois group. In chapter 4, we state and prove the preparation

lemmas which we use in analyzing the complexity of the algorithm, and present and prove
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the new complexity bound of Hrushovskis algorithm. We also compare our bounds when

n = 2 with the ones in [10, Proposition B.11, Proposition B.14].

The work in Chapter 2 is a collaborative work with Eli Amzallag, Gleb Pogudin and

Thieu N. Vo. The material of this chapter appeared in the following:

• E. Amzallag. Galois groups of differential equations and representing algebraic sets.

Ph.D. thesis, The Graduate Center, City University of New York, 2018.

• E. Amzallag, M. Sun, G. Pogudin, and T. N. Vo. Complexity of triangular represen-

tations of algebraic sets. Journal of Algebra, 523 (2019): 342-364.

This thesis is divided to two parts. The first part (Chapter 2) is on the triangular repre-

sentations of algebraic sets and the second part (Chapters 3 and 4) is on the complexity

of Hrushovski’s algorithm for computing Galois groups of linear differential equations. We

improve Feng’s complexity bound of Hrushovski’s algorithm using the numerical complexity

bound of Szántó’s algorithm for representing algebraic sets by triangular sets. The numerical

complexity bound of Szántó’s algorithm is the main result of the first part which is essential

and helpful to present as a single chapter in this thesis.



Chapter 2

Triangular Representation

2.1 Introduction

Given polynomials f0, . . . , fr ∈ k[x1, . . . , xn], where k is a computable subfield of C, the

set of all polynomials vanishing on the set of solutions of the system f0 = . . . = fr = 0 is

called the radical of the ideal generated by f0, . . . , fr. Representing the radical of an ideal is

important for computer algebra and symbolic computations, as well as for their applications

(for example, [3, 26]).

Several techniques can be used to solve the problem: for example, Gröbner bases, geo-

metric resolution, and triangular decomposition. Representing the radical of an ideal is an

intermediate step in many other algorithms. Thus, it is crucial to understand the size of

such a representation, as the size affects the complexity of the further steps. The size of

the representation can be expressed in terms of a degree bound for the polynomials appear-

ing in the representation and their number. In section 2.4, We present the first complete

bound on the degrees (Theorem 2.4.2) and the number of components (Theorem 2.5.1) for

the algorithm designed by A. Szántó in [33] for computing a triangular decomposition.

For Gröbner bases, a bound which is doubly-exponential in the number of variables is

5



CHAPTER 2. TRIANGULAR REPRESENTATION 6

given in [22]. Moreover, an example constructed in [4] shows that there are ideals such that

every set of generators of the radical (even those sets that are not Gröbner bases) contains

a polynomial of doubly-exponential degree. Geometric resolution and triangular decomposi-

tion do not represent the radical via its generators, so it was hoped that these representations

might have better degree bounds. For geometric resolution, singly-exponential degree bounds

were obtained in [12, 23, 24] (for prior results in this direction, see references in [24]).

Algorithms for triangular decomposition were an active area of research during the last

two decades. Some results of this research were tight degree upper bounds for a triangular

decomposition of an algebraic variety given that the decomposition is irredundant [9, 27], an

efficient algorithm for zero-dimensional varieties [8], and implementations [1, 36].

However, to the best of our knowledge, there are only a few algorithms [11, 27, 33]

for computing triangular decomposition with proven degree upper bounds for the output.

The algorithms in [27] and [11] have restrictions on the input polynomial system. The

algorithm in [27] requires the system to define an irreducible variety. The algorithm in [11,

Theorem 4.14] produces a characteristic set of an ideal, which represents the radical of the

ideal only if the ideal is characterizable [15, Definition 5.10] (for example, an ideal defined

by x1x2 is not characterizable). Together with [15, Proposition 5.17] this means that the

algorithm from [11] represents the radical of an ideal if the radical can be defined by a single

regular chain.

The algorithm designed by [32, 33] does not have any restrictions on the input system.

However, it turns out that the argument in [33] does not imply the degree bound dO(m2) (m

is the maximum codimension of the components of the ideal, d is a bound for degrees of

the input polynomials) stated there. The reason is that the argument in [33] did not take

into account possible redundancy of the output (see Remark 6). Moreover, in Example 2.3.1

we show that the sum of degrees of extra components produced by the algorithm can be

significantly larger than the degree of the original variety.
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We take these extra components into account and prove an explicit degree bound of the

form dO(m3) for the algorithm. More precisely, we prove that:

Theorem 2.1.1. Let f0, . . . , fr ∈ k[x1, . . . , xn] be polynomials with deg fi ≤ d for all 0 ≤

i ≤ r (d > 1). Assume that the maximum codimension of prime components of the ideal

(f0, . . . , fr) is m ≥ 2, and r ≤ dm. Then the degree of any polynomial p appearing in the

output of Szántó’s algorithm or during the computation does not exceed

deg(p) ≤ nd( 1
2

+ε)m3

where ε is some decreasing function of m, d and ε is bounded by 5.

Theorem 2.1.2. Let F ⊂ k[x1, . . . , xn] be a finite set of polynomials of degree at most d.

Let m be the maximum of codimension of prime components of
√

(F ) ⊆ k[x1, . . . , xn]. Then

the number of squarefree regular chains in the output of Szántó’s algorithm applied to F is

at most (
n

m

)
((m+ 1)dm + 1)m .

2.2 Preliminaries

Throughout chapter 2, all fields are of characteristic zero and all logarithms are binary.

Throughout this section, let R = k[x1, x2, . . . , xn], where k is a field. We fix an ordering

on the variables x1 < x2 < · · · < xn. Consider a polynomial p ∈ R. We set height(p) :=

max
i

degxi(p). The highest indeterminate appearing in p is called its leader and will be

defined by lead(p). By lc(p) we denote the leading coefficient of p when p is written as a

univariate polynomial in lead(p).

Definition 2.2.1. Given a sequence ∆ = (g1, g2, . . . , gm) in R, we say that ∆ is a triangular

set if lead(gi) < lead(gj) for all i < j.
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Remark 1. Note that any subsequence of a triangular set is a triangular set. In what follows,

the subsequences of ∆ of particular interest are the ones of the form ∆j := (g1, g2, . . . , gj),

1 ≤ j ≤ m and ∆0 := ∅.

Triangular sets give rise to ideals via the following notion.

Definition 2.2.2. Let f, g ∈ R with lead(g) = xj. We consider f and g as univariate

polynomials in xj with the coefficients from the field k(x1, x2, . . . , xj−1, xj+1, . . . , xn) and let

f = q̃g + r̃ be the result of univariate polynomial division of f by g with coefficients in this

field. Let α be the smallest nonnegative integer such that g := lc (g)αg̃ and r := lc (g)αr̃ are

polynomials, so we obtain an equation

lc (g)αf = qg + r

with q, r ∈ R, degxj(r) < degxj(g), α ∈ N. One can show that α ≤ degxj(f) − degxj(g) + 1.

We say that r is pseudoremainder of f by g and denote it by prem(f, g).

Definition 2.2.3. Let ∆ = (g1, g2, . . . , gm) be a triangular set and let f ∈ R. The pseu-

doremainder of f with respect to ∆ is the polynomial f0 in the sequence fm = f, fs−1 =

prem(fs, gs), 1 ≤ s ≤ m. We denote f0 by prem(f,∆).

We say that f is reduced with respect to ∆ if f = prem(f,∆).

Remark 2. The computation of the pseudoremainder of f with respect to ∆ gives rise to

the equation

lc (gm)αm . . . lc (g1)α1f =
m∑
s=1

qsgs + f0

where each αs ≤ deglead (gs)(fs)− deglead(gs)(gs) + 1.
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Definition 2.2.4. Given a triangular set ∆ in R, we define the ideal

Rep(∆) := {p ∈ R | ∃N : HNp ∈ 〈∆〉}, where H := lc(g1) . . . lc(gm).

We say that a triangular set ∆ ⊂ R represents an ideal I if I = Rep(∆).

Definition 2.2.5. For an ideal I ⊂ R, we consider the irredundant prime decomposition
√
I = I1 ∩ . . .∩ Ir of its radical. We call the I1, . . . , Ir the associated primes of I and denote

the set of associated primes of I by Ass(I). When I = Rep(∆), we will write Ass(∆) instead

of Ass(I).

We say that
√
I and the corresponding variety V (I) are unmixed if all the associated

prime ideals have the same dimension.

Definition 2.2.6. Let ∆ = (g1, g2, . . . , gm) be a triangular set of R with I = Rep(∆) and, for

each 1 ≤ i ≤ m− 1, let {Pi,j}rij=1 be the prime ideals in the irredundant prime decomposition

of the radical of Rep(∆i).

(a) if lc(gi+1) /∈ Pi,j for every for every 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ ri, then ∆ is called a

regular chain, see [15, Definition 5.7].

(b) if gi+1 is square-free over K(Pi,j) := Quot(R/Pi,j) for every 1 ≤ j ≤ ri and 1 ≤ j ≤ ri,

then ∆ is called a squarefree regular chain, see [15, Definition 7.2]

(Here, Quot(R/Pi,j) is the field of fractions of R/Pi,j.)

Theorem 2.2.1 (see [3, Proposition 2.7]). If ∆ is a regular chain, then Rep(∆) = {h ∈

R | prem(h,∆) = 0} and all of the prime ideals in the irredundant prime decomposition of

Rep(∆) have the same dimension.

Theorem 2.2.2 (see [15, Corollary 7.3]). If ∆ is a squarefree regular chain, then Rep(∆) is

a radical ideal.
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Remark 3. We use terminology different from the one used in [33, Section 2.4.3]. The

correspondence between these two terminologies is the following: a regular chain is called a

weakly unmixed triangular set in [33] and a squarefree regular chain is called an unmixed

triangular set in [33].

Now we are ready to define the main object we will compute.

Definition 2.2.7. The triangular decomposition of an ideal I ⊂ R is a set {∆1, . . . ,∆s} of

squarefree regular chains such that

√
I =

s⋂
i=1

Rep(∆i).

In the rest of the section, we introduce notions and recall results about computing modulo

a triangular set.

Definition 2.2.8. Let ∆ = (g1, . . . , gm) be a triangular set in R with lead (gs) = xl+s and

ds := degxl+s
(gs) for every 1 ≤ s ≤ m, where l := n−m. We define

• A(∆) := k(x1, x2, . . . , xl)[xl+1, . . . , xn]/(∆)k(x1,x2,...,xl), where the subscript reminds us

that we treat elements of the field k(x1, x2, . . . , xl) as scalars and consider the quotient

A(∆) as an algebra over this field.

• The standard basis of A(∆), which we will denote by B(∆), is the set

B(∆) := {xα1
l+1 . . . x

αm
n | 0 ≤ αs < ds, 1 ≤ s ≤ m}.

• The set of structure constants of A(∆) is the collection of the coordinates of all products

of pairs of elements of B(∆) in the basis B(∆). These structure constants may be

organized into a table, which we will refer to as the multiplication table for A(∆) and

which we will denote by M(∆).
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• The height of the structure constants of A(∆) is the maximum of the heights of the

entries of M(∆). We denote this quantity by Γ(∆) or Γ when the triangular set under

consideration is clear from context. We will also use the notation Γj for Γ(∆j).

• An element of A(∆) is called integral if its coordinates in the standard basis B(∆)

belong to k[x1, . . . , xl].

Propsition 2.2.1 (see [33, Prop. 3.3.1, p.76]). Let ∆ be a triangular set and let a1, a2, . . . , ak

be elements of A(∆) with heights at most d. Moreover, assume that the denominators of

the coordinates of a1, a2, . . . , ak in the basis B(∆) divide
m∏
s=1

lc(gs)
βs and also assume that

m∑
s=1

βs · height(lc(gs)) ≤ d′. Then

• height(a1a2) ≤ height(a1) + height(a2) + 2(d′ + Γ) and

• height(a1a2 . . . ak) ≤ kd+ k log k(d′ + Γ).

In Proposition 2.2.1, if a1, . . . , ak are integral elements, then β1 = . . . = βs = 0. In this

case, one can choose d′ = 0. We will also use denominator bounds in reducing an element

modulo ∆.

Lemma 2.2.1. Let ∆ := (g1, . . . , gm) ⊂ k[x1, . . . , xn] be a squarefree regular chain such that

height(gs) ≤ d for all s = 1, . . . ,m. Let f ∈ k[x1, . . . , xn] be a polynomial of height at most

t. Then there exist α1, . . . , αm ∈ N and q1, . . . , qm, r ∈ k[x1, . . . , xn] such that:

• lc(g1)α1 · · · · · lc(gm)αm · f = q1g1 + · · ·+ qmgm + f0,

• f0 is reduced modulo ∆, and

• αs ≤ t(d+ 1)m−s, s = 1, 2, . . . ,m.

Proof. Similar to [3, Lemma 3.7].
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Remark 4. Gallo and Mishra gave a bound in [11, Lemma 5.2] for the degree of the pseu-

doremainder f0. We compare that bound with the corresponding bound on f0 that can be

derived from Lemma 2.2.1.

In the table below, OB stands for “Our Bound” and GM stands for “Gallo-Mishra.”

height(gs) ≤ d & height(f) ≤ t deg(gs) ≤ d & deg(f) ≤ t

deg(f0) OB: nt(d+ 1)m OB: nt(d+ 1)m

GM: (nt+ 1)(nd+ 1)m GM: (t+ 1)(d+ 1)m

height(f0) OB: t(d+ 1)m OB: t(d+ 1)m

GM: (nt+ 1)(nd+ 1)m GM: (t+ 1)(d+ 1)m

We see that the only case in which the bound from [11, Lemma 5.2] is smaller than

the corresponding one derived from Lemma 2.2.1 is represented by the upper-right cell, in

which solely degrees are considered. In fact, [11] analyzes the complexity of the Ritt-Wu

Characteristic Set Algorithm in terms of degrees. So our pseudoremainder bound cannot be

used to improve their complexity analysis and vice versa, as can be seen by examining the

lower-left cell in which heights are the focus.

2.3 Outline of Szántó’s algorithm

In this section, we recall main steps of the algorithm in [33] for computing a triangular de-

composition for a given algebraic set. The main algorithm is described in [33, Theorem 4.1.7,

p. 118] and its proof.
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Algorithm 1 Triangular decomposition algorithm

In A set of polynomials F = {f0, f1, . . . , fr} ⊂ k[x1, . . . , xn].

Out A set Θ(F ) of squarefree regular chains such that

√
〈F 〉 =

⋂
∆∈Θ

Rep(∆).

(a) For every i ( {1, . . . , n}, compute a regular chain ∆i with leaders {xj|j 6∈ i} such that

for every prime component P of
√

(F )

(
dim(P ) = |i| and P ∩ k[xi | i ∈ i] = {0}

)
⇒ Rep(∆i) ⊆ P.

For details, see [33, Cor. 4.1.5, p. 115].

(b) For every i ( {1, . . . , n}, compute the multiplication table M(∆i) of the algebra A(∆i)

(see Definition 2.2.8).

(c) For every i ( {1, . . . , n}, compute a set U(∆i) of squarefree regular chains

unmixed
|i|
|∆i|(∆i,M(∆i), f, 1), where f :=

r∑
j=0

fix
j
n+1

using Algorithm 2 below.

(d) Return Θ(F ) :=
⋃

i({1,...,n}
U(∆i).

Step (c) of Algorithm 1 uses function unmixed with the following full specification.

Parts concerning multiplication tables are technical and important only for efficiency.

Specification of unmixedlm.
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In 1. Nonnegative integers m and l. We set n := m+ l.

2. A regular chain ∆ = {g1, . . . , gm} ⊂ k[x1, . . . , xn] such that for all 1 ≤ s ≤ m

• lead(gs) = xl+s;

• lc(gs) ∈ k[x1, . . . , xl];

• gs is reduced modulo {g1, . . . , gs−1}.

3. The multiplication table M(∆) of the algebra A(∆), see Definition 2.2.8.

4. Polynomials f , h in k[x1, . . . , xn+c] for some c > 0 reduced with respect to ∆.

Out A set {(∆1,M(∆1)), . . . , (∆r,M(∆r))} such that

• ∆i is a squarefree regular chain in k[x1, . . . , xn] for every 1 ≤ i ≤ r;

• M(∆i) is the multiplication table of the algebra A(∆i) for every 1 ≤ i ≤ r;

•
r⋃
i=1

Ass(∆i) = {P ∈ Ass(∆) | f ≡ 0, h 6≡ 0 mod P} (see Definition 2.2.5);

• Ass(∆i) ∩ Ass(∆j) = ∅ ∀ i 6= j.

Before describing the algorithm itself, we will give some intuition behind it.

Informally speaking, the main goal of unmixed is to transform a single regular chain ∆

into a set of regular chains ∆1, . . . ,∆r such that

(a) ∆1, . . . ,∆r are squarefree regular chains;

(b) prime components of
r⋂
i=1

Rep(∆i) are exactly the prime components of Rep(∆), on

which f vanishes and h does not vanish.

It is instructive first to understand how this transformation is performed in the univariate

case, i.e. in the case when all regular chains consist of a single polynomial only. This case is

also discussed in [33, p. 124-125]. Let ∆ consist g(x) ∈ k[x]. A polynomial satisfying only
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property ((b)) can be computed using gcd’s as follows

gcdx(g, f)

gcdx(g, f, h)
. (2.1)

A set of polynomials satisfying only property ((a)) can be obtained by separating the roots

of g(x) according to their multiplicity again using gcd’s

g gcdx(g, g
′, g′′)

gcd2
x(g, g

′)
,
gcdx(g, g

′) gcdx(g, g
′, g′′, g(3))

gcd2
x(g, g

′, g′′)
, . . . (2.2)

Formulas (2.1) and (2.2) can be combined to yield to a set of polynomials satisfying both

properties ((a)) and ((b)):

qi :=
gcdx(g, . . . , g

(i−1), f) gcdx(g, . . . , g
(i+1), f) gcd2

x(g, . . . , g
(i), f, h)

gcd2
x(g, . . . , g

(i), f) gcdx(g, . . . , g
(i−1), f, h) gcdx(g, . . . , g

(i+1), f, h)
, i = 1, 2, . . . , deg g.

(2.3)

The generalization of this approach to the multivariate case is based on two ideas

(a) Perform the same manipulations with gm considered as univariate polynomials in xn.

(b) Replace the standard univariate gcd with the generalized gcd (denoted by ggcd), that

is a gcd modulo a regular chain Λ := {g1, . . . , gm−1}. Generalized gcds are described

in [33, Lemma 3.1.3]. Formula (2.3) is replaced then by

qi :=
ggcdxn(Λ, gm, . . . , g

(i−1)
m , f) ggcdxn(Λ, gm, . . . , g

(i+1)
m , f) ggcd2

xn(Λ, gm, . . . , g
(i)
m , f, h)

ggcd2
xn(Λ, gm, . . . , g

(i)
m , f) ggcdxn(Λ, gm, . . . , g

(i−1)
m , f, h) ggcdxn(Λ, gm, . . . , g

(i+1)
m , f, h)

(2.4)

for i = 1, 2, . . . , degxn gm.

Generalized gcd is always well-defined modulo a regular chain representing a prime ideal.

If the ideal represented by the regular chain is not prime, then generalized gcds modulo
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different prime components might have different degree, so it might be impossible to “glue”

them together. In order to address this issue, the unmixed function splits Rep(Λ) into a

union of varieties represented by regular chains, over which all the generalized gcds in (2.4)

will be well defined. Interestingly, this can be done by calling unmixed recursively, because

the fact that some generalized gcd is well-defined and has degree d can be expressed using

equations and inequations. These equations and inequations can be further combined with

f and h.



CHAPTER 2. TRIANGULAR REPRESENTATION 17

Algorithm 2 Function unmixedlm(∆,M(∆), f, h)

Input and output are described in the specification above.

(a) If m = 0 (so ∆ = ∅), return ∅ if f 6= 0 or h = 0, and return {(∅,∅)} otherwise

(b) Set Λ := ∆m−1 = {g1, . . . , gm−1} and compute M(Λ).

(c) For every 1 ≤ i ≤ degxn gm and every tuple v ∈ Z6
>0 with entries not exceeding

degxn gm, compute a pair of polynomials φi,v, ψi,v as described in [33, p. 128] such that

a system φi,v = 0, ψi,v 6= 0 is equivalent to

• f = 0 and h 6= 0,

• all six generalized gcds in (2.4) are well-defined and their degrees are the entries

of v.

Formulas for φi,v and ψi,v are given in the proof of Lemma 2.4.2 and in [33, p. 128].

(d) For every pair (φi,v, ψi,v) computed in the previous step

(i) Compute

Li,v := unmixedlm−1(Λ,M(Λ), φi,v, ψi,v).

(ii) For every (Λi,v,M(Λi,v)) ∈ Li,v compute qi,v using (2.4) (more details in the proof

of Theorem 2.4.1 and in [33, p. 129-130])

(iii) For every qi,v computed in the previous step, add (Λi,v ∪ {qi,v},M(Λi,v ∪ {qi,v}))

to the output

(e) Return the set of all pairs (Λi,v ∪ {qi,v},M(Λi,v ∪ {qi,v})) computed in the previous

step

Example 2.3.1. In this example, we will show that the output of Algorithm 1 can be redun-
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dant confirming [3, Remark 2.9]. We fix a positive integer D and consider

F := {(x1 − 1)(x1 − 2) . . . (x1 −D)(x2 − 1)(x2 − 2) . . . (x2 −D)}. (2.5)

Step (a) of Algorithm 1 will output the following regular chains (see [33, Corollary 4.1.5] for

details)

∆{1} = ∆{2} = {(x1 − 1)(x1 − 2) . . . (x1 −D)(x2 − 1)(x2 − 2) . . . (x2 −D)},

∆∅ = {(x1 − 1)(x1 − 2) . . . (x1 −D)p1(x1), (x2 − 1)(x2 − 2) . . . (x2 −D)p2(x2)},

where p1(x1) and p2(x2) are additional factors, which can appear during the computation

with Canny’s generalized resultants (see [33, Proposition 4.1.2]).

At Step (c) of Algorithm 1, unmixed0
2(∆∅,M(∆∅), f, 1) will be computed. According to

the specification of unmixed, the result of this computation will be a triangular decomposition

of the set of common zeros of Rep(∆∅) and F . Since the zero set of Rep(∆∅) is finite,

all these components are not components of the zero set of F . Points {(a1, a2)|a1, a2 ∈

{1, 2, . . . , D}} are common zeros of Rep(∆∅) and F , so the sum of the degrees of these extra

components is at least D2, and the degree of the zero set of F is just 2D.

Moreover, this example can be generalized to higher dimensions by replacing (2.5) by

F := {(x1 − 1)(x1 − 2) . . . (x1 −D) . . . (xn − 1)(xn − 2) . . . (xn −D)}.

The degree of the zero set of F is nD, but the sum of the degrees of extra components will

be at least Dn.
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2.4 Bounds for degrees

The following lemma is a refinement of [33, Proposition 3.3.4, p. 75].

Lemma 2.4.1. Let ∆ = (g1, . . . , gm) be a squarefree regular chain such that height(gs) ≤ d

for all s. Suppose that for all 1 ≤ s ≤ m that

1. lead(gs) = xl+s;

2. lc(gs) ∈ k[x1, . . . , xl];

3. gs is reduced modulo ∆s−1 = (g1, . . . , gs−1), i.e. ∀t < s, degxl+t
(gs) < degxl+t

(gt).

Then the height Γ(∆) of the matrix M(∆) of structure constants of A(∆) (see Defini-

tion 2.2.8) does not exceed

(d+ 2)m+1(log(d+ 2))m−1.

Proof. We first apply the matrix description of the pseudoremainder (see Appendix) to

products of the form xe1l+1x
e2
l+2 . . . x

em
l+m, where es ≤ 2ds− 2. Note that these products are the

ones considered in computing the structure constants for A(∆) and that such a product will

play the role of what we call f in Appendix. Also, what we called g in the Appendix will

be gm in our application, as that is the first element we pseudo-divide by in reducing by ∆.

We have two cases to consider: em < dm and em ≥ dm.

In the first case, the product of interest is already reduced modulo gm and so can itself be

selected as the pseudoremainder by gm. So we can bound the height of its pseudoremainder

by ∆ by taking the maximum of Γm−1 := Γ(∆m−1) and dm.

In the second case, what we denote by f low in the Appendix is here a column vec-

tor with every entry 0 and what we denote by fup has exactly one nonzero entry, namely

xe1l+1x
e2
l+2 . . . x

em−1

l+m−1.

We first inspect the G0 · adj(Gd) part of the pseudoremainder expression. In computing

this product, one will obtain a dm×dm matrix and each of its entries will be sum of products
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of at most 1 + (dm − 1) = dm reduced integral elements of A(∆m−1). (Note that we have

products of reduced integral elements of A(∆m−1) because gm is assumed to be reduced

modulo ∆m−1.)

Completing the analysis of the number of multiplications needed to compute the pseu-

doremainder by gm, we note that the product xe1l+1x
e2
l+2 . . . x

em−1

l+m−1 can be split into two factors

where the exponent of each xl+s is less than ds (because es ≤ 2ds − 2). So multiplying

G0 · adj(Gd) by the column vector fup results in sums of products of at most dm + 2 reduced

integral elements of A(∆m−1).

So by Proposition 2.2.1 we have

Γm ≤ (dm + 2) · d+ (dm + 2) log(dm + 2) · Γm−1.

We first replace dm by d and estimate the first term as (d+ 2)2 to obtain

Γs < (d+ 2)2 + (d+ 2) log(d+ 2) · Γs−1, s = 2, . . . ,m.

Combining these inequalities, we have

Γm ≤

[
(d+ 2)2 ·

m−2∑
k=0

((d+ 2) log(d+ 2))k
]

+ ((d+ 2) log(d+ 2))m−1 Γ1.

Since the sum in brackets is a finite geometric series with m− 1 terms and Γ1 ≤ d2, we

have

Γm ≤ (d+ 2)2

(
((d+ 2) log(d+ 2))m−1 − 1

(d+ 2) log(d+ 2)− 1

)
+ ((d+ 2) log(d+ 2))m−1 · d2.

So we obtain Γm ≤ (d+ 2)m+1(log(d+ 2))m−1.

Theorem 2.4.1. Let ∆ = (g1, . . . , gm) ⊂ k[x1, . . . , xn] be a regular chain of height at most
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d (d > 1). Let l := n −m, and assume that the following conditions are satisfied for every

s = 1, . . . ,m:

1. lead(gs) = xl+s,

2. lc(gs) ∈ k[x1, . . . , xl],

3. gs is reduced modulo ∆s−1 = (g1, . . . , gs−1).

Let M(∆) be the multiplication table for the algebra A(∆). For f, h ∈ A(∆)[xn+1, . . . , xn+c],

denote df := height(f) and dh := height(h). Then for each polynomial p occurring in the

computation of unmixedlm(∆,M(∆), f, h) (see Algorithm 2), we have:

height(p) ≤ 5.2 · 242m(d2 + 2d)md
1
2
m(m+1)

(
max{d, df , dh}+ 7(d+ 2)m[log(d+ 2)]m−1

)
log d.

Proof. Since for the case m = 1 unmixed representation can be obtained simply by taking

square-free part of the corresponding polynomial (see [33, p. 124]), in what follows we assume

that m > 1. Let

{(∆1,M(∆1)), . . . , (∆r,M(∆r))} := unmixedlm(∆,M(∆), f, h)

be the output of the algorithm unmixedlm applied to (∆,M(∆), f, h). Assume that ∆j =

(g1,j, . . . , gm,j) for j = 1, . . . , r. For each s = 1, . . . ,m, we denote

d̃s := max
{

degxl+s
(gs,j) | j = 1, . . . , r

}
. (2.6)

The computation of unmixedlm has a tree structure. Consider a path of the computation

tree with successive recursive calls:

unmixedlm(∆m,M(∆m), fm, hm), . . . ,unmixedl0(∆0,M(∆0), f0, h0)
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where fm = f , hm = h and fs and hs are computed from (∆s+1,M(∆s+1), fs+1, hs+1) for

each s = 0, . . . ,m − 1 as described in Step (c) of Algorithm 2 and [33, p. 128]. First we

estimate the height of the input at each level.

Lemma 2.4.2. Let Input(s) := max{d, height(fs), height(hs)} for every s = 0, . . . ,m.

Then

Input(s) ≤ (6d)m−s
(
Input(m) + 7(d+ 2)m(log(d+ 2))m−1

)
.

Proof. We give an inductive analysis to obtain a bound on Input(s). For s = m, there

is nothing to do. So we start with s = m − 1 and consider the heights of fm−1, hm−1.

Computation of these polynomials from the data of level m in Step (c) of Algorithm 2 can

be summarized as follows (see also [33, p. 127-128]):

1. Compute the j-th sub-resultants

ϕ
(j)
k (y, z) := Res(j)

xn

(
gm, fm +

k∑
l=1

g(l)
m y

l−1 + zhm

)
,

for 1 ≤ k ≤ d and 0 ≤ j ≤ d. Here y, z are new variables (i.e. different from the ones

which gm, fm, hm are polynomials in).

2. For each 1 ≤ i ≤ d and v = (v1, . . . , v6) ∈ Z6
>0, where 0 ≤ vt ≤ d for 1 ≤ t ≤ 6,

(a) define the polynomial φi,v(y, z, w) to be a linear combination of polynomials

ϕ
(u1)
i−1 (y, 0), ϕ

(u2)
i (y, 0), ϕ

(u3)
i+1 (y, 0), ϕ

(u4)
i−1 (y, z), ϕ

(u5)
i (y, z), ϕ

(u6)
i+1 (y, z)

for all u1, . . . , u6 such that ui < vi for 1 ≤ i ≤ 6 by using the powers of a new

variable w.
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(b) define

ψi,v(y, z) := ϕ
(v1)
i−1 (y, 0) · ϕ(v2)

i (y, 0) · ϕ(v3)
i+1 (y, 0) · ϕ(v4)

i−1 (y, z) · ϕ(v5)
i (y, z) · ϕ(v6)

i+1 (y, z).

(c) reduce φi,v and ψi,v with respect to Λ.

(d) Set fm−1 := φi,v and hm−1 := ψi,v for this choice of i,v.

Note that new variables y, z and w were introduced. In Algorithm 2, all new introduced

variables are denoted by xn+1, . . . , xn+c. Here we use names y, z, and w for notational

simplicity.

In order to bound the heights of fm−1 and hm−1, we bound the heights of the subresultants

ϕ
(j)
k (y, z). In the computation of a bound for the heights of the subresultants, the largest

bound will be a bound for the 0-th subresultant, because higher ones are obtained by deleting

rows and columns of the Sylvester matrix, whose determinant produces the 0-th subresultant.

Since we are taking subresultants with respect to xn, all the entries of the Sylvester

matrix are polynomials in x1, x2, . . . , xn−1. In particular, this means that their degrees in

xl+i are less than di for all 1 ≤ i < m. Size of this matrix is at most dm + dm = 2dm. The

first dm is because degxn gm = dm. The second dm is because f, h are reduced with respect

to ∆.

Since fm−1, hm−1 must be reduced modulo ∆m−1, we will be carrying out all operations

in A(∆m−1). One can see that the bound for the height of hm−1 that we will obtain is larger

than a similar computation would produce for fm−1. So we focus on getting a bound for the

height of hm−1, thereby obtaining a bound for Input(m−1). In fact, our technique will give

us a bound for Input(s) in terms of Input(s+ 1).

Since the computation of hm−1 involves a multiplication of six evaluated subresultants,

we apply Proposition 2.2.1 to the sixth power of the 0th subresultant (as described above)

in two stages:
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1. For the first stage, note that each term of the sixth power of the 0-th subresultant is

a product of 12dm factors. We split these up into two groups: the 6dm factors of any

term coming from the coefficients of gm (call the product of these C) and the rest from

the coefficients of f +
∑k

l=1 g
(l)
m yl−1 + zh (call the product of these D). In this first

stage, we need not worry about denominator bounds because all of the factors of C

and D are integral elements of A(∆).

2. We then take these two groups of 6dm factors, reduce them, and multiply them. In

the reduction step, we obtain some denominators in general and so we will need to

compute bounds on these.

Assume that the heights of denominators of C and D are bounded by d′. Our two-step

analysis of the height of CD using Proposition 2.2.1 yields:

height(CD) ≤ height(C) + height(D) + 2 log(2) · (Γ(∆m−1) + d′)

≤ 6dm · d+ 6dm · Input(m) + 12dm log(6dm) · Γ(∆m−1) + 2 · (Γ(∆m−1) + d′)

≤ 6d2 + 6d · Input(m) + 12d log(6d) · Γ(∆m−1) + 2 · (Γ(∆m−1) + d′).

We may bound d′ by considering the sequence of exponents we obtain on lc(gi) when

reducing C,D modulo ∆m−1. Applying Lemma 2.2.1 with height(C) ≤ 6d2 =: t, we have

d′ ≤
m−1∑
i=1

6d2(d+ 1)m−1−i · d = 6d2(d+ 1)m−1 − 6d2.

Therefore

height(hm−1) ≤ 6d2 + 6d · Input(m) + 12d log(6d) · Γ(∆m−1)+

+ 2 ·
(
Γ(∆m−1) + 6d2(d+ 1)m−1 − 6d2

)
.
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As a result, we have

Input(m− 1) ≤ Γ(∆m−1) · (12d log(6d) + 2) + 6d · Input(m) + 12d2(d+ 1)m−1.

Moreover, we can obtain a bound for Input(s) in term of Input(s+ 1) in a similar way. In

particular, we have

Input(s) ≤ Γ(∆s) · (12d log(6d) + 2) + 6d · Input(s+ 1) + 12d2(d+ 1)s

for every s = 0, . . . ,m− 1. Due to Lemma 2.4.1

Γ(∆s) ≤ (d+ 2)s+1(log(d+ 2))s−1.

Using d ≥ 2, it can be shown that

12d log(6d) + 2

(d+ 2) log(d+ 2)
≤ 17 and

12d2

(d+ 1)2
≤ 12.

We therefore modify our recursive bound and obtain

Input(s) ≤ 17 · (d+ 2)s+2(log(d+ 2))s + 6d · Input(s+ 1) + 12(d+ 1)s+2

for s = 0, 1, . . . ,m− 1. Thus, Input(s) does not exceed

(6d)m−s · Input(m) + 17 ·
m−s−1∑
k=0

(6d)k(d+ 2)s+k+2(log(d+ 2))s+k + 12 ·
m−s−1∑
k=0

(6d)k(d+ 1)s+k+2.

Using the formula for geometric series and d ≥ 2, we can deduce that

Input(s) ≤ (6d)m−s
(
Input(m) + 6(d+ 2)m(log(d+ 2))m−1 + 3.1(d+ 1)m

)
.
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Using d,m ≥ 2 we can further show that 3.1(d+1)m ≤ (d+2)m(log(d+2))m−1, so the above

expression is bounded by

(6d)m−s
(
Input(m) + 7(d+ 2)m(log(d+ 2))m−1

)
.

We return to the proof of Theorem 2.4.1. Using the same notation as in [33, p. 141],

we denote by Output(s) the maximum height of polynomials computed up to level s. For

example, if s = 0, we have Output(0) = Input(0).

We are going to derive an upper bound for Output(m) recursively. Assume that we

have determined Output(m − 1) which is an upper bound for all polynomials computed

up to level m − 1. Let i ≤ d and v ∈ Z6
≥0 such that 0 ≤ vt ≤ d for every t = 1, 2, . . . , 6.

Let (Λi,v,M(Λi,v)) be an arbitrary output after the recursive call at level m− 1 for these i

and v (see Steps (c) and (d) of Algorithm 2). The construction of the corresponding output

(Λi,v ∪ {qi,v},M(Λi,v ∪ {qi,v})) from Step (d) of Algorithm 2 (see also [33, p. 129]) is the

following

1. Compute dt,i,vt , 1 ≤ t ≤ 6, defined by (see [33, p. 127])

d1,i,v1 := ggcdxn
(
Λi,v ∪ {gm}, g′m, . . . , g(i−1)

m , fm
)

d2,i,v2 := ggcdxn
(
Λi,v ∪ {gm}, g′m, . . . , g(i)

m , fm
)

d3,i,v3 := ggcdxn
(
Λi,v ∪ {gm}, g′m, . . . , g(i+1)

m , fm
)

d4,i,v4 := ggcdxn
(
Λi,v ∪ {gm}, g′m, . . . , g(i−1)

m , fm, hm
)

d5,i,v5 := ggcdxn
(
Λi,v ∪ {gm}, g′m, . . . , g(i)

m , fm, hm
)

d6,i,v6 := ggcdxn
(
Λi,v ∪ {gm}, g′m, . . . , g(i+1)

m , fm, hm
)

Generalized gcd (ggcd) is described in [33, Lemma 3.1.3].
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2. Compute

lc(dt,i,vt) := pinvertlm− (Λi,v,M(Λi,v), lc(dt,i,vt)) for 1 ≤ t ≤ 6,

where the function pinvertlm(∆,M(∆), f) for computing the pseudo-inverse of f has

the following specification (see also [33, Section 3.4])

In ∆: a squarefree regular chain in k[x1, . . . , xl+m], where xl+1, . . . , xl+m are the lead-

ers of ∆;

M(∆): the multiplication table of A(∆) (see Definition 2.2.8);

f : a polynomial in k[x1, . . . , xl+m] such that f 6∈ P for every P ∈ Ass(∆);

Out f̄ ∈ k[x1, . . . , xm+l] such that f̄ · f̄ ≡ r (mod Rep(∆)), where r ∈ k[x1, . . . , xl] \

{0}.

3. Compute dt,i,vt := lc(dt,i,vt) · dt,i,vt for 1 ≤ t ≤ 6.

4. Compute

p
(1)
i,v := d1,i,v1 · d3,i,v3 · d

2

5,i,v5
and p

(2)
i,v := d

2

2,i,v2
· d4,i,v4 · d6,i,v6 ,

and then qi,v, the result of the pseudo-division p
(1)
i,v by p

(2)
i,v.

5. Compute the multiplication table M(Λi,v ∪ {qi,v}).

We are going to bound the heights of the polynomials appearing in each step.

Step 1. The construction of ggcd in [33, Lemma 3.1.3] implies that height(dt,i,vt) ≤

Input(m− 1) for every t = 1, . . . , 6.

Step 2. We denote by Dm−1 the dimension of the algebra A(∆) over k. Then Dm−1 =
m−1∏
i=1

d̃i (see (2.6)). The coefficients of lc(dt,i,vt) are defined as the determinants of matrices of
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size Dm−1×Dm−1 (see [33, p. 84]). Every such matrix has a column of the form [0, . . . , 0, 1]t,

and the entries of the matrix have the height at most

height(dt,i,vt) + Γ(Λi,v) ≤ Input(m− 1) + Output(m− 1).

Therefore

height(lc(dt,i,vt)) ≤ (Dm−1 − 1)(Input(m− 1) + Output(m− 1)).

Step 3. Now we compute dt,i,vt := lc(dt,i,vt) · dt,i,vt . Applying [33, Proposition 3.3.1, p.

66], we have

height(dt,i,vt) ≤ height(lc(dt,i,vt)) + height(dt,i,vt) + 2 log 2 · Γ(Λi,v)

= Dm−1 Input(m− 1) + (Dm−1 + 1) Output(m− 1).

Step 4. Note that, for each t = 1, . . . , 6, we have degxn dt,i,vt = degxn(dt,i,vt) ≤ d.

Therefore p
(1)
i,v and p

(2)
i,v are polynomials of degree at most 4d in xn. By using the matrix

representation for the quotient of the pseudo-division algorithm, the coefficients of qi,v are

equal to a sum of products of at most 4d coefficients of p
(1)
i,v or p

(2)
i,v. Each coefficient of p

(1)
i,v

and p
(2)
i,v is a sum of products of 4 coefficients of dt,i,vt , t = 1, . . . , 6. Thus, coefficients of qi,v

are sums of products of at most 16d coefficients of dt,i,vt , t = 1, . . . , 6. Note that dt,i,vt are

polynomials and are reduced by Λi,v. Applying [33, Proposition 3.3.1, p. 66], we obtain

height(qi,v) ≤ 16d · max
t=1,...,6

{height(dt,i,vt)}+ 16d log(16d) · Γ(Λi,v)

≤ (16dDm−1 + 16d+ 16d log(16d)) Output(m− 1) + 16dDm−1 Input(m− 1).

Step 5. As the last step of the computation at level m, we compute the multiplication
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table M(∆i,v) for the algebra A(∆i,v), where ∆i,v := Λi,v ∪ {qi,v}. We already know that

the height of any entry in the multiplication table M(Λi,v) is at most Output(m − 1).

In order to obtain an upper bound for the heights of coefficients in M(∆i,v), we need to

estimate the height of the remainder in the pseudo division of xα1
l+1 · . . . · xαm

n by qi,v, where

0 ≤ αs ≤ 2 degxl+s
(gs) − 2, 1 ≤ s ≤ m. Note that qi,v is reduced modulo Λi,v, and that

degxn qi,v ≤ d̃m. By using the matrix representation of the remainder in the pseudo-division

algorithm (see Appendix), the remainder obtained when we divide xα1
l+1 · . . . · xαm

n by qi,v is

equal to a sum of products of at most d̃m + 2 integral elements in A(Λi,v). Therefore,

Γ(∆i,v) ≤ (d̃m + 2) height(qi,v) + (d̃m + 2) log(d̃m + 2)Γ(Λi,v).

This is also an upper bound for all polynomials computed up to level m. In other words,

Output(m) ≤ (d̃m + 2)
(

16dDm−1 + 16d+ 16d log(16d) + log(d̃m + 2)
)

Output(m− 1)+

+ 16dDm−1(d̃m + 2) Input(m− 1).

We note that the computations are in the algebra A(∆). Therefore we always have

d̃i ≤ d for every i = 1, . . . ,m. (2.7)

Thus Output(m) does not exceed

(d+ 2)(16dm + 16d log(32d) + log(d+ 2)) Output(m− 1) + + 16(d+ 2)dm Input(m− 1).
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A similar argument shows that Output(s) does not exceed

Output(s) ≤ (d+2)(16ds+16d log(32d)+log(d+2)) Output(s−1)++16(d+2)ds Input(s−1)

(2.8)

for every s = 1, . . . ,m. Lemma 2.4.2 implies that

Input(0) ≤ I0 := (6d)m
(
max{d, df , dh}+ 11(d+ 2)m(log(d+ 2))m−1

)
and

Input(s− 1) ≤ (6d)−s+1I0.

Using this notation in (2.8), we see that

(6s Output(s)) ≤ C(s)(6s−1 Output(s− 1)) + 96d(d+ 2)I0 (2.9)

where

C(s) := 6(d+ 2)(16ds + 16d log(32d) + log(d+ 2)). (2.10)

Now we unfold this recursion and rewrite 6m Output(m) using 6m−1 Output(m−1) and so

on, we see that

6m Output(m) ≤

(
m∏
s=1

C(s)

)
·Output(0) + 96d(d+ 2)I0

m∑
s=2

m∏
i=s

C(i)

=

(
m∏
s=1

C(s) + 96d(d+ 2)
m∑
s=2

m∏
i=s

C(i)

)
· I0. (2.11)

We simplify (2.11) by applying Lemma 2.4.3. In particular, we have:

6m Output(m) < 5.2 · (242(d+ 2))m · d
1
2
m(m+1) · log d · I0.
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The inequality obtained after canceling the factor 6m from both sides is exactly the inequality

we need to prove.

Theorem 2.4.2. Let F := {f0, f1, . . . , fr} ⊂ k[x1, . . . , xn] be a set of polynomials of degree

at most d. Let m be the maximum codimension of prime components of
√

(F ). Then the

degree of any polynomial p appearing in the output of Algorithm 1 applied to F or during the

computation does not exceed

B(m, d) := 5.2n·242m(d2m+2dm)md
1
2
m2(m+1)

(
max{dm, r}+ 7(dm + 2)m(log(dm + 2))m−1

)
log dm.

(2.12)

In particular, in case r is not too large, for instance if r ≤ dm, we have

deg p ≤ nd( 1
2

+ε)m3

where ε = ε(m, d) is a decreasing function such that ε(m, d) < 5 for every d ≥ 2, m ≥ 2, and

lim
m→∞

ε(m, d) = 0 for all d.

Remark 5. [17, Lemma 3] implies that f0, . . . , fr can be replaced by their n + 1 generic

linear combinations, so one can achieve r ≤ n.

Proof. By [33, Corollary 4.1.5, p. 115], for every ∆ ∈ Σ(F ) computed in Step (a) of Algo-

rithm 1, the height of polynomials in ∆ is at most d|∆| ≤ dm.

At Step (b) of Algorithm 1, for each ∆ ∈ Σ(F ), we compute the multiplication table

M(∆). Step (c) of Algorithm 1 is a computation of

U(∆) := unmixed
n−|∆|
|∆| (∆,M(∆), f, 1) for every ∆ ∈ Σ(F )

where f = f0 + yf1 + . . . + yrfr ∈ k[x1, . . . , xn, y]. Note, that for each ∆ ∈ Σ(F ), we have

|∆| ≤ m.
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By Theorem 2.4.1, for every polynomial p occurring in the computation of U(∆), we have

height(p) ≤ 1

n
B(|∆|, d).

Since B(m, d) is monotonic in m and |∆| ≤ m, this implies (2.12).

In case r ≤ dm, we have max{r, dm} = dm. Direct computation shows that the right

hand side of (2.12) can be bounded by deg p ≤ nd( 1
2

+ε)m3
, where

ε = ε(m, d) :=
logd

(
1
n
B(m, d)

)
m3

− 1

2

which is a decreasing function with ε(m, d) < 5 for every d ≥ 2, m ≥ 2. Moreover,

lim
m→∞

ε(m, d) = 0 for all d.

Remark 6. Unlike [33, Theorem 4.1.7, p. 118], the height of polynomials occurring in

the computations is bounded by dO(m3). In general, Algorithm 1 might produce a redundant

unmixed decomposition for a given algebraic set. Moreover, it can output varieties defined by

regular chains whose irreducible components are not the irreducible components of the initial

algebraic set (see Example 2.3.1). Therefore the inequality (4.13) in [33, p. 121] is not

necessarily true in general. Instead of it we use (2.7) in order to bound d̃i. The right-hand

side of (2.7) is dm in terms of the input data of Algorithm 1, and this makes our bound

dO(m3).

Lemma 2.4.3. Consider C(s) defined as (see also (2.10))

C(s) := 6(d+ 2)(16ds + 16d log(32d) + log(d+ 2)).
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Then we have:

m∏
s=1

C(s) ≤ 678 · 387

2422
· (242(d+ 2))m · d

1
2
m(m+1) log d, and

m∑
s=2

m∏
i=s

C(i) ≤ 387 · 4
967

· (242(d+ 2))m−1 · d
1
2
m(m+1)−1.

Proof. Using d ≥ 2, we can verify the following inequalities by direct computation

C(s) ≤


242(d+ 2)ds if s > 2,

387(d+ 2)ds if s = 2,

678(d+ 2)ds log d if s = 1.

This immediately implies the first inequality in the lemma. For the second one:

m∑
s=2

m∏
i=s

C(i) ≤ 387

242

m∑
s=2

(242(d+ 2))m−s+1 · ds+(s+1)+...+m

≤ 387

242
d

1
2
m(m+1)−1

m−1∑
s=1

(242(d+ 2))s

≤ 387

242
d

1
2
m(m+1)−1 · (242(d+ 2)m−1 · (242(d+ 2))

(242(d+ 2))− 1

≤ 387 · 4
967

· d
1
2
m(m+1)−1 · (242(d+ 2))m−1.

2.5 Bound for the number of components

In this section, we study the number of components in the output of Szántó’s algorithm.

Theorem 2.5.1. Let F ⊂ k[x1, . . . , xn] be a finite set of polynomials of degree at most d.

Let m be the maximum codimension of prime components of
√

(F ) ⊆ k[x1, . . . , xn]. Then
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the number of unmixed components in the output of Algorithm 1 applied to F is at most

(
n

m

)
((m+ 1)dm + 1)m .

Proof. Since the degree of the given polynomials is at most d, so is their height. Step (a)

of Algorithm 1 produces a set Σ(F ) := {∆i | i ( [n]} of regular chains such that for every

prime component P of
√

(F ), we have

(dimP = |i| and P ∩ k[xi | i ∈ i] = 0)⇒ Rep(∆) ⊆ P.

Due to [15, Theorem 4.4], the number of elements in a regular chain ∆ is equal to the

codimension of the ideal Rep(∆). Therefore the number of regular chains in Σ(F ) is not

larger than the number of proper subsets of [n] which has cardinality at most m.

In Step (c), we use the function unmixed to transform each regular chain ∆ ∈ Σ(F ) to

the set

U(∆) := unmixed
n−|∆|
|∆| (∆,M(∆), f, 1)

of squarefree regular chains (see Algorithm 2). Thus the number of squarefree regular chains

in the output is

M(n,m, d) :=

∣∣∣∣∣∣
⋃

∆∈Σ(F )

U(∆)

∣∣∣∣∣∣ ≤
∑

∆∈Σ(F )

|U(∆)| .

We fix a regular chain ∆ = (g1, . . . , gs) of codimension s. The collection of squarefree

regular chains in the output of unmixeds|∆| is simple, meaning that any two distinct unmixed

components have no common irreducible components (see [33, page 124]). Since all the

components of Rep(∆) are of codimension s, |U(∆)| is bounded from above by the degree of

Rep(∆). Due to the definition of Rep(∆), we have Rep(∆) ⊃ (∆). Moreover, since V (∆) and
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V (Rep(∆)) coincide outside the zero set of the product of the initials of ∆, every irreducible

component of V (Rep(∆)) is an irreducible component of V (∆). Hence, the degree of Rep(∆)

does not exceed the sum of degrees of irreducible components of V (∆). The latter can be

bounded by deg g1 · . . . · deg gs due to [13, Theorem 1]. The proof of [33, Corollary 4.1.5]

implies that every gi depends on at most s+ 1 variables, so

deg gi ≤ (s+ 1) height gi ≤ (s+ 1)ds.

Therefore

|U(∆)| ≤ (s+ 1)sds
2 ≤ ((m+ 1)dm)s .

Since for each s = 1, . . . ,m, there are
(
n
s

)
squarefree regular chains in Σ(F ) of cardinality

s,

M(n,m, d) ≤
m∑
s=1

(
n

s

)
((m+ 1)dm)s .

Since
(
n
s

)
≤
(
n
m

)
·
(
m
s

)
, we have that M(n,m, d) ≤

(
n
m

)
((m+ 1)dm + 1)m.



Chapter 3

Differential Galois Groups

3.1 Differential rings

Definition 3.1.1. A derivation of a ring R is a map d : R→ R such that ∀a, b ∈ R, d(a+b) =

d(a) + d(b) and d(ab) = d(a)b+ ad(b).

Definition 3.1.2. A differential ring (R, d) is a commutative ring R with identity endowed

with a derivation d.

Definition 3.1.3. (R1, d1) ⊂ (R2, d2) is a differential ring extension if R1 ⊂ R2 and d2|R1
=

d1.

Definition 3.1.4. If (R1, d1) and (R2, d2) are differential rings, a map f : R1 → R2 is a

differential morphism if it satisfies:

• f(a+ b) = f(a) + f(b), f(ab) = f(a)f(b),∀a, b ∈ R1, f(1) = 1.

• d2(f(a)) = f(d1(a)),∀a ∈ R1.

A differential morphism from a differential ring R to itself is called a differential endomor-

phism.

36
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Definition 3.1.5. (K, d) is called a differential field if K is a field and (K, d) is a differential

ring.

Definition 3.1.6. Let (R, d) is a differential ring. If a ∈ R and d(a) = 0, then a is called a

constant in this differential ring.

Definition 3.1.7. If (K, d) is a differential field, then the field of constants of K is the

subfield {c | d(c) = 0}.

3.2 Picard-Vessiot extensions

In the following sections of this chapter, K is a differential field of characteristic zero.

Consider a linear differential equation over K, with field of constants C:

L := Y n + an−1Y
n−1 + · · ·+ a1Y

′ + a0Y = 0, ai ∈ K.

Definition 3.2.1. Given a linear differential equation L(Y ) = 0 of order n over K, a

differential extension K ⊂ L is a Picard-Vessiot extension for L if

• L = K〈y1, . . . , yn〉, where y1, . . . , yn is a fundamental set of solutions of L(Y ) = 0 in

L.

• Every constant of L lies in K.

Example 3.2.1. Consider L(Y ) = Y ′′ + Y = 0 over C(t). sin t and cos t are two linearly

independent solutions over C, so {sin t, cos t} is a set of fundamental solutions. cos t =

eit+e−it

2
and sin t = −ieit+ie−it

2
where eit and e−it are exponentials of integrals of i,−i ∈ C(t)

respectively. (sin t)′ = cos t and (cos t)′ = − sin t. Assume that the polynomial
∑n

j=0 aj(e
it)j,

where aj ∈ C(t), is a constant in K〈sin t, cos t〉. So 0 =
∑n

j=0(a′j + ajij)e
ijt. Assume that

eit is algebraic over K. Let p(x) = xm +
∑m−1

k=0 bkx
k be its minimal irreducible polynomial
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over K. Then (eit)m + bm−1(eit)m−1 + · · · + b1e
it + b0 = 0. Differentiating it, we have

mi(eit)m + bm−1(eit)m−1 + bm−1(m − 1)i(eit)m−1 + · · · + b′1e
it + b1ie

it + b′0 = 0. Subtracting

this equation from mi times the first equation, we have (ibm−1 − b′m−1)(eit)m−1 + (2ibm−2 −

b′m−2)(eit)m−2+· · ·+((m−1)ib1−b′1)eit+mib0−b′0 = 0. Since y′ = kiy, where 1 ≤ k ≤ m, has

no nonzero solutions in C(t), kibm−k − b′m−k 6= 0 for 1 ≤ k ≤ m. So there is a polynomial of

degree less than m where eit vanishes. This is a contradiction. So eit is transcendental over

K. This implies that a′j+ajij = 0 and a′j = −jiaj. Since ((eit)−j)′ = −ji(eit)−j, (eit)−j = caj

where c ∈ C. This is a contradiction that eit is transcendental over C(t). Assume that the

rational function g(eit)
h(eit)

, where h(eit) is monic of the minimum degree ≥ 1, is a constant in

K〈sin t, cos t〉. So 0 = ieitg′(eit)h(eit)−ieitg(eit)h′(eit)
h2(eit)

. This implies that g(eit)
h(eit)

= g′(eit)
h′(eit)

. Since

the polynomial h is not a constant in K〈sin t, cos t〉, h′ has lower degree than h which is a

contradiction. So adding sin t and cos t to C(t) does not create new constants. The Picard-

Vessiot extension of L(Y ) = Y ′′ + Y = 0 is L = K〈sin t, cos t〉.

Example 3.2.2. Consider L(Y ) = Y ′′ + 1
t
Y = 0 over C(t). 1 and ln t are two linearly

independent solutions over C, so {1, ln t} is a set of fundamental solutions. ln t is an integral

of 1
t
∈ C(t). Assume that the polynomial

∑n
i=0 ai(ln t)

i, where ai ∈ C(t), is a constant in

K〈ln t〉. So 0 = a′n(ln t)n+(nan
t

+a′n−1)(ln t)n−1+ terms of degree ≤ n−2. Assume that ln t is

algebraic over K. Let p(x) = xm+
∑m−1

j=1 bjx
j is a minimal irreducible polynomial of ln t over

K. Then 0 = (ln t)m +
∑m−1

j=1 bj(ln t)
j. Differentiating it, we have 0 = (m

t
+ b′m−1)(ln t)m−1+

terms of degree ≤ m−2. So m
t

+b′m−1 = 0 and 1
t

=
−b′m−1

m
= (−bm−1

m
)′. This is a contradiction

that 1
t

is not a derivative in C(t). Hence, ln t is transcendental in K. This implies that

a′n = 0 and nan
t

+ a′n−1 = 0. So 1
t

=
−a′n−1

nan
= (−an−1

nan
)′. This is a contradiction that 1

t
is not

a derivative in C(t). Assume that the rational function g(ln t)
h(ln t)

, where h(ln t) is monic of the

minimum degree ≥ 1, is a constant in K〈ln t〉. So 0 =
1
t
g′(ln t)h(ln t)− 1

t
g(ln t)h′(ln t)

h2(ln t)
. This implies

that g(ln t)
h(ln t)

= g′(ln t)
h′(ln t)

. Since the polynomial h is not a constant in K〈ln t〉, h′ has lower degree

than h which is a contradiction. So adding ln t to C(t) does not create new constants. The
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Picard-Vessiot extension of L(Y ) = Y ′′ + 1
t
Y = 0 is L = K〈ln t〉.

Theorem 3.2.1 (see [19]). Let K be a differential field with algebraically closed field of

constants C, let L(Y ) = Y n + an−1Y
n−1 + · · · + a1Y

′ + a0Y = 0 be defined over K. Then

there exists a Picard-Vessiot extension L of K for L and it is unique up to differential

K-isomorphism.

3.3 Algebraic groups

Let C be an algebraically closed field of characteristic zero.

Definition 3.3.1. An algebraic group over C is an algebraic variety G defined over C such

that f : G×G→ G, f(x, y) = xy and g : G→ G, g(x) = x−1 are morphisms of varieties.

For example, the group GLn(C) of all invertible n by n matrices with entries in C and

the group SLn(C) of all n by n matrices with entries in C and determinant being 1 are

algebraic groups.

Propsition 3.3.1. Let G1, . . . , Gm be the distinct irreducible components of G. Then there

is a unique irreducible component containing the identity of G. This irreducible component

containing the identity is called the identity component of G, denoted by G0.

Definition 3.3.2. If G = G0, then G is said to be connected.

For example, the algebraic group SLn(C) is connected.

3.4 Differential Galois groups

Definition 3.4.1. Let K ⊂ L be a field extension. Let

Gal(L|K) := {φ ∈ Aut(L)| φ|K (K) = K}
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where Aut(L) is the group of automorphisms of L over K. Then Gal(L|K) is called the

Galois group of the extension K ⊂ L.

The definition of the differential Galois group is an analogue of the classical Galois group,

which is stated as follows.

Definition 3.4.2. If K ⊂ L is a differential field extension, the group G(L|K) of differential

K-automorphisms fixing K is called the differential Galois group of the extension K ⊂ L.

Definition 3.4.3. If K ⊂ L is a Picard-Vessiot extension for L(Y ) = 0, the group G(L|K)

of differential K-automorphisms of L is the differential Galois group of L(Y ) = 0.

In this thesis, we consider a linear differential equation in the matrix form:

δ(Y ) = AY

where Y is a vector containing n unknowns and A is an n by n matrix with entries in

K = k(t) where k is a computable algebraically closed field of characteristic zero.

Any n-th order linear differential equation L(y) = any
n + an−1y

n−1 + · · ·+ a1y
′+ a0y = 0

can be written in the matrix form δ(Y ) = AY where

Y =



y

y′

...

yn−1


, A =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
...

...

0 0 0 . . . 1

− a0
an
− a1
an
− a2
an

. . . −an−1

an


.

Definition 3.4.4. Let K be a field of characteristic zero and δ(Y ) = AY be an n-th order
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linear differential equation with coefficients in K written in the matrix form, then

F =



y1 y2 . . . yn

y′1 y′2 . . . y′n
...

... . . .
...

yn−1
1 yn−1

2 . . . yn−1
n


is said to be a fundamental matrix of Y ′ = AY if {y1, y2, . . . , yn} is a fundamental set of

solutions of this n-th order linear differential equation.

Remark 7. A fundamental set of solutions of an n-th order linear differential equation

δ(Y ) = AY with coefficients in K is a basis for an n-dimensional vector space over C where

C is the field of constants of K. This n-dimensional vector space over C is called the solution

space of δ(Y ) = AY.

Example 3.4.1. Consider the differential equation L(y) = y′′ + 1
t
y′ = 0. It can be written

in the matrix form

δ

y
y′

 =

0 1

0 1
t


y
y′

 .

{1, ln t} is a fundamental set of solutions and

F =

1 ln t

0 1
t


is a fundamental matrix of this differential equation.

Example 3.4.2. Consider the differential equation L(y) = y′′ + y = 0. It can be written in

the matrix form

δ

y
y′

 =

 0 1

−1 0


y
y′

 .
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{cos t, sin t} is a fundamental set of solutions and

F =

 cos t sin t

− sin t cos t


is a fundamental matrix of this differential equation.

Let L be the Picard-Vessiot extention of the differential field K with the derivation

δ = d
dt

and V be the solution space of (1) in L. Let F ∈ GLn(L) be a fundamental matrix

of (1). Let GL(V ) be the group of automorphisms of the solution space V . Then there is

a group isomorphism ΦF : GL(V ) → GLn(k) sending σ ∈ GL(V ) to Mσ ∈ GLn(k) where

FMσ = σ(F ).

The differential Galois group of a linear differential equation of order n defined over the

differential field K is isomorphic to a subgroup of the general linear group GLn(C) where C

is the constant field K. Differential Galois groups can be viewed as linear algebraic groups

[7, Proposition 4.1, page 23].

Example 3.4.3. Let K = C(t) and L = K〈ln t〉 be the Picard-Vessiot extension of L(Y ) =

Y ′′ + 1
t
Y ′ = 0. Let σ be a K-automorphism in the differential Galois group Gal (L|K) of

L(Y ) = 0. Then σ must fix Y = 1 ∈ C and send ln t to c1 + c2 ln t for some c1 and c2 in C.

Since σ must commute with the derivation d = d
dt

, in other words, σ(d(ln t)) = d(σ(ln t)), this

implies that 1
t

= c2
t

. So c2 = 1 and σ sends ln t to c+ ln t. Let f : Gal (L|K)→ C be a map

sending σ to c where σ ∈ Gal (L|K) such that σ(ln t) = c+ ln t. Let σ1, σ2 ∈ Gal (L|K) such

that σ1(ln t) = c1 +ln t and σ2(ln t) = c2 +ln t. Then σ1σ2(ln t) = σ1(c2 +ln t) = c1 +c2 +ln t.

So f(σ1σ2) = c1 + c2. Since f(σ1) + f(σ2) = c1 + c2, f(σ1σ2) = f(σ1) + f(σ2). So f is

a group homomorphism. Let Φ : C(t)[x11, x12, x21, x22] → C(t)[1, ln t, 0, 1
t
] be substitution

homomorphism , where {x11, x12, x21, x22} is a set of indeterminates and {1, ln t} is a set of

fundamental solutions of L(Y ) = 0. Let S = ker Φ. So S = {Q ∈ C(t)[x11, x12, x21, x22] :
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Q(1, ln t, 0, 1
t
) = 0}. Assume that the coefficients of monomials containing x12 in Q are

nonzero. Since Q(1, ln t, 0, 1
t
) = 0, this implies that ln t is algebraic over C(t) which is a

contradiction with the fact that ln t is transcendental over C(t) (see Example 3.2.2). So the

coefficients of monomials containing x12 in Q are zero. By [5, Theorem 6.3.1, page 120],

Gal (L|K) is isomorphic to G = {g ∈ GL2(C) : Q(g(1, ln t), g(1, ln t)′) = 0 ∀Q ∈ S}.

Any h =

1 c

0 1

 ∈ GL2(C) sends (1, ln t) to (1, ln t + c) and h(1, ln t)′ to (0, 1
t
). Then

Q
(
h(1, ln t), h(1, ln t)′

)
= Q(1, ln t+ c, 0, 1

t
). Since the coefficients of monomials containing

x12 in Q are zero, Q
(
h(1, ln t), h(1, ln t)′

)
= Q(1, ln t+ c, 0, 1

t
) = Q(1, ln t, 0, 1

t
) = 0. So

h ∈ G. Since any σ ∈ Gal (L|K) must send 1 to 1 and ln t to ln t + c, Gal (L|K) is

isomorphic to {1 c

0 1

 : c ∈ C
}
⊂ GL2(C).

Since C is isomorphic to {1 c

0 1

 : c ∈ C
}
⊂ GL2(C),

the differential Galois group Gal (L|K) of L(Y ) = 0 is isomorphic to the linear algebraic

group C.

Example 3.4.4. Let K = C(t) and L = K〈sin t, cos t〉 be the Picard-Vessiot extension of

L(Y ) = Y ′′+ Y = 0. Let σ be a K-automorphism in the differential Galois group Gal (L|K)

of L(Y ) = 0. Then σ must send sin t to c1 sin t + c2 cos t and cos t to c3 sin t + c4 cos t for

some c1, c2, c3, c4 in C. Since σ must commute with the derivation d = d
dt

, in other words,

σ
(
d(sin t)

)
= d

(
σ(sin t)

)
and σ

(
d(cos t)

)
= d

(
σ(cos t)

)
, this implies that c3 sin t + c4 cos t =

c1 cos t − c2 sin t and −c1 sin t − c2 cos t = c3 cos t − c4 sin t. So c1 = c4 and c2 = −c3. Since
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sin2 t+ cos2 t = 1, applying σ, we have c2
1 + c2

2 = 1. Let

G =

{ a b

−b a

 : a2 + b2 = 1

}
⊂ GL2(C)

Let f : Gal (L|K)→ G be a map sending σ to g =

 a b

−b a

 ∈ G where σ ∈ Gal (L|K) such

that σ(sin t, cos t) = (sin t, cos t)

 a b

−b a

. Let σ1, σ2 ∈ Gal (L|K) such that σ1(sin t, cos t) =

(sin t, cos t)

 a1 b1

−b1 a1

 and σ2(sin t, cos t) = (sin t, cos t)

 a2 b2

−b2 a2

. Then

σ1σ2(sin t, cos t) = (sin t, cos t)

 a1a2 − b1b2 a2b1 + a1b2

−a1b2 − a2b1 a1a2 − b2b2


and  a1 b1

−b1 a1


 a2 b2

−b2 a2

 =

 a1a2 − b1b2 a2b1 + a1b2

−a1b2 − a2b1 a1a2 − b2b2

 .

So f is a group homomorphism. Let Φ : C(t)[x11, x12, x21, x22]→ C(t)[sin t, cos t, sin t′, cos t′]

be substitution homomorphism , where {x11, x12, x21, x22} is a set of indeterminates and

{sin t, cos t} is a set of fundamental solutions of L(Y ) = 0. Let S = ker Φ. So S = {Q ∈

C(t)[x11, x12, x21, x22] : Q(sin t, cos t, sin t′, cos t′) = 0}. Since sin2 t + cos2 t = 1, if Q has a

factor x2
11 + x2

12 − 1 or x2
21 + x2

22 − 1 or x2
11 + x2

21 − 1 or x2
12 + x2

22 − 1, then for any h = a b

−b a

 ∈ GL2(C) with a2 + b2 = 1 sends (sin t, cos t) to (a sin t+ b cos t,−b sin t+ a cos t),

Q
(
h(sin t, cos t), h(sin t, cos t)′

)
= Q(a sin t+b cos t,−b sin t+a cos t, a cos t−b sin t,−b cos t−

a sin t) = 0. If Q has no such factors, because Q(sin t, cos t, cos t,− sin t) = 0, we have
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Q(x11, x12, x12,−x11) = 0. Otherwise, sin t, cos t would be algebraic over C(t) which is a

contradiction with the fact that sin t, cos t are transcendental over C(t). sin t, cos t are tran-

scendental over C(t) because eit is transcendental over C(t) (see Example 3.2.1) and sin t =

−ieit+ie−it

2
, cos t = eit+e−it

2
. So for any h =

 a b

−b a

 ∈ GL2(C) with a2 + b2 = 1,

Q(h(sin t, cos t), h(sin t, cos t)′)

= Q(a sin t+ b cos t,−b sin t+ a cos t, a cos t− b sin t,−b cos t− a sin t) = 0

because a sin t + b cos t = −(−b cos t− a sin t) and −b sin t + a cos t = a cos t− b sin t. By [5,

Theorem 6.3.1, page 120], Gal (L|K) is isomorphic to

G = {g ∈ GL2(C) : Q(g(sin t, cos t), g(sin t, cos t)′) = 0∀Q ∈ S}

. So h ∈ G. Since any σ ∈ Gal (L|K) must send sin t to a sin t + b cos t and cos t to

−b sin t+ a cos t with a2 + b2 = 1, Gal (L|K) is isomorphic to

{ a b

−b a

 : a2 + b2 = 1

}
⊂ GL2(C).

3.5 Liouville extensions

Definition 3.5.1. A differential field extension K ⊂ L is called a Liouville extension if there

exists a chain of intermediate differential fields K = K1 ⊂ K2 ⊂ · · · ⊂ Kn = L such that

Ki+1 = Ki〈αi〉, where

• αi is algebraic over Ki

• α′i ∈ Ki (αi is called a primitive element over Ki)



CHAPTER 3. DIFFERENTIAL GALOIS GROUPS 46

• or α′i/αi ∈ Ki (αi is called an exponential element over Ki).

Definition 3.5.2. An algebraic group G is solvable if there is a chain of closed subgroups

1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that Gi is normal in Gi+1 and Gi+1/Gi is abelian ∀

0 ≤ i ≤ n− 1.

Propsition 3.5.1. Let K ⊂ L be a Liouville extension of the differential field K. Suppose

that the field of constants of L is the same as that of K. Then the differential Galois group

Gal (L|K) is solvable.

Definition 3.5.3. Consider a linear differential equation L(Y ) = 0 over K. A solution

y ∈ K is called Liouvillian if

• y is algebraic over K

• y is the integral of an element in K

• y is the exponential of an element in K

Theorem 3.5.1. Consider a linear differential equation L(Y ) = 0 over K. Let L be the

Picard-Vessiot field for L(Y ) = 0 over K. L(Y ) = 0 is solvable by Liouvillian functions if

and only if the identity component of Gal (L|K) is solvable.



Chapter 4

Complexity of Hrushovski’s

Algorithm

4.1 Introduction

The complexity of computing the Galois group of a linear differential equation is of general

interest. An important application of the differential Galois group is that a linear differential

equation can be solved by integrals, exponentials and algebraic functions if and only if the

connected component of its differential Galois group is solvable. Computing the differential

Galois groups would help us determine the existence of the solutions expressed in terms of

elementary functions (integrals, exponentials and algebraic functions) and understand the

algebraic relations among the solutions.

In a recent work, Feng gave the first degree bound on Hrushovski’s algorithm for com-

puting the Galois group of a linear differential equation. This bound is the degree bound

of the polynomials used in the first step of the algorithm for finding a proto-Galois group

and is quintuply exponential in the order of the differential equation. We use Szántó’s algo-

rithm of triangular representation for algebraic sets to analyze the complexity of computing

47
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the Galois group of a linear differential equation and we give a new bound which is triple

exponential in the order of the given differential equation.

4.2 Preliminaries

We consider a linear differential equation in the matrix form:

δ(Y ) = AY (1)

where Y is a vector containing n unknowns and A is an nn matrix with entries in k(t).

Denote the Picard-Vessiot extention field of the differential field k(t) by K with the derivation

δ = d
dt

and the solution space of (1) by V in K. Let F ∈ GLn(K) be a fundamental matrix

of (1). Let GL(V ) be the group of automorphisms of the solution space V . Then there is

a group isomorphism ΦF : GL(V ) → GLn(k) sending σ ∈ GL(V ) to Mσ ∈ GLn(k) where

FMσ = σ(F ).

Definition 4.2.1. The Galois group G of (1) is the group of k(t)-automorphisms of K which

commutes with the derivation and fixes k(t) pointwise.

Definition 4.2.2. An algebraic subgroup H of GLn(k) is bounded by d if there exist finitely

many polynomials p1, . . . , pm ∈ k[xi,j]1<i,j<n of degrees not greater than d such that H =

zero (p1, . . . , pm) ∩GLn(k).

Let H ⊆ GLn(k) be an algebraic subgroup. Let H0 be the identity component of H

and ΦF (G)0 be identity component of ΦF (G). Let (H0)t be the intersection of kernels of all

characters of H0.

The definition of a proto-Galois group of (1) was introduced by Feng in [10], which is as

follows:
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Definition 4.2.3 ([10, Definition 1.1]). If there is an algebraic subgroup H of GLn(k) such

that

(H0)t E ΦF (G)0 ⊆ ΦF (G) ⊆ H,

then H is called a proto-Galois group of (1).

In Hrushovski’s algorithm, one can compute an integer d̃ such that there is a proto-Galois

group H of GLn(k) bounded by d̃. The bound d̃ is given by Feng in [10].

Example 4.2.1. Consider the first order linear differential equation y′ = 1
3t
y over C(t).

The differential Galois group is the subgroup {1,−1
2

+
√

3
2
i,−1

2
−
√

3
2
i} ⊆ C∗, where C∗

is the multiplicative group of complex numbers [29, Example 1.3.7, page 12]. The identity

component of C∗ is itself. The intersection of kernels of all characters of C∗ is trivial because

the identity map of C∗ is a character. So in this case C∗ is a proto-Galois group.

Example 4.2.2. Consider the Airy equation y′′ = ty over C(t). The differential Galois group

is the subgroup SL2(C) ⊆ GL2(C) [35, Example 8.15, page 250]. The identity component

of SL2(C) is itself because SL2(C) is connected. The identity component of GL2(C) is

itself because GL2(C) is connected. A character φ of GL2(C) is of the form ∀g ∈ GL2(C)

φ(g) = (det (g))n where det is the determinant map and n ∈ N. So the intersection of kernels

of all characters of GL2(C) is SL2(C). So GL2(C) is a proto-Galois group. From Definition

4.2.3, it is not hard to see the differential Galois group itself is a proto-Galois group.

Example 4.2.3. Consider the second order linear differential equation y′′ + 1
t
y′ = 0 over

C(t). The differential Galois group is

{1 c

0 1

 : c ∈ C
}

[7, Example 4.1, page 90]. The same analysis in Example 4.2.2 shows that the intersection of
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kernels of all characters of GL2(C) is SL2(C). But GL2(C) is not contained in the identity

component of the differential Galois group. So in this case GL2(C) cannot be a proto-Galois

group. The intersection of kernels of all characters of SL2(C) is itself which is not contained

in the identity component of the differential Galois group. So in this case SL2(C) cannot be

a proto-Galois group.

Example 4.2.4. Consider the second order linear differential equation y′′ − 2ty′ − 2y = 0

over C(t). The differential Galois group is

{a c

0 b

 : a, b, c ∈ C, ab 6= 0

}

[25, Example 6.10, pages 81,82,83]. The same analysis in Example 4.2.3 shows that in this

case GL2(C) cannot be a proto-Galois group. The differential Galois group in this case is

not even a subgroup of SL2(C), so SL2(C) cannot be a proto-Galois group.

Remark 8. The proto-Galois group of a linear differential equation is not unique. As shown

in Examples 4.2.1 and 4.2.2, the proto-Galois group can be far from the differential Galois

group. But a group being large does not make it a proto-Galois group as shown in Examples

4.2.3 and 4.2.4.

Hrushovski in [14, Corollary 3.7] proved that one can compute an integer d3 such that

there is a proto-Galois group H of GLn(k) bounded by d3. Feng in [10, Propostion B.14]

gave the first explicit bound for d3 which is sextuply exponential in the order n of the given

linear differential equation.

To understand the key role of the integer d3 in analyzing the complexity of Hrushovski’s

algorithm, we separate the algorithm in three main steps following the way in which Feng

in [10] described it.
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Definition 4.2.4. Let Ṽ = {Fh : h ∈ GLn(k)}. A subset V0 of Ṽ is defined by finitely many

polynomials p1, . . . , pm if V0 = zero (p1, . . . , pm) ∩ Ṽ where zero (p1, . . . , pm) denotes the zero

set of {p1, . . . , pm} in knn. If p1, . . . , pm have coefficients in k, we say that V0 is k-definable

subset of Ṽ .

• In the first step, we compute a proto-Galois group H of (1) bounded by d3. The

existence of H is guaranteed by [14, Corollary 3.7]. Let Nd3(Ṽ ) be the set of all subsets

of Ṽ defined by finitely many polynomials of degrees not greater than d3. Then one

can compute H by the intersection of the stabilizers of k-definable elements in Nd3(Ṽ ).

• In the second step, we compute the identity component (ΦF (G))0 of ΦF (G). Let

χ1, . . . , χl be the generators of the character group of
(
ΦF (G)

)0
. Let k̂ be an alge-

braic extension of k(t). Then χ
(
ΦF (G)0

)
is the Galois group of some exponential

extension K̂ of k̂ where χ = (χ1, . . . , χl). K̂ can be obtained by computing hyperex-

ponential solutions of some symmetric power system of (1).
(
ΦF (G)

)0
can be found by

the pre-image of χ
(
ΦF (G)0

)
in
(
ΦF (H)

)0
.

• In the last step, we compute the differential Galois group G of (1). Let G0 be the

pre-image of
(
ΦF (G)

)0
. Find a Galois extension kG of k(t) and a kG-definable subset

VkG of Ṽ such that G0 = stab (VkG) where stab (VkG) is the stabilizer of VkG . Then

G =
m⋃
i=0

{σ ∈ GL(V )|σ(VkG) = Vi}

where Vi is the orbit of VkG under the action of Gal
(
kG/k(t)

)
.

From the first step of the algorithm, we can see that the integer d3 determines the

complexity of computing a proto-Galois group. The differential Galois group is obtained by

recovering the proto-Galois group in the next two steps. Therefore d3 plays an important

role in determining the complexity of the whole algorithm.
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4.3 Preparation lemmas

Definition 4.3.1. We say that an ideal I ⊆ k[x1, . . . , xn] has a triangular representation

if
√
I is expressed by an intersection of radical ideals Ii such that for each i, Ii = rep (Gi)

where Gi is a triangular set in Ii. A triangular representation of I is bounded by d if every

polynomial in Gi has degree not greater than d.

Definition 4.3.2. An algebraic subgroup H ⊆ GLn(k) is said to have a triangular represen-

tation if the ideal generated by the defining equations of H has a triangular representation.

A triangular representation of H is bounded by d if every polynomial in the triangular rep-

resentation has degree not greater than d.

Let I ⊆ k[x1, . . . , xn] be an ideal. In [10, Proposition B.2], Feng gave a degree bound

for I ∩ k[x1, . . . , xr] which is double-exponential in n using the computation of Gröbner

bases. In the following lemma, we give a degree bound for the triangular representation of

I ∩ k[x1, . . . , xr] which is polynomial exponential in n.

Lemma 4.3.1. Assume that n > 1. Let I ⊆ k[x1, . . . , xn] be an ideal bounded by d and

1 ≤ r ≤ n. Then I ∩ k[x1, . . . , xr] has a triangular representation bounded by nd5.5n3
.

Proof. Assume that
√
I =

⋂
i Ii is a triangular representation of I where Ii = rep (Gi) and

Gi is a triangular set of Ii . Since

√
I ∩ k[x1, . . . , xr] =

√
I ∩ k[x1, . . . , xr],

it suffices to show that for each i

rep
(
Gi ∩ k[x1, . . . , xn]

)
∩ k[x1, . . . , xr] = rep (Gi) ∩ k[x1, . . . , xr] (2)
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where rep
(
Gi ∩ k[x1, . . . , xn]

)
is an ideal in k[x1, . . . , xn]. Let g ∈ LHS of (2). Then

prem
(
g,Gi ∩ k[x1, . . . , xr]

)
= 0.

If Gi ⊆ k[x1, . . . , xr], then

prem (g,Gi) = prem
(
g,Gi ∩ k[x1, . . . , xr]

)
.

So prem (g,Gi) = 0. If Gi 6⊆ k[x1, . . . , xr], then Gi must have at least one polynomial

containing terms larger than xr. Let Gi = {gi,1, . . . , gi,s} and assume that gi,j+1, . . . , gi,s

contain terms larger than xr. Then

Gi ∩ k[x1, . . . , xr] = {gi,1, . . . , gi,j}

with j < s. Since g ∈ k[x1, . . . , xr], g is reduced modulo gi,j, . . . , gi,s. Then prem (g,Gi) = 0.

So g ∈ RHS of (2). Let f ∈ RHS of (2). Then f ∈ k[x1, . . . , xr] and prem (f,Gi) = 0. Since

f ∈ k[x1, . . . , xr], f is reduced modulo polynomials containing terms larger than xr in Gi.

So

prem
(
f,Gi ∩ k[x1, . . . , xr]

)
= 0.

So f ∈ LHS of (2). Therefore, I ∩ k[x1, . . . , xr] has a triangular representation which is

√
I ∩ k[x1, . . . , xr] =

⋂
i

I ′i

where

I ′i = rep
(
Gi ∩ k[x1, . . . , xr]

)
where rep

(
Gi ∩ k[x1, . . . , xr]

)
is an ideal in k[x1, . . . , xr]. By [33, Theorem 4.1.7], the trian-
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gular representation of I ∩ k[x1, . . . , xr] is bounded by nd5.5n3
.

Lemma 4.3.2. Let I, J ⊆ k[x1, . . . , xn] be ideals. Assume that I and J have triangular

representations bounded by d. Then IJ has a triangular representation bounded by d.

Proof. Suppose that
√
I =

⋂
i Ii and

√
J =

⋂
j Jj are triangular representations of I and J .

Then
√
IJ =

√
I ∩
√
J =

(⋂
Ii
)
∩
(⋂

Jj
)
. So if Ii = rep (GIi) and Jj = rep (GJj) for some

triangular sets GIi and GJj , then
√
IJ =

(⋂
rep
(
GIi)

)
∩
(⋂

rep (GJj)
)
. Therefore, IJ has

a triangular representation bounded by d.

Definition 4.3.3. We say that a family F of algebraic subgroups in GLn(k) is represented

by a family of triangular sets if any H ∈ F has a triangular representation, and F is bounded

by d if the triangular representations of any H ∈ F are bounded by d.

Let H ⊆ GLn(k) be an algebraic subgroup. Let τ : H −→ GLl(k) be a homomorphism

where l is a positive integer. Assume that τ = (
Pi,j

Q
), where P and Q are polynomials with

coefficients in k and 1 ≤ i, j ≤ l. The homomorphism τ is said to be bounded by d if the

polynomials Pi,j and Q have degrees not greater than d.

In [10, Lemma B.5], Feng gave a degree bound for the generating set of the ideal generated

by the defining equations of τ−1
(
H ′ ∩ τ(H)

)
where H ⊆ GLn(k) and H ′ ⊆ GLl(k). We use

a similar argument to give in the following lemma a bound for the triangular representation

of τ−1
(
H ′ ∩ τ(H)

)
.

Lemma 4.3.3. Assume that n > 1. Let H ⊆ GLn(k) be an algebraic subgroup whose trian-

gular representation bounded by d and H ′ ⊆ GLl(k) be an algebraic subgroup whose triangular

representation bounded by d′. Assume that the homomorphism τ : H −→ GLl(k) is bounded

by m. Then τ−1
(
H ′∩τ(H)

)
has a triangular representation bounded by n

(
max (d,md′)

)5.5n3

.

Proof. Let I(H) be the ideal generated by the defining equations of H and I(H ′) be the ideal

generated by the defining equations of H ′. Let X be the set of indeterminates xα,β, 1 ≤
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α, β ≤ n and Y be the set of indeterminates yζ,η, 1 ≤ ζ, η ≤ l. Assume that τ = (
Pi,j

Q
)1≤i,j≤l

where Pi,j and Q are polynomials in k[X]. Assume that H has a triangular representation

√
I(H) =

⋂
r

rep (Gr)

and H ′ has a triangular representation

√
I(H ′) =

⋂
w

rep (Fw),

where Gr are triangular sets in k[X] and Fw are triangular sets in k[Y ]. {Gr} and {Fw} in the

triangular representations of H and H ′ computed by Szántó’s algorithm are unmixed trian-

gular sets (see [31, Proposition 6]) which guarantee zero (
⋃
w Fw) = H ′ and zero (

⋃
rGr) = H.

A subroutine called unmixed can transform a triangular set to an unmixed one (see [33,

Section 4.2] for more details). Since zero (
⋃
w Fw) = H ′, composing every polynomial in each

Fw with τ and clearing the denominators, we can get the sets Ew of polynomials in k[X]

such that zero (
⋃
w Ew) = τ−1(H ′). Since zero (

⋃
rGr) = H, zero

(
(
⋃
rGr) ∪ (

⋃
w Ew)

)
=

τ−1
(
H ′ ∩ τ(H)

)
. Let J be the ideal generated by

(
(
⋃
rGr) ∪ (

⋃
w Ew)

)
. Thus, zero (J) =

τ−1
(
H ′ ∩ τ(H)

)
. Since the degrees of polynomials in Gr are not greater than d and the

degrees of polynomials in Ew are not greater than md′, by [33, Theorem 4.1.7], J has a

triangular representation bounded by n
(

max (d,md′)
)5.5n3

. That is, τ−1
(
H ′ ∩ τ(H)

)
has a

triangular representation bounded by n
(

max (d,md′)
)5.5n3

.

In [10, Proposition B.6], Feng uniformly bounded the homomorphisms defined in the

following lemma by considering the bound for the generating set of the ideal generated

by the defining equations of an algebraic subgroup. Instead, we present a bound for such

homomorphisms by making use of the bound for the triangular representation of an algebraic

subgroup. The proof is similar to the one in [10, Proposition B.6].
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Lemma 4.3.4. Assume that n > 1. Let H and H ′ be algebraic subgroups of GLn(k) such

that HEH ′. Assume that H has a triangular representation bounded by d. Then there exists

a homomorphism

τH′,H : H ′ −→ GLd∗(k)

bounded by n∗ with ker(τH′,H) = H, d∗ = max
i

{((n2+d
d )
i

)2}
and n∗ = d∗d

(
n2+d
d

)
.

Proof. The existence of such a homomorphism is guaranteed by [16, Theorem, page 82]. Let

G(H) be the family of triangular sets in a triangular representation of H. Then G(H) is

a k-vector space with a finite dimension. Let k[xi,j]≤d be the set of polynomials of degrees

not greater than d where 1 ≤ i, j ≤ n. Let I(H) = {P (xi,j) ∈ k[xi,j]≤d|P (H) = 0} and

l = dimk(I(H)). Let

E =
l∧
k[xi,j]≤d, 1 ≤ i, j ≤ n

which is the lth exterior power of k[xi,j]≤d. Since k[xi,j]≤d is a k-vector space with dimension(
n2+d
d

)
, dimk(E) =

((n2+d
d )
l

)
and

∧l C(H) = kv for some v ∈ E where
∧l C(H) is the lth

exterior power of C(H). By a similar argument in the proof of [10, Lemma B.6], we can

construct a desired homomorphism bounded by n∗.

Let U be a subgroup generated by unipotent elements of GLn(k). In [10, Lemma B.8],

Feng gave a degree bound for U which is double exponential in n. In the following lemma,

we bound the triangular representation of U . The bound we give is polynomial exponential

in n.

Lemma 4.3.5. Assume that n > 1. Let U be a subgroup generated by unipotent elements of

GLn(k). Then U has a triangular representation bounded by

3n2
(
2n2(n− 1)

)148.5n6

.

Proof. By [16, Lemma C, page 96], any one-dimensional subgroup H generated by unipotent
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elements of GLn(k) has the form

H = {In +Mx+
M2

2!
x2 + · · ·+ Mn−1

(n− 1)!
xn−1 : x ∈ C}

where M ∈ Matn(k) with Mn = 0. By [16, Proposition, page 55], U is a product of at most

2 dim (U) one-dimensional subgroups generated by unipotent elements. Hence,

U =

2 dim (U)∏
i=1

Hi

where Hi = {In + Mixi +
M2

i

2!
x2
i + · · · +

Mn−1
i

(n−1)!
xn−1
i : xi ∈ C} is a one-dimensional sub-

group generated by unipotent elements of GLn(k) and Mi ∈ Matn(k) with Mn
i = 0. Since

dim (U) ≤ n2, the defining equations of U contain at most 3n2 variables and have degrees

not greater than 2n2(n− 1). By Lemma 4.3.1, the ideal generated by the defining equations

of U has a triangular representation bounded by

3n2
(
2n2(n− 1)

)5.5(3n2)3
= 3n2

(
2n2(n− 1)

)148.5n6

.

Jordan in [18] proved that there exists a positive integer J(n) depending on n such that

every finite subgroup of GLn(k) contains a normal abelian subgroup of index at most J(n).

Schur in [28] provided an explicit bound which is

J(n) ≤
(√

8n+ 1
)2n2

−
(√

8n− 1
)2n2

.

We use Schur’s bound in our computations. Assume that n > 1. Let

D = 3n2
(
2n2(n− 1)

)148.5n6

, (3)
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d1 = max
i

{((n2+D
D

)
i

)2}
, (4)

d2 = d1D

(
n2 +D

D

)
, (5)

d3 = n

(
d2(d2

1 + 1) max
i

{(
d2

1 + 1

i

)2})5.5n3

, (6)

and

d̄ = J

(
max
i

{(
d2

1 + 1

i

)2})
. (7)

Next we give numerical bounds for D, d1, d2, d3 and d̄ which will be used in the following

theorems. Since

D = 3n2
(
2n2(n− 1)

)148.5n6

≤ 3n2(2n3)148.5n6

and (
n2 +D

n2

)
≤
(
e(n2 +D)

n2

)n2

≤ (e+ 3e(2n3)148.5n6

)n
2 ≤ 18n

2

(2n3)148.5n8

,

d1 ≤
(
2(n2+D

D ))2 ≤
(
218n

2
(2n3)148.5n

8)2 ≤
(
2(2n3)149n

8)2 ≤ 4(2n3)149n
8

,

d2 ≤ 4(2n3)149n
8

3n2(2n3)148.5n6

18n
2

(2n3)148.5n8

= 3n218n
2

4(2n3)149n
8

(2n3)(148.5n8+148.5n6),
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d3 ≤n
(

3n218n
2

(2n3)148.5n8+148.5n6

4(2n3)149n
8(

16(2n3)149n
8

+ 1
)
4

(
16(2n

3)149n
8

+1
))5.5n3

≤n
(

(2n3)149n8+149n6

4(2n3)149n
8(

16(2n3)149n
8

+ 1
)
4

(
16(2n

3)149n
8

+1
))5.5n3

≤n
(

2(2n3)149n8+149n6

4(2n3)149n
8

16(2n3)149n
8

4

(
16(2n

3)149n
8

+1
))5.5n3

≤n
(

8(2n3)149n8+149n6

4(2n3)149n
8

16(2n3)149n
8

416(2n
3)149n

8
)5.5n3

≤n
(
816(2n

3)149n
8 )5.5n3

= n85.5n316(2n
3)149n

8

,

and

d̄ ≤
(√

8 · 4d21+1 + 1
)2n2

−
(√

8 · 4d21+1 − 1
)2n2

≤
(√

32 · 28(2n
3)149n

8

+ 1
)2n2

−
(√

32 · 28(2n
3)149n

8

− 1
)2n2

≤
(
2
√

32 · 28(2n
3)149n

8 )2n2

= 210n2

4n
28(2n

3)149n
8

where n > 1.

4.4 Complexity of Hrushovski’s algorithm

In this section, when we say that a family F of algebraic subgroups of GLn(k) is bounded

by an integer we mean that the triangular representations of all elements in F are bounded

by that integer. We prove the following theorem and corollaries following the way in which

Feng proved [10, Proposition B.11, Lemma B.12, Lemma B.13]. But in order to improve

the bounds, we replace the use of Gröbner bases with the triangular representations. Our

main result is stated as the following theorem.
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Theorem 4.4.1. Assume that n > 1. There is an integer

d̄ ≤ 210n2

4n
28(2n

3)149n
8

and a family F of algebraic subgroups of GLn(k) whose triangular representations are bounded

by

d3 ≤ n85.5n316(2n
3)149n

8

with the following properties: for every algebraic subgroup H ′ ⊆ GLn(k), there exists an

algebraic subgroup H of F such that

(a) (H ′)◦ ⊆ H

(b) H E H ′H ⊆ GLn(k)

(c) [H ′ : H ∩H ′] = [H ′H : H] ≤ d̄

(d) Every unipotent element of H is in (H ′)◦

where (H ′)◦ is the identity component of H ′.

Proof. In the first case we assume that H ′ is a finite subgroup in GLn(k). Since every finite

subgroup of GLn(k) contains a normal abelian subgroup of index at most J(n), we choose

such a normal abelian subgroup H̃ ′ ⊆ H ′. H̃ ′ is diagonalizable, so H̃ ′ is in some maximal

torus of GLn(k). Let H be the intersection of maximal tori containing H̃ ′ in GLn(k). We

prove that H satisfies (a) − (d) for H ′. (a) is true because of the construction of H. (b) is

true because H normalizes H ′. (c) is true because

[H ′H : H] = [H ′ : H ∩H ′] ≤ [H ′ : H̃ ′] ≤ J(n).

So we can choose d̄ = J(n). (d) is true because there is only one unipotent element of H
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which is the identity. Let F be the family of all the intersections of maximal tori in GLn(k).

Then F is the desired family of algebraic subgroups of GLn(k) with d3 = 1.

In the second case we assume that H ′ is a subgroup whose identity component is a torus.

Let T be the intersection of all maximal tori containing (H ′)◦ in GLn(k). Then T has

a triangular representation bounded by 1. Let S be the normalizer of T in GLn(k). By

Lemma 4.3.4, there is a homomorphism

τS,T : S −→ GLn′(k)

bounded by

(n2 + 1) max
i

{(
n2 + 1

i

)2}
such that ker (τS,T ) = T and n′ = maxi

{(
n2+1
i

)2}
. Since the identity component of H ′ is

contained in T , τS,T (H ′) is a finite subgroup of GLn′(k). Let F1 be the family of all the

intersections of maximal tori of GLn′(k). By the first case, there exists HF1 ∈ F1 such that

(a)− (c) are true for τS,T (H ′) with d̄ = J(n′). Let

H = τ−1
S,T

(
τS,T (S) ∩HF1

)
.

We prove that (a)− (d) are true for H and H ′. Since the identity component (H ′)◦ of H ′ is

a torus and T ⊆ H, (H ′)◦ ⊆ H. This proves (a). Let h′ ∈ H ′. Then

τS,T (h′Hh′−1) = τS,T (h′)
(
τS,T (S) ∩HF1

)
τS,T (h′−1).

Since HF1 E τS,T (H ′)HF1 ,

τS,T (h′)
(
τS,T (S) ∩HF1

)
τS,T (h′−1) = τS,T (S) ∩HF1 = τS,T (H).
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So h′Hh′−1 ⊆ H and H E H ′. Hence, H E H ′H ⊆ GLn(k). This proves (b). Since H ′ ⊆ S

and [τS,T (H ′) : HF1 ∩ τS,T (H ′)] ≤ J(n′),

[H ′ : H ∩H ′] = [H ′H : H] = [τS,T (H ′H) : τS,T (H)] = [τS,T (H ′)τS,T (H) : τS,T (H)]

= [τS,T (H ′) : τS,T (H) ∩ τS,T (H ′)] = [τS,T (H ′) : HF1 ∩ τS,T (H ′)] ≤ J(n′).

We can choose d̄ = J(n′) = J
(

maxi
{(

n2+1
i

)2})
. This proves (c). Let h ∈ H be a unipotent

element. Then τS,T (h) is a unipotent element in HF1 . Since every element in HF1 is semi-

simple, τS,T (h) = 1. So h must be in ker (τS,T ) = T . By the definition of T , T is in some

torus of GLn(k). So h = 1. Hence, every unipotent element of H is in (H ′)◦. This proves

(d). By Lemma 4.3.3, H has a triangular representation bounded by

n(n2 + 1)5.5n3

max
i

{(
n2 + 1

i

)11n3}
.

Let F be the family of such subgroups H. Then F is the desired family with

d3 ≤ n(n2 + 1)5.5n3

max
i

{(
n2 + 1

i

)11n3}
.

The general case is proved as follows. Let H ′u be the intersection of kernels of all characters of

(H ′)◦. (H ′)◦ is a connected subgroup of GLn(k), so H ′u is generated by all unipotent elements

by [10, Lemma B.10]. By Lemma 4.3.5, H ′u has a triangular representation bounded by D.

Let N be the normalizer of H ′u in GLn(k). By Lemma 4.3.4, there exists a homomorphism

τN,H′u : N −→ GLd1(k)

bounded by

d2 = d1D

(
n2 +D

D

)
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such that ker(τN,H′u) = H ′u and

d1 = max
i

{((n2+D
D

)
i

)2}
.

The identity component of τN,H′u(H ′) is a torus in GLd1(k), by the second case, there exists

H ′′ ⊆ GLd1(k) whose triangular representation bounded by

(d2
1 + 1) max

i

{(
d2

1 + 1

i

)2}

such that (a)− (d) are true for τN,H′u(H ′) with

d̄ = J

(
max
i

{(
d2

1 + 1

i

)2})
≤ 210n2

4n
28(2n

3)149n
8

.

Let

H = τN,H′u
−1
(
H ′′ ∩ τN,H′u(N)

)
.

By Lemma 4.3.3, H has a triangular representation bounded by

d3 = n

(
d2(d2

1 + 1) max
i

{(
d2

1 + 1

i

)2})5.5n3

≤ n85.5n316(2n
3)149n

8

.

By a similar argument in the proof of [10, Proposition B.11], (a) − (d) are true for H and

H ′. Let F be the family of such algebraic subgroups H. Then F is the desired family with

d3 ≤ n85.5n316(2n
3)149n

8

.

Corollary 4.4.1. Assume that n > 1. There exists a family F̄ of algebraic subgroups of
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GLn(k) whose triangular representations are bounded by

d3 ≤ n85.5n316(2n
3)149n

8

such that for any algebraic subgroup H ′ ⊆ GLn(k) there exists H̄ of F̄ such that H ′ ⊆ H̄

and every unipotent element of H̄ is in (H ′)◦.

Proof. Let F̄ = {H̄ : there exists H ∈ F such that H E H̄ and [H̄ : H] ≤ d̄}. Let

H ′ ⊆ GLn(k) be an algebraic subgroup. By Theorem 4.4.1, there is an H ∈ F such that

(a)− (d) are true for H and H ′. Let H̄ = H ′H. By (b) and (c) in Theorem 4.4.1, H̄ ∈ F̄ . By

(d) in Theorem 4.4.1, every unipotent element of H is in (H ′)◦. Since every unipotent element

of H̄ is in H̄◦ ⊆ H◦. Hence, every unipotent element of H̄ is in (H ′)◦. Since H̄ is the union

of the cosets of some element in F and every element of F has a triangular representation

bounded by d3, by Lemma 4.3.2, we have that H̄ has a triangular representation bounded

by

d3 ≤ n85.5n316(2n
3)149n

8

.

Therefore, F̄ is bounded by d3 ≤ n85.5n316(2n
3)149n

8

.

Corollary 4.4.2. Let F̄ be the family in Corollary 4.4.1. Then for any algebraic subgroup

H ′ ⊆ GLn(k), there exists H̄ of F̄ such that

(H̄◦)t E (H ′)◦ ⊆ H ′ ⊆ H̄.

Proof. By Corollary 4.4.1, there exists H̄ of F̄ such that H ′ ⊆ H̄ and every unipotent

element of H̄ is in (H ′)◦. Since H̄◦ is a connected subgroup of GLn(k), (H̄◦)t is generated by

all unipotent elements in H̄◦ by [10, Lemma B.10]. Since (H̄◦)t E H̄◦ and every unipotent

element in H̄◦ is in (H ′)◦, (H◦)t E (H ′)◦. Therefore, (H̄◦)t E (H ′)◦ ⊆ H ′ ⊆ H̄.

Remark 9. Since the differential Galois group of (1) is an algebraic subgroup in GLn(k),
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by Corollary 4.4.2, there exists an algebraic subgroup H̄ bounded by d3 such that (H̄◦)t E

(H ′)◦ ⊆ H ′ ⊆ H̄. By the definition of the proto-Galois group, this algebraic subgroup H̄ is a

proto-Galois group of (1).

4.5 Comparison

We compute d̄ and d3 explicitly for n = 2. We plug in n = 2 to the equations (3), (4), (5),

(6), and (7) instead of the formulas in Theorem 4.4.1 and Corollary 4.4.1 to do calculations,

which would give us more refined bounds. Feng in [10] roughly estimated that d̄ is quintuply

exponential in n and d3 is sextuply exponential in n, but he did not give numerical bounds

for them. In order to compare our bounds with the ones in [10], we also give numerical

bounds in [10, Proposition 11, Proposition 14]. In [10, Proposition 11, Proposition 14], d3 is

denoted as d̃ and d̄ is denoted as I(n) respectively. The numerical bounds of d̃ and I(n) are

as follows:

d̃ ≤ 3222
2(2n)2

(24n2)

, I(n) ≤ 422
(2n)2

(12n2)

.

When n = 2,

d̄ ≤ 222
218

, I(n) ≤ 222
22

96

,

and

d3 ≤ 222
218

, d̃ ≤ 222
22

2194

.



Appendix

Appendix

The following results on matrix representations of pseudoremainders are used in Section 2.4.

They are mentioned and used in [33, Section 3.3]. We include here a shortened and refined

version of them.

Let f ∈ k[x1, x2, . . . , xl], g ∈ k[x1, x2, . . . , xn] with k a field and l ≥ n. We wish to

describe the pseudoremainder of f by g with respect to xn in matrix form. More specifically,

we wish to describe this pseudoremainder when degxn(g) = d and degxn(f) ≤ 2d − 2, (the

application in mind being computing the structure constants for A(∆), see Definition 2.2.8).

We will allow the degree of f to go up to 2d− 1 in fact. We first write f and g as univariate

polynomials in xn with coefficients k[x1, . . . , xn−1, xn+1, . . . , xl]:

f = f0 + f1xn + · · ·+ f2d−1x
2d−1
n , g = g0 + g1xn + · · ·+ gdx

d
n.

Note that the difference between the degrees in xn of f and g is d− 1. Thus, the pseudore-

mainder equation we consider (in scalar form) is gddf = gq+ r where the degrees in xn of r, q

are less than d. Writing q and r as we wrote f, g above and substituting these expressions
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into the pseudoremainder equation, we obtain:

gdd(f0 + . . .+ f2d−1x
2d−1
n ) = (g0 + . . .+ gdx

d
n)(q0 + . . .+ qd−1x

d−1
n ) + r0 + . . .+ rd−1x

d−1
n .

Comparing coefficients of the powers of xn from d to 2d−1, we obtain the following linear

system 

gd 0 0 . . . 0

gd−1 gd 0 . . . 0

. . . . . . . . . . . . . . .

g1 g2 . . . . . . gd





qd−1

qd−2

. . .

q0


=



f2d−1

f2d−2

. . .

fd


gdd.

We write the system above as Gdq = fupgdd. Since gd 6= 0 (as g is assumed to have degree d

in xn), we can find the coefficients of the desired quotient by inverting Gd.

Since r = gddf − qg, after substituting we obtain one more linear system



rd−1

rd−2

. . .

r0


= gdd



fd−1

fd−2

. . .

f0


−



g0 g1 . . . . . . gd−1

0 g0 g1 . . . gd−2

. . . . . . . . . . . . . . .

0 0 . . . . . . g0





qd−1

qd−2

. . .

q0


.

We write this system as r = gddf
low −G0q. Combining with the equation for q, we obtain

r = gddf
low − gddG0G

−1
d fup.

To count multiplications in the formula for the pseudoremainder, we re-express G−1
d using

Cramer’s Rule: G−1
d = g−dd · adj(Gd) where adj(Gd) denotes the adjugate of Gd, (i.e. its

matrix of cofactors transposed). So we have r = gddf
low −G0 · adj(Gd)f

up.

Observe that the entries of adj(Gd) are sums of products of d− 1 entries of Gd.
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[28] I. Schur. Über gruppen periodischer substitutionen. Sitzber. Preuss. Akad. Wiss, pages
619–627, 1911.

[29] M. F. Singer. Introduction to the Galois theory of linear differential equations. Preprint,
2007. URL https://arxiv.org/abs/0712.4124.

[30] M. F. Singer and F. Ulmer. Galois groups of second and third order linear differential
equations. Journal of Symbolic Computation, 16(1):9–36, 1993. URL https://dx.doi.

org/10.1006/jsco.1993.1032.
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