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Abstract

NON-METRIC SCALING OP LOUDNESS 
by

Alan M. Richards 
Advisor: Professor Harry Levitt

Determination of loudness scales for 1000 Hz stimuli 
by conventional ratio scaling methods have yielded loudness 
functions which grow as approximately the 0.54- power of sound 
pressure. Thus, two-fold loudness differences are equivalent 
to approximately 10 dB across the auditory continuum. The 
unidimensional representation of loudness ss a power function 
of sound intensity implies that if A is twice as loud as B, 
which, in turn, is twice as loud C, the A will be four times 
as loud as C. In order to test this implication across the 
auditory continuum loudness ratio estimates were obtained from 
four 7x7 matrices of 1000 Hz stimuli with differing inter
stimulus spacings snd ranges.

Two types of data analysis were used in comparing the 
obtained ratio estimate results with those implied by the 10 
dB rule. The first was a multidimensional representation of 
the d8ta based upon Shepard's Analysis of Proximities ^~R. N. 
Shepard, Psychometrika, 27* 125-14-0, 210-24-6 (1962J7. From 
these analyses simple two-dimensional configurations were found 
which adequately represented the dsta. In general, these 
configurations indicated that the obtained estimates did not 
conform to the configurations implied by the 10 dB rule, i.e.,

xi



a straight line in space, but curved upwards indicating 
increasing non-additivity with increased inter-stimulus 
differences. It was further found thst as the stimulus range 
of a matrix decreased, the ratio estimates associated with 
common stimulus pairs increased.

The second type of analysis was designed to plot the 
obtained ratio estimate data as a unidimensional function 
of intensity, which, in turn, would yield linesr spatial 
configurations. The results of this analysis yielded loud
ness scales which could be directly compared to conventional 
power functions. It was found that for two matrices (B 
and C) that power functions were obtained, although the 
slope for Matrix C (15 dB range) was high relative to the 
conventional scale, while the slope of Matrix B (30 dB range) 
was quite similar to the conventional function. With a 
60 dB stimulus range (Matrix A) a power function was not 
obtained.

Loudness growth was further investigated with other than 
moderate to intense 1000 Hz tones. Ratio estimates were 
obtained from four new matrices which contained either 250 Hz 
tones, white-noise, or low sensation level 1000 Hz snd 4-000 
Hz tones. Esch of these matrices was analyzed by the Analysis 
of Proximities, and the obtained configurations compared to 
the results implied from earlier findings concerning the 
stimuli of interest.

A monaural test of loudness recruitment was suggested 
utilizing ratio estimates combined with the Analysis of 
Proximities. xii
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INTRODUCTION AND HISTORY
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The relative advantages end limitations of the various 
types of scales ere well known (Guilford, 195**-; Stevens, 1951»
1958)* Four types exist: nominal, ordinal, interval, and 
ratio. The nominal scale represents the simplest form because 
only the classification of attributes is considered, with no 
metricizing or ordering. Among some of the psychophysical 
problems lending themselves to determination by nominal scales 
are absolute and differential threshold, and the equation of 
magnitude, such as found in equal loudness contours.

Ordinal scales are one step removed from nominal scales 
in that stimuli ere ranked relative to some attribute. These 
scales, however, are not designed to indicate the distance 
present between two attributes, nor do they contain true zero 
points. Psychophysical determination of ordinal scales convention
ally is accomplished by using the methods of Rank Order, Rating, 
or Paired Comparisons.

Interval scales sre another step removed from nominal 
scales in that the distances between two attributes can be de
termined quantitatively (Guilford, 195**-? Stevens, 1951 )• They 
also lend themselves to conventional statistical analyses. How
ever, no true zero point is present. The psychophysical pro
cedure used most frequently in erecting interval scales is that 
of bisection (Stevens & Volkmann, 1940).

Ratio scales represent the most advanced scales in that 
they contain an interval scale within themselves, as well as 
have true zero points (Guilford, 1954; Stevens, 1951* 1958,
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I960). By absolute zero point here is meant a point which is 
representative of "neither more nor less thsn none of the property 
represented by the scale" (Guilford, 1954* p. 16).

The most important aspect of ratio scales, as concerns 
subjective magnitudes, is that preserve information about the 
ratio s between sensations. Thus, it is possible to indicate 
that one subjective sensation is twice as great, or one-half 
as great, as another.

The perception of loudness, as implied from previously 
obtained loudness functions (Stevens, 1955* 1956, 19578, 1958, 
1959, I960), shows properties which are found only in ratio 
scales. Thus, it is assumed that ratio scaling procedures are 
applicable to loudness-intensity relations (Stevens, I960).
These methods fsll into five classes: Magnitude Estimation,
Magnitude Production, Ratio Production, Ratio Estimation, and 
Numerical Magnitude Balance.

Magnitude Estimation of loudness can be accomplished by 
using either of two techniques. The first method requires thst 
a number (modulus) be assigned to a stimulus by the experimenter 
(E). E then presents other stimuli to the subject (S), and S 
estimates the loudness of these subsequent stimuli relative to 
the modulus. In the other variation, no modulus is included, 
and S simply reports the percept by any number which he feels 
is proportional to the loudness. Numerous investigations hsve 
used either method in the development of loudness scales 
(Heilman & Zwislocki, 1961, 1963; Jones & Woskov, 1966; J. C. 
Stevens, 1958; Stevens & Tulving, 1957).
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Although the method of Magnitude Estimation leads to 
a ratio scale of loudness (Stevens, 1958), it is instructive 
to note th8t an equ8l-interv8l scale can be erected from the 
same obtained data when different properties of the data are 
analyzed. For example, Garner (1952) constructed an "equal 
discriminability" scale based upon the dispersion of loudness 
judgments of various stimuli to different response categories 
The scale was constructed so that equal scsle distances represented 
equal tendencies to judge two stimuli in the same category.
The subjects were instructed to judge individually presented 
1000 Hz tones on a scale which ranged from "0" to "20", where 
"20" W8S the loudest tone heard, and "1" was the lowest tone 
heard ("0" was a stimulus which was not heard). A visual stimulus 
preceded the presentation of each of the stimuli. Four different 
experimental conditions were tested, each with different stimulus 
spacings and ranges (5-100 dB in 5 dB intervals; 55-100 dB SPL 
in 5 dB intervals; 5-50 dB SPL in 5 dB steps, and 5-100 dB SPL 
in equal loudness increments). Garner found that the obtained 
equal discriminability (E.D) scale grew ss a linear function 
of log-intensity over most of its' extent. Thus, the form of 
the E.D. scale 8greed well with scales bssed upon cumulating 
difference limens (DL's), Fechnerian scales, but did not agree 
with the form of ratio scsles derived from the various direct 
ratio scaling methods (Stevens, 1958) (With the modality of loud
ness perception the ratio scales are generally linear on log- 
log coordinates).
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Magnitude Production is the inverse of Magnitude Estimation 
in that S adjusts a variable intensity control to produce a 
subjective loudness impression which is proportional to a num
ber suggested by E (Stevens, 1958)* This technique has not been 
utilized as frequently as Magnitude Estimation. Heilman and 
Zwislocki (1963) have shown, however, that Magnitude Product
ion give comparable results to Magnitude Estimation at sensation 
levels (SL's) above 40 dB. At lower SL's, the two yield more 
divergent data, but these differences become negligible as the 
SL's approach threshold.

In Ratio Production (the method of Fractionation and 
Multiple Stimuli, among others) S is required to produce a pre
scribed ratio between two stimuli. Generally, two psycho
physical methods are used to gather Ratio Production data: (1) 
the Method of Adjustment and,(2) the Method of Constant Stimuli. 
Typically, with the Method of Adjustment, a standard stimulus 
is presented, subsequently followed by a variable stimulus 
which can be controlled by S. The S's task is to adjust the 
variable stimulus to the prescribed ratio set by E. With the 
Method of Constant Stimuli, a standard is presented, which is 
subsequently followed by one of several comparison stimuli.
The S's task is to report whether the comparison stimulus is 
equal to, or less than, the prescribed loudness ratio set by E. 
For example, if S were instructed by make one-hslf loudness 
judgments E, for each judgment, would present the standard
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stimulus followed by one of several comparison stimuli 
(usually 4 to 7) presented in a pre-arranged ranaom order.
The S then indicates wl̂ ther the comparison stimulus is greater 
than, or less than, the prescribed standard/comparison ratio.
The half-loudness point is taken as the level of the comparison 
stimulus which yield 50# "greater” judgments and 50# "less" 
judgments.

The Fractionation and Multiplication procedures have often 
been used in the determination of 2:1 and 1:2 loudness-intensity 
relations (Churcher, King, and Davies, 1934-; Garner, 1952,
195^, 1959; Geiger and Firestone, 1933; Hem, 1956; Ham, Biggs, 
snd Cathey, 1962; Pollack, 1951, Richards, 1968; Robinson, 1953, 
1957; Rschevkin & Rabinovitch, 1936; Stevens, Rogers, & Herrnstein, 
1955).

The technique of Ratio Estimation, although advocated for 
constructing ratio scales (Stevens, 1958), has generally not 
been used. The procedure invloves the presentation of two or 
more stimuli, with S estimating the loudness ratio between the 
two sensations. McRobert, Bryan, and Tempest (1965) obtained 
ratio estimates of fifteen pairs of tones at 1000 Hz. The 
greatest intensity difference between the two tones in a pair 
was 50 dB (30-80 dB SPL), wheress the smallest intensity diff
erence was 10 dB. Twenty-five estimates per pair were obtained.
To insure e minimum of bias, each S made only one loudness 
estimate. McRobert et. al. (1965) found thst the obtained
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ratio estimates were not consistent with those estimates 
predicted by previously obtained loudness functions when the 
inter-stimulus differences were large, but were found to be 
somewhat less. It was further found that the differences between 
their data and previous data increased as the inter-stimulus 
differences increased. When the stimulus differences within 
a pair was approximately 15 dB or less, previous findings 
could be approximated by their obtained data.

Within the last decade the Method of Numerical Magnitude 
Balance has been developed for the scaling of loudndss (Heilman 
& Zwislocki, 1963, 1964, 1968; Rowley & Studebaker, 1969).
The method consists of first obtaining magnitude estimates of 
several stimulus intensities. No modulus is assigned, and S 
is free to choose whatever number he feels is proportional to 
the loudness. In a subsequent test session, a Magnitude 
Production procedure is initiated. The numbers in this letter 
session, in turn, are chosen from the group medians obtained 
from the previous magnitude estimates. The data from the 
two procedures are combined by taking their geometric means.

Generally, the results from the above studies dealing with 
1000 Hz tones have indicated that loudness at this frequency 
grows as a power function (linear oti log-log coordinates) 
of the stimulus intensity (Stevens, 1957c), end that 2:1 loud
ness changes are equivalent to approximately 10 dB from 30- 
100 dB SL (Robinson, 1957; Stevens, 1955, 1956, 1957a, 1957b; 
Stevens & roulton, 1956; J. C. Stevens, 1958; J. C. Stevens &
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Tulving, 1957)• In this regard, the exponent of the loudness 
power function hes been accepted as approximately 0.54- for 
sound pressure, snd 0.27 for power (Heilman &. Zwislocki, 1963; 
Lochner & Burger, 1962; Rowley & Studebaker, 1969). Figure 
1 shows the loudness function for 1000 Hz tones.

The form of the loudness function implies that it is 
possible to predict loudness relations between any two points 
on the intensity continuum. Accordingly, as the 10 dB rule 
predicts a 10 dB inter-stirnulus difference would be perceived 
as a 2:1 loudness ratio, a 20 dB difference as e 4:1 loudness 
ratio, and a 30 dB difference as an 8:1 ratio, end so on.

0ert8in nuisance parameters arise in the scaling of 
loudness by the various techniques. The most influential of 
these are: order effect, centering effect, stimulus range,
context, and magnitude of the standard stimulus.

The order effect occurs when a pair of sounds are heard 
consecutively. When this occurs the first stimulus will appesr 
less loud than the second, even if both are of the same intensity. 
Robinson (1957) found that the order effect increased as 
the loudness level increased, although the perceived differences 
at the higher loudness levels (100 phons) did not amount to 
more than 2 dB. He further indicated that the order effect is 
evident in experiments dealing with equal-loudness judgments.
These effects, in turn, can be balanced by presenting the 
stimuli in random order.

The centering effect is considered a subjective resistance
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to remote levels of a comparison stimulus often found using 
the Fractionation and Multiplication procedures. For instance, 
if during a Multiplication procedure the S was required to 
double the loudness of an intense standard, the dB increase 
for 2:1 loudness would be low relative to the difference 
obtained when the standard was of moderate intensity. Using 
a very low standard, the reverse would occur. Thus, the 
centering effect may be interpreted as a preference for moderate 
intensities (Robinson, 1957; Stevens, 1955)*

It is often seen (Ham, Biggs, & Cathey, 1962; Stevens,
1955) that there are systematic departures between the dB 
changes relating 2:1 and 1:2 loudness along the intensity 
continuum. The differences (the fractional/multiple anomaly) 
can be explained in terms of the centering effect (Robinson, 
1957). *£he differences between Fractionation and Multiplication 
are seen particularly when the standard stimulus to be fraction
ated or multiplied is low (in dB SL), or high, with the diff
erences decreasing as the standards approach sbout 85 dB SL 
at 1000 Hz (Robinson, 1957). Stevens (1957s)♦ in an experiment 
which combined halving snd doubling, showed the same effect.
At low levels the dB changes were greater for doubling loud
ness than for helving, and st the high levels the reverse was 
true. Near the middle of the range halving and doubling of 
loudness tended to agree. Stevens (1955) indicated that the 
centering error could be ascertained and averaged out by a
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balanced procedure where each stimulus served once as the 
standard and once as the variable.

Robinson (1957) indicated that the centering effect was 
not the same as the order effect. The former was directly 
dependent upon the intensity level, whereas the lstter was not.

Several investigations dealing with the judgment of loud
ness (Engen & Levy, 1958; Stevens, 1956; fabory & Thurlow,
1959) have found differences in their subject's subjective 
estimates associated with the stimulus range of their exper
iments .

Stevens (1956) found that when the range of the variable 
stimuli on which magnitude estimates could be made was in
creased from 70 to 90 dB, differential results were obtained. 
The variable stimuli ranged from 30- 100 dB SPL in the first 
experiment, and 30-120 dB SPL in the second. All stimuli 
were 1000 Hz tones. A standard stimulus of 80 dB SPL was 
assigned the modulus "10” in the first experiment, and a 90 
dB SPL tone the same modulus number in the second experiment. 
Stevens found that when the range was increased the subject's 
estimates were over-estimated (re the 10 dB rule) at the higher 
intensities and under-estimated at the lower intensities.
Engen and Levy (1958) found that the stimulus range did not 
affect the form of the obtained loudness functions when the 
"Gonstant-Sum" technique wss used. In another experiment, 
however, Engen and Levy (1958) found that when the stimulus 
range was curtailed from 25-75 dB SL to 55-75 dB SL, and all
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judgments were made relative to a fixed standard (75 dB SL), 
the exponent of their obtained loudness functions increased.

In a somewhat different vein, Tsbory and Thurlow (1959) 
found that a subject's magnitude estimates could be influenced 
by his range expectancies. The experiment involved two 
stimulus ranges (30-90 dB SL and 70-90 dB SL) of stimuli at 
1000 Hz. Two groups of subjects were employed. At the beginning 
of a test session both groups were presented the end-points 
of each range, and told that the lower stimulus was called 
”50", the louder "60." However, a different set of instructions 
were given to each group. One group was told that some 
subsequent stimuli might fall outside the 50-60 range (open 
set), the other group that the subsequent stimuli would be 
contained within the prescribed numerical range (closed set).
It was shown that for both stimulus ranges that lower magnitude 
estimates were obtained from the group with the open set of 
instructions.

Stimulus spacing appears to have little effect upon the 
judgment of loudness when using the methodsof Magnitude 
Estimation (Beck & Shaw, 1965; J. 0* Stevens, 1958; Stevens,
195&) and Hatio Estimation (Engen & Levy, 1958). On the 
other hand, the effect of stimulus spacing is quite large when 
the method of Constant Stimuli is used to determine half
loudness judgments (Garner, 1954-)•

J. C. Stevens (1958), using magnitude estimates of white- 
noise, found that the obtained loudness functions were relatively
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insensitive to stimulus spacing. In the experiment four 
stimulus spacing arrangements were included, each covering 
a range of from 40-100 dB SFL. The modulus for all the 
ranges was 80 dB SPL, and was assigned the number "10."
Engen and Levy (1958), using ratio estimates of 1000 Hz 
tones 8lso found that the inter-stimulus difference (either 
5 or 10 dB) had little effect upon the obtained loudness 
functions.

In a study designed to show how the stimulus ensemble 
could bias the Judgment of one-half loudness Judgments using 
the Method of Constant Stimuli, Garner (195*0 used the same 
standard (90 dB SPL at 1000 Hz) in each of three non-overlapping 
stimuli ranges (55-65* 65-75* and 75-85 dB SPL). He found 
that for the three ranges the obtained hslf-loudness points 
approximated the middle of the comparison stimulus range.

The magnitude snd placement of the standard in the Method 
of Magnitude Estimation is another bias encountered in the 
scaling of loudness. Jones and Woskow (1966) found that a 
remote standard relative to the variable stimuli invariably 
reduced the power function exponent. Heilman and Zwisloeki 
(1961) found that low sensation level tones which were assigned 
high modulus numbers produced loudness functions which were 
steeper below the reference that above it. On the other hsnd, 
when high sensstion level tones were assigned low modulus 
numbers, the reverse occurred.
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Placement of the standard stimulus slso appears to 

have some differential effects using the Fractionation and 
Multiplication procedures. Robinson (1957) found thst when 
the dB change to halve or double the loudness of a 1000 Hz 
tone was measured, differential results were found at various 
points alon;v the auditory continuum. The dB changes were 
maximal at about 55 dB SL, and minimal at about 90 dB SL.
Stevens (1957a) found the change to be highest at 60 dB SL, 
and lowest at 90 dB SL. Stevens (1957a)» however, only 
obtained these results from doubling judgments, and not from 
halving.

Stevens (1955) indicated that the practice of averaging 
decibels was apt to produce a bias because the loudness function 
was not linearly related to dB. To obtsin an unbiased mean, 
he indicated that it was better to transform ell dB values 
to loudness units (sones), and then average. Robinson (1957) 
pointed out, however, that this procedure might be erroneous 
since it assumed a common loudness function for all individuals. 
Robinson indicated that a subject's median score should be 
utilized in such instances.

The scaling of loudness by the conventional approaches 
has not been restricted only to 1000 Hz tones. Other stimuli 
which have been scaled include 250 Hz tones, 1000 Hz tones 
at low sensation levels, and white-noise, among others.

Heilman and Zwislocki (1968) used the method of Numerical 
Magnitude Balance in the scaling of 250 Hz tones. Initially,



each S made magnitude estimates of nine stimuli from 4-70 
dB SL. In the Magnitude Production phase, nine number de
rived from the obtained magnitude estimates were given to the 
Ss. When the obtained loudness scale for the 250 Hz tones 
were plotted on the same coordinates as the 1000 Hz function, 
the former function was displaced by approximately 15 dB upward 
in intensity. This, of course, was due to the higher absolute 
threshold for the 250 Hz stimuli. However, both functions 
grow at approximately the same rate, i.e., have the same slopes. 
Melnick (1969) obtained magnitude estimates of 250 Hz tones 
for both normal and pathological hearing subjects. The obtained 
functions were found to be curvilinear on log-log exes to 
40 dB SL for both groups of subjects. Above this level both 
groups exhibited power functions. The slope for the normal 
hearing subjects was 0.59, snd for the abnormal subjects 
(stapedectomized), 0.54. Melnick (1969) concluded that 
magnitude estimates of loudness could not differentiate between 
the normal snd pathological groups. Heilman end Zwislocki 
(1968) obtained a slope of 0.51 for their 250 Hz loudness 
function.

Several investigations (Pollack, 1951; Poulton & Stevens, 
1955; J* 0. Stevens & Tulving, 1957; Stevens, 1955♦ 1961) 
have shown that loudness relations for white-noise stimuli 
are quite similar to 1000 Hz tones. Pollack (1951) instructed 
his subjects to adjust the intensity of a variable stimulus 
to sound one-h8lf or twice as loud as several standards.
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The results indicated that 2:1 loudness changes were nearly 
equivalent to 10 dB for the entire stimulus range. Stevens 
(1955) and Stevens and Poulton (1956) both indicated that 
the dB changes necessary for a 2:1 loudness ratio of white- 
noise stimuli were relatively independent of the standard 
intensity level, and that the mean value was approximately 
8.4 dB.

Using the method of Magnitude Estimation with csnd without 
a modulus, Stevens snd Tulving (1957) found that the loudness 
function for white-noise was the same as that of 1000 Hz 
stimuli, end that a twofold increase in loudness was equivalent 
to 10 dB from 50-110 dB SPL. Stevens (1961) indicated 
that the loudness function for white-noise from 30-100 dB SPL 
is approximately 12-15 phons greater than the 1000 Hz function. 
However, at these levels the slopes sre nearly equivalent.

Although the general shape of the loudness function is 
well established for 1000 Hz tones at 40 dB SL and above, 
the shape of the function below 40 dB is somewhat in doubt. 
Heilman and Zwislocki (1961) found that below 30 dB SL the 
loudness function became progressively steeper. Heilman snd 
Zwislocki (1963) further found that in the vicinity of threshold 
the loudness was directly proportional to the stimulus level. 
Lochner and Burger (1961) indicated that the curved section 
of the loudness function below 30 dB SL was due to mask
ing by physiological noise. They hypothesized that under 
quiet conditions physiological noise determines the threshold
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of audibility for a particular stimulus. This physiological 
noise, in turn, reduces the loudness for a particular 
stimulus by a constant amount scross the intensity continuum. 
In the ares of the audible threshold, a constant loudness 
reduction is much iiiore influential than at the higher levels, 
and this relation is indicated by the steeper functions below 
40 dB SL.

Within the lsst decade a new method of multidimensional 
scaling has been developed (Shepard, 1962a9 1962b). The 
procedure, the Analysis of Proximities requires only that some 
number be assigned to represent the psychological distance 
between each of the pairs of stimuli along the continuum of 
interest. These numbers, called "proximity measures", are 
said to be greatest in proximity when both stimuli in a pair 
are judged to be relatively the same magnitude, and hsve less 
proximity as the distances between the subjective sensations 
increase. Shepard (1962b) indicated that the objective of the 
analysis was to find "an approoriate spatial configuration of 
the N stimuli, represented as points in Euclidian space of 
minimum dimensionality. By an'bppropriate" configuration here 
is meant one in which the distances between points are mono- 
tonically related to the original proximity measures" (Shepard, 
1962b, p.210). Accordingly, those stimuli along the continuum 
which are judged most similar should be separated in space 
by the smallest distance, and vice versa.

As concerns the role of the Analysis of Proximities in
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the scaling of loudness, it offers features not encountered 
using the conventional scsling techniques. Of prime import
ance in this regard is that each stimulus point can be related 
to every other stimulus point directly in the form of the 
spatial configuration (or proximity plot). This, of course, 
can only be implied using conventional scales.

The present study utilized a modification of the Analysis 
of Proximities which was designed to find a spatial config
uration whose points were proportionally related to the original 
proximity measures. The proximity measures were obtained from 
ratio estimates made between all stimulus combinations in 7*7 
matrices. The modification differed from the original analysis 
in two aspects. The first was that a fixed transformation was 
imposed relating the plotted distance to the proximity measures. 
The transformation imposed defined the proximity measure as 
log2 of the obtained ratio estimate. Utilization of this 
transform was based upon previously obtained loudness functions, 
whose linear unidimensional form on log-log coordinates implied 
that a straight line would be obtained as a solution to the 
Analysis of Proximities if the log-transform were used, i.e., 
each time the loudness were doubled would be equivalent to 
another distance unit in space, and the loudness relation would 
be completely additive . (By additive here is meant that 
ratio estimates made over longer inter-stimulus specings would 
be the sum of its componait estimates). Thus, the log- 
transform insured a direct comparative analysis between the
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obtained proximity plots and the configurations implied by 
the 0.54 power function. In contrast, Shepard's original 
analysis first found the transformation, snd the points were 
plotted with relation to it.

The second feature of the modified Analysis of Proximities 
was a standard statistical test which considered the subject's 
response variability, thereby providing 8 measure of the 
quality of the proximity analysis as a description of the dsta. 
The test used was the Chi Square, and it evaluated the 
differences between the predicted distances (as measured on 
the spatial configurations) and the obtained ratio estimates. 
The measure of varibility included within the test was the 
variance of the mean ratio estimates between subjects for 
each matrix cell. Shepard's original analysis did not in
clude data on variability, but simply utilized mean values.

The objective of the present study was to utilize the 
modified Analysis of Proximities in the scaling of loudness 
in order to see if the 0.54 power function provided an 
adequate description of loudness relations between stimuli 
using the method of Ratio Estimation. Each stimulus condition 
tested (1000 Hz tones with various inter-stimulus spacings, 
white-noise, 250 Hz tones, and 4000- and 1000 Hz tones 
at low sensation levels) was represented by seven stimulus 
intensities, and ratio estimates were msde between each of 
these values in 7*7 matrices.
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In those conditions where moderate to intense 1000 Hz 

tones were utilized, several matrices which differed in their 
inter-stimulus intervals and overall ranges were included.
These matrices were designed to test the effects of stimulus 
spacing and range on the judgment of loudness. Also, from 
these matrices analyses of both inter- and intra-subject 
V8riabilty was obtained. Included in these latter analyses 
were measures of the response variability within one session, 
between sessions, and in the imposed judgmental response 
mode placed upon a subject, i.e., the first tone judged re 
the second tone, or vice versa.

Matrices containing other thsn moderate to intense 1000 
Hz tones were included for various reasons. Those contain
ing 250 Hz and white-noise stimuli were included to see if 
loudness power functions of these stimuli provided an adequate 
description of ratio estimates made between various points 
on the intensity continuum.

Those matrices containing low sensation level 1000- 
and 4000 Hz tones were designed to test several loudness relations. 
The first objective was to investigate the rapid growth of 
loudness st close to threshold levels for 1000 Hz tones using 
the Ratio Estimation method combined with the Analysis of 
Proximities. Whether the obtained proximity plots for 1000 
Hz tones differed for high and low sensation levels was of 
prime importance because previous investigations (Heilman 
& Zwislocki, 1961; Lochner & Burger, 1962) hsve shown loud
ness at this frequency to grow more rapidly at low sensation
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levels than at moderate to intense SL's.
'■The second objective of using low SL stimuli was to 

compare the 1000- and 4000 Hz proximity plots in order to 
ascertain whether the two configurations differed smong 
normal hearing individuals. These data could be used as 
baselines in the evaluation of aural pathology, because 
recruitment of loudness usually occurs at levels just above 
threshold for individuals with cochlear disorders. Since 
recruitment is most prevalent at the higher frequencies, it 
might be expected that a subject with cochlear pathology, 
who performs rstio estimates at low sensation levels, would 
give essentially the same results as normals at 1000 Hz, but 
differential results at 4000 Hz.



CHAPTER II 
METHOD



22

II. METHOD

SUBJECTS
Twenty normal hearing subjects (Ss), as determined by 

Bekesy sweep-frequency audiograms, were used. Ten of the 
subjects were used in Experiment I, Matrices A-D, and the 
remaining ten in Experiment II. All subjects at the outset 
were naive as regards the judgment of loudness. The mean 
age for both groups was approximately 23 years. All were 
either graduate or undergraduate college students.

PROCEDURE
Prior to the initiation of a test session, it was 

necessary to first determine each subject's threshold for 
the stimulus of interest, and then adjust the test stimuli 
to the correct sensation levels. Two methods were used.
In those phsses of the study where moderate to intense 1000 
Hz or 230 Hz were used,threshold was determined by Bekesy 
fixed-frequency audiogrsms (Grason-Stadler E-800 Bekesy 
Audiometer), where the median of the excursions was used as 
the threshold. Sensation levels were then set relative 
to the obtained sound pressure levels at the S's threshold. 
A somewhat different technique was used for the white-noise 
stimuli and the low SL 1000 Hz and 4000 Hz tones. During 
these phases threshold was found, and SL set, by a tape 
recorded series of 0.5-sec presentations of the appropriate
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stimuli (25 msec rise-fsll time). These stimuli were, in 
turn, recorded at the highest intensity that a particular 
stimulus tape contained. By attenuating the level of these 
tone presentations to threshold, SL could easily be set by 
decreasing the attenuation "X" dB. For example, if the high
est stimulus level within a phase were to be 70 dB SL, 
this level could be obtained by decreasing the attenuation 
70 dB after the initial threshold determination. This 
latter technique of threshold determination was especially 
useful using low SL stimuli because the desired level could 
be set immediately before the actual test session, and on 
the same recording playback system. This, of course, is 
of utmost importance when considering the effects of threshold 
shift at low sensation levels.

Generalized Administration of Experiments I and II. Both 
experiments consisted of monaurally presented stimuli. In 
order to eliminate any possible biases introduced by transients, 
8ll stimuli h8d 25 msec rise-fall times (Grason-itadler 829E 
Electronic Switch). Experiment I included 1000 Hz tones of 
moderate to intense levels, and Experiment II included white- 
noise, 250 Hz tones, and 1000 Hz and 4000 Hz tones at low 
sensation levels.

Stimuli were presented as pairs of tones (or noise) 
of differing intensity. The subject's task was to perform 
a ratio estimate, i.e., to estimate the loudness of the first 
tone relative to the second tone, or vice verse. The
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stimuli pairs were presented randomly, and were chosen from 
7x7 matrices of stimuli.

A stimulus sequence was initiated with a 1.5-sec tone 
(or noise), followed by 0.5-sec of silence, and then by 
another /.5-sec tone. The inter-sequence time was 5-sec. 
During this time the subject recorded his ratio estimate 
on a provided answer sheet. Following every lÔ *1 pair 
a 10-sec pause was introduced before the next pair to aid 
the S in coordinating his answers with the actual test pair.

Presentation of the matrices differed somewhat from 
Experiments I to II. During Experiment I four test sessions 
were included, whereas in Experiment II only two test sessions 
were included. Each test session consisted of the entire 
stimulus matrix being presented to S twice, with S Judging 
Tone A re Tone B (or B re A) on both occasions. During two 
of the test sessions in Experiment I, S Judged Tone A re 
Tone B, and in the remaining sessions Tone B re Tone A.
In Experiment II, one A re B end one B re A session were 
tested. The first complete presentation of a matrix within 
a session is referred hereafter as Replication 1, and the 
second as Replication 2.

Ten practice trisls proceeded a new day's sessions, and 
two sessions per day were tested.

Experiment I. Included within this experiment were four 
7x7 matrices of stimuli at 1000 Hz. Each matrix differed as 
regarded its stimulus range, and inter-stimulus spacing.
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However, each of the matrices contained stimuli which were 
common to the other three. Matrix A covered a range of 
from 30-90 dB SL in 10 dB intervals. Matrix B ranged from 
40-70 dB SL in 5 dB steps; Matrix C was from 40-55 dB SL 
in 2.5 dB steps, and Matrix D covered a 30-90 dB SL range 
in irregular steps (30, 40, 45, 47.5» 55» 70, and 90 dB SL). 
Figure 2 shows all matrix ranges used in Experiment I.

30 40 SO 60 70 80 90
MATRIX A £________ E _______ L _______ E ________L_______ I_________ I

MATRIX B 

MATRIX C

40 49 90 99 60 69 70L. | 1 | | 1 1
40 49 90 99l_U - J — L - L _130 40 49 47.9 99 701 ... 1— | 1 | ______ I—

90
-I

Fig. 2. Matrix ranges for Experiment I.

During the administration of Experiment I, the matrices 
were presented in a preselected random order. Thus, Matrix 
A was presented first, followed by Matrices C, D, end B, 
respectively.

Experiment II. Four 7x7 matrices were included in 
this experiment. As before,the Ss made their ratio estimates 
on provided answer sheets. Matrix E consisted of 250 Hz 
tones which covered a stimulus range of from 10-70 dB SL in 
10 dB steps. Matrix F was composed of white-noise stimuli 
from 40-70 dB SL in 5 dB steps; Matrix G of 4000 Hz tones
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from 10-40 dB SL in 5 dB intervals, and Matrix H of 1000 
Hz tones from 10-40 dB SL, also in 5 steps.

APPARATUS
All stimuli were recorded on sn Ampex PR-10 tspe record

er. A block representation of the recording equipment may 
be seen in Figure 3«

The stimulus recording apparatus was set up so that 
Interval Timer 1 was triggered by the controlled output of 
Interval Timer 2, and vice versa. When triggered, these 
timers activated their respective electronic switches, which, 
in turn, passed the stimulus through the attenuator and 
filter to the input of the tape recorder. Thus, the left 
hand side of the circuit controlled the length and intensity 
of the first tone, and the right side, the relevant parameters 
of the second tone.

During the recording of a stimulus matrix the highest 
stimulus value that could be introduced onto the tape with
out producing distortion was found with no attenuation, and 
the other six values were set at "X” dB down from that point. 
For •xemple, if the highest stimulus value was to be 90 
dB SL, this value wss arbitrarily assigned the highest 
non- distorting input voltage. A stimulus at 70 dB SL 
would then be recorded by the introduction of 20 dB atten
uation. The foregoing process insured the utilization of 
the complete dynamic range of the tape.



27

CONTROLLED
OUTPUTS

ft TRIG. IN

MIXING
TRANSFORMER

ALLISON 2BR
FILTER

AUDIO
GENERATOR
B & K  1024

TAPE
RECORDER

INTERVAL
TIMER2GRASON-STADLE.R 471

ELECTRONIC
SWITCH

GR ASON-S */a  P LER 629

ELECTRONIC 
SWITCH 

6RA3QN-STAPUSR 82P-

GRASON-STADLER 471

INTERVAL
TIMER

ATTENUATOR 2

DAVEN
ATTENUATOR I

D A V E N

Fig. 3. Block representation of the recording equipment.
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Calibration of the attenuators jt the input to the 
tape recorder showed an error of approximately + 1.0 dB to 
-50 dB re an input voltage of 1.4-7 volts. Mean values msy 
be seen in Tsble 1.

Table 1
Calibration of Attenuators at Input of 

Tape Recorder

dB re 1.47 volts Voltage Error
0 dB 1.47 v.
-20 dB 0.15 v. 0.4 dB
-40 dB 0.017 v. 1.3 dB
-50 dB 0.005 v. 1.0 dB

A block diagram of the playback apparatus is seen in 
Figure 4. The equipment was set up so that five individuals 
could be run simultaneously.

In order to check the attenuation characteristics 
of each stimulus tape through the entire playback system, 
calibration tones were recorded at each of the seven in
tensities associated with a given matrix. These calibration 
tones proceeded the test stimuli, and were 30-sec each.
Table 2 shows the sound pressure levels (B&K 2203 SPL meter 
snd Octave Band Filter) recorded at each of the five earphones
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Fig. 4. Block diagram of the playback apparatus.
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with increasing attenuation for Matrix A (1000 Hz).
Table 2 shows that all earphones displayed good linearity 

in their SPL responses to increasing attenuation. Also, the 
largest difference displayed between sny of the earphones 
at 0 dB attenuation was only 3 dB.

Each attenuator was checked by playing a 1000 Hz tone 
at 0 dB attenuation (0.44 v. 8t the earphone) through the 
system, and then increasing the attenuation in 10 dB steps. 
This procedure showed each attenuator to be within + 1.0 dB 
to -60 dB.

For those phases of the study where 250 Hz, 4000 Hz, and 
white-noise stimuli were used similar calibrating procedures 
were adopted. These results slso showed little deviation from 
linearity as the stimuli were attenuated.

All earphones were Telephonies TDH-39's mounted in 
MX-41/AR cushions.

Data collection was made in large audiometric suite 
with an ambient noise level of 33 dBC.
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Table 2
Attenuation Characteristics of Stimulus Tapes and 
Responses of Earphones (in dB SPL) st 1000 Hz

Earphone
1 2  3 4 - 5

Atten.
(0dB-0.44v) 102.5 102.0 100.5 99.5 102.5
-10 dB 92.5 92.0 90.5 89.5 92.5
-20 dB 82.0 82.0 80.5 79.5 82.5
-30 dB 72.0 72.0 70.5 69.5 72.5
-40 dB 62.0 62.0 61.0 59.5 62.5
-50 dB 52.0 52.0 51.0 49.5 52.5
-60 dB 42.5 42.0 41.0 39.0 42.5



CHAPTER III 

RESULTS
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III. RESULTS

Prior to the presentation of the data, it is instruct
ive to present the format for the specification of a matrix 
cell. Each cell will be designated by a number which ranges 
from 1-28 in the top half of the matrix, and 1L to 28L in 
the lower half. Figure 5 shows how each cell in a 7x7 matrix 
is classified. It can be seen that the opposite cells in 
both the upper end lower halves sre designated by the same 
number, with the lower half cell having the number followed 
by the letter "L". Throughout the remainder of the study, 
only the upper half cells of a matrix will be presented for 
clarity, with the understanding that the lower half cells 
have been included in the result. In esch instance a spec
ification of the statistical procedures used to equate the 
value of the lower cell to that of the upper cell, or vice 
versa, will be given. This procedure is used to keep the 
values of the ratio estimates at 1.00 and above, end so 
avoid confusion by the use of fractions.

Experiment I. Tables 3-6 show the overall mean ratio 
estimates for Matrices A-D, respectively. These values were 
obtained by taking the reciprocal of the Tone A re Tone B 
sessions for each subject, and then averaging these results 
with the values of the Tone B re Tone A sessions. To convert 
all values to 1.00 or greater the reciprocals of the re
maining fractional estimates were taken, and used in the
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4L IOL I5L 19 20 21 22

5L IIL I6L 20L 23 24 25

6L I2L I7L 21L 24L 26 27

7L I3L I8L 22L 25L 27L 28

Fig. 5* Format for the specification of each cell 
in a 7x7 matrix.
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40
50
60
70
80
90

40
4-5
50
55
60
65
70
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Table 5 

Grand Means for Matrix A

DB SL Louder Tone
30 40 50
1.00 1.34 2.02

1.00 1.43
1.00

60 70 80
2.61 3.25 4.61
1.97 2.37 3.77
1.47 2.24 3.25
1.00 1.58 2.71

1.00 2.00
1.00

Table 4 
Grend Means for Matrix B

DB SL Louder Tone
40 43 30
1.01 1.15 1.60

1.00 1.19
1.00

55 60 65
2.19 2.49 3.29
1.74 2.24 2.78
1.23 2.03 2.36
1.01 1.30 2.03

1.00 1.41
1.00
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Table 5 

Grand Keans for Matrix C
DB SL Louder Tone

40 42.5 45 47.5 50 52.5 55
40 1.01 1.33 1.47 1.83 2.27 2.75 3.03

0) 42.5 1.01 1.13 1.52 1.91 2.36 2.81
0E-i
&
1

45 1.02 1.15 1.71 2.00 2.45
47.5 1.01 1.32 1.88 2.09

CO 50 1.04 1.34 1.75
m« 52.5

55
1.02 1.31

1.03

Table 5
Grand Means for Matrix D

DB SL Louder Tone
30 40 45 47.5 55 7° 90

30 1.00 1.62 2.06 2.71 3.69 ">6 10.30
Q)c 40 1.01 1.19 1.40 2.08 3.49 8.60
E-*
U 45 1.01 1.09 1.63 2.69 8.03
g 47.5 1.00 1.44 2.76 8.74
CO 55 1.01 2.12 7.09
mo 70

90
1.00 5.14

1.00
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grand averages. Sixteen responses per subject per cell were 
obtained, and each average represents the mean of 160 
responses.

To illustrate the above process, a brief example will 
be given. When the subjects were judging the stimuli A re 
B, the top half of a matrix contained the fractional estimates, 
and the lower half, the estimates of 1.00 or more. To 
combine the data, first the reciprocals of the entire matrix 
judged under the A re B condition were taken. Thus, two 
matrices were obtained with the greater than 1.00 estimates 
estimates in the upper half and fractional estimates in the 
lower half. To rid the data of these remaining fractional 
estimates, their reciprocals were taken. This final process, 
in essence, folded both matrices. The data from the two 
response conditions could then be added for each stimulus 
combination. For example, if for the 30-90 dB SL stimulus 
combination the subject reported ratio estimates of 0.20 and 
5«00 for the upper snd lower cells (respectively) under the 
A re B condition, and 5*00 and 0.20 for the upper and lower 
cells under the B re A condition, the data for the A re B 
condition would be first inverted to insure that the greater 
than 1.00 judgments were in the upper matrix h8lf. To rid 
the data of the two remaining 0.20 estimates, their reciprocals 
would be taken, and sdded to the two 5*00 estimates. The 
8bove example is illustrative of the situation where only 
one ratio estimate per cell is obtained before the inverting
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and folding process. In the study four ratio estimates 
per cell were obtained before inversion and folding, and 
therefore 16 measurements for each stimulus combination 
were obtained.

Table 3 (Matrix A) shows the greatest mean rstio estimate 
given was for the 30-90 dB SL stimulus combination (7*90), 
end that no reversals in the mean ratio estimates between 
adjacent stimuli were obtained, i.e., as the louder tones 
increased in intensity for a particular lower tone, the 
r8tio estimates became larger. In like manner, as the lower 
tones increased, the rstio estimates for the louder tones 
decreased. Tables 4, 3» and 6 show the same relationships 
as Table 3* although a reversal does occur at cell 22 in 
Matrix D. The highest ratio estimate in Matrix B is 3*90, 
which occurs with the stimulus combination 40-70 dB SL. In 
Matrix C a ratio estimate of 3*03 is obtained from the most 
divergent stimuli, snd Matrix D shows a mean judgment of 
10.30 for the 60 dB inter-stimulus difference.

Table 7 compares the mean ratio estimates of stimulus 
pairs common to Matrices A-D. The table is arranged so that 
the top value within a cell indicates the judgment for Matrix 
A, the second line, Matrix B, and so on. A straight line 
within a cell denotes that particular matrix did not contain 
that stimulus combination. It is seen that for the common 
stimulus pairs the results for Matrix C are always greater 
than Matrix B, which is greater than Matrix D, and, in turn,
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Table 7
Means of Each Cell for Matrices A-D

59

DB SL Louder Tone
30 UO U2.S U5 U7.5 50 52.5 55 60 65 70 80 90

1.00

1.00

1.3U
mm

1.62 2.06 2.71

2.02 2.61 3.25

i*? 6

u.61 7.90

1.00
1.01
1.01
1.01

1.33
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1.U7
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1.97
2.U9 3.29
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mm

1.01
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1.13 1.52 1.91 2.36 2.81

1.00
1.02
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1.09
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1.71 2.00

1.7U
2.U5
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2.2U 2.78
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1.01
1.00

1.32 1.88 2.09
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1.00
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1.23
1.75
«•

l.U6
2.03 2.36

2 ,2U 
2.99

3.25

•ft

5.88
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1.02 1.31
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1.01
1.03
1.01

1.30 2.03 2.67

2.12
1.00
1.00
■■

1.U1
«»

1.58
2.21

$.1l

mm

5.56

1.00 1.U5

1.00
1.00

1.00

2.00 U.U5
mm

1.00 2.95

1.00
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greater than Matrix A. Thus, disregarding Matrix D (for 
it has irregular inter-stimulus spacing), it may be seen 
that as the inter-stimulus spacing is decreased, the higher 
the ratio estimate for a common pair of stimuli. For example, 
the 40-50 dB SL stimulus combination yields judgments of 
1.45, 1.60, and 2.27 for Matrices A, B, and C, respectively.

Figures 6-8 show the results of Tables 3-6 graphically.
In these figures the dats are plotted so that each row of the 
matrix is shown with the lower stimulus being the parameter 
of the curve, and the higher tone the abscissa, the obtained 
ratio estimates are plotted logarithmically. Figure 6 
(Matrix A) indicates that four of the curves (Lower Tones- 
30, 40, 50» snd 60 dB SL) can be represented by a linear 
function to approximately 75 dB SL. At that point these 
four curves appear to exhibit a knee, and then accelerate at 
an even greater slope. In those curves where the lower 
stimulus is equal to either to 80 or 90 dB SL,no knee is 
exhibited. The slopes for Matrix A increase from 0.27 
to 1.00 as the value of the lower stimulus increases.

Figure 7 indicates that the six functions for Matrix 
B can all be represented by power functions (linear functions 
on log-log coordinates). No knee is seen for sny of the 
curves. Again, the slopes of adjacent slopes increase as the 
intensity of the lower stimulus increases. The range of 
the slopes is from 0.40 to 0.64.

Figure 8 (Matrix C) shows, once agsin, that the functions
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are linear, and that the slope increases. However, the 
range of the slope variation is not as great as in Matrices 
A and B.

It is seen that the median slope for Matrix C is 0.77; 
Matrix B, 0.54-, and Matrix A, 0.40.

Tables 8-10 show the variance associated with the 
mean ratio estimates obtained from each of the ten subjects 
for Matrices A-C. Generally, all three tables show thst 
the variance of the mean ratio estimates increase as the 
differences between the stimuli in 8 pair increase. The 
greatest is in cell 7 for all matrices, with values of 2.46, 
1.62, and 1.06, in Matrices A-C, respectively. A feature of 
the variability is that it shows a relation similar to those 
found for rstio estimates of stimulus pairs common to two, 
or all of the matrices. For common pairs of stimuli, the 
variability of Matrix C is greater than Matrix B, which, in 
turn, is greater than A. For example, with the inter-stimulus 
pair 40-50 dB SL the variance for Matrix C is 0.73» for B,
0.42, 8nd A, 0.25*

Tables 11-13 show the obtained F-ratios of a four
way Analysis of Variance for each subject in Matrices A, B, 
and C. Each fsctor consisted of two levels. The factors 
were: (1) Upper or Lower half of the matrix (U), (2)
Replications (R), (3) Sessions (S), and (4) Judgments A re 
B or B re A (J).

The Upper/Lower factor (U) referred to whether the subject
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Table 8
^5

of Ten Mean Ratio Estimates (Matrix A)

DB SL Louder Tone

30 40 50
0.003 0.16 0.34

0.00 0.25
0.00

60 70 80
0.44 0.65 1.08
0.35 0.40 1.10
0.20 0.39 0.93
0.00 0.21 0.60

0.00 0.43
0.00

Table 9
of Ten Mean Ratio Estimates (Matrix B)

DB SL Louder Tone 

40 45 50 55 60 65
0.42 0.57 0.60 1.28
0.08 0.47 0.57 0.75
0.00 0.17 0.49 0.63

0.01 0.26 0.40
0.00 0.22

0.00
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Table 10
Variance of Ten Mean Ratio Estimates (Matrix C)

DB SL Louder Tone

40 42.5 45 47.5 50 52.5 55
40 0.02 0.24 0.35 0.49 0.75 0.98 1.06

0)G 42.5 0.03 0.14 0.38 0.43 0.64 1.19
EH
U

45 0.02 0.14 0.41 0.52 0.75
47.5 0.02 0.21 0.46 0.48

CO 50 0.04 0.24 0.41
PQO 52.5

55
0.02 0.23

0.04



Table 11
Analysis of Variance Results for Matrix A

Source of Variation F-Ratio

u R UR S US RS URS J UJ RJ URJ SJ USJ RSJ
Subj. 
1 1.62 1.99 0.89 1.80 1.63 1.67 0.91 1.37 i.5i 1.50 1.11 1.17 1.10 2.05
2 5.13* 3.05* 2.81* 3.1*0* 1*02 0.97 2.67* 9.25* 2.37 3.57* 2.06 3.31** 3.22* 3.1*0*
3 1*.80* 2.73* 1.1*3 2.06 2.36 1.82 2.26 2.5U* 2.78* 2.62* 2.39 1.21 3.51* 2.26
1* 1*.26* 1.19 2.08 1.27 2.13 1.13 1.07 l*.io* i.ia 3.30* 1.61* 2.31* 1.97 2.15
5 1.89 0.1*0 0.1*1* 0.65 0.70 0.1*6 0.95 1.63 1.27 0.69 0.67 0.61 0.77 1.67
6 1.32 1.23 0.1*0 o.6l 2.01* 0.69 1.07 1.16 1.95 1.1*0 1.09 1.97 1.17 0.71
7 7.71* 3.39* 3.89* 10.50* 1.36 U .58* 1*.1*7* 5.1*8* 1.93 2.97* 2.05 6.57* 3.32* 3.86*
8 3.31* 3.20* 0.89 1.91 1.37 2.10 1.57 1.90 3.32* 1.96 1.27 3.31* 0.91 2.08
9 2.81** 1.22 0.51 2.17 1.13 0.89 0.75 3.78* 1.80 1.09 0.55 3.19* 1.5U 1.11*
10 2.18 0.1*1 0.72 1.93 0.79 2.90* 0.53 1.1*5 0.91 1.56 0.89 2.67* 0.50 2.17

% Sig. 
(10 Ss) 60 1*0 20 20 0 20 20 50 20 1*0 0 50 30 20
% Sig. 
(6 Ss) 50 25 0 0 0 10 0 1*0 25 25 0 1*0 10 0

* Significant at °< 0.01 df-28/28 (2.1*6)



Table 12
Analysis of Variance Results for Matrix B

Source of Variation F-Ratio

U R UR s US RS URS J UJ RJ URJ SJ USJ RSJ
Subj.
1 2.35 1.51+ 1.06 3.01* 1.16 1.1+9 0.80 1.37 0.79 1.31 1.09 0.75 0.57 1.17
2 1+.37* 1.22 0.93 1.31+ 3.15* 0.68 1.1+3 1.07 2.67* 1.97 1.1+6 2.03 0.72 0.91+
3 3.03* 1.1*7 1.08 0.98 1.33 2.51* 1.28 1.61+ 2.61* 1.02 1.1+5 0.86 1.01 1.35
1+ 1.36 0.1*5 0.59 0.70 1.18 0.87 0.66 3.01* 1.01 0.82 0.79 1.07 0.56 0.1+5
5 1.80 1.58 1.36 0.71+ 0.71+ 0.82 1.19 1.79 0.61+ 1.03 0.1+8 0.71 0.89 0.66
6 5.62* 1.57 1.99 0.62 0.71 1.71 0.75 0.66 1.35 0.70 0.1+6 1.08 0.60 0.91
7 3.06* 3.81+* 2.81* 6.31* 1.26 1+.1+5* 1+.25* 1+.01* 2.13 2.20 2.39 5.03* 1.1+0 2.52*
8 1.76 1.28 0.85 2.30 1.15 1.21 0.81+ 1.59 1.55 0.80 1.23 0.1+1 1.03 1.32
9 1.91 0.57 0J+J+ 0.81+ 0.77 1.88 0.88 1.23 2.06 0.81 0.69 0.71 0.67 1.25
10 7.86* 1.1+2 0.1+2 1.21 0.97 1.1+0 0.97 0.70 1.13 0.72 1.22 0.81 0.89 1.15

% Sig. (10 Ss) 50 10 10 20 10 20 10 20 20 0 0 10 0 10
% Sig. 
(9Ss) U5 0 0 11 11 11 0 11 22 0 0 0 0 0

* Significant at°(0.01 df-28/28 (2.1*6)



Table 13
Analysis of Variance Results for Matrix C

O'if Source of Variation F^latio

D R UR S US RS URS J UJ RJ URJ SJ USJ RSJ
Subj. 
1 2.1*9* 2.28 1.1*0 3.63* 1.25 2.11 1.1*7 2.01* 1.1*2 2.65* 1.29 2.31 0.71* 1.78
2 7.26* 1.39 1.87 1.60 1.C0 2 .16 0.98 2.91** 2.38 1.69 1.1*3 1.29 1.77 1.12

3 1.21* 1.38 0.87 1.85 0.61 1.73 1.21 1.28 1.35 1.27 1.1*1* 2.10 0.99 1.21
1* 0.95 1.11 0.89 1.00 0.60 0.77 0.1*6 0.69 1.13 2.1*2 0.9U 0.81 1.31* 0.67
5 3.66* 1.66 1.21 1.1*8 2.01* 1.76 1.88 1.77 1.28 0.81* 1.10 1.36 1.35 1.1*2
6 5.56* 0.61 1.35 1.1*0 0.62 1.61 0.86 0.39 1.57 2.1*7* 1.39 1.56 1.13 1.68
7 U.27* 1.39 1.57 1.66 0.78 1.05 1.1*6 1.88 2J.5 0.89 1.31* 3.21** 1.52 1.33
8 1.18 0.67 0.18 0.69 0.78 0.79 0.38 0.1*9 0.37 0.67 0.79 0.89 0.60 0.55
9 1.1*0 0.1*7 1.03 0.58 0.71* 0.51 0.83 0.60 0.1*7 0.1*6 1.37 0.1*6 0.55 1.06
10 32.02* 1.99 3.07* 2.29 2.05 2.63* 2.76* 2.32 2.1*6* 1.52 1.31 1.36 1.33 1.28

% Sig. 
(10 Ss) 60 0 10 10 0 10 10 10 10 20 0 10 0 0

* Significant at«( 0.01 df-28/28 (2.1*6)
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was able to make equivalent responses to stimuli in 
analogous cells, one in the upper half of the matrix, the 
other in the lower half. Depending upon the judgment 
condition (A re B or B re A) the half of the matrix contain
ing fractional estimates was inverted, and then the comparison 
m8de. The Replications Factor (R) referred to either the 
first or second presentation of a matrix within a test 
session. The Sessions (S) factor W8S divided into two levels; 
the results of the first day being compared to the results 
of the second day. The fsctor A re B/ B re A referred to the 
judgment mode that the subjects responded under, end to any 
differences between the two.

Each entry in Table 11 is the F-ratio obtained when 
considering all cells in Matrix A. An asterisk above sn 
entry indicates that the F-ratio is significant at the 0.01 
level. The tsble shows that 60# of the subjects had sig
nificant results associated with judgments made between the 
upper and lower halves of the matrix. Also, 50# showed 
significance on the A re B/ B re A factor, and 40# on the 
Replications factor.

Upon closer examination of Table 11, however, it can 
be noticed that some of the percentages may be superfluously 
high. This is because two subjects (Number 2 and 7) exhibited 
significance in nearly all the sources of variation. These 
two subjects had extremely small residusl error terms, 
which caused their obtained F-rstios to be inflated.
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Since the percentages might have been spuriously high 
due to the inclusion of the results of these subjects, their 
d8ta were eliminated, and the results re-analyzed. These 
results ere shown at the bottem of Table 11. The new values 
indicate that 50# of the eight remaining subjects still showed 
significance on the Upper/Lower factor, and 40# for the A re 
B/ B re A factor. Also, many of the interactions which 
showed 20# significance with ten subjects dropped to 0# 
with the exclusion of subjects 2 and 7«

Table 12 shows the results for Matrix B. When the 
significance is observed over all ten subjects, 50 # show 
significance for the Upper/Lower factor, with the remainder 
of the sources showing 20# or less. As in Matrix A, subject 
7 shows large F-ratios on many of the sources of variation. 
Subject 2, however, does not exhibit large F-rstios, and his 
data 8re in line with the other eight subjects. If subject 
7's data are removed, it is seen that 45# of the subjects 
still show significance on the Upper/Lower factor.

Table 15 shows the percentages of subjects showing stat
istical significance for Matrix C. Both subjects 2 and 7 ore 
consistent with the patterns of the other subjects. As 
in the two other matrices, the greatest percentage of sig
nificance occurs on the Upper/ Lower factor (60#), with the 
remainder of the percentages being negligible.

In light of the findings that a high percentage of the 
subjects showed statistical significance on the Upper/Lower
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factor, further analysis to show where the significance lay 
was performed. For all subjects the mean of esch of the 4-9 
cells in a matrix was computed separately for both the A re 
B and the B re A conditions. A comparison was then made 
between the ratio estimates given for analogous pairs of 
stimuli, one stimulus pair in the upper half of a matrix, 
the other stimulus pair in the lower half of the matrix. 
Depending upon the response condition, the reciprocals of 
the half of the matrix with fractional estimates was taken, 
and compared to the unaltered analogous cell. Figures 9- 
14 show the results of the foregoing process. Each point 
is the mean ratio estimate for the ten subjects. The numbers 
associated with each data point is the cell number of the 
upper cell and its analogous lower cell. The line represents 
a perfect reciprocal relationship between the upper and lower 
cells.

Figure 9 shows the results for Matrix A under the Tone 
A re Tone B response condition. It is seen that almost all 
of the points lie to the right of the reciprocal relation 
line, indicating that the reciprocals of the ratio estimates 
for the upper cells are less thsn would be predicted from the 
lower cells. The cells showing the most divergence from the 
perfect reciprocal relationship are numbers 5» 7» 12, and 13. 
Although a few points lie to the left of the line, most appear 
to be quite close to it. One exception appears to be cell 25.

Figure 10 shows the results of Matrix A under the B re
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A response condition. The figure indicates that in all those 
cells containing either an 80- or 90 dB SL stimulus that the 
points f8ll to the left of the line. Thus, in those cells, 
the mean ratio estimates of the upper cells are greater than 
the analogous reciprocals. On the other hand, when a cell 
does not contain an 80- or 90 dB SL stimulus, the reciprocal 
of the lower cell is greater than the ratio estimate of the 
upper cell.

The results for Figure 11 (Matrix B under the A re B 
response condition) are similar to Matrix A. Thus, all stimulus 
points either lie on the line, or to the right of it. This, 
of course, indicates that the mean ratio estimate of the 
lower cell is greater than the reciprocal of the upper cell.
The divergence from perfect linearity increases as the inter
stimulus differences become greater.

In Figure 12 (Matrix B under the B re A judgment condition) 
the points lying to the left of the line are representative 
of matrix cells which have 65- or 70 dB SL as one of their 
stimuli. The points to the right of the line contain stimuli 
other than 65- or 70 dB. Exceptions to this general relation 
occur at cells 12 and 24.

The A re B judgments for Matrix C are shown in Figure 
13. A strong similarity between this figure snd those obtained 
for Matrices A and B under the same conditions is seen. The 
effect is most prevalent with those stimulus pairs having at 
least one of the higher intensities to be found in the matrix.
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MATRIX A 

AREB

22

20

•16
ao

75 6432
MEAN RATIO ESTIMATE LOWER CELL

Pig* 9. Mean ratio estimate of the lower cell as a function
as a function of the reciprocal of the mean ratio estimate of the
upper cell for Matrix A under the A re B response mode.
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Fig, 10. Reciprocal of the mean ratio estimate of the

lower cell as a function of the mean ratio estimate of the
upper cell for Matrix A under the B re A response mode.
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Fig. 11. Mean ratio estimate of the lower cell ss a

function of the reciprocal of the mesn ratio estimste of the
upper cell for Matrix B under the A re B response mode.
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Fig. 12. Reciprocal of the mean ratio estimate of the
lower cell as a function of the mean ratio estimate of the
upper cell for Matrix B under the B re A response mode.
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MEAN RATIO ESTIMATE LOWER CELL
Fig. 13. Mean ratio estimate of the lower cell as a 

function of the reciprocal mean ratio estimate of the upper 
cell for Matrix C under the A re B response condition.
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Pig. 14. Reciprocal of the mean ratio estimate for the

lower cell as a function of the mean ratio estimate of the
upper cell for Matrix C under the B re A response mode.
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Thus, the cells containing stimuli from 4-7.5-55 dB SL sre 
most effected.

Figure 14- is the plot of the results for Matrix C 
under the B re A response condition. Again, as in the 
two other matrices, those points lying to the left of the 
line ere representative of those stimulus combinations 
containing at least one of the higher intensities to be 
found in a matrix.

In order to ascertain which of several stimulus parameters 
caused the above reciprocal relations between the halves of 
the matrices under both response conditions, a partitioning 
of several effects was performed. The partition was based 
upon the schema for a two-fsctor Analysis of Variance, with 
two levels per factor. Under these conditions, when one 
measurement per cell is obtained, that score can be viewed 
as a deviation from the grand mean of the array. Further, 
this deviation is composed of three components: (1) a 
deviation of the row mean from the grand mean, (2) a deviation 
of the column mean from the grand mean, and (3) b residusl 
interaction.

Figure 15 illustrates the shove schema, and shows how 
the effects were partitioned. The data were obtained by 
taking the mean ratio estimate for a particular cell, and 
the reciprocal of the opposite cell, under both the A re B 
and B re A conditions. These four values were placed in a 
2x2 table (as in Figure 15) so thst two levels of one factor
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LOUDER:SOFTER x „ X  |2
RECIR

^ l« X | . -  X..
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X 2 2
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Fig. 15. Schema for partitioning the effects due to 
response condition and the intensive order of the tones.
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were A re B end B re A, and the two levels of the other 
factor were the louder tone leading the lower tone, or vice 
versa. For convenience, each row and column were assigned 
Greek letters./^ corresponds to the louder tone heard first, 
/3  ̂the opposite. For example, under the A re B condition, 
if the louder tone was heard first a ratio estimate of 
greater than 1.00 was obtained. Under the B re A response 
condition, when the louder tone was heard first, a fractional 
(less than 1.00) was obtained. Therefore, under the B re 
A condition, it was necessary to invert the obtained value 
in order to make a comparison. Tht^y^ represents the mean 
of the unaltered value and the reciprocal value less the 
grand mean of the array.X  ̂represents the situation where 
the stimuli are judged A re B , B  re A. 8nd ere 
equal end opposite in sign from/^ and , respectively.
Thus, Pi is the deviation of the first row's mean (XI.) 
from the grand mean (X..), end^^ the deviation of the first 
column's mean (X.l) from the grand mean.

Tables 14-16 indicate the increment (deviation) due to 
the louder tone leading the lower tone (^ ̂ ) for Matrices 
A, B, and C, respectively. The most evident feature of 
Table 14 (Matrix A) is thst when the level of the louder 
stimulus reaches either 80- or 90 dB SL, a negative deviation 
from the mean is obtained. This deviation is most pro
nounced when the level of the louder tone is 90 dB. For 
8 given row of the lower intensity stimuli, the increments



30
40
50
60
70
80
90

'erne]

40
45
50
55
60
65
70

63
Table 14

(^) Due to Louder Tone Leading (Matrix A)

 DB SL Louder Tone
30 40 50 60 70 80
0.00 0.13

0.00
0.28 0.22 0.61 -0.09
0.16 0.11 0.12 -0.10
0.00 0.14 0.06 -0.21

0.00 0.0? -0.16
0.00 -0.01

0.00

Table 15
°ue to Louder Tone Leading (Matrix B)

DB SL Louder Tone 
40 45 50 55 60 65

0,40 0.31 0.34 0.28
0.12 0.14 0.20 0.14
0.00 0.06 0.09 0.02

0.00 0.07 0.07
0.00 0.09

0.00
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Table 16
Increment (j|0, ) Due to Louder Tone Leading (Matrix C)

DB SL Louder Tone
40 42.5 45 47.5 50 52.5 55

40 0.00 0.13 0.17 0.38 0.21 0.22 0.15
0) 42.5 0.00 0.06 0.07 0 . 2 0 0.22 0.17
oH 45 0 . 0 0 0.06 0.28 0.01 0.15
<D
<§ 47.5 0 . 0 0 0.05 0.09 -0.01
to 50 0.00 0.08 0.00
PQa 52.5 0.00 0.01

55 0.00
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were positive to 70 <i® SL, and then were negative.
Table 15 shows thefts results for Matrix B. All vslues 

in the table are positive, except in two cases where the 
louder stimulus reaches 70 dB. Generally, as the louder 
tones increased for 8 given lower SL stimulus, the in
crements increased at first, and then fell off.

Tables 16 shows the results for Matrix C. For a given 
row of lower intensity stimuli, an increment in^^ is generally 
seen at first, which is followed by a decline. A minor 
exception occurs at one point when the lower stimulus is 
45 dB. In this esse, as the louder tone increases there is 
a decrease at 52.5 dB, with a subsequent increase at 55 dB.

Figures 16-18 are graphic representations of the in
crements due to^^ in Matrices A-C, respectively. Each figure 
is plotted so that the lower (softer) tone is the parameter 
of the curve, and the abscissa is the level of the louder tone 
in dB re the dB SL of the lower tone.

With the exception of the 80 dB SL curve (which is 
composed of only two data points), each of the functions in 
Figure 16 (Matrix A) increases initially, and then drop 
to negative values as the intensity of the louder tone increases. 
The initial increase is shown to decrease ss the level
of the softer tones becomes more intense. Also, ss the soft
er tones become more intense, the fs l l-o f f  in the function 
occurs earlier. As the softer tone increases from 50-70 dB, 
the fall-off occurs at approximately +40, +50, +15» +10, and
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Fig. 16. Increments (/̂  t) for Matrix A due to the 
louder tone heard First as a rur.ction of the difference 
in dB between the louder and softer tones. The softer 
■tone is the parameter of the curves.
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+8 dB re the dB SL of the lower tone, respectively.
Figure 17 (Matrix B) shows in three curves (Softer 

Tones » 40, 55, and 60 dB SL) an initial increment, subsequently 
followed by a fall-off as the level of the louder tone in
creases. The fall-ofih, however, are not as great as was 
seen for Matrix A. In two instances (Softer Tones= 45 and 
50 dB SL) the functions increase initially, and then appear 
to level off.

The functions for Matrix C (Figure 18) are consistent 
in form to those obtained for Matrices A and B. Initially, 
an increase i.nj? i s  observed, which is subsequently followed 
by a decrement. Also, it appears that as the lower tone 
increases, the fall-off in  ̂occurs earlier. Some exceptions 
to the above relationships do occur, but these are not 
serious deviations. for all purposes, does not extend
below zero as was seen in Matrices A snd B.

Tables 17-19 show the increments due to the response 
condition Tone A re Tone B ($ ^) for Matrices A, B, and C.
The most evident feature of Table 17 (Matrix A) is thst for 
those stimulus pairs where the louder tone is 70 dB SL or 
less, near zero increments are found. However, when the 
level of the louder tone reaches 80- or 90 dB SL, negative 
increments prevail. Apparently, the influence of the Judgmental 
response mode does not have considerable effects until the 
level of the louder stimulus in 8 pair reaches approximately 
80 dB SL. Regarding the results for Matrix B (Table 18),



Table 17
Increment (^) Due to A re B Presentations (Matrix A)

DB SL Louder Tone
30 40 50 60 70 80 90

30 0.00 0.10 0.06 0.06 0.30 -0.02 -0.49
a) 40 0.00 -0.01 -0.05 -0.03 -0,10 -0.29o

50 0.00 0.01 0.04 0.05 0.26
a>
1 60 0.00 0.00 -0.02 -0.21
CO 70 0.00 -0.11 -0.40
m« 80

90
0.00 -0.40

0.00

Table 18
Increment (^) Due to A re B Presentations (Matrix B)

DB SL Louder Tone
40 4-5 50 55 60 65 70

40 0.00 0.07 -0.04 -0.02 0.07 -0.07 0.00
0)G 45 0.00 -0.02 0.04 -0.02 -0.18 0.05

50 0.00 0.02 -0.06 0.06 0.10
0)
Si-3 55 0.00 0.04 -0.05 -0.19
£ 60 0.00 -0.02 -0.08
§ 65

70
0.00 -0.06

0.00
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Table 19
Increment (^) °ue to A re B Presentations (Matrix C)

DB SL Louder Tone
40 42.5 45 47.5 50 52.5 55

40 0.00 0.12 -0.02 0.07 0.12 0.02 0.05
0)g 42.5 0.00 0.01 0.07 0.00 0.04 0.02
E-i
U<B 45 0.00 0.06 0.10 0.01 -0.03
1 47.5 0.00 -0.01 -0.05 -0.01
pCO
m 50 0.00 0.08 0.00
P

52.5
55

0.00 0.01
0.00
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it is seen that the majority of the X values are extremely 
close to zero. Placement of a cell within 8 matrix appears 
to have negligible effects upon the obtained ̂  value.
The seme situation prevails in Matrix C (Table 19), and no 
differential increment or decrement in^T^ is observed as a 
function of the matrix cell.

Figures 19-22 are the spatial configurations (proximity 
plots) obtained from the Analyses of Proximities for Matrices 
A to D. The transformation imposed upon the analyses specified 
that one distance unit (DU) was equivalent to the value 
of the log2 of the ratio estimate 2.00, Thus, one DU measured 
on the configurations is equsl to the rstio estimate 2.00,
8nd the ratio estimate associated with any other distance is 
the log2 of that judgment. Table 20 provides the ratio 
estimates associated with the measured distances (in DU's).
One DU on each of the Figures 19-22 is indicated.

Figure 19 is the configuration for Matrix B. Presentation 
of the results for Matrix A will be deferred for the present.
It is seen that the d8ta points progress in an orderly 
fashion, with the points curving upwards when the level of 
the stimuli reach approximately 55 dB SL. From 40-55 dB, 
each of the points can be joined by a straight line. Thus, 
the total loudness between the points 40 snd 55 dB SL is the 
sum of the log-rstio estimates 40-45, 45-50, and 50-55 dB SL.
As noted, after 55 dB the configuration curves upwards, 
indicating that the points 60, 65, and 70 dB SL are not the



TABLE 
Conversion of Distance Units

RATIO 
GST. .... ...

DIST.
UNITS

RATIO
EST. DIST.

UNITS
RATIO
EST.

C.CiCCCO -4.22192P c. irccco -3.321928 0.150000
C.3CCCC0 -I. 736965 C.3 5CCCO -1.514573 0.40C0C0
C.55CCC0 -0.662496 0.6CCCC0 -0.736965 0.64 99 9 9
C.6CCCCC -C. 32 1921 C.R50CCC -0.234465 0.899 799
l C.C7C366 1 . ICCOCO 0. 13 7 9 C 3 1 .150000I .295999 C. 3 765 1 1 1.35CCCO 0.432959 1.400000
1. 545599 C.632267 1.6CCC0C 0.678071 1.650000
1.755559 C.647796 1.849599 0.B87524 1.900000
2.C5CCCC 1 .C35623 2.055559 1.070389 2. 1500002.3CCCCG 1.2C163 3 2.345559 1.232660 2. .400000
2.55CCCC 1.350497 2.555559 1.378511 2.650000
2 .ecccco 1.46 5426 2.849559 1.510961 2.9000003.C5CCCC 1.6C68CP 3.055559 1.632267 3. 150000
3.3CCCCC 1.722465 3.349599 1.744160 3.400000
3•5 5 C C CC 1.6276 18 3.555559 1.847996 3.650000
3.6CCCCC 1.925599 3.E45559 1.944858 3.70CC00
4.C5CCCC 2. Cl 7921 4. ICCCCC 2.035623 4. 1 50000
4 . 3CCCC0 2.1C4336 4.3500 00 2.121015 4.400CGC4.S5CCCC 2.16566 6 4.6CCCCC 2.201633 4.65 0000
A .ec c c c c 2.263034 4.e5CCCC 2.277984 4.9000005.C5CCCC 2 . 336 26 7 5.ICOCCO 2.3504 9 7 5.150000
5.3CCCCC 2.4C55 92 5.39CCCC 2.419538 5.400000
5 • 55CCC0 2.472407 3.6CCCCO 2.485426 5.6500005.eccccc 2.536C52 5.Q5CCCC 2.548436 5 . 9 0 0 C 0 0
6.C5CCCC _ 2.596934 6.ICCCCO. __ 2.6088C9 6.15CC00
6.3CCCCC 2.65 5 351 6.390 000 2.666756 6.400000
6.55CCC0 2.711494 6.6CCCCO 2.722465 0.64 9999
t.tccccc 2.765534 6.8 5 C CCO 2.7761C3 6.8999 797 .C5CCCC 2.617623 7.ICCOCO 2.8278 IP 7.14 9999
7.2CCCCC 2•f fc 7 P 96 7.35CCCO 2.877744 7.399999
7.55CCCC 2 .5 164 76 7.6ccrcc 2.925990 7.649999
7.6CCCCC 2.56 34 7 3 7.65CCC0 2.972692 7.8999996.C5CCC1 3.0 0 8966 8.1OCCCO 3.C179 2J P.149999
f . ? c c c c i 3.053111 P.330000 3.0617 75 8.39 9999
P.55CCCI 3.0559*4 6.60CC00 3.104336 8.649999
e.ecccci 3. 1375C3 6.63CC00 3. 145677 8 .8 9 9 9 9 9q.c5ccci 3 . 1 7 79 1 7 5.1CCCCO 3.1P 5866 9.14 9999
5.3CCCC1 3.2 17230 9.35CCCC 3.224965 9.399999n t c, r r  r i a - . t u r r • n t r n i - r r * Q.f.4qqqq
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to Ratio Estimates

DIST.
UNITS

RATIO
EST DIST.

UNITS
RATIO
EST

2 .  736 366 0 . 20 C000 - 2 . 3 2 1 9 2 8 0 . 2 5 0 0 0 0 - 2 .0 0 0 0 0 0
■1. 321928 0 . 4  4 9 9 9 9 “ - 1 . 1 5 2 0 0 3 0 .5 0 0 0 0 0 - 1 .0 0 0 0 0 0
•0 .621488 0 . 7 0 0 0 0 0 - 0 . 5 1 4 5 7 3 0 . 7 5 0 0 0 0 - 0 . 4 1 5 0 3 7
0 .  152003 0 .9 5 0 0 0 0 - 0 . 0 7 4 0 0 0 I . 000000 - 0 . 0 0 0 0 0 0
0 . 2 0 1 6  33 1 .2 0 0 0 0 0 0 . 2 6 3 0 3 4 1 .2 5 0 0 0 0 0 . 3 2 1 9 2 7
0 . 4 8 5 4 2 6 I .4 5 0 0 0 0 0 . 5 3 6 0 5 2 1 .5 0 0 0 0 0 0 .5 8 4 9 6 2
0 . 7 2 2 4 6 5 1 .7 0 0 0 0 0 0 . 7 6 5 5 3 4 1 .7 5 0 0 0 0 0 . 8 0 7 3 5 4
0 . 9 2 5 9 9 9 1 .9 5 0 0 0 0 0 . 9 6 3 4 7 4 2 . 0 0 0 0 0 0 0 . 9 9 9 9 9 9
1 .1 0 4 3 3 6 2 .2 0 0 0 0 0 1 .1 3 7 5 0 3 2 . 2 5 0 0 0 0 1 .1 6 9 9 2 4
1 . 2 6  30 34 2 .4 5 0 0 0 0 1 .2 9 2 7 8 1 2 . 5 0 0 0 0 0 1 .3 2 1 9 2 8
1 .4 0  59°2 2 .7 0 0 0 0 0 1 . 4 3 2 9 5 9 2 . 7 5 0 0 0 0 1 .459431
1 .5 3 6 0 5 2 2 . 9 5 0 0 0 0 1 .5 6 0 7 1 4 3 .0 0 0 0 0 0 1 .5 8 4 9 6 2
1 .6553 51 3 .2 0 0 0 0 0 1 .6780 71 3 .2 5 0 0 0 0 1 .7 0 0 4 3 9
1 .7 6 5 5  34 3 .4 4 9 9 9 9  ‘ 1 .7 8 6 5 9 6 3 .5 0 0 0 0 0 1 .8 0 7 3 5 4
1 .0 6 7 8 9 6 3 . 6 9 9 9 9 9 1 .8 8 7 5 2 4 3 .7 5 0 0 0 0 1 .9 0 6 8 9 0
1 .9634 74 3 .9 4  99 99 1 .9 8 1 8 5 2 4 . 0 0 0 0 0 0 1 .9 9 9 9 9 9
2 .0 5 3 1 1 1 4 .1 9 9 9 9 9 2 .0 7 0 3 8 8 4 . 2 5 0 0 0 0 2 .0 8 7 4 6 2
2 .1 3 7 5 0 3 4 . 4 4 9 9 9 9 2 .1 5 3 8 0 5 4 . 5 0 0 0 0 0 2 . 1 6 9 9 2 4
2 .2 1 7 2 3 0 4 . 6 9 9 9 9 9 2 .2 3 2 6 6 0 4 . 7 5 0 0 0 0 2 .2 4 7 9 2 7
2 .2 9 2 7 8 1 4 . 9 4 9 9 9 9 2 .3 0 7 4 2 8 5 .0 0 0 0 0 0 2 .3 2 1 9 2 8
2 . 3 6 4 5  7? 5 .1 9 9 9 9 9 2 .3 7 8 5 1 1 5 . 2 5 0 0 0 0 2 . 3 9 2 3 1 7
2 . 4 3 2 9 5 9 5 .4 4 9 9 9 9 2 . 4 4 6 2 5 6 5 .5 0 0 0 0 0 2 .4 5 9 4 3 1
2 . 4 9 8 2 5 0 5 . 6 9 9 9 9 7 2 .5 1 0 9 6 2 5 .7 5 0 0 0 0 2 .5 2 3 5 6 1
2 .5 6 0 7 1 5 5 .9 4 9  799 2 .5 7 2 8 8 9 6 .0C 0 000 2 .5 8 4 9 6 2
2 .6 2 0 5 8 6 6 . 1 9 9 9 9 9 2 .6 3 2 2 6 7 6 .2 5 0 0 0 0 2 . 6 4 3 8 5 6
2 .6 7 8 0 7 1 6 . 4 4 9 9 9 9 2 . 6 8 9 2 9 9 6 . 5 0 0 0 0 0 2 . 7 0 0 4 3 9
2 .7 3 3 3 5 4 6 . 6 9 9 9 9 9 2 .7 4 4 1 6 1 6 . 7 5 0 0 0 0 2 .7 5 4 8 8 7
2 . 7 8 6 5 9 5 6 . 9 4 9  999 2 .7 9 7 0 1 2 7 . 0 0 0 0 0 0 2 .8 0 7 3 5 4
2 . 8 3  794 3 7 .1 9 9 9 9 9 2 . 8 4  7996 7 .2 5 0 0 0 0 2 .8 5 7 9 8 3
2 . 8 8  7524 7 .4499 99 2 . 8 9 7 2 4 0 7 .5 0 0 0 0 0 2 . 9 0 6 8 8 9
2 . 9 3 5 4  5° 7 .6 9 9 9 9 9 2 .9 4 4 8 5 8 7 .7 5 0 0 0 0 2 .9 5 4 1 9 6
2 .9 8 1 8 5 2 7 . 9 4  9 999 2 . 9 9 0 9 5 4 8 .0 0 0 0 0 0 3 . 0 0 0 0 0 0
3 .0 2 6 7 9 9 8 .2 0 0 0 0 0 3 .0 3 5 6 2 4 8 .2 5 0 0 0 0 3 . 0 4 4 3 9 3
3 . 0  70 389 8 .4 5 0 0 0 0 3 .0 7 8 9 5 1 8 . 5 0 0 0 0 0 '3 .0 8746 2
3 .1 1 2 6 9 9 8.7C0C00 3 .1 2 1 0 1 5 8 .7 5 0 0 0 0 3 . 1 2 9 2 8 2
3 .1 5 3 8 0 4 R .9 5 0 0 0 0 3 .1 6 1 8 8 7 9 .0 0 0 0 0 0 3 .1 6 9 9 2 4
3 .1 9 3 7 7 1 9 . 2 0 0 0 0 0 3 .2 0 1 6 3 3 9 . 2 5 0 0 0 0 3 . 2 0 9 4 5 3
3 . 2  32660 9 .4 5 0 0 0 0 3 . 2 4 0 3 1 4 9 . 5 0 0 0 0 0 3 .2 4 7 9 2 6
3 .2 7 0 5 2 8 9 . 7 0 0 0 0 0 3 .2 7 7 9 8 4 9 . 7 5 0 0 0 0 3 .2 8 5 4 0 1
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1 I DISTANCE UNIT 8 LOGg 2

[65

6040 45 50

Pig. 19. Analysis of Proximities spatial configuration 
for Matrix B.
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| I DISTANCE UNIT■ LOG? 2

55

MATRIX C 52.5

47.5
45

“ 40
Pig. 20. Analysis of Proximities spstial configuration for Matrix C.
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| I DISTANCE UNIT* L00«2
90

MATRIX A
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70

60

-30 5040
Fig, 21. Analysis or Proximities spatial configuration
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MATRIX D
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47.545
40

Fig. 22. Analysis of Proximities spatial configuration 
for fcetrix D.
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suras of sll previous log-rstio estimates, but somewhat 
less. ThJis, non-additivity increases as the stimulus in
tensity increases. It is further seen that the loudness 
estimate between 60 and 70 dB is not the sum of the log- 
ratio estimates 60-65 snd 65-70 dB, but less. The distance 
between each of the adjacent stimulus points from 4-0-70 
dB increases, indicating that the loudness at 5 dB intervals 
increases with increasing intensity.

Figure 20 is the proximity plot for Matrix 0. The form 
of the configuration is similar to that found for Matrix B. 
Additivity exists from 4-2.5-50 dB SL, but outside that 
region the figure bends, indicating non -additivity of the 
loudness judgments at the higher matrix intensities. The 
ratio estimate made between 50-55 dB is not the sum of the 
log-estimates 50-52.5 and 52.5-55 dB. Also, there is a 
general increase in the distance between adjacent 2.5 dB 
intervals.

Figure 21 shows the results for Matrix A. The con
figuration 8ppe8rs to be different for those found for Matrices 
B and C in that the regular upward pattern appears to be 
broken at 70 dB. An sdditive (linear) relation is evident, 
however, between 30 snd 50 dB SL. Regarding those stimulus 
points between 30 and 70 dB, it is seen that a similarity 
exists between these five points snd the figures obtained 
in Matrices B and C.

Figure 22 is the proximity plot generated by the data
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in Matrix D, Between 30-70 dB a pattern similar to Matrices 
B and C is seen, with the additive section occurring 
between 40-55 dB SL. When comparison is made between the 
distances found for common stimulus pairs in Matrices A 
and D, the distances are always greater for Matrix D. 
Further, Table 21 shows that the distance difference 
increases as she inter-stimulus difference increase.

In order to plot the obtained loudness estimate results 
as a unidimensional function of dB SL, which, in turn, 
would yield complete additivity if plotted ss a proximity 
plot, several process were initiated.

To understand the processes invloved, it is instructive 
to view esch 7x7 matrix (A-C) as a double classification 
Analysis of Variance (as in the/fl̂  results) with one sampling 
unit per cell. In the present schems, one variable consists 
of the seven louder tones (designated and the other
variable consists of the seven lower tones (designated as

Using this paradigm each cell entry can be viewed 
ss consisting of three components: (1) a deviation of the 
row mean from the grand matrix mean, (2) a deviation of the 
column mean from the grand matrix mean, and (3) 8 residual 
interaction term. Thus,Ai and represent the
column means and row mean*, respectively.

To insure complete additivity in space two requirements 
had to be met. The first was that the interaction sum of 
squares of each matrix had toJbe reduced to zero, and the
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Table 21
Comparison of Distances in Matrices A end D 

for Common Stimulus Pairs

Common Pair Distance Distance Distance
Matrix A Matrix D Difference
(DU) (DU) (D-A)

30-40 0.45 0.75 0.30
30-70 1.55 2.00 0.45
30-90 3.00 5.90 0.90
40-70 1.23 1.56 0.35
40-90 2.84 5.25 0.51
70-90 1.85 2.30 0.45
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second thst corresponding estimates of X  and^ had to be 
equal and opposite in sign, thus setting the matrix diagonal 
to zero.

To accomplish these requirements, a two-st8ge process 
was initiated. The first stage consisted of using Krusksl's 
(1968) Mon<*nova technique on the log2 values of each matrix. 
Since this analysis is designed to reduce the interaction 
sum of squares to zero (or nearly so), the first requirement 
for additivity was met. The second stage of the process 
invloved a modification of the Monowove analysis (through 
an iterative technique) which set corresponding estimates of 
X- and^equal and opposite in sign. This second operation 
fulfilled the second requirement for additivity.

Figure 23 illustrates the above processes by the use of 
a fictitious 4x4 stimulus matrix, which shows how additivity 
was attained. In the figure each of the requirements for 
a linear proximity plot have been met, i.e., diagonals of 
the matrix set to zero, and all corresponding X* and/^values 
equal and opposite. It is also assumed that the interaction 
sum of squares for the matrix has been reduced to zero, so 
that e8ch cell value is simply the sum of its respective 
main effects. For example, the 30-60 dB SL stimulus combin
ation (ra'tio estimate »V.O) is the sum of the main effects 
X 3 and/^y or /.0+3.0, As stated, if this matrix were plotted 
as 8n Analysis of Proximities, a linear proximity plot would 
result because the ratio estimate found within each of the
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dB SL Louder Tone

30 45 60 70
30 0 2 4 6 ■ +3
45 -2 0 2 4 /t = +1
60 -4 -2 0 2 A  " -1
70 -6 -4 -2 0 V -3
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Pig. 23* Illustration of matrix requirements for 
linear proximity plots.
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cells would be equal not only to its main effects (ss sbove), 
but 8Iso to its component ratio estimates. Thus, the loud
ness relation is completely additive in nature.

Figures 24-26 show the lambda (X) value results for 
Matrices A-C as a function of dB SL. Also shown is the 
subjective loudness in log2 A(dditive) units. This latter 
scale represents a simple transformation of the lambda 
ordinate which was included to make the obtained dst8 
more comparable with previously reported unidimensional 
loudness scales, which commonly assign a 40 dB SL stimulus 
the scale value "I", i.e., the sone scale. Thus, in each 
of the figures the \ value which corresponded to 40 dB 
SL was arbitrarily assigned the value "1" (or ”0” in log2

terms),and the remainder of the scale with reference to this 
point. Thus, a direct comparison between the power function 
based upon the 10 dB rule (with 40 dB SL ■ 1*0 ss 8 reference 
point) and the present additive scale could be accomplished.

Figure 24 indicates that the log2 A (dditive) scale 
does not approximate the conventional 10 dB rule results 
for Matrix A over the entire intensity continuum. However, 
the loudness from 80-90 and 30-40 dB SL does appear to grow 
at approximately the same rate.

Figure 25 (Matrix B) shows that both the conventional 
power function bssed on the 10 dB rule and the log2A scale
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grow st the same rate, although the additive units are 
displaced toward the higher intensities by approximately 
4 dB, and show a flatter function between 40 end 45 dB.

Figure 26 shows that the additive function for Matrix 
C approximates 8 power function (as does Matrix B), whose 
slope is greater than that of the conventional function.

Figures 31-35 (Appendix) show the individual lambda (X) 
and log2A values for each subject in Matrices A-C. In both 
Matrices B and C only the data points are plotted because all 
subjects show nearly equivalent X vslues. Thus, the slopes 
of the individual subject functions do not differ appreciably. 
The results for Matrix A ere a bit more variable. There
fore, the individual subject functions are plotted (Figures 
31-33)• It is seen that subjects 1-8 in Matrix A exhibit 
functions which ere quite similar in that they generally 
accelerate at the same r8te. Subjects 9 sndlO differ from 
the pattern somewhat, although their results are not greatly 
different from the other eight subjects.

Experiment II. Tables 22-25 show the overall mean ratio 
estimates for Matrices E-H, respectively. These values were 
obtained by taking the reciprocals of the Tone A re Tone B 
session results, and averaging these values with the results 
of the Tone B re Tone A session. To convert all vslues to 
1.00 or greater, the reciprocals of the fractional estimates 
were tsken, and included within the grand average.
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Table 22

Grand Means for Matrix E (250 Hz)

DB SL Louder Tone
10 20 30 40 50 60 70

10 1.00 1.36 1.81 2.20 2.80 3.42 4.94
a)c 20 1.00 1.17 1.75 2.30 2.87 4.30oEh 30 1.00 1.22 1.93 2.52 4.09
8 40 1.00 1.42 2.19 3.70
►-iCO 50 1.00 1.45 2.94QQa 60 1.00 2.19

70 1.00

Table 23
Grand Means for Matrix J? (White--Noise)

DB SL Louder Tone
40 4-5 50 55 60 65 70

40 1.00 1.30 1.68 2.35 2.63 2.89 3.02
Q)c 45 1.00 1.27 1.74 2.20 2.47 2.61oEhJl, 50 1.00 1.25 1.94 2.25 2.23Q)
t 55 1.01 1.22 1.53 1.71
H3 CO 60 1.02 1.09 1.25(Tla 65 1.00 1.04

70 1.00
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Grand Means
Table 24 
for Matrix G (4000 Hz)

DB SL Louder Tone
10 15 20 25 30 35 40

10 1.03 1.26 1.64 1.97 2.14 2.55 2.93
Q> 15 1.00 1.24 1.64 1.88 2.11 2.44OH
U 20 1.01 1.23 1.49 1.71 2.19
1 25 1.01 1.13 1.53 2.09
CO 30 1.00 1.19 1.69CQa 35 1.00 1.18

40 1.00

Table 25
Grand Means for Matrix H (1000 Hz)

DB SL Louder Tone
10 15 20 25 30 35 40

10 1.00 1.23 1.40 1.82 2.11 2.40 2.48

<D 15 1.00 1.13 1.56 1.83 2.08 2.60cOEh 20 1.00 1.18 1.70 1.97 2.33
U<0 25 1.00 1.22 1.68 2.12
.-ICO 30 1.01 1.28 1.94
CQ 35 1.00 1.33

40 1.00
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Matrix E (Table 22) shows the results obtained when the 
250 Hz tones were judged from 10-70 dB SL. The largest 
estimate was between the 10 and 70 dB SL stimuli (4.94).
As the level of the louder tone increased, the ratio est
imates for each of the lower intensity rows increased. No 
reversals between adjacent cells were evidenced.

Table 23 gives the analogous dats for the white-noise 
stimuli (Matrix F) which were judged in 5 dB steps from 
40-70 dB SL. It is seen that the highest obtained r8tio 
estimate was 3*02 for the 40-70 stimulus combination.
A regular progression in the values is seen as the level of 
the louder tone increases.

Tables 24 and 25 indicate the results of both the 
1000 and 4000 Hz tones judged from 10-40 dB SL in 5 dB 
steps. A comparison between the two shows that the loudness 
of the 4000 Hz tone is greater when the stimulus pair 10- 
40 dB SL is judged (2.93 v. 2.48). It is also seen that the 
4000 Hz stimuli are (except in cell 16) 8re slways judged 
greater than the 1000 Hz tones in those cells containing a 
lower stimulus intensity of from 10-20 dB SL. However, 
when the level of the lower stimulus reaches 25 dB and higher, 
the relationship changes, and the judgments for the 1000 Hz 
pairs are greater.

Figures 27-30 show the obtained Analysis of Proximities 
spatial configurations for Matrices E-H. Figure 27 shows 
the relations for the 250 Hz tones. As in Matrices B snd 0,
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Pig. 29. Analysis of Proximities spatial configuration 
for Matrix H (1000 Hz tones).
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the configuration curves upwards after an area where additivity 
prevails. In this instance, additivity is seen from approx
imately 10-35 dB SL. The log-ratio estimates are not 
additive in nature above 40 dB.

Figure 28 (white-noise) shows some peculiarities not 
evident in the regular configurations generated by most of 
the foregoing matrices. The most obvious difference is that 
the 65 and 70 dB SL points reverse themselves. However, this 
results could be due to experimental error. Additivity is 
predominant from approximately 52-70 dB SL.

Figures 29 snd 30 show the configurations obtained for 
the 1000 Hz and 4000 Hz tones under the same low sensation 
level conditions. Both figures show regular patterns, although 
a comparison between the two shows some differences. The 
mein difference lies in the points above 25 dB SL. At these 
intensities, the configuration for the 1000 Hz tones bends 
back, indicating less additivity in the log-ratio estimates 
between distant inter-stimulus pairs. On the other hand, 
the points above 25 dB for the 4-000 Hz judgments are additive 
from 25-40 dB SL. Between 15 ond 25 dB SL both figures show 
additivity of the log-rstio estimates.
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IV. DISCUSSION

Although the present paper has been quite comprehensive 
in scope, several msin points may be made. Therefore, 
the initial section of the present chapter is devoted to a 
general summary of the major study objectives and findings. 
Detailed analyses of these findings, and their implications 
may be found later in the discussion under specific sub
headings .

Summary of Major Objectives and Findings

As stated, the primary purpose of the present invest
igation was to explore whether the 10 dB rule (or the 0.54- 
power function, which approximates the 10 dB rule at 4-0 dB 
SL and above) provided an adequate description of loudness 
relations for stimulus psirs judged in 7x7 stimulus matrices. 
The vehicle for judging the adequacy of this unidimensional 
loudness relation was the modified Analysis of Proximities, 
which, through the log-transformation, defined one distance 
unit on each of the obtained proximity plots 88 the log2 of 
the ratio estimate. This transformation insured thst if the 
10 dB rule held for the obtained ratio estimates, a straight 
line proximity plot would be obtained. In this regard, 
every doubling of loudness at.10 dB intervals would be 
equivalent to the addition of one distance unit in space.
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Obviously, the obtained spatial configurations for 
Matrices A-C (as well as the other stimulus conditions) 
are not straight lines. Therefore, the predictions made 
from the 10 dB rule regarding ratio estimates between various 
points on the intensity continuum do not provide an adequate 
description of the obtained Judgments. However, it should 
be noted that each of the obtained plots contain a region 
of relative additivity before the configuration curves 
upwards. Also, as will be further explored in a subsequent 
section, the inter-stimulus differences in this additive 
section are more similar to the estimates implied by the 
10 dB rule as the stimulus range of a matrix is decreased 
to moderate ranges.

Another major consideration of the study was to trans
form the obtained dsta so as to yield a unidimensional function 
relating Judged loudness to intensity, which, in turn, 
would provide a linear proximity plot. This goal was met 
by using the Monaneva technique combined with the transformation 
of each of the matrix diagonals to zero.

The results of the above process yielded the log2 
A(dditive) loudness scale (described earlier), which could 
be directly compared to the unidimensional power function 
based on the 10 dB rule. Regarding these data, the major 
finding was that for Matrices B and C, the unidimensionsl 
log2A plots were power functions of the stimulus intensity.
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The slope of the Matrix B scale was quite similar to that 
of the conventional power function, and the slope for 
Matrix C was greater than the conventional rule function* 
The Matrix A date did not yield a power function, and the 
shape of its unidiaensional plot was complex. Generally, 
however, the growth of the plot for Matrix A was much 
slower than for the conventional 10 dB rule function.

A consolidation of both the Analysis of Proximities 
and the log2A data indicate that the overall range of a 
stimulus matrix is quite influential in determining how 
loudness-ratios grow, and that the more constricted the 
range, the more rapid the loudness-ratio growth. In 
general, it appears that when the stimulus range reaches 
approximately 30 dB, the results obtained using the present 
technique compare quite closely to those implied by the 
conventional unidimensionsl scale implied by the 10 dB rule.

Relation Between Matrix A Ratio Estimate Values 
and Those Predicted from the 10 dB Rule

Matrix A wss designed to investigate how ratio est
imates of loudness compared to predicted estimates (as 
implied by the 10 dB rule) over a wide stimulus range.

The most significant outcome regarding the obtained 
data for Matrix A is the large deviation between the pre
dicted and observed values. The obtained date are always
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below the predicted values, with the differences between 
the two increasing as the inter-stimulus differences in
crease. The largest ratio estimate (7.90) falls far short 
of the predicted estimate of 64.00 for the 30-90 dB SL 
stimulus combination.

An explanation of the incongruity between the present 
data end those found by other investigators may be account
ed for by the fact that the overwhelming majority of studies 
investigating loudness have concentrated on only moder
ate intensity intervals, with little attention being paid 
to loudness estimates over longer or shorter distances.
In this regard, many of the more influential studies have 
been based almost entirely on halving or doubling determin
ations (Robinson, 1957; Stevens, 1955* 1957). McRobert, 
Bryan, and Tempest (1965) have even noted that in those 
studies which have tried to reduce the constraints to a 
minimum (magnitude estimation without a modulus), in effect, 
do not measure loudness over wide inter-stimulus intervals. 
This situation arises because all the estimates are made 
within a short time period, and ss each estimate is msde, 
another reference point is created. Therefore, a subject's 
letter responses ere msde with reference to the nearest 
estimates, rather than to the original stimulus, i.e., the 
first tone in the experiment. "This is important in the 
case of levels which are far from the reference level 
^original tone/, since the observer may make his judgment
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with reference to the nearest tone he has so far heard, 
rather than to the reference tone. By this process ell 
his judgments are reduced to judgments of smell intervals 
and the results of the experiment do not really answer the 
question, which is basic to any loudness scale, of whether 
the observer can make self-consistent estimates of large 
end small intervals" (p. 393).

In one of the only studies dealing with loudness 
estimates over larger inter-stimulus distances, MeRobert 
et. al. (1965) obtained data similar to those found in the 
present study. Fifteen pairs of stimuli at 1000 Hz were 
presented, and the task of the subject was to estimate 
the loudness of the second tone relative to that of the 
first tone. Unlike the present study, the intensity of the 
second tone was always greater than the first. The largest 
inter-stimulus difference was 50 dB (30-80 dB SPL). Their 
data indicated that when the inter-stimulus difference wss 
approximately 15 dB or less, the ratio estimates were similar 
to those predicted by the conventional power function. 
However, when the inter-stimulus difference increased beyond 
15-20 dB, the ratio estimates became increasingly more 
divergent from the conventional scale predictions. They 
concluded thst "although the "sone" type of scale relating 
loudness to intensity (at 1000 c/s) represents an average of 
the data available, almost ell of the published data has in 
fact been effectively obtained over small intervals (up to
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about 20 dB) on intensity. The question of validity of 
the scale over larger intervals has been left quite open.
The present data, together with that of Stevens and Poulton
(1956) ^"They used Stevens & Poulton (1956) to compare their 
data withT, suggests that the ”sone” type of scale is e poor 
approximation to the true relation between loudness end in
tensity over wide ranges...” (p.399).

Another important relation to be found in the present 
data for Matrix A (Table 3)* end in those obtained by McRobert 
et. al. (1965) concerns the relation between ratio estimates 
obtained over large inter-stimulus intervals, and the sum 
of the component ratio estimates contained within those 
intervals. McRobert compared the sum of several ratio 
estimates comprising a given inter-stimulus interval with 
a direct estimate of the end points of that interval. Their 
results indicated that the sum of the component estimates 
were always greater than the direct estimate. The same 
relationship may be seen in Tsble 3* For example, the 30- 
90 dB SL stimulus pair yields a mesn ratio estimate of 7.90 
when Judged directly, although the sura of its component 
estimates (30-40, 40-50, 50-60, 60-70, 70-80, and 80-90 
dB SL) is only 10.77.

Relation Between Ratio Estimates Obtained for
Matrices A. B. and C
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An examination of the results for Matrices A, B, and 
C (Tables 3-5) indicates that as the stimulus range approaches 
30 dB the obtained ratio estimates become more like the 
10 dB rule predictions. One index of this process is the 
ratio estimate associated with common stimulus pairs with
in each of the matrices. As described previously (Table 7)» 
the ratio estimate increases for each of the common pairs 
as the overall stimulus range of a matrix is reduced, and 
the Matrix B vslues for each of these common pairs are more 
similar to the 10 dB rule predictions than either Matrices 
A or C.

Another index of the convergence of the data to 10 
dB rule predictions with increasing constriction to 30 dB 
is an examination of those cells (Tables 3-5) where the 
inter-stimulus difference is 10 dB. When this is accomplished 
it is seen thst the median value for mhe 10 dB difference in 
Matrix A is 1.53» 2.03 for Matrix B, and 2.36 for Matrix C. 
Since the 10 dB rule predicts a rstio estimate of 2.00 for 
a 10 dB inter-stimulus difference, the median for Matrix B 
was, virtually , equal to the predicted value.

A final index of the appraoch to 10 dB rule predictions 
using a 30 dB stimulus range can be seen in Figures 6-8.
If these figures were plotted ss the conventional 0.54- 
power function would implie, each of the figures would have 
six parallel lines with a slope of 0.54-. The median slope 
of the obtained functions for Matrix B is 0.54-.
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Variability of Ratio Estimates. The results of the 
Analyses of Variance (Tables 11-13) lend support to several 
investigations which have studied individual variability 
of loudness estimates of time. Generally, the results of 
these analyses for Matrices A-C show that ratio estimates 
do not differ when the Judgments are made over several 
different days. A mean of only 7# of the subjects for all 
matrices showed significance on the Sessions factor. These 
results support McGill (I960), who found that an individuals 
loudness function will not differ greatly over a period of 
at least one week. These results also support the 0.53 
correlation coefficient obtained by Stevens and Guirao (1964), 
who correlated the power function exponents obtained from 
an individual on two separate occasions.

The common practice of using naive subjects in exper
iments concerning loudness perception is supported by the 
low percentage of subjects showing statistical significance 
for both the Sessions and Replications factors (Tables 11- 
13). However, twenty-five percent of the subjects did show 
significance on the Replications factor for Matrix A. Since 
this was the first matrix presented to the subjects, a small 
learning factor effect may hsve been present. However, the 
influence of such sn effect appears to be rather small. The 
above findings support studies by J. C. Stevens and Tulving
(1957)* Stevens end Poulton (1956), and McRobert et. al. 
(1965)* who all showed that nsive subjects could give loudness
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estimates which differed in no significant manner from 
those reported by more sophisticated observers.

A primary finding concerning the variability of the 
ratio estimates between subjects is that it becomes larger 
as the inter-stimulus differences increase (Tables 8-10).
This relation was expected in light of the findings of 
McGill (i960) and McRobert et. al. (1965), who both found 
increasingly variable estimates for individuals with in
creased intensity.

Analyses of Proximities for Matrices A-P

The underlying cause of the characteristic upswing 
in each of the proximity plots, and the divergence from 
a purely additive relationship is based upon the fact 
that loudness over long inter-stimulus intervals is not 
the sum of its component loudnesses, as the unidiraensional 
scale based upon the 10 dB rule would imply. As alluded to 
previously, McRobert et. al. (1965) recognized this relation
ship, although they did not have the vehicle to present the 
data in concise form. In contrast, the Analysis of 
Proximities adequately describes the obtained ratio estimates 
made over wide inter-stimulus differences, as well as the 
sum of the individual component estimates.

Although showing the characteristics inherent in 
the other spatial configurations, i.e., additivity at the
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lower intensities and an upward curvature, Matrices A and 
D differed significantly in shape from the other configur
ations.

As noted, Matrix A was different from Matrices B snd 
C in that the regular upward pattern appeared not to be 
maintained at 70 dB SL (Fig. 21). This appearance, however, 
may be misleading, for the familiar pattern is maintained 
if one regards the points from 30-70 dB. These five points 
show the usual additive relation between 30-50 dB, and then 
upward swing.

What appears to be different at 70 dB may, in fact, 
be caused by the relationship between all the 80- and 90 
dB SL stimulus combinations. Evidence attesting to this 
relationship may be seen in the data for Matrix A (Table 14) 
as compared to the analogous f) increment data for Matrices 
B and C (Tables 15-16). Generally, in Matrices B and C, 
when the louder tone leads the lower tone in time, sn in
crement is added to the grand mean of the cell to account 
for the obtained ratio estimate. Unlike the other two 
matrices, the obtained f?values for Matrix A are consistently 
negative when the intensity of the louder tone reaches 80 
dB SL. Therefore, it appears likely that the placement of 
the 70 dB point in space was influenced by what might be 
termed a "differential high intensity response mode," 
which was in Juxtaposition to the mode of response at the
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lower intensities.
The reason governing the rather irregular appearance 

of Matrix D was, of course, the disproportionately loud 
90 dB SL stimulus, which acted as an "anchor" (Woodworth 
& Schlosberg, 1954)• The quantitative effects of this 
anchor can be seen by regarding Table 21, which shows the 
obtained differences for common stimulus pairs in Matrices 
A snd D. In all instances, the distances ere greater for 
the Matrix D configuration.

Unidimensional Scaling of Matrices A-C

Figures 24-26 indicate that unidimensional functions 
may be found for the data contained in Matrices A-C, and it 
is thus possible to plot each of these matrices as a linear 
proximity plot.

When each of the log2A scales are compared directly 
to the scale implied by the 10 dB rule, a rather clear re
lation is seen, which, once again, supports the hypothesis 
that when the stimulus range is in the vicinity of 30 dB, 
the ratio estimates approach conventional predictions.
This is evidenced by the minimal transformation necessary 
to obtain the conventional power law predictions from the 
log2A scale for Matrix B.
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Ratio Estimates end Analysis of Proximity Plots 
for 250 Hz end White-Noise Stimuli

The obtained ratio estimates for 250 Hz and white- 
noise stimuli (Tables 22-25) are low relative to what would 
be predicted from their respective power function exponents 
(as found by previous investigators). Also, both spatial 
configurations show the regular upward pattern evidenced 
in the previous matrices, as well as show areas of relative 
loudness additivity at the lower matrix intensities.

The configuration for Matrix F (white-noise) is somewhat 
irregular in that a reversal of points occurs when the 
noise reaches approximately 60 dB. However, this does not 
affect the overs11 form of the configuration, and may simply 
be due to experimental error.

An important aspect of the proximity plots for the 250 
Hz and white-noise stimuli, as well as the other matrices, 
is that local aress of the plots can generally be described 
in terms of the sum of the local log-ratio estimates. For 
example, a general approximation to the distance between 
50-70 dB SL for the 250 Hz tones can be obtained by taking 
the sum of the log-ratio estimates of the 50-60 dB end the 
60-70 dB intervals. Although the sum in most instances will 
be greater than the direct estimate, a fair approximation 
can be made over 8 limited range.
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Constraints Imposed b.y the Method

The present technique of using rstio estimates ss the 
primary measure of the perceived loudness difference between 
two points on the intensity continuum sought to minimize the 
constraints pieced upon a subject. Since Zwislocki (1967), 
Heilman and Zwislocki (1961), and Stevens (1956) have noted 
that minimizing the constraints causes the obtained loud
ness functions to be less variable, the present subjects 
were free to choose whatever ratios they thought approp
riate. This, of course, is in juxtaposition to the Ratio 
Production methods (Fractionation and Multiplication), 
where S is required to satisfy some specified ratio, and to 
the Magnitude Estimation procedure which includes a prescribed 
modulus. As described in the Introduction, all of the 
above techniques are subject to biases which are introduced 
via the imposed constraints. The present procedure eliminated 
the biases produced by a fixed relation between any stimulus 
snd a given modulus, and did not specify any particular 
ratio to be fulfilled.

One constraint which was placed upon a subject, however, 
concerned the judgmental response mode (Tone A re Tone B, or 
vice versa). When the overall magnitudes of the obtained 
ratio estimates are considered under both response modes 
there appears to be little difference (except perhaps in 
Matrix A where 40# of the subjects showed significance on
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the judgmental factor (J)). On the other hand, an effect 
which was produced by the judgmental mode was evidenced 
in the reciprocal relations in each of the matrices. A 
first indicator of this effect was the percentage of subjects 
who were found to have significant F~ratios for the Upper/
Lower factor for Matrices A, B,and C. These results were 
further investigated by plotting Figures 9-14-, which indicated 
where the differences lay.

When considering the Tone A re Tone B reciprocal 
relations (Figures 9, 11, 13) for Matrices A, B, snd G, 
a consistent pattern is exhibited. In each of these 
figures the mean ratio estimates of the lower unaltered 
cells 8re greater than the reciprocals of the opposite 
cells (Although in Matrix A a small divergence is seen).
Further, if lines are connected between each of the points 
representing the cells of a given lower SL stimulus (cells 
2-7, 9-13♦ 15-18, 20-22, and 24—25) it is seen thst a closer 
reciprocal relation is achieved as the level of the lower 
stimulus increases.

When the subjects are responding under the A re B 
response mode, those cells which ere inverted for sub
sequent analyses always have the lower SL stimulus pre
sented before the louder stimulus. Thus, the level of 
this first lower tone hss a direct influence upon the reciprocal 
relation. If the first tone is a low stimulus intensity 
for the matrix, the judged loudness differences between it
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and the other stimuli will be low (as evidenced by its 
reciprocal) relative to the judged difference if the stimuli 
had been presented in the other order. However, as the 
level of the lower stimulus increases, the judged diff
erences between the stimuli presented in either order 
will become similar, i.e., the reciprocal and the un
altered values will approach each other.

The situation is more complex when the subjects are 
judging the stimuli under the B re A response mode, although 
general patterns are evident (Figures 10, 12, and 14). For 
each of the matrices it is found that the reciprocals are 
generally larger than the unaltered values. However, 
when the levels of the louder stimuli in a pair reach the 
highest matrix intensities, the trend reverses itself.

If lines are drawn, as above, between er>ch of the 
points representing those cells for a given lower SL stimulus, 
it is one again seen that the reciprocals approach the un
altered values as the level of the lower stimulus in
creases (except when the level of the louder tone is at the 
higher matrix intensities). Under the B re A mode, however, 
those cells which are inverted always have the louder tone 
leading the softer tone. Therefore, the effect of the loud
er tone leading is generally reduced as the level of the 
lower stimulus increases.

In all matrices judged under the B re A mode when the 
level of the first tone is at the highest matrix intensities



the reciprocals become less that* the unsltered opposite 
cell. The reason for this divergence is unclear.

In general, then, under both response modes, as the 
level of the lower stimulus is increased, the reciprocals 
will tend to become similar to the value obtained for the 
unaltered opposite cell. Whether or not the reciprocal 
will be greater or less than the opposite cell, and hov. 
much this divergence will be, is directly contingent upon 
the judgmental response mode, and the level of the louder 
stimulus,

Although the present study was designed to minimize 
the response constraints placed upon a subject, a possible 
source of bias could have been the effect of a previous 
stimulus pair upon the ratio estimate of a subsequent pair, 
i.e., sequential dependencies. Since the possibility of 
substantial sequential dependencies being present within 
the data was an afterthought, only a brief analysis was 
performed.

The analysis consisted first of taking four stimulus 
pairs which contained intensities at either the high or low 
ends for each of Matrices A-C (designated hereafter as the 
initial pairs). These initial stimulus pairs were designated 
as High-High, Low-Low, High-Low, and Low-High. For example, 
in Matrix B, the initial pairs were: High-High (55-65 dB SL)
High-Low (65-^0 dB SL); Low-High (40-65 dB SL), and Low- 
Low (40-40 dB SL). The analysis further consisted of taking
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the median ratio estimate values in those cells following 
each of these initial pairs which were comnon to two or more 
of the initial pairs. For example, in Matrix B, the 50-65 
dB SL stimulus combination median ratio estimate was calculated 
three times because it followed the Low-High, High-Low, 
and High-High initial pairs in the random stimuli present
ations. Therefore, the median ratio estimate for a common 
subsequent stimulus pair could be compared after differential 
initial pair combinations.

Since the cell order in which the stimulus pairs were 
randomly presented in Matrices A-C were identical, it was 
possible to compare any differential sequential dependencies 
between matrices. Tables 26-28 present the results of the 
foregoing analyses.

The results show that there was a tendency for the 
High-High initial psir in each of the matrices to reduce 
the value of the subsequent stimulus pair. This effect was 
almost as great as the effect of the louder tone leading the 
lower tone in time results in Figures 16-18).

R8tio Estimate Dsta and Spstial Configurations for 
1000 Hz end 4000 Hz Low Sensation Level Tones

Relation Between the Obtained 1000 Hz Low SL Ratio 
Estimates and Previous Investigations. The problem of how 
loudness grows at low sensation levels has not been investigated
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Table 26

Test for Sequential Dependencies in Matrix A

Stimulus Order of Preceding Pair
Low-High 
(50-80 dB)

High-Low 
(80-50 dB)

Low-Low
(50-50 dB)

High-High 
(80-80 dB)

Median Ra1 
Est. Foll
owing Pai]
50-80 dB 3.50 2.75 --- 3.50
60-80 dB 2.65 --- 2.50 2.00
50-60 dB 2.00 --- --- 2.00
80-70 dB 1.75 1.50 --- ---

Table 2?
Test for Sequential Dependencies in Matrix B

Stimulus Order of Preceding Pair
Low-High 
(4-0-65 dB)

High-Low (65-40 dB) Low-Low 
(4-0-4-0 dB)

High-High 
(65-65 dB)

Median Rat. 
Est. Foil* 
owing Pair
50-65 dB 2.51 2.00 --- 2.00
55-65 dB 2.00 --- 2.00 1.51
4-0-65 dB 2.00 --- --- 1.75
65-60 dB 1.4-6 1.62 --- ---
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Table 2$
Test for Sequential Dependencies in Matrix C

Stimulus Order of Preceding Pair
Low-High High-Low Low-Low High-High
(40-52.5 dB) (52.5-40dB) (40-40 dB) (52.5-52.5 dB)

Median Rst 
Est. Foll
owing Pair
45-52.5 dB
47.5-52.5 dB 2.00
40-47.5 dB 
52.5-50 dB

2.00 2.00
1.75

1.00
1.00

2.00
1.23
1.12

1.25
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as frequently as the growth at moderate to intense levels. 
Heilman and Zwislocki (1961), however, were able to plot 
the 1000 Hz loudness function to A- dB SL. These authors 
found that when the stimulus level reached approximately 
30 dB or less, the slope of the function increased. Using 
the functions plotted by Heilman and Zwislocki (1961),
Lochner and Burger (1962) found that the loudness function 
could adequately be described by the equation (('.K(In-I n) 
(where IQ is the threshold intensity and n«0.27), rather 
then the power function (^«KIn) from the lowest to the 
highest intensities. This new equation accounted for the 
increased steepness at levels below approximately 30 dB SL, 
whereas the power function did not.

Table 29 shows the loudness ratio estimates which are 
predicted from the^-K(In-IQn) equation if subjects were 
asked to judge all pairs in a 1000 Hz matrix fanging from 
10-40 dB in 5 dB increments. These values were obtained 
by taking the ratio between the sone values associated with 
different intensities, as reported by Lochner and Burger 
(1962).

A comparison of the predicted data by Lochner and Burger 
(1962) (Table 29) and the obtained data (Table 25) show th8t 
the predicted vslues are high for all matrix cells. However, 
the two sets of data do show close similarities when the 
level of the lower tone reaches approximately 30 dB SL.

Clinical Implications of Low Sensation Level 1000 Hz
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and 4000 Hz Spatial Configurations. The clinical utilization 
of the present method of using ratio estimates combined 
with the Analysis of Proximities is as a test of loudness 
recruitment. The advantage of such a technique is that 
the proximity plots would relate all intensities to one 
another with, theoretically, differing configurations for 
pathological and normal hearers.

Another prime advantage of such a test is that it 
would be completely monaural. This, of course, eliminates 
the necessity of requiring that a patient have a unilateral 
loss using the Alternate Binaural Loudness Balance (ABLB)
(Dix, Hallpike, & Hood, 1948; Fowler, 1928). It also 
eliminates the prerequisite that a patient have normal, or 
near normal, threshold at one frequency, as required by the 
Alternate Monaural Loudness Balance test (AMLB) (Reger,
1936).

A test based upon ratio estimates would yield direct 
loudness assessments, and would not be based upon indirect 
measures such as the difference limen (Bekesy, 1947; Denes 
& Naunton, 1950; Jerger, 1953t 1959; Luscher & Zwislocki,
1949).

Specifically, the test would include low sensation 
level tones from just above threshold to moderate stimulus 
levels. This, of course, is because recruitment manifests 
itself at low SL's, with loudness perception becoming more 
normal as the intensity is increased (Fowler, 1928; Steinberg &
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Gardner, 1937). Since cochlear pathology is associated with 
recruitment (Davis & Silverman, 1970), with the audiometric 
effects being more prevalent at the higher frequencies 
(Jerger, 1959), the proposed test should include one 
frequency which is likely to be sffected by pathology 
(4-000 Hz), and one that is less likely to be affected 
(1000 Hz).

To this effect, Matrices G end H (4-000 Hz and 1000 Hz, 
respectively) tested a normal group of subjects at the 
proposed low sensation levels (10-4-0 dB SL) in order to 
determine if there were any inherent differences between 
judgments made st these frequencies for normal listeners.

Obviously, the configurations differ from eachother. 
It is seen that for those stimulus pairs where one of the 
tones is 20 dB SL or less, greater ratio estimates are 
obtained from the 4-000 Hz tones. On the other hand, when 
the level of the lower stimulus in a pair reaches 25 dB SL 
or greater, the 1000 Hz estimates are greater. Also, 
additivity occurs at different points on each configuration. 
The fact that the two configurations differ from one another 
does not negate their usefulness, but simply points to an 
inherent difference in the perception of loudness for 
normal listeners at two sound frequencies.

If such a test were administered to patients with 
purely conductive losses, the obtained proximity plots 
should not differ in any essential manner from those found
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in normal subjects. A subject with a cochlear lesion, on 
the other hand, might give differential results due to 
recruitment•

The development of such a test rests upon the variability 
of a subject's ratio estimates as well as upon the variability

Table 29
Predicted Ratio Estimates Obtained from the Equation 

»K(In-Ion) (After Lochner & Burger (1962))

DB SL Louder Tone
10 15 20 25 30 35 40

10 1.00 1.80 2.86 4.33 6.34 8.95 12.80
<D 15 1.00 1.60 2.42 3.54 5.00 7.15
OH 20 1.00 1.51 2.21 3.12 4.45
0)
I 25 1.00 1.46 2.06 2.95
to 30 1.00 1.41 2.01
mQ 35

40
1.00 1.45

1.00

of the spatial configurations. Evidence attesting to the 
feasibility of the proposed test may be seen by the in
variance of the log£A functions for each S under Matrices A-C. 
Since each subject is able to approximate the scale generated 
by a group of subjects, it appears that baseline functions 
can be specified for normals. This, of course, is of utmost 
importance in the diagnosis of cochlear pathology.
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Summary and Conclusions

Loudness scales for 1000 Hz tones, as determined by 
conventional scaling procedures have yielded loudness 
functions which grow as approximately the 0.54- power of 
the sound pressure. That is, 8 10 dB increase in intensity 
corresponds roughly to a doubling of loudness across the 
auditory continuum. By plotting the loudness as a uni
dimensional function of intensity, it is implied that if 
A is twice as loud as B, which, in turn, is twice as loud 
as C, then A is four times as loud ss 0. In order to test 
this prediction loudness ratio estimates were obtained from 
10 subjects on four 7x7 matrices of stimuli at 1000 Hz 
with differing inter-stimulus spacings (30-90 dB SL in 10 
dB steps; 4-0-70 dB SL in 5 dB steps; 40-55 d.B SL in 2.5 dB 
steps, and 30-90 dB SL in irregular intervals). Several 
types of data analyses were employed in making the comparisons 
between the present results and those predicted by the 
0.54 power function. The first was a multidimensional 
representation of the data based upon Shepard's (1962a,
1962b) Analysis of Proximities. Prom these analyses simple 
two-dimensional spatial configurations were found for each 
matrix which adequately represented the data.

In general, the results of these four matrices showed 
two important features. The first was that the spstial
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configurations did not conform to tha plots implied by the 
power function, i.e., a straight line in spsce. Each 
configuration showed a region of loudness additivity at 
the lower intensities, and then the figures curved upwards, 
indicating increasing non-additivity as the inter-stimulus 
distances increased. The second feature was that in the 
matrix where the stimulus range was greet (Matrix A), the 
obtained ratio estimates were much below those predicted by 
the 0.54 power function. On the other hand, when the stimulus 
range was short (Matrix C), the obtained estimates were high 
relative to the power function. Only when the stimulus 
range of the matrix approached 30 dB (Matrix B) were the 
obtained values comparable to the predicted vslues.

The divergence of the results obtained with extremely 
short and long stimulus ranges from the 0.54- power function 
predictions was hypothesized to be directly attributable to 
the l8ck of studies in the past which have investigated 
loudness over wide and narrow inter-stimulus distances .
The overwhelming majority of past investigations have 
utilized halving or doubling dat8, or methods which are 
strongly influenced by context, thereby reducing loudness 
judgments to moderate ranges.

In order to present the obtained ratio estimates as 
a unidimensional function of intensity, which, in turn, 
would yield linear proximity plots, several processes were 
initiated . These included Kruskal's (1968) MONONOVA
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technique combined with the setting of the matrix 
diagonals to zero. The results of this process yielded 
the log2A(dditive) scale, which could be compared directly 
to the results predicted by the 0.54 power function. It 
was found thst for Matrices B and C power functions could 
be obtained. The slope for Matrix B was nearly equivalent 
to th8t predicted by the conventional 0.54- power function, 
and the slope for Matrix C was higher than the conventional 
function. It W8S further found that the data for Matrix A 
did not yield a power function, but that the loudness growth 
was quite slow. These data further supported the Hypothesis 
that the conventional loudness function (0.54 slope) does not 
adequately describe loudness over long or short distances.

To further investigate how loudness grows with stimuli 
other than moderate to intense 1000 Hz tones, rstio estimates 
were obtained for four new matrices (250 Hz tones from 
10-70 dB SL in 10 dB steps; white-noise from 40-70 dB SL 
in 5 dB steps; and 1000 Hz and 4000 Hz tones from 10-40 
dB SL in 5 dB steps). Each of these matrices was evaluated 
relative to earlier findings concerning the stimuli of 
interest. The 250 Hz and the white-noise stimulus matrices 
were evaluated relative to the power functions previously 
found for these stimuli, whereas the low sensation level 
1000 Hz tones were evaluated relative to the form of the 
loudness function near threshold.

Those stimuli which were compared with the power law
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predictions (250 Hz and white-noise) yielded lower ratio 
estimates, and had spatial configurations which curved 
upwards after a region of relative additivity. The obtained 
dat8 for the low SL 1000 Hz tones were also low relative 
to the predicted estimates.

A monaural tset of loudness recruitment was suggested 
which would utilize ratio estimates of loudness combined with 
the Analysis of Proximities. The test would consist of 
low SL 1000 Hz and 4-000 Hz tones. Some advantages of the 
test would be the elimination of the prerequisite conditions 
necessary for the ABLB and AMLB procedures. Further, the 
test would be a direct loudness assessment, and would not be 
based upon indirect measures such as the difference limen.
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