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Abstract

THE EARLY DEVELOPMENT OF QUANTITATIVE COGNITION: 
CORRESPONDENCES AND ONE-WAY FUNCTIONS

by

Irvin Sam Schonfeld 

Adviser: Dr. Harry Beilin

This investigation was designed to examine the development of 

the child's capacity to make numerical and quantitative comparisons.

It was hypothesized that the nature of the child's understanding of 

correspondences and one-way functions informs his capacity to compare 

arrays of decals and quantities of liquid. The relation of Piagetian 

operative level to the child's capacity to use crystallized skills, 

or solution aids (Cattell, 1963; Horn, 1968), in comparing arrays was 

also investigated.

A total of 171 children who ranged in age from four to seven 

years were administered numerical and liquid comparison tasks. The 

numerical tasks included paired arrays of green and red decals 

represented as the candies of puppets named Bert and Ernie. Some 

paired arrays were related by injective and/or surjective correspondences. 

Other paired arrays were equal in length but different in density. In a 

different set of tasks, the green and red arrays each comprised two

iv



subarrays. In these tasks, one puppet got more candy in one green-red 

subarray comparison and again in the second subarray comparison, or a 

different puppet got more candy in each of the two green-red subarray 

comparisons. In all subarray tasks the child was asked to determine 

the relative numerosity of the total amount of green and red decals.

In the liquid tasks, paired green and red liquids were represented as 

Bert and Ernie’s juice. Tasks included paired quantities of juice 

contained in transparent cylinders that were either the same or 

different in diameter. In the latter task, paired quantities had 

the same height. In other liquid tasks, each quantity of green and 

red liquid comprised two subquantities. In these tasks, one puppet 

got more juice in one green-red subquantity comparison and again in 

the second subquantity comparison, or a different puppet got more 

juice in each of the two green-red subquantity comparisons. In all 

subquantity tasks, the child was asked to determine the relative 

quantity of the total amount of green and red liquid.

Results indicate that: (1) Preoperational children possess

comparison-making capabilities reflecting a rudimentary understanding 

of injective and surjective correspondences, one-way function based 

mappings of height on to quantity, and one-way compositions of same- 

directional subquantity comparisons. (2) Concrete operational 

children develop powerful comparison-making capabilities based on the 

capacity to coordinate countervailing subquantity and correspondence 

relations; they also begin to judge quantities on joint bases such as 

density and length, or diameter and height. (3) Comparison-making 

capabilities found in the preoperational subperiod become more 

accurate with the development of the concrete operations. (4) The



child's capacity to use solution aids in making accurate numerical 

comparisons is structured by operative level.*

The educational implications of correspondence and function based 

knowledge were discussed.
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CHAPTER I

INTRODUCTION

The study of the development of mathematical cognition owes much to 

Piaget. Piaget's books on number (with Szeminska, 1952), quantity (with 

Inhelder, 1974), space (with Inhelder, 1956), and geometry (with Inhelder 

& Szeminska, 1960) delineate structures of thought which are hypothesized 

to underlie an interrelated set of mathematical behaviors. There are, 

however, important forms of mathematical behavior that Piaget's theory 

does not systematically address. These forms of mathematical behavior 

include ordinary numerical and quantitative comparisons and enumerational 

strategies.

Researchers have recently begun to investigate the nature of the 

relationship of Piagetian ontogenetic status to the varieties of cognitive 

functioning Piaget did not address. Such studies have been undertaken 

in the domains of mathematical and nonmathematical cognition. For 

example, in the domain of nonmathematical cognition, researchers have 

linked operative level to the understanding of conjunctive relationships 

(Gallagher, Wright, & Noppe, 1974) and the utilization of problem 

solving strategies (Gholson & Beilin, 1978; Gholson, O'Connor, & Stern, 

1976).

Many researchers have attempted to relate operative level to the 

domain of mathematical cognition. This is perhaps because a major theme 

In Piaget's writing has been the progressive arithmetization of thought. 

Furthermore, in his book on number, Piaget (with Szeminska, 1952) 

advanced the view that conservation, possibly his most studied concept,



is a basic constituent of quantitative thought. It is, thus, under­

standable that a large number of research endeavors were stimulated by 

the arithmetical implications of Piaget’s theory.

A considerable body of research indicates that measures of Piagetian 

operativity predict achievement in arithmetic (Almy, Chittenden, &

Miller, 1966; Ayers, Rohr, & Ayers, 1974; Bearison, 1975; Dimitrovsky & 

Almy, 1975; Dudek, Goldberg, Lester, & Harris, 1969; Dudek, Lester, 

Goldberg, & Dyer, 1969; Freyberg, 1966; Goldschmid & Bentler, 1968; 

Kaminsky, 1970; Kaufman & Kaufman, 1972; Lunzer, Wilkenson, & Dolan,

1976; Melnick, Bernstein, & Lehrer, 1974; Nelson, 1970; Omotoso &

Shapiro, 1976; Riggs & Nelson, 1976; Rohr, 1973; Wheatley, 1969). In 

studies in which the effects of psychometric intelligence were 

statistically controlled, operativity was still found to be significantly 

related to arithmetic achievement (Bearison, 1975; Dudek, Goldberg, 

Lester, & Harris, 1969; Dudek, Lester, Goldberg, & Dyer, 1969; Melnick, 

Bernstein, & Lehrer, 1974; Riggs & Nelson, 1976). Most of the studies 

which have addressed the issue of the relationship between operativity 

and arithmetic achievement employed standard tests of arithmetic 

achievement, the overall arithmetic achievement score constituting the 

dependent measure. As a consequence of the widespread use of global 

achievement scores as dependent measures, the relationship of 

operativity to each of the manifold arithmetical skills and concepts 

that young children typically master remains largely unexplored.

Some researchers, however, have undertaken finer grained studies 

of the relationship of operativity to arithmetical functioning. These 

researchers have generally investigated the relationship between 

operative level and specific varieties of arithmetical activity. Since



Piaget and Szeminska (1952) contend that arithmetical thought presupposes 

conservation, conservation has been widely used as an index of operative 

level.

Computational skill is one variety of arithmetical activity that 

has been studied in relation to operative level. Baker and Sullivan 

(1970) attempted to establish a relationship between conservation of 

number and mastery of addition and sub-traction concepts. The conservation 

test they employed, however, was not a true test of conservation. Like 

Mehler and Bever's (1967) measure of conservation, Baker and Sullivan's 

(1970) measure did not employ the necessary transformational procedures 

that must characterize conservation tasks (Beilin, 1968; Piaget, 1968). 

Leblanc (1968) found that conservation of number is related to the 

ability to solve verbal subtraction problems. However, studies by 

Hood (1962) and Sohns (1975) indicate that conservation and mastery of 

elementary subtraction problems are independent of each other. Sohns 

(1975) also found mastery of subtraction problems to be unrelated to 

performance on seriation and class inclusion tasks. Evidence adduced 

by Steffe (in Lovell, 1972) indicates that conservation of number and 

the mastery of elementary addition facts are unrelated. Furthermore,

Stahl (1973) found that performance on conservation of number and 

classification tasks did not predict achievement on written tests 

of elementary addition and subtraction. Although she found that 

performance on a conservation of mass task predicted achievement in 

subtraction, this finding must be taken cautiously since it was her only 

significant result in testing eight hypotheses and, thus, may have been 

a chance effect. The majority of the above cited studies suggest that



the elementary arithmetic operations of addition and subtraction may not 

be structured by Piagetian operative level. This conclusion is under­

standable since the acquisition of elementary computational facts is 

more likely to be a product of informal (Brush, 1978) and rote learning 

experiences.

Moreover, Piaget and Szeminska (1952) assert that the sheer 

learning of arithmetical facts does not constitute arithmetical under­

standing. In order for arithmetical facts to become meaningful, that is 

to say, truly arithmetical, they must be assimilated into the concrete 

operational system of thought. Concrete operational thought structure 

enables the child to deepen his understanding of the quantitative features 

of his environment.

In contrast, Gelman (1972b) advanced the view that counting con­

stitutes the major vehicle with which the child extends what he knows 

in the context of small quantities to the context of larger quantities. 

According to Gelman (1972a; 1972b; Gelman & Gallistel, 1978; Gelman 

& Tucker, 1975; Bullock & Gelman, 1977), children as young as three 

years (and sometimes younger) understand, at least in the context of 

the first three or four numbers, several logico-arithmetical properties. 

These include an understanding of number invariant displacements, 

addition, subtraction, and order relations. Through an increase in 

skill and confidence in counting these properties are extended to larger 

numbers (Gelman, 1972B).

There are three weaknesses in this view. First, Gelman (1972b;

Gelman & Gallistel, 1978) does not present any hypotheses that pertain 

to the way in which children's initial understanding of the properties 

comes about. Although they eschew such an interpretation, Gelman



and Gallistel (1978) provide no alternative to a nativist interpretation 

of the acquisition of an understanding of the properties.

Secondly, the behaviors Gelman describes are as susceptible to 

perceptually based explanations as they are to conceptually based explana­

tions. Gelman and Gallistel (1978) do not convincingly dispel a 

subitizing (Jevons, 1971; Kaufman, Lord, Reese, & Volkman, 1941; Taves, 

1941; Woodworth & Scholsberg, 1954) based explanation of children’s 

ability to represent small quantities. A number of phenomena they at­

tempt to explain are amenable to subitizing based explanations. For 

example, the question of the invariance of two or three counters in the 

context of configurational change is likely to be qualitatively different 

from that of the invariance of, say, eight counters. That Koehler's 

(1956) work indicates there is a functional parallel between human beings’ 

capacity to subitize small quantities and animals' capacity to apprehend 

small quantities reinforces a perceptual interpretation of the phenomena 

Gelman and Gallistel report. An array of two or three counters is likely 

to remain within subitizing range even if its elements are displaced.

An array of eight counters is beyond subitizing range before and after 

displacement. If a large quantity of counters is beyond subitizing 

range, conceptual processes must be called into play to enable the child 

to understand number invariant displacement.

Finally, evidence from studies of the relation of counting to con­

servation of number contradicts Gelman's (1972b) conceptualization of 

counting as a device whose function is to extend an understanding of 

number invariance from the context of small quantities to contexts 

which involve large quantities. Available evidence suggests that ac­

curate counting, although an excellent means of determing the cardinal



value of an array, does not guarantee the attainment of conservation of 

number (Carpenter, 1971; Greco, 1962; Piaget & Szeminska, 1952; Wallach 

& Sprott, 1964; Williams, 1971; Wohlwill, 1960; Wohlwill & Lowe, 1962; 

Zimiles, 1966). In addition, Saxe (1979b) found that a group of children 

who counted inaccurately because of learning disabilities mastered number 

conservation. Gelman, in response to the findings of Saxe (1979b) and 

others, revised their view to indicate that number conservation cannot 

be considered an extension of the ability to count (Gelman & Gallistel, . 

1978).

Werner (1957) provides an alternative conceptualization of counting. 

Counting, within the framework of Werner's theory, is a human construction 

that, with development, becomes, on one hand, less bound to the configura­

tion of the objects being counted and, on" the other'hand, progressively 

governed by rules of order and, therefore, evolves into an information ex­

tracting tool. It is not an information extracting tool from the first.

Saxe (1977) also regards counting as an important knowledge extracting tool 

that undergoes developmental change. He considers three interrelated 

functions of counting: "first, as a means to extract (or determine)

number of an array of elements; second, as a means to compare two arrays 

numerically; and third, as a means to reproduce a model numerically"

(p. 1512). He found an age developmental improvement in counting accuracy 

and adequacy of counting strategy.

Much of Gelman's research has been motivated by a problem that pervades 

the research on the cognitive capacities of preschool children, namely that 

preschool children have frequently been characterized by the cognitive capa­

cities they lack rather than by those capacities they possess. The Genevans



have also responded to this problem. Although the preoperational child 

has been found to lack many of the cognitive developmental capacities 

attributed to the concrete operational child, the Genevans have begun 

to investigate the nature of the cognitive capacities the preoperational 

child does possess. These have been characterized as one-way functions 

(Piaget, 1968, 1970a, 1970b, 1970c; Piaget, Grize, Szeminiska, & Vinh 

Bang, 1977).

A function expresses a particular relation. A relation is defined 

on sets X and Y if each ordered pair of elements (x,y), where x is an 

element of X and y is an element of Y, is meaningful. There is no re­

quirement that an element of X correspond to one element of Y. A func­

tion is that relation in which an element of X is mapped on to exactly 

one element of Y. Thus a function involves a unique mapping in one 

direction, or, as the Genevans write, functions are "univocal to the 

right" (Piaget et al., 1977, p. 14).

Since these terms were developed in a mathematical context two

simple mathematical examples will make the distinction between relations
2 2and functions clear. First consider the equation X + 4Y =36. The

relation expressed by this equation is not a function. There is no unique

Y to be mapped on to each value of X (for example, if X = 0, Y = -3).
2By contrast, consider the equation Y = X - 2X + 3. The variable Y is 

a function of X. To each value of X there corresponds exactly one value 

of Y (for example, if X = .0, Y = 3). The inverse, however, is not true 

(if Y = 3, X can assume two values, 0 or 2).

There are functions where the uniqueness property is fulfilled in 

both directions. Consider the equation Y = 2X + 3. Each value of X 

maps on to exactly one value of Y. By rewriting the equation as X =

1/2(Y - 3), it is evident that each value of Y maps on to exactly one



value of X. The Genevans designate functions In which the uniqueness 

condition is fulfilled in either direction "biunivocal" or "one-to-one" 

(Piaget et al., 1977).

The research of Piaget and his coworkers (Piaget, Grize, Szeminska,

& Vinh Bang, 1977) indicates that the preoperational -child manifests 

some understanding of one-way order functions. The logic (the Genevans 

use the term "semilogic", cf. Inhelder, Sinclair, & Bovet, 1974) of these 

order functions is hypothesized to underlie the preoperational child’s 

use of spatial extent to index and compare quantities. For example, the 

length of an array may be thought to covary with its numerosity. The 

longer of two arrays might thus be considered the more numerous. Such 

comparisons often constitute a somewhat fair yet imperfect (hence semi- 

logical) substitute for metric quantification. This logic is also thought 

to contribute to a rudimentary understanding of the regularities in the 

child's environment. Preoperational children were found, for example, 

to be capable of constructing regular sequences of objects of alternating 

color. In addition, preoperational children were found to be able to 

order pairs of objects. In one study, children were asked to locate con­

texts in whichpairwise exchanges of cards depicting different kinds of 

flowers were appropriate. Preoperational children appeared to have 

mastered the ingredients of such pairwise exchanges and, with considerable 

difficulty, exchanges to obtain objects which themselves could be exchanged 

for target objects.

The Genevans attribute some understanding of correspondences, another 

category of functions, to preoperational children. Morphisms are corres­

pondences that, because they are sustained by, although not coincident 

with, operative transformations, have become logically necessary (Piaget,



1976). Piaget (1977) writes that "correspondences and morphisms 

are essentially comparisons that do not transform objects to be com­

pared but that extract common forms from them or analogies between 

them" (p. 351). They develop out of "primitive applications" of 

action schemes to objects in the environment (Piaget et al., 1977)

In one study of morphisms, Piaget and his coworkers asked 

children to identify those members of a series of movable red cut­

outs that, when appropriately placed, covered a specified portion 

of each of four base cards. Each base card consisted of two areas, 

one red, the other white. The task amounted to finding those cut­

outs which, when properly superimposed upon a particular base card, 

made the entire area appear red. Three cut-outs, differing slightly 

among themselves, corresponded to one and only one base card.

Since there were four base cards, twelve cut-outs were employed.

Although there was much opportunity to relate base cards to 

cut-outs, the youngest children, five-year olds, were at best able 

to match each base card to one cut-out. This constitutes an 

example of the bijection, or term-by-term, morphism. At later ages, 

children could match each base card to more than one cut-out.

This more advanced ability constitutes a many-to-one correspondence, 

a variety of the surjection morphism. Two levels of mastery 

of this morphism were in evidence. The more primitive level of 

mastery entails the discovery of those features of a base card 

which correspond to a single cut-out followed by trial-and-error 

extension of the correspondence to other cut-outs. The more advanced

level entails the immediate assignment of base cards to all ap-



propriate cut-outs.

Injection is a third type of morphism. That every element in a 

set B corresponds to at most one element in a set A constitutes the injec­

tion morphism (Piaget, 1977; Piaget et al., 1977). In other words, injec­

tion entails the condition in which every element in B corresponds to one 

or no elements in A. In contrast, surjection, in its most general form, 

entails the condition in which every element in set B corresponds to one 

or more elements in set A. Note that in both injection and surjection, the 

mapping of A on to B is univocal to the right.

Piaget et al. (1977) found that seven-year-olds could partition a 

collection of tokens into subsets such that one subset had more than 

the other. However, they were unable to quantify the relation between the 

subsets. When asked to create from a collection of 10 tokens two subsets 

which differ by four, they succeeded in creating unequal subsets, but 

were unable to quantify the difference between the subsets as asked.

It is evident that the children created subset pairs that conformed to 

the injection mappings, at least in the qualitative sense. Piaget et 

al. emphasized that among preoperational children morphisms are not fully 

developed and heavily qualitative in character. They become quantitative 

and exact with operative development.

Piaget (1977) also stressed the role of morphisms in the attain­

ment of conservation. This new interpretation of conservation can be 

made clear if one considers a uniformly dense row of counters, B, composed 

of subsections A and A* where A is detachable from a stationary A'.

Suppose A is moved, in a density preserving manner, from one side of 

A' to another. B can be decomposed into a number of different A-A’



subsections: Al-Al', A2-A2’, etc. Clearly the unions of Al and Al1,

A2 and A2', etc. are equal. The equivalence of the unions indicates 

that a vicariance relationship (Grouping II, see Flavell, 1973;

Piaget, 1960, 1972) among the pairs Al-Al', A2-A2', etc. exists.

Two morphisms are implied in this vicariance relationship.

First, the surjection morphism characterizes the relationship of 

each A-A' pair with respect to B. That is to say, both members of 

each A-A' pair correspond to a single whole, B. Secondly reciprocal 

injection morphisms characterize the:’ relationship between the members 

of each of the following noncomplementary pairs: A1-A2' and A2-A1'.

Reciprocal injection also characterizes the relationship between 

•two pairs of subclasses where each pair consists of a subclass 

and the complement of an alternative subclass located at the same 

level of discourse as the first member of the pair (e.g., cats-non- 

dogs and dog-non-cats). Every element of one members of each pair of 

subclasses or subsections corresponds to at most one element of the 

other member of the pair.

That these morphisms are implied in the conservation of number 

raises two theoretical issues that are important to the Genevans. The 

first is that functions rooted in the preoperational subperiod provide 

a basis from which the child advances to the concrete operations. Piaget 

et al. (1977) argue that the progressive coordination of these functions 

leads to the "reversible mobility of operations." The second is that 

functions become progressively controlled by the concrete operations.

That is to say, with the advent of the concrete operations, functions become 

progressively reversible and arithmetical (see Chapter 3, Regularities to



Proportion, in Piaget et al., 1977).

In the sections that follow the role of the child's understanding of 

correspondences and functions in comparing quantities.will be treated.

The types of comparisons to be treated differ from classic conservation 

comparisons. The quantities to be described are static. That is to say, 

the child does not witness the transformation of the quantities1— decals 

pasted on to cardboard, liquid held in glasses— to be compared, as is the 

case in classic conservation.

The Genevans developed a psychology of correspondences and functions 

in connection with the study of the development of the understanding 

of physical causality and mathematical relations (Piaget et al., 1977).

The mathematical relations investigated by the Genevans were studied 

within the context of children's performance on tasks in which sets 

were transformed. For example, Piaget et al. (177) investigated the<*. 

relation between two collections of tokens— collections that were initially 

equal— where tokens in one collection were transferred one by one to the 

other collection. The Genevans and others have devoted much research 

effort to the study of the child's capacity to compare of quantities under 

conditions of transformation. However, the investigation of the child's 

understanding of relations between untransformed quantities is of equal 

importance. This is because many real life situations call for the 

comparison of quantities where no transformation of stimuli is involved 

(Beilin, 1969).

Although investigators have studied the child's capacity to compare 

untransformed quantities (e.g., Beilin, 1969; Pufall & Shaw, 1972; Pufall, 

Shaw,& Syrdal-Lasky, 1973; Saxe, 1977; Schwartz & Scholnick, 1970; Zimiles, 

1966), little has been done within the framework of studies of the



development of the child's capacity to compare untransformed quantities 

to elucidate the Genevan theory of correspondences and functions. A 

number of hypotheses that pertain to the relation of the child's under­

standing of correspondences and functions to his capacity to compare 

static quantities are developed in the sections that follow.

Static Numerical Comparisons

Static numerical and quantitative comparisons constitute categories 

of mathematical behaviors. Numerical and quantitative comparisons are 

materially distinguishable. The terms of numerical comparisons comprise 

arrays of countable items such as rows of decals. The child's task within 

the framework of the static numerical comparisons presented in this 

paper (see Figure 1) is to determine the relative numerosity of the members 

of a pair of arrays. The arrays are so constructed that the relative 

numerosity of the members of each pair can be accurately determined on a more 

or less deductive basis where the role of counting is minimized (e.g., 

the red array has more because it is more dense than the green array and both 

arrays are the same length). Alternatively, straightforward counting 

can be used to inform the comparisons. The terms of the quantitiative 

comparisons comprise paired amounts of colored liquid (see Figure 2).

Such quantities lend themselves to comparison without the aid of measure­

ment devices insofar as their dimensions are easily perceived to be dif­

ferent (see the Static Quantitative Comparisons section).

Beilin (1969) advanced the view that conservation of number, be­

cause one of its constituents is the capacity to make internal trans­

formations, contributes to the attainment of the ability to compare two 

static arrays whose relative cardinal values to not correspond to the



arrays' linear extent. His experimental results, which indicate that 

children tend to acquire conservation of number before they are capable 

of discovering that counters aligned in numerically equal rows of dis­

similar length are in fact equal, support this view. He also obtained 

parallel results in the domain of area. Evidence adduced by Zimiles 

(1966), which indicates that performance on conservation of number 

tasks is predictive of success at making static numerical comparisons, sup 

ports Beilin's view.

It follows from the Genevans' treatment of functions that pre- 

operational children ought to succeed at certain numerical comparison 

tasks. This is not to say that preoperational children succeed at compari 

son tasks which concrete operational children find challenging. However, 

the issue of discerning the types of comparisons at which preoperational 

children succeed requires theoretically informed hypotheses that dis­

criminate comparison tasks whose solutions require the application of 

primitive functions from comparison tasks whose solutions require the 

application of concrete operational logic.

Evidence adduced by several researchers (Piaget, 1968; Pufall &

Shaw, 1972; Pufall, Shaw, & Syrdal-Lasky, 1973) suggests that pre­

operational children master two types of static comparisons. One type 

involves arrays that are the same length and number. The other involves 

arrays in which the longer of two is the more numerous. Note that these 

comparisons require no more than one-way mappings of spatial extent 

schemata on to schemata of numerosity. The preoperational child in apply­

ing one-way spatial extent schemata to compare arrays in which relative 

numerosity and spatial extent conflict, as in Beilin's (1969) research, 

is bound to err.



It is expected that, by virtue of the role played by one-way func­

tions in preoperational thought, preoperational should succeed at a number 

of static numerical comparisons. These comparisons require either injec­

tive or surjective mappings of one array on to the other. The comparisons 

that require injective and surjective mappings can be found in the Injec­

tive Preoperational (IP) and Surjective Preoperational (SP) series illus­

trated in Figure 1.

The comparisons depicted in the IP and SP series involve pairs of 

arrays in whibh terminal points are aligned. Some of the comparisons 

employed by Zimiles (1966) and Beilin (1969)— Beilin's static "conserva­

tion of inequality" (SCI in Figure 1) comparisons— involved pairs of 

arrays that are unequal in number but whose terminal points are aligned. 

The IP and SP series, because they embody injective and surjective map­

pings of one array on to another, to some degree employ one-to-one cor­

respondence of interior elements. This is not the case in the SCI 

comparions. No attempt was made to match the interior elements one-to- 

one. In the context of injective mappings as many elements of one array 

as possible correspond one-to-one to the elements of the other array.

The result is that one or more elements of the larger array go unmatched. 

In the context of surjective mappings, as many elements of one array as 

possible correspond one-to-one to the elements of the other array, but 

where one-to-one matching does not obtain, two-to-one matching does.

If spatial extent schemata play a role in evaluating the relative 

numerosity of two arrays, one would expect that there would be some ten­

dency to to judge arrays that are of equal length to be equal in number. 

However, this tendency is likely to be diminished in the context of the 

IP and SP series because the array pairs composing those series are



constructed in such a way as to engage the preoperational child's capacity 

to form judgments in accordance with injective and surjective mappings.

On the other hand, the tendency to base judgments on spatial extent is 

more likely to inform the preoperational child's evaluation of SCI 

than IP and SP array pairs. This is because the SCI series is not con­

structed in such a way as to engage developing morphism based processes 

that at least provide some counterweight to the tendency to use spatial 

extent as an index of numerosity. It is, therefore, predicted that 

preoperational children will perform better on IP and SP comparisons than 

on comparable SCI comparisons.

As mentioned earlier, the Genevans hold that the concrete operations 

enrich the child's understanding of correspondences. Compensation, an 

important feature of concrete operational thought, appears to play a role 

in the development of the child's understanding of correspondences. In 

this context, compensation refers to the capacity to coordinate functional 

relations (Piaget et al., 1977).

The capacity to coordinate functional relations is relevant to the 

comparison of arrays that are organized such that each aggregate comprises 

two or more spatially distinct subarrays. Comparisons of such arrays 

call for some cross-referencing of comparisons between corresponding sub­

arrays. However, in order to avoid making the discussion of the comparison 

of aggregates comprised of subarrays unnecessarily complex, two simplifying 

constraints, will, to some degree, be imposed. The first requires that 

each array comprise two colinear subarrays. This constraint holds in 

the TPO-I and TPR-I series but is relaxed slightly in the TPO-S and TPR-S 

series. The second constraint requires that each subarray of one aggregate 

visually correspond to a subarray of the other aggregate. The visual



correspondence between subarrays involves either injective or surjective 

mappings.

It is expected that concrete operational children are more likely 

than preoperational children to succeed at comparison tasks in which 

two conditions hold: (1) visually corresponding subarrays are unequal;

(2) the direction of the inequality which holds between the members of

one pair of corresponding subarrays is the reverse of the direction of

the inequality which holds between the members of the other pair (Two 

Part Reverse-Injective, or TPR-I, and Two Part Reverse-Surjective, or 

TPR-S, series). Thus, in the TPR conditions the comparison of a pair of 

arrays calls for the coordination of countervailing one-way subarray 

comparisons. Consider, for example, the two subarrays of the more 

numerous array in the first TPR-I comparison illustrated in Figure 1.

Let us call the left subarrays, from above to below, R1 and G1 and the 

right subarrays, R2 and G2. The upper row, R, then, comprises R1 and R2; 

the lower row, G, comprises G1 and G2. Although R is greater than G,

R1 is less than Gl. R2 is greater than G2. The absolute difference between 

R2 and G2 exceeds that of R1 and Gl. Therefore the R2-G2 subarray comparison 

informs the direction of the R-G comparison. If R and G were equal, the 

Rl-Gl and R2-G2 differences would exactly compensate for each other 

(see the second TPR-S comparison in Figure 1).

Some comparisons which involve arrays comprising spatially distinct

subgroups engage injective and surjective mappings in a simpler way.

For example, each subarray of a more numerous array might also be more 

numerous than the subarray to which it corresponds (see the Two Part 

One-Way-Injective and-Surjective, TPO-I and -S, Series depicted in Figure 

1). No more than a one-way composition of the two same-directional sub-



array comparisons is necessary for success: greater and greater yield

greater. Also included within the TPO-I and -S series are other relatively 

uncomplicated types of comparisons of pairs of aggregates comprising visually 

corresponding subarrays. One subarray of the more numerous aggregate might 

equal the subarray to which it corresponds while the other subarray of 

the more numerous aggregate is greater than its correspondent (see the 

second TPO-S comparison in Figure 1). Here the comparison of the un­

equal pair informs the overall comparison: equal and greater yield

greater.

Piaget et al. (1977) hypothesized decalage effects in performance 

on tasks reflecting the extent to which children understand functions 

and functions of functions. As mentioned earlier, the IP and SP com­

parisons embody elementary mappings and the TPO comparisons, one-way 

functional compositions of those mappings. Genevan theory implies that 

preoperational children should perform better on the IP and SP tasks than 

on corresponding TPO tasks, and that concrete operational children should 

perform better on the TPO tasks than preoperational children. Pilot 

data, however, suggest that the implied differences in performance are 

small. Perhaps the child, in order to succeed on the TPO tasks, needs 

only to center on cues that call for "greater than" responses. Unlike 

the TPR tasks, conflict deriving from the subarray relations is minimized, 

and, thus, preoperational children are expected to perform better on the 

TPO tasks than corresponding TPR tasks.

As in the TPR tasks, the capacity to coordinate functional relations 

is relevant to the child’s performance in comparing pairs of arrays of 

the type depicted in the Injective Surjective (IS) series. Note that 

each of the examples of the IS pairs illustrated in Figure 1 does not



comprise spatially distinct subgroups. However, in order to compare the 

arrays in the first IS pair depicted in Figure 1, the child must coordinate 

two-to-one and none-to-one mappings. Other IS pairs comprise arrays that 

are also irregularly matched one-to-one. For example, the second IS pair 

depicted in Figure 1 comprises two rows between which one or two none- 

to-one mappings obtain from the perspective of either row. Otherwise the 

arrays are matched one-to-one. Another IS pair not depicted comprises two 

rows between which one or two two-to-one mappings obtain from the per­

spective of either row, with the arrays otherwise matched one-to-one. In 

order to compare the latter two pairings, the child must coordinate counter­

vailing none-to-one or two-to-one mappings.

Within the context of some comparison tasks, counting should con­

stitute a more direct logical solution approach (cf. Saxe, 1979a) than 

the application of a logic in which the role of counting is minimized. 

Counting is an indexing operation. It entails the one-to-one cor­

respondence of ordered number names to countable objects. The last 

number named serves as a summary representation of the cardinal value 

of the aggregate of counted objects. This representation of 

cardinal value can be compared with numbers representing the cardinal 

values of other aggregates. The comparison of cardinal numbers informs 

the comparison of the aggregates they represent. Because counting be­

comes routinized and systematic with development, it should constitute 

a cognitively efficient (Beilin, 1969) means of making numerical com­

parisons.

Pilot data indicate that the SCI, TPR, and IS series are the 

most difficult tasks. Their mastery is thought to require a concrete 

operational level of functioning. These tasks, therefore, constitute



candidate conditions in which children who employ counting in comparing 

arrays may perform better than children who attempt to deduce the solu­

tion without the help of counting. It should be noted that in the TPR 

comparisons, the counter must iterate successive members of each array 

and, within the framework of the count, ignore the division of an array 

into subarrays. The need to compensate countervailing subarray comparisons 

is apparently minimized.1 In arriving at correct judgments in the SCI 

task, the counter needs to apply routinized counting procedures while 

ignoring conflicting length and density cues. Similarly, in the IS task 

the counter need not struggle with coordinating two- and none-to-one map­

pings but apply routinized counting skills across the peaks and valleys 

that make up the arrays.

Counting may, thus, serve as what Horn (1968) calls a "generalized 

solution aid." A generalized solution aid is a "technique which may be 

used to compensate for limitations in anlage capacities" (Horn, 1968, 

p. 244). The concept of a generalized solution aid was developed with­

in the framework of Cattell and Horn's (Cattell, 1963; Horn, 1967, 1968; 

Horn & Cattell, 1966) theory of intelligence. Cattell and Horn hypo­

thesized that a compensatory relationship may exist between fluid and crys­

tallized abilities. Individuals whose limitations in fluid ability or 

anlage capacity (e.g., span of immediate memory) make certain problems 

potentially unsolvable might, through the application of appropriate crys­

tallized skills (e.g., algebraic rules, mnemonic devices), find solu­

tions. In contrast, the Genevans, as will be discussed later, hypothesize 

no such compensatory relationship between the achievements of learning 

in the strict sense and operativity.

In the context of the comparison tasks, counting and counting



minimized logical approaches constitute alternative avenues to solutions. 

Preoperational children, while likely to have mastered counting, are, 

typically, unable to coordinate functional relations. Thus, there is 

some reason to believe that inducing preoperational children to count 

the elements of the arrays is more likely to improve performance on the 

SCI, IS, and TPR tasks than inducing them to approach the tasks from 

a functional-deductive standpoint.

Matching might also constitute a generalized solution aid. Induc­

ing a child to consider pairwise correspondences between the appropriate 

members of two arrays might help him to determine the arrays' relative 

numerosity. If a child matches pairs of elements proceeding from left to 

right, as soon as he finds members of one array without correspondents 

in the other array he can infer that the array containing the unmatched 

elements is more numerous. If all the elements of the two arrays can be 

matched one-to-one, he can infer their equivalence. A principle under­

lying satisfactory performance is that the child persist in matching in 

one direction and ignore such configurational subtleties as conflicting 

length and density cues or the division of arrays into two parts.

Genevan theory, however, suggests that the degree to which counting 

or matching, relative to a functional-deductive approach, leads to im­

proved performance on the comparison tasks is limited. This limitation 

must be considered within the framework of the Genevans' distinction be­

tween learning in the strict sense and operativity (Furth, 1969, 1974; 

Inhelder, Sinclair, & Bo'foet, 1974; Piaget, 1970b, 1971). Strict sense 

learning refers to information acquired through the impress of sheer 

physical experience. Operativity refers to

the action aspect of .intelligence at all periods, including
sensory-motor intelligence. Operativity is the essential,



generalizable structuring aspect of intelligence.(Furth, 1969, p. 263) 

The Genevans hold that strict sense learning is regulated by operative 

level. This regulation is, for example, manifest in the relation between 

counting and number conservation. Previously mentioned research indicates 

that the child's use of counting to read off the cardinal value of an 

array does not insure an understanding of number invariance. Once number 

conservation is attained, the child may use the cardinal values he ab­

stracts from arrays in his explanation of the invariance property (e.g., 

"You put out eight then spread it out. You did not add or subtract any.

It stays eight."). As for the static numerical comparisons, Genevan

theory suggests that the configurational subtleties of the SCI, TPR, and 

IS tasks are likely to mislead the able counter whose thinking is pre­

operational. The preoperational child who employs matching in the context 

of the above tasks should similarly be misled. The concrete operational 

thinker who uses counting or matching is not expected to be misled and 

is predicted to be able to make accurate comparisons.

Static Quantitative Comparisons 

It follows from the Genevans' treatment of functions that preopera­

tional children should succeed at certain quantitative comparison tasks.

For example, given two glasses of identical diameter, both containing

liquid, judgments of relative quantity can be founded on a one-way map­

ping of height on to quantity. There is no need to enlist a com­

pensatory understanding of the relation between dimensions. One dimen­

sion informs relative quantity.

By the same token, given that the heights of liquids contained in 

two glasses of different diameter are equal, judgments of relative 

quantity can be founded on the one-way mapping of diameter on to



quantity. Again there is no need to enlist compensation. The diameter 

dimension informs relative quantity.

Height, however, may be a prepotent cue (P. H. Miller, 1973). Pre­

operational children may be more likely to succeed at comparison tasks 

which call for the one-way mapping of heighten to quantity than at tasks 

which call for the one-way mapping of diameter on to quantity. Children 

who center on height might maintain that two quantities with the same 

height but different diameters are equal. Schwartz and Scholnick (1970) 

attempted to address this and a related issue.

Schwartz and Scholnick administered to children who ranged in age 

from 53 to 76 months a series of tasks which included nonverbal com­

parisons of discontinuous quantities and verbal and nonverbal tests of 

conservation of discontinuous quantity. In the nonverbal tasks the child 

indicated that a glass of "candies" belonging to a fictitious boy named 

Billy contained more than or the same amount as the interviewer's glass 

by pointing to a picture of a smiling face. The child indicated that 

Billy's glass contained fewer candies by pointing to a sad face. In 

one task, children were asked to compare glasses of candies of the same 

diameter. Ninety-five percent of the children succeeded at this task. 

Children tended to perform more poorly on a comparison task in which the 

heights of the candy contained in glasses of different diameter were 

equal. Both tasks were found to be easier than either the verbal or non­

verbal tests of conservation. In another task, children were asked to 

compare equal quantities of candies that were contained in glasses of 

differing diameter. Results indicated that this comparison task was 

considerably more difficult than either of the conservation tasks.

There are three issues that seriously qualify these finding. First,



S. A. Miller (1976) reported a problem with Schwartz and Scholnick's 

nonverbal tasks which raises some doubt regarding the results. The tasks 

did not differentiate the judgment that Billy's glass has more than the 

interviewer's from the judgment that Billy's and the interviewer's glas­

ses have the same amount. Consequently the child could have been credited 

with a correct judgment when his judgment was wrong. Secondly, half 

the trials of the "same diameter" task comprised comparisons in which 

the heights of the quantities to be compared were also equal. Although 

such comparisons merit status as "same height" trials, no trials in the 

"same height" task comprised comparisons in which corresponding heights 

and diameters were equal. This asymmetry probably made the "same dia­

meter" task less difficult relative to the "same height" task. Finally, 

Schwartz and Scholnick did not differentiate important logical properties 

of the above mentioned comparison tasks. In the first two comparison 

tasks, the relevant cues logically inform the solution (taller = more or 

same height = same quantity; wider = more). In the third comparison 

task, there are no logical grounds that unambiguously determine that the 

quantities are equal. That one quantity is short and wide and the other, 

tall and thin does not logically guarantee the quantities' equality.

The one-way functional character of preoperatLcnal thought suggests 

that preoperational children will succeed at liquid comparison tasks that 

are solved through the one-way mapping of relative height ("same diameter" 

or SD task) and diameter ("same height" or SH task) on to quantity.

In the SD task, the diameters of the containers holding two quantities of 

liquid are the same. The height of the liquids may or may not differ.

Thus relative height maps on to relative quantity. It follows that the 

taller of two quantities of liquid is necessarily the greater. In the 

SH task, two quantities of liquid are equal in height. The diamaters



of their containers may or may not differ. Relative diameter thus maps 

on to relative quantity. It follows that, of two quantities of liquid, 

the quantity in the fatter container is necessarily the greater of the 

two. However, because height appears to be strongly fixed as a cue which 

maps on to quantity (P. H. Miller, 1973) it is expected that some degree 

of decentering is necessary before diameter can be successfully mapped 

on to quantity. It is, therefore, expected that the decentering that 

attends the development of the concrete operations will enable the child 

to utilize diameter as an index of quantity.

A number of two-part quantitative comparison tasks will also be in­

troduced. Two different colored liquids are used. Each liquid is con­

tained in two glasses. That is to say, each quantity of liquid is divided 

into two subquantities. Each subquantity of a liquid of one color is 

placed near, and, hence, in visual correspondence with, a subquantity 

of the liquid of the other color.

The capacity to coordinate functional relations is relevant to the 

comparison of quantities that comprise discernibly different subquantities. 

Comparisons of such quantities may call for some cross-referencing of 

comparisons between corresponding subquantities. As in the case of the 

comparison of arrays comprising subarrays, the characteristic of con­

crete operational thought known as compensation may well enrich the child's 

capacity to coordinate liquid subquantity relations.

It is, therefore, expected that concrete operational children are 

more likely than preoperational children to succeed at two-part quan­

titative comparison tasks in which the following conditions hold: (1)

visually corresponding subquantities are unequal; (2) the direction of 

the inequality between members of one pair of different colored sub­



quantities is the reverse of the direction ef the inequality between the 

members of the other pair (Two Part Reverse-Same Diameter or TPR-SD).

Like the TPR numerical tasks, the TPR liquid task comprises comparisons 

of two quantities which require the coordination of countervailing one-way 

subquantity comparisons. Consider the subquantities that comprise the 

TPR-SD comparison illustrated in Figure 2. Let us call the left pairs 

Gl (light) and R1 (dark) and the right pairs G2 and R2. Note that, 

overall, G is greater than R. Also note that R1 is more than Gl and 

G2 is more than R2.

In order to determine which quantity, G or R, is greater, the 

child must coordinate the differences found in the subquantity comparisons. 

The child can do this by discerning a difference in how the corresponding 

pairs of subquantities differ. The absolute difference between the Rl-Gl 

pair is discernibly less pronounced than that of the R2-G2 pair. There­

fore, the direction of the difference between the R2-G2 pair informs 

the direction of the overall difference in the quantities. If R and G 

were equal the differences between the Rl-Gl and R2-G2 pairs would exactly 

compensate each other. Moreover, noncorresponding subquantities of R 

and G would be equal: R1 = G2 and R2 = Gl.

Other varieties of two-part quantitative comparison tasks engage 

one-way mappings in a simpler way. In the Two Part One-Way-Sarae 

Diameter (TPO-SD, see Figure 2) comparisons each subquantity of the 

greater total quantity is more than the corresponding subquantity 

of the lesser total quantity. As in the case of the TPO numerical 

comparisons, a one-way composition of two same-directional subquantity 

comparisons is needed for success at TPO-SD comparisons: greater and 

greater yield greater.



As mentioned in the section on static numerical comparisons, Piaget 

et al. (1977) hypothesized decalage effects in performance on tasks re­

flecting the extent to which children understand functions and functions 

of functions. While success at the SD task requires a one-way mapping of 

height on to quantity, success on the TPO-SD task requires one-way func­

tional compositions of one-way mappings of height on to quantity. Genevan 

theory suggests that preoperational children ought to perform better 

on the SD task than on the TPO-SD task, and concrete operational children 

should perform better on the TPO-SD task than preoperational children. 

Genevan theory also suggests that preoperational children are better 

able to compose same-directional one-way subquantity comparisons than 

coordinate countervailing one-way subquantity comparisons. Therefore, 

preoperational children are expected to perform better on the TEO-SD. 

task than on the TPR-SD task.

The TPO-SD comparison illustrated in Figure 2 typifies the TEQ-SD 

comparisons investigated here. Note that R is greater than G. With 

regard to subquantity relations, Rl is greater than Gl, and R2 is greater 

than G2; however, G2 is greater than Rl, G2 and Rl being the interior 

subquantities. If a child, in comparing R and G, centered on the 

interior subquantities, and mapped the comparison of the interior sub­

quantities on to the overall R-G comparison, he would compare the total 

quantities of R and G inaccurately. There is no feature in the TPO 

numerical tasks that parallels the problems of interior subquantities 

in the TPO liquid task. Insofar as some degree of cognitive decentering 

is required for adequate performance on the TPO-SD task, decalage effects 

are expected.

The effects of solution aids on performance on the static quantitative



comparison tasks requires assessment. Although behavior relevant to 

comparing numerical quantity may not carry over to the comparison of liquid 

quantity, it is possible that a functional-deductive or matching orienta­

tion may be more useful than a counting orientation when comparing liquid 

quantity without the aid of a metric.

Instructional Set 

Instructional set procedures were used in two studies. In Study 1 

children were induced to inspect arrays without systematically counting 

elements. In Study 2 different instructional sets were used in order to 

pit the effects of inspection against those of counting and matching. 

Johnson wrote:

The essence of set.is a prepared adjustment. . . .  In problem­
solving experiments, where the problem situation is complex and 
several alternative response patterns are possible, establishment 
of the set means that the critical features of the situation have 
been identified (as a result of instructions and perhaps of a train­
ing series) and a response pattern integrated, so that the subject 
is prepared to respond quickly, without attending to other pos­
sibilities, when another problem is presented, (p. 162)

Woodworth (1937) described the influence of instructional set in terms of 

an "inner steer." The experimenter's instructions and the situational 

context of the subject's behaviors arouse within the subject an "inner 

steer" toward carrying out specific behaviors. Generally, verbal instruc­

tions, practice, and meaningful context have been thought to constitute 

major determinants of set (Gibson, 1941; Johnson, 1955, 1972; Woodworth, 

1937). These three means of inducing set were used in concert in Studies 

1 and 2.

In all set conditions children were introduced to Bert and Ernie 

finger puppets and three pairs of practice arrays. Each pair comprised 

green and red decals. The green decals were represented as Bert's candies



and the red, Ernie’s. Depending upon the condition to which they were 

assigned, children practiced inspecting arrays without counting elements, 

counting the elements in the arrays, or using a finger to match 

green and red decals. The children were asked to engage in these behaviors 

in order to "help Bert and Ernie" determine who had more candies or if 

both had the same amount. In the inspection condition the children were 

told that systematic counting would not help the puppets because neither 

Bert nor Ernie could count. The children were induced to use schemes 

other than counting. A popular scheme among children sampled in a pilot 

study was to locate those elements in one array to which no elements in 

the other array corresponded. The array which included the unmatched 

elements was then judged as more numerous.

Children in the counting set condition were told that Bert and Ernie 

like counting and that counting should be used to inform the puppets of 

the arrays' relative numerosity. In the matching set condition, as in the 

inspection set condition, children were told that counting would not be 

useful in helping the puppets learn of the arrays’ relative numerosity.

The children were explicitly told that Bert and Ernie like matching and 

that the systematic matching of elements, from left to right, should be 

employed.

The interviewer monitored the children's behavior during the administra­

tion of the static numerical comparison tasks. Children of the age levels 

sampled tend to be unable to engage in covert problem-solving behavior 

(Brainerd, 1973; Kohlberg, Yaeger, & Jhertholm, 1968; Vygotsky, 1962).

If any child was observed engaging in set excluded behavior (e.g., count­

ing to oneself in the inspection or matching set conditions) a standard 

prompt was administered. The prompt consisted of a reminder of Bert and



Ernie’s needs (e.g., "Bert and Ernie don't know how to count. They compare 

candies by looking carefully.") and a request to engage in behavior that 

conformed to set instructions. The prompt, however, was rarely required.

Statement of the Problem

Ten hypotheses that pertain to the development of children's understanding

of correspondences and one-way functions were tested in two studies. Study 1

addressed the first three hypotheses, and Study 2 addressed Hypotheses 4 to 10.
*

Study 1 was designed to investigate the child's emerging capacity to use 

corresondence based reasoning, unaided by counting, to compare arrays. Study 2 

was designed for two principal purposes. First, it addressed the nature of the 

relationship between operative level and the child's capacity to use solution 

aids such as counting and matching in comparing arrays. Second it examined 

the development of the child's emerging capacity to use one-way function based 

reasoning in comparing quantities of liquid. An exploratory analysis of the 

relationship of operative level and solution aid effects- on liquid task per­

formance was also undertaken. Both Studies 1 and 2 provide data which are 

relevant to characterizing the cognitive capacities of preoperational children. 

The following hypotheses were tested:

Study 1

1. It was expected that preoperational and concrete operational children 

would perform similarly on the IP and SP tasks since success at the tasks

was hypothesized to require no more than a preoperational level of functioning. 

Moreover, preoperational children were expected to perform better on the IP 

and SP tasks than on the SCI task, reflecting an elementary understanding of 

injective and surjective correspondences.

2. It was expected that concrete operational children would perform 

better than preoperational children on the SCI, IS, TPR-I and TPR-S



tasks because success at these tasks was hypothesized to require a con­

crete operational level of functioning.

3. Since Genevan theory suggests that there should be decalage 

effects in performance on tasks reflecting an understanding of functions 

and functions of functions, preoperational children were expected to per­

form better on the IP and SP tasks than on corresponding TPO tasks, and 

concrete operational children were expected to perform better than pre­

operational children on the TPO tasks, although the differences in per­

formance were expected to be mitigated somewhat by task structure. Genevan 

theory also suggests that preoperational children are better able to 

compose same-directional subarray comparisons than coordinate counter­

vailing subarray comparisons; therefore, preoperational children were 

expected to perform better on the TPO tasks than on corresponding TPR 

tasks. A more adequate test of the decalage position can be found in 

Hypothesis 8.

Study 2

4. Genevan theory suggests that preoperational children who use 

counting or matching should not perform better on the static numerical 

comparison tasks than peers who inspect arrays. Cattell and Horn's theory 

suggests that counting and, perhaps, matching are solution aids that should 

enhance the preoperational child's performance on the static numerical 

comparison tasks. In order to help resolve these conflicting formulations, 

an exploratory investigation of the effects of three different set induced 

solution approaches— inspection, counting, and matching— on the perfor­

mance of preoperational children on the most difficult static numerical 

comparison tasks was undertaken. It was, however, expected that concrete



operational children would perform better than preoperational children 

on each of the four static numerical comparison tasks administered in 

Study 2.

5. It was expected that some children who failed to conserve on 

a standard conservation of number test administered prior to the static 

numerical tasks would conserve on a standard test of number conservation 

administered just after the static numerical comparison tasks. The per­

formance of these "improvers" would be contrasted with that of children 

whose performance on the conservation tests remained stable. Since the 

improvers are incipiently concrete operatonal, two results were expected: 

(a) Improvers would perform better on the static numerical comparison 

tasks than stable nonconservers; (b) Improvers would perform about as well 

on the tasks as stable conservers.

6. It was expected that concrete operatonal and preoperational 

children would perform similarly on the SD task since success at the 

task is thought to require no more than a preoperational level of 

functioning.

7. Because success on the SH task was thought to require some de­

centering away from the prepotent cue height, it was expected that con­

crete operatonal children would perform better than preoperational 

children on the SH task.

8. Since Genevan theory suggests that there should be decalage 

effects on performance on tasks reflecting an understanding of functions 

and functions of functions, preoperational children were expected to per­

form better on the SD task than on the TPO-SD task. Genevan theory also 

implies that preoperational children are better able to compose same- 

directional comparisons than coordinate countervailing comparisons;



therefore, preoperational children were expected to perform better on the 

TPO-SD task than on the TPR-SD task. Moreover, concrete operational child­

ren were believed to be better able to decenter away from the misleading 

interior subquantity comparisons, and were, therefore, expected to perform 

better than preoperational children on the TPO-SD task.

9. Concrete operational children were expected to perform better 

than preoperational children on the TPR-SD task because success at the 

task requires the coordination of countervailing subquantity comparisons, 

a hypothesized capacity of concrete operational functioning.

10. It was expected that some children who failed to conserve on a 

standard conservation of liquid test administered prior to the static 

quantitative comparison tasks would conserve on a standard conservation of 

liquid test administered just after the static quantitative comparison 

tasks. The performance of these improvers would be contrasted with that

of the children whose performance on both liquid conservation tests remained 

stable. Since the improvers are incipiently concrete operational, two 

results were expected: (a) Improvers would perform better on the static

quantitative comparison tasks than stable nonconservers; and (b) Improvers 

would perform about as well on the tasks as stable conservers.

Exploratory analysis. The effects of set condition on performance 

on the static quantitative comparison tasks was explored.



CHAPTER II

METHODOLOGY

STUDY 1 

Method

Design

Each child in this study was initially administered the same in­

structional set, an inspection set. The purpose of the set was to induce 

the child to inspect pairs of arrays of "candies" in order to evaluate 

the relative numerosity of the members of each pair. Each child was 

then administered all the static numerical comparison tasks, counter­

balanced for subgrouping (unitary arrays vs. arrays comprising subgroups) 

and hypothesized task difficulty. Four orders of administration were 

used: (1) IP, SP, SCI, IS, TPO-I, TPO-S, TPR-I, TPR-S; (2) SCI, IS, IP,

SP, TPR-I, TPR-S, TPO-I, TPO-S; (3) TPO-I, TPO-S, TPR-I, TPR-S, IP, SP, 

SCI, IS; and (4) TPR-I, TPR-S, TPO-I, TPO-S, SCI, IS, IP, SP. After 

the series of comparison tasks was completed, each child was administered 

a conservation of number test. Performance on the conservation test was 

used as an index of operative level.

Subj ects

A total of 64 children who ranged in age from 4 years, 0 months to 

7 years, 5 months were included in the sample. The mean age was 5 

years, 6 months. All children attended tuition-charging private schools. 

Approximately 90% of the children were white. An informal review of



parents' occupations indicated that they were employed as physicians, 

college professors, computer programmers* and school teachers, among other 

middle-class occupations.

Materials

Sesame Street finger puppets named Bert and Ernie were used in both 

the static numerical comparison tests and the inspection set instructions. 

Each pair of arrays used in the comparison tasks and the instructional 

set condition consisted of a row of green and a row of red decals that had 

been pasted to a 15 x 4 inch white rectangular cardboard surface. The 

diameter of each decal was three-quarters of an inch. Diagrams depicting 

paired arrays can be found in Figure 1. Red and black checkers were used 

in the conservation of number test.

Procedure

Inspection Set

Each child was introduced to the Bert and Ernie puppets, and was 

told that each puppet received candy— Bert received green candy and Ernie, 

red candy— from his mother. Three pairs of arrays of red and green decals 

were represented as the candy. The rows of decals making up a pair of 

arrays were linear, equally dense, and, as far as possible, matched 

one-to-one from left to right. Upon the presentation of each pair of 

arrays, the child was asked to determine if Bert had more candy, if Ernie 

had more candy, or if both puppets had the same amount of candy. Each 

child was told that, since neither Bert nor Ernie knew how to count, he 

had to compare the members of each pair of arrays the way the puppets 

wanted, by careful inspection without using counting. The child viewed 

the following pairs of arrays: 5 red vs. 2 green; 3 red vs. 6 green;



4 red vs. 4 green.

Static Numerical Comparison Tasks

Every child was administered all eight static numerical comparison tasks. 

Each task consisted of seven comparisons (see Figure 1 for examples of task 

comparisons). In each comparison, an array of green decals, represented as

Bert’s candy, was to be compared with an array of red decals, represented as

Ernie's candy. The cardinal values of the arrays ranged from 7 to 10. In 

every task but the SCI task, the child viewed two unequal arrays in each 

of five or six of the seven task comparisons. Two equal arrays were

viewed in each of the one or two remaining comparisons. The child viewed

two unequal arrays in every one of the seven SCI comparisons. The tasks 

involving the comparison of unitary arrays— that is, arrays that were not 

divided into subarrays (IP, SP, SCI, and IS)— were presented in a context 

in which the child was to help Bert and Ernie by determining if Bert got 

more candy, if Ernie got more candy, or if both puppets got the same amount 

of candy. All comparisons involving arrays that had been divided into sub­

arrays (TPO-I and -S and TPR-I and -S) were introduced such that the left 

pair of red and green subarrays was represented as the candy the puppets 

received in the morning and the right pair of subarrays, as the candy 
they received in the afternoon. At the beginning of each subarray task, 
the child was asked to help Bert and Ernie by determining the relative 
numerosity of, first, the two subarrays that were represented as Bert 
and Ernie's morning candy and, then, the two subarrays that were re­

presented as the puppets' afternoon candy. Data indicate that all 

children made within morning and within afternoon comparisons ac­
curately. Next, each child was asked to determine the relative 

numerosity of the total amounts of green and red candy, i.e., the



candy Bert and Ernie got for "the whole day." Any child who attempted 

to use counting to compare a pair of arrays was prompted to inspect the 

arrays.

Conservation of Number Test

The conservation of number test consisted of three trials. In the 

first trial eight red (black) checkers were placed in a row before the 

child. The interviewer then asked the child to remove from a bag "just 

as many black (red) checkers as there are red (black), one black (red) 

for each red (black)." Once a one-to-one correspondence between black and 

red checkers was established, the interviewer spread the row of red (black) 

checkers and then asked the child if there was still the same number of 

red as black checkers or if there were more red or more black. The child 

was then asked the reason for his judgment. The next trial began once 

the one-to-one correspondence was restored and the one-to-one corres­

pondence between the rows, reestablished. During this trial the black 

(red) row was compressed, and the child was questioned. The order of 

the first two trials and the colors of the checkers that were expanded 

and compressed were counterbalanced. The third trial parallels the second 

except that the red (black) row was stacked to form a cylinder. Children 

who responded correctly and supplied adequate justification for their 

responses (e.g., reversibility, addition/subtraction, etc.) on at least 

two of the three trials were operationally defined as conservers of 

number. The criterion of two of three correct trials was employed in 

order to include within the conserver category children, who, due to 

unfamiliarity with the test, anxiety, etc., may have responded incorrectly 

on one trial but correctly on the other two. This criterion was employed 

in Study 2 as well as Study 1. The majority of children (85%) in Studies



1 and 2 who were classified as conservers responded correctly on all three 

conservation trials.

Children who failed to respond correctly on all trials and failed to 

place the red and black checkers in a one-to-one correspondence were opera­

tionally defined as level 1 nonconservers (level 1 NCs). Those children 

who responded incorrectly on every trial but spontaneously placed the 

red and black checkers in one-to-one correspondence were operationally 

defined as level 2 nonconservers (level 2 NCs). Four children who mani­

fested mastery of one-to-one correspondence and responded correctly on 

one or more conservation trials without supplying adequate justification 

were classified as transitional but were too few to be included in the 

sample.

Consistent with the Genevan scheme for classifying children who 

range in age from 4 to 7 years, and for the purposes of testing Hypotheses 

1-3, conservers were regarded as concrete operational, and nonconservers, 

as preoperational.

STUDY 2 

Method

Design

The children in this study were interviewed twice no more than 

4 days apart. At the beginning of the first interview session, each 

child was administered a counting task. Any child who counted inaccu­

rately was not included in the sample. Approximately half of the children 

who were included in the sample were administered four static numerical



comparison tasks during the first interview session and four static 

quantitative tasks during the second. For these children Session 1 con­

sisted of, in order, the following: a number conservation test, one of

three possible instructional sets, four static numerical tasks, and a 

re-presentation of the number conservation test; Session 2 consisted 

of the following: a liquid conservation test, a reminder of the in­

structional set administered the previous session, four static quantitative 

comparison tasks, and a re-presentation of the liquid conservation test.

The order of administration was reversed for the remaining children but 

constrained such that the instructional set was always administered in 

Session 1, immediately after the liquid conservation test, and the reminder, 

in Session 2, immediately after the number conservation test. The chilJ. • 

dren were randomly assigned to one of the three instructional set condi­

tions: inspection, counting, and matching. The order in which the two groups

of static comparison tasks were administered was counterbalanced for 

subgrouping (unitary arrays vs. arrays comprising subgroups; each of two 

colored liquids contained in one vs. two glasses). The four orders of 

task administration were: (1) number conservation (NC), SCI, IS, TPR-I,

TPR-S, NC, liquid conservation (LC), SD, SH, TPO-SD, TPR-SD, LC; (2)

NC, TPR-I, TPR-S, SCI, IS, NC, LC, TPO-SD, TPR-SD, SD, SH, LC; (3) LC, SD, SH, 

TPO-SD, TPR-SD, LC, NC, SCI, IS, TPO-I, TPR-I, NC; and (4) LC, TPO-SD,

TPR-SD, SD, SH, LC, NC, TPR-I, TPR-S, SCI, IS, NC. Performance on the 

conservation tests was used as an index of operative level.

Subj ects

A total of 107 children who ranged from 4 years, 0 months to 7 

years, 11 months were interviewed in Study 2. The mean age was 5 years,

11 months. One child who was administered the numerical tasks in the



first session was absent for the administration of the quantitative tasks 

in the second session. Five children who were administered the quantitative 

tasks in Session 1 were absent for the administration of the numerical 

tasks in Session 2. As in Study 1, the children attended tuition-charging 

private schools, and an informal review of parental occupations indicated 

that the parents were generally employed as professionals and business 

people. Approximately 90% of the children were white.

Materials

The materials used in the static numerical comparison tasks (see 

Figure 1), the instruction set conditions, and the conservation of number 

test were similar to those used in Study 1. A Sesame Street finger 

puppet named Grover and 10 black checkers were used in the counting task.

A number of 5-inch-high clear plastic cylinders were used in the static 

quantitative comparison tasks. The cylinders had diameters of 2, 3 and 

4 inches and held water that had been colored either red or green by food 

coloring. Diagrams depicting how the cylinders were used are provided in 

Figure 2. In the conservation of liquid task, two 4 x 3  inch clear plastic 

cylinders served a standard containers and one 4 x 4  inch cylinder, one 9 

x 2 inch cylinder, and two 4 x 2  inch cylinders were employed as compari­

son containers.

Procedure

Counting Task

Each child was introduced to the Grover puppet. The child was 

then shown a row of 10 black checkers. The interviewer informed the 

child that the checkers were Grover's and asked the child to help Grover 

by counting the checkers. Two children counted inaccurately and were



excluded fom the sample.

Instructional Set

Children assigned to all three instructional set conditions practiced 

comparing the same three pairs of arrays described in Study 1. Every child 

was told that the green decals were Bert's candies and the red, Ernie's.

The inspection set was identical to the set administered in Study 1.

Each child in the counting set condition was told that Bert and Ernie liked 

counting and the puppets wanted him to count the green and red candies 

in order to compare the practice arrays. Each child in the matching set 

condition was told that Bert and Ernie liked matching and that the puppets 

wanted him to match, as far as possible, the green and red candies one-to- 

one in order to compare the practice arrays. Any child who did not under­

stand the set instructions was briefly shown how to perform in accordance 

with the set instructions. This was rare; however,some of the younger 

children in the matching condition required one demonstration.

Conservation of Number Test

The number conservation test that was administered before and after 

the static numerical comparison tasks was identical to the number conservation 

test employed in Study 1. Children who, on each number conservation test, 

responded correctly and supplied adequate justifications for their 

responses on at least two or three trials were operationally defined as 

conservers of number. Children who failed to respond correctly on all 

pre- and posttest trials and failed to place the red and black checkers 

in one-to-one correspondence on either test were operationally defined as 

level 1 nonconservers (level 1 NC). Children who responded incorrectly on 

every pre- and posttest trial but placed red and black checkers in one-



to-one correspondence on both conservation of number tests were operational­

ly defined as level 2 nonconservers (level 2 NC). If any child responded 

incorrectly on all pretest trials but correctly, and with justification, 

on at least two of three posttest trials, he would have been operationally 

defined as an improver. No child whose behavior conformed to this pattern 

was found. One child who evinced mastery of one-to-one correspondence 

on both conservation tests and responded correctly on all pre- and 

posttest trials without supplying an adequate justification for his 

responses was classified as transitional. Since there was only one 

transitional child, the category was excluded from the analysis.

Consistent with the Genevan scheme for classifying children who 

range in age from 4 to 7 years, and for the purpose of testing Hypo­

thesis 4, conservers of number were regarded as concrete operational, 

and nonconservers, as preoperational.

Static Numerical Comparison Tasks

As in Study 1, each child who was administered the static numerical 

comparison tasks was asked to compare arrays of green and red decals.

The numerical tasks selected for Study 2 were the four most difficult 

Study 1 tasks— the SCI, IS, and TPR-I and -S tasks. Each numerical task 

selected for Study 2 consisted of four comparisons (see Figure 1 for 

examples of task comparisons). The pairs of arrays that were used in the 

Study 2 numerical tasks were chosen on the basis of pilot and Study 1 

data. These data indicated that the two arrays within each of the 

selected pairs were either moderately difficult or the most difficult 

arrays to compare. The child viewed two unequal arrays in each of three 

IS, two TPR-I, and two TPR-S comparisons. Two equal arrays were pre­



sented in each of the remaining IS and TPR-I and -S comparisons. The 

child viewed two unequal arrays in every one of the four SCI comparisons. 

Any child whose behavior failed to conform to set instructions was prompted 

to inspect, count, or match accordingly.

Conservation of Liquid Test

A conservation of liquid test was administered before and after the 

series of static quantitative comparison tasks. Each test consisted of 

three trials. In the first trial the child was shown the two 4 x 3  

inch standard containers holding equal amounts of red and green "juice."

The standard containers were half filled. Once the child was satisfied 

that there was as much red as green liquid, the 4 x 4  inch comparison 

container was presented and the interviewer poured all the red (green) 

liquid into it. The child was then asked, "Is there still the same amount 

of red as green juice or is there more red or is there more green?" and 

the reason for his judgment. The next trial began when, with the 

child's agreement, equal amounts of red and green liquid were placed in the 

two standard containers. During this trial the green (red) liquid was 

poured into the 9 x 2  inch container, and the child was questioned. The 

order of the first two trials and the color of the liquid-that was :ppured 

were counterbalanced. The third trial paralleled the second except that 

the red (green) liquid was poured into the two 4 x 2  inch comparison 

containers. Children who on each liquid-ccnservation test responded 

correctly and supplied adequate justification for their responses on at 

least two of the three trials were operationally defined as conservers 

of liquid. An improver was defined as a child who failed to respond 

correctly on all three pretest trials but who responded correctly and 

supplied adequate justification for his correct responses on at least



two of the three posttest trials. Since the performance of only two 

children conformed to this pattern, the category of improver was excluded 

from the analysis. Children who responded incorrectly on all pre- 

and posttest trials were operationally defined as nonconservers.

Consistent with the Genevan scheme for classifying children who 

range in age from 4 to 7 years, and for the purpose of testing Hypotheses 

6-9, conservers of liquid were regarded as concrete operational, and 

nonconservers, as preoperational.

Static Quantitative Comparison Tasks

Every child who was administered the tasks was told that each 

puppet got juice— that Bert got green juice and Ernie, red juice— from 

his mother. The child was then asked to help the puppets by comparing 

Bert and Ernie's juice and was administered the SD, SH, TPO-SD, and 

TPR-SD tasks. Each task consisted of four comparisons (see Figure 2 for 

examples of task comparisons). In every task the child viewed two unequal 

quantities of liquid in each of three of the four task comparisons and two 

equal quantities in the remaining comparison. In the context of the tasks 

in which liquid -of each color was not divided into subquantities (SD and 

SH);, the child was asked to determine if Bert got more juice, if Ernie 

got more juice, or if the puppets got the same amount of juice. In the 

tasks in which each liquid was divided into subquantities (TPO-SD and 

TPR-SD), the red and green liquid held in containers on the left was 

represented as the juice the puppets got in the morning. The juice held 

in the containers on the right was represented as the afternoon juice.

For each comparison in the subquantity tasks, every child initially compared 

the two subquantities that were represented as the morning juice. Then 

the child compared the two subquantities that were represented as the



afternoon juice. Data indicate that all children made these comparisons 

accurately. Next each child compared the total amount of green and red 

juice, i.e., the juice that Bert and Ernie got for "the whole day."

Reminder of the.Instructional Set

On Session 2, just prior to the administration of the second group 

of comparison tasks, children were reminded of the set instructions ad­

ministered at the beginning of Session 1. The interviewer showed the 

child the Bert and Ernie puppets, and asked the child how the puppets 

compared candies. If the child responded incorrectly, the interviewer 

repeated the set instructions. Every child then practiced comparing the 

same three pairs of arrays viewed in the instructional set phase of 

Session 1.



CHAPTER III

- RESULTS

The results are presented in three sections. The first section 

reports findings relevant to general characteristics of the data. The 

second section reports findings relevant to each of the ten hypotheses 

presented in Chapter I. The third section provides anecdotal data 

relevant to the. hypotheses.

General Characteristics of the Data 

Correlations among Tasks

Correlations among Study 1 tasks are presented in Table 1. All 

correlations except the correlation between the IP and SCI tasks were 

statistically significant. The TPO-I and -S tasks were the most highly 

correlated tasks (r = .77). Most between task correlations, however, 

were moderate. The median between task correlation was .445. Study 1 

tasks were, in general, moderately but significantly correlated with 

age. The SP task had the smallest correlation with age (r = .34) and 

the SCI task, the largest (jr = .67). The median task-age correlation 

was .565.

Correlations between Study 2 tasks are presented in Table 2.

The SD task was the only task that failed to correlate significantly 

with other tasks. It correlated significantly with only one other 

task, the TPR-SD task; however, the correlation was low (r = .20). The 

SCI and IS tasks were the most highly correlated tasks (j: = .68) but 

most of the between task correlations were moderate. The median between 

task correlation was .455. Study 2 tasks were, in general, moderately 

but significantly correlated with age. The SD task had the smallest



Table 1

Zero Order Correlations among Study 1 Tasks

Tasks 1 2 3 4 5 6 7 8

1. IP

2. SP .45**

3. SCI .22+ : .44**

4. IS .41** .53** .59**

5. TPO-I .43** .55** .47** .5.7**

6. TPO-S .47** .66** .41** .48** .77**

7. TPR-I .33** .33** .45** .46** .49** .40**

8. TPR-S .27* .29* .37** .41** .42** .45** .28*

9. AGE .34** .56** .67** .63** .60** .52** .57** .42**

Note. Statistical tests were two-tailed. 

\  < -10 
*£ < . 05 

**£ < .01



Table 2

Zero Order Correlations among Study 2 Tasks

Tasks 1 2 3 4 5 6 7 8

1. SCI

2. IS .68**

3. TPR-I .67** .55**

4. TPR-S .54** .51** .64**

5. SD .08 .06 .07 .07

6. SH .46** .39** .46** .46** .14

7. TPO-SD .46** .55** .28** .14 .11 .46**

8. TPR-SD .46** .54** .46** .42** .20* .42** .46**

9. AGE .73** .63** .54** .48** .22* .50** .54** .62**

Note. Statistical tests were two-tailed. 

*£ < .05 

**£ < .01



correlation with age (r = .22) and the SCI task, the largest (_r =

.73). The median correlation with age was .54.

Order Effects

The effects of task order were analyzed for Studies 1 and 2. For 

each study a multivariate analysis of variance (MANOVA) was performed 

because the analysis of order effects was exploratory and no hypotheses 

regarding order effects were made. The test statistic obtained in each 

MANOVA was either the Hotelling statistic, or the generalized 

statistic, (Bock, 1975). The Hotelling statistic, along with 

its two distribution parameters (appearing in parenthesis), is reported 

when the hypothesis being tested places on restriction on the multivari­

ate general linear model.^ The generalized ̂ F statistic, along with 

its three distribution parameters (appearing in parenthesis), is reported

when the hypothesis being tested places more than one restriction on
2 2 the model. The Hotelling _T statistic as well as the widely used

univariate _F statistic is a special case of the generalized J? statistic.

The effects of the two major task orders used in Study 1 were 

analyzed. In the first major task order, the static numerical tasks in 

which arrays did not comprise spatially distinct subgroups (IP, SP,

1 9The two distribution parameters of the Hotelling Tf- statistic are 
computed as follows: the first distribution parameter is equal to the
number of dependent variables; the second distribution parameter is 
equal to the total number of subjects minus the number of dependent 
variables minus one (Bock, 1975).

oThe three distribution parameters of the generalized I? statistic—  
_s, m, and n— are computed as follows: js = min(r - 1, NDV); m = (|r - NDv| 
- l)/2; n = (NSUBJ - r - NDV - l)/2. The symbol r represents the number 
of restrictions the hypothesis places on the model, NDV, the number of 
dependent variables, and NSUBJ, the number of subjects included in the 
sample. A full description of the distribution parameters is provided 
by Bock (1975).



SCI, and IS) were administered before the tasks in which arrays com­

prised spatially distinct subgroups (TPQ-I and -S and TPR-I and -S).

The sequence was reversed in the second major task order. A MANOVA was 

performed on each set of four tasks with subjects stratified by opera­

tive level. On the four tasks in which arrays did not comprise sub-
2groups, the order main effect, JT (4} 59) = 3.88, and the operative

level by order interaction, (2.00, .50, 26.50) = 2.14, were not

significant. On the four tasks in which arrays did comprise subgroups,
2the order main effect, JT (4, 59) = 2.59, and the operative level by 

order interaction, J^(2.00, .50, 26.50) = 2.41, were also not sig­

nificant .

The effects of the two major task orders used in Study 2 were 

also analyzed. In the first major task order, the static numerical 

tasks (SCI, IS, and TPR-I and -S) were administered before the static 

quantitative tasks (SD, SH, TPO-SD, and TPR-SD). The sequence was re­

versed in the second major task order. A MANOVA was performed on each 

set of four tasks with subjects stratified by the categorical scheme

created by the crossing of operative level and set. The order main 
2effect, JT (4, 100) = 1.99, on performance on the four numerical tasks 

was not significant. In addition, none of the interaction effects 

was significant: operative level by order, ^(2.00, .50, 41.00) =

3.78; set by order, F (2.00, .50, 41.00) = 4.17; operative level by set" x>
by order, ^(4.00, -.50, 41.00) = 2.83.

2The order main effect on the four quantitative tasks, T? (4, 95)

= 5.11, was not significant. Two of the three interaction effects were

not significant: set by order, F (2.00, .50, 41.50) = 2.17; operativeo
level by set by order, ^(2.00, .50, 41.50) = 4.06. Only the operative

2level by order interaction was significant, T̂ (4, 95) « 18.64, £  < .01.



Inspection of the scaled discriminant function weights indicates that 

the SH task largely contributed to the interaction. For conservers of 

liquid, when the set of quantitative tasks was administered prior to the 

set of numerical tasks, the mean number of correct responses on the SH 

task was 3.67. When the order was reversed, conservers did not perform 

as well, M = 2.47. Nonconservers, in contrast, performed about the same 

within both orders (quantitative tasks first: M = 1.27; numerical tasks 

first: M = 1.40).

Tests of Hypotheses 

Hypothesis 1: Performance on the IP and SP Tasks

Preoperational children were expected to perform as well as 

concrete operational children on the IP and SP tasks. In addition, pre­

operational children were expected to perform better on the IP and SP 

tasks than on the SCI task. The mean number of correct responses on each of 

tasks is presented in Table 3. Throughout Study 1, performance on the 

number conservation test was used as an index of operative level, and the

one-way analysis of variance (ANOVA) was used to test operative level

effects. However, where within operative level task specific differences 

were investigated, the correlated £-test was employed.

In order to determine if children's performance on the IP and 

SP tasks was related to operative level, a one-way ANOVA was performed 

for each of the tasks. Each ANOVA revealed a significant operative 

level effect: IP, F(2, 61) «= 9.12, £ < .001; SP, F<2, 61) =

11.08, £ < .001. A Scheffe post hoc test (Winer, 1971) was per­

formed after each of the analyses. This test is exact for unequal

group size. Here and throughout the results section, whenever the Scheffe 

post hoc test was employed only statistically significant results are reported



Table 3

Mean Number of Correct Judgments on
Each of the Study 1 Tasks3

IP SP SCI IS TPO-I TPO-S TPR-I TPR-S n

Level 1 NC 4.71 3.57 .43 2.29 3.86 3.36 2.71 2.79 14

Level 2 NC 6.12 5.19 COCO• 3.04 4.50 4.62 3.31 3.65 26

Conserver 6.88 6.29 3.17 4.38 6.29 6.25 3.83 4.33 24

Task Mean 6.09 5.25 1.64 3.38 5.03 4.95 3.38 3.72

a
Maximum number correct = 7.



Scheffe post hoc tests indicated that both conservers (j> < .01) and 

level 2 NCs (j> < .05) performed significantly better than level 1 NCs 

on the IP task. On the SP task, post hoc tests also revealed that con­

servers (jj < .01) and level 2 NCs (j) < .05) performed significantly better 

than level 1 NCs.

It was expected that preoperational children would not differ in IP 

and SP task performance from concrete operational children. Although this 

expectation was not supported, other analyses support the view that, to 

some extent, success on the IP and SP tasks is accessible to preoperational 

children. One-tailed correlated £-tests were performed to contrast the 

performance of preoperational children on the IP and SP tasks with their 

performance on the SCI task. Preoperational thinking is believed to be a 

greater impediment to success on the SCI task than on either the IP or SP 

tasks. The correlated £-tests revealed that level 1 NCs performed sig­

nificantly better on the IP, £(13) = 5.94, £ < .001, and SP, £(13) = 4.48,

£ < .001, tasks than on the SCI task. Correlated £-tests also revealed 

that level 2 NCs performed significantly better on the IP, t(25) = 13.30,

£ < .001, and SP, £(25) = 12.16, £ < .001, tasks than on the SCI task.

Additional evidence indicated that nonconservers tended to judge 

two arrays that were equal in length but different in density (SCI com­

parisons) to have the same amount. This tendency was almost absent 

when nonconservers compared two arrays that had the same length but 

were related by either an injective (IP) or surjective (SP) corres­

pondence. Eleven of 14 level 1 NCs (79%) and 15 of 26 level 2 NCs 

(58%) judged the two arrays making up an SCI comparison to have the



same amount of candies in every one of the seven SCI comparisons. In 

contrast, only one of 14 level 1 NCs (7%) and no level 2 NC judged every 

one of the seven IP comparisons to involve the same amount. Two of the 

14 level 1 NCs (14%) and no level 2 NC judged every one of the seven 

SP comparisons to involve the same amount.

Conservers' performance on the SCI task contrasts with that of 

nonconservers. Only four of 24 conservers (17%) judged every SCI 

comparison to involve the same amount. With regard to the IP and SP 

tasks, nonconservers and conservers, in an important respect, performed 

similarly. Like the nonconservers, the conservers manifested little 

tendency to judge two unequal arrays that were equal in length, but 

related by an injective or surjective correspondence, to have the same 

amount of candies. No conserver judged every one of the seven IP com­

parisons or every one of the seven SP comparisons to involve the same 

amount.

Hypothesis 2: Effect of Operative Level on Performance
on the SCI, IS, and TPR-I and -S Tasks

It was expected that performance on the SCI, IS, and TPR-I 

and -S tasks would be directly related to the child's operative level. 

The mean number of correct responses on these tasks is presented in 

Table 3. A one-way ANOVA was performed on each of the tasks. The 

analyses revealed significant effects for operative level on each of the 

tasks: SCI, F(2, 61) = 13.43, £ < .001, IS, F(2, 61) = 10.26, £  < .001;

TPR-I, F(2, 61) = 4.54, £  < .05; TPR-S, F(2, 61) = 7.12, £  < .01.

The results of Scheffe post hoc tests underlined the superior­

ity of the conservers' performance. On the SCI and IS tasks conservers 

performed significantly better than level 1 (£ < .01) and level 2 NCs



(jd < .01). Conservers performed significantly better than level 1 NCs 

on the TPR-I (£ < . 05) and -S tasks (ja < . 01).

Hypothesis 3: Performance on the TPO Tasks

Genevan theory suggests that concrete operational children should 

perform better than preoperational children on the TPO-I and -S tasks.

The mean number of correct responses on each of these tasks is provided 

in Table 3. A one-way ANOVA was performed for each of the tasks. Each 

ANOVA revealed a significant operative level effect: TPO-I, £(2, 61)

= 12.90, £  < -001* TPO-S, F (2, 61) = 12.56, £  < .001. Scheffe post 

hoc tests revealed that conservers performed significantly better than 

level 1 (ja < .01) and level 2 NCs (£ < .01) on the TPO-I task. Post 

hoc tests also indicated that on the TPO-S task conservers performed 

significantly better than level 1 (£ < .01) and level 2 NCs (jj < .01).

Preoperational children were expected to perform better on the 

TPO tasks than on the TPR tasks. One-tailed correlated £-tests indicated 

that level 1 NCs performed significantly better on the TPO-I task than 

on the TPR-I task, £(13) = 2.58, £ < .05, but that their performance 

on the TPO-S and TPR-S tasks did not differ significantly, £ (13) - 

.94. Correlated £-tests also revealed that level 2 NCs performed sig­

nificantly better on the TPO-I task than on the TPR-I task, £(25) = 3.49, 

£ < .01, and that they performed better on the TPO-S task than on the 

TPR-S task £(25) = 2.91, £ < .01.

Preoperational children were also expected to perform better on- the 

IP and SP tasks than on corresponding TPO tasks. One-tailed correlated 

t-tests indicated that for level 1 NCs the difference in performance on



the IP and TPO-I tasks, Jt(13) = 1.17, was nonsignificant, and the dif­

ference in the performance on the SP and TPO-S tasks, Jt(13) =■ .42, was 

also nonsignificant. Level 2 NCs, however, performed significantly 

better on the IP task than on the TPO-I task, _t(25) = 4.34, £  < '.001.

The difference in level 2 NCs* performance on the SP and TPO-S tests, 

jt(25) = 1.68, was not significant.

Hypothesis 4: Operative Level Structures the Influence
of Set on the Child's Performance on the Static 
Numerical Tasks

With performanccon the number conservation tests as an index of opera­

tive level, it was expected that set effects would not influence the 

performance of preoperational children on the static numerical tasks ad­

ministered in Study 2. It was, however, expected that set would affect 

the performance of concrete operational children. In order to test these 

hypotheses, the simple main effects of set were examined at each operative 

level. Testing for every simple main effect of set is tantamount to 

testing for the set main effect and the operative level by set inter­

action. The variation owed to the simple main effects of set at each of 

the two nonconserver levels and the conserver level is redundant with the 

variation owed to the set main effect and the operative level by set 

interaction (Winer, 1971). The mean number of correct responses on each 

of the numerical tasks administered in Study 2, cross-classified by 

operative level and set, is presented in Table 4.

Analyses of variance indicated that on each numerical task no simple 

main effect of set at level 1 NC was significant: SCI, _F(2, 96) = .41;

IS, F(2, 96) - .79; TPR-I, F(2, 96) = .05; TPR-S, F(2, 96) = 1.98. Sig­

nificant simple main effects of set were evident at more advanced operative



Table 4

Mean Number of Correct Judgments on Each of the
Study 2 Static Numerical Comparison Tasks3

Number
Conservation

Level Inspection Counting Matching

Operative
Level
Mean n

SCI Level 1 NC .12 .50 oo
• .22 23

Level 2 NC .33 2.77 1.64 1.62 39
Conserver 2.93 4.00 3.44 3.40 43

IS Level 1 NC 1.62 1.00 1.14 1.26 23
Level 2 NC 1.50 2.46 1.79 1.92 39
Conserver 3.20 3.60 3.22 3.30 43

TPR-I Level 1 NC 1.12 1.25 1.29 1.22 23
Level 2 NC 1.17 2.62 1.36 1.72 39
Conserver 2.27 3.70 2.67 2.72 43

TPR-S Level 1 NC .50 1.50 1.43 1.13 23
Level 2 NC 1.67 2.00 1.36 1.67 39
Conserver 2.27 3.60 2.83 2.81 43

a
Maximum number correct = 4



levels: SCI, level 2 NCs, F(2, 96) = 14.63, £ < .001; TPR-I, level 2 

NCs, F(2, 96) = 7.07, j> < .01; TPR-I, conservers, F(2, 96) = 5.57, £ < .01; 

TPR-S, conservers, _F(2, 96) = 4.28, £  < .05.

Scheffe post hoc tests were performed whenever significant simple 

main effects were found. In the context of the SCI task, level 2 NCs 

assigned to.the counting condition performed significantly bet­

ter than their counterparts in the matching (£ < .05) and inspection 

(£ < .01) conditions. Moreover, level 2 NCs assigned to the matching 

condition performed significantly better than their counterparts in the 

inspection condition (£ < .05). On the TPR-I task, level 2 NCs assigned 

to the counting condition performed significantly better than their counter­

parts in either the inspection (£ < .01) or the matching (p < .05) con­

ditions. On the same task, conservers assigned to the counting condition 

performed significantly better than their counterparts in the inspection 

(£ < .01) condition. In the context of the TPR-S task, conservers assigned 

to the counting condition performed significantly better than their 

counterparts in the inspection condition (£ < .05).

Simple main effects of set were sometimes not significant at advanced 

operative levels: IS, conservers, F(2, 96) = .55; TPR-S, level 2 NCs,

£(2, 96) <= 1.11. The simple main effects of set for conservers performing 

on the SCI task, £(2, 96) = 2.75, £  < .10, and level 2 NCs performing 

on the IS task, F(2, 96) = 2.89, £ < .10, were marginally significant.

It was also expected that across all set conditions the performance 

on the four numerical tasks administered in Study 2 would be directly 

related to operative level. Two-way ANOVAs with subjects stratified by 

set condition revealed highly significant operative level effects on 

all four tasks: SCI, ]?(2, 96) = 66.38, £ < .001; IS, F(2, 96) = 35.31,



£  < .001; TPR-I, F(2, 96) = 21.14, £  < .001; TPR-S, F(2, 96) = 21.53,

£ < .001; TPR-S, F(2, 96) » 21.53, £  < .001.

The Scheffe post hoc test was performed after each ANOVA. On the

SCI task, conservers performed significantly better than level 1 (jd < .01) and

level 2 NCs (jd < .01), and level 2 NCs performed significantly better 

than level 1 NCs (j> < .01). Similarly, on the IS task, conservers 

performed significantly better than level 1 (j> < .01) and level 2 NCs 

(£ < .01). Conservers performed significantly better than level 1 

(j> < .01) and level 2 NCs (jj < .01) on the TPR-I task. On the TPR-S task, 

conservers also performed significantly better than level 1 (js < .01) 

and level 2 NCs (jd < . 01).

Hypothesis 5: The Performance of Improvers on the
Static Numerical Tasks

With regard to number conversation, an improver was defined as a 

child who, although failing to conserve on the number conservation test 

administered prior to the static numerical tasks, conserved on the post­

test. The performance of improvers on the static numerical tasks was 

expected: (a) to be superior to the performance of stable nonconservers

and (b) to resemble the performance of stable conservers. This hypo­

thesis could not be tested because no child among the 105 children who were 

included in the sample could be classified as an improver.

Hypothesis 6: The Effect of Operative Level on
Performance on the SD Task

It was expected that preoperational and concrete operational chil- • 

dren would perform similarly on the SD task. The mean number of correct 

responses on the SD task is presented in Table 5. A two-way ANOVA with 

subjects stratified by the set condition to which they were assigned was



Table 5

Mean Number of Correct Judgments on Each of the
Study 2 Static Quantitative Comparison Tasks3

Liquid
Conservation

Level Inspection Counting Matching

Operative
Level
Mean n

SD Nonconserver 3.90 3.70 3.85 3.82 66
Conserver 3.85 4.00 4.00 3.94 34

SH Nonconserver 1.50 1.10 1.35 1.29 66
Conserver 2.54 3.60 3.00 3.00 34

TPO-SD Nonconserver 2.30 2.40 2.42 2.38 66
Conserver 3.85 3.60 3.64 3.71 34

TPR-SD Nonconserver 1.60 1.75 1.96 1.79 66
Conserver 3.46 3.10 3.09 3.24 34

a
Maximum number correct = 4



performed to assess the effect of operative level. The analysis 

revealed no significant operative level effect: F(l, 94) = 2.46.

Hypothesis 7: Performance on the SH Task

It was expected that performance on the SH task would be directly 

related to the child's operative level. The mean number of correct 

responses on this task is presented in Table 5. A two-way ANOVA with 

subjects stratified by set condition revealed a highly significant opera­

tive level effect, JF(1, 94) = 66.14, jj < .001.

Additional evidence indicated that liquid conservers' performance 

on the SH task differed from that of nonconservers in an Important rer< 

spect. Nonconservers, to a much greater extent than conservers, tended 

to judge two quantities of liquid that were equal in height to be the 

same regardless of the relative diameters of the cylinders containing them. 

A total of 44 of 66 nonconservers (67%) judged every one of the four same- 

height comparisons to be the same amount. In contrast, only nine of a 

total of 34 conservers (26%) judged the SH comparisons in the same man­

ner .

Hypothesis 8: Performance on the TPO-SD Task

It was expected that concrete operational children would perform 

better than preoperational children on the TPO-SD task. The mean number 

of correct responses on this task is presented in Table 5. A two-way 

ANOVA with subjects stratified by set condition revealed a highly sig­

nificant operative level effect, JF(1, 94) = 29.73, j> < .001.

It was also expected that preoperational children would perform 

better on the TPO-SD task than on the TPR-SD task. In order to contrast 

the performance of preoperational children on the TPO-SD and TPR-SD



tasks, a repeated measures ANOVA with nonconservers stratified by set 

condition was performed. The ANOVA indicated that nonconservers performed 

significantly better on the TPO-SD task, _F(1, 63) = 11.04, js < .01.

Preoperational children were also expected to perform better 

on the SD task than on the TPO-SD task. A repeated measures ANOVA 

with nonconservers stratified by set condition indicated that none-on* • 

servers’ SD task performance was significantly better than their TPO-SD 

task performance, F(l, 63) = 73.72, ja < .001.

Hypothesis 9: Performance on the TPR-SD Task

It was expected that performance on the TPR-SD task is directly 

related to the child’s operative level. The mean number of correct 

responses on this task is presented in Table 5. A two-way ANOVA with 

subjects stratified by set condition revealed a highly significant opera­

tive level effect, _F(1, 94) = 40.15, £ < .001.

Hypothesis 10: The Performance of Improvers on the
Static Quantitative Tasks

With regard to conservation of liquid, an improver was defined as 

a child who, although failing to conserve on the liquid conservation test 

administered prior to the static quantitative tasks, conserved on the 

posttest. The performance of improvers on the static quantitative 

tasks was expected: (a) to be superior to the performance of stable non­

conservers and (b) to resemble the performance of stable conservers.

This hypothesis could not be tested because only two children of the 102 

children who were administered the conservation of liquid pre- and 

posttests could be classified as improvers.



Exploratory Analysis: Operative Level and the Influence of Set on
the Child’s Performance on the Static Quantitative Tasks

Although no predictions were made regarding the relation of opera­

tive level to the influence of set on performance on the static quanti­

tative tasks, tests of the simple main effects of set were carried out.

The mean number of correct responses on each of the quantitative tasks 

administered in Study 2, cross-classified by operative level and set, is 

presented in Table 5. Analyses of variance indicated that on each quan­

titative task no simple main effect of set at the nonconserver level 

was significant: SD, j?(2, 94) = 1.37; SH, £(2, 94) = .81; TPO-SD,

F(2, 94) = .07; TPR-SD, F(2, 94) = .65. The simple main effect of set for 

conservers performing on the SH task was significant, F(2, 94) = 3.18, 

js < .05. Among conservers, children assigned to the counting condition 

manifested the highest mean SH score. Scheffe post hoc comparisons, 

however, did not indicate that counters performed significantly better 

than children assigned to the other conditions. Otherwise the simple 

main effects of set were not significant at the conserver level: SD,

F(2, 94) = .56; TPO-SD, F(2, 94) = .17; TPR-SD, F(2, 94) = .46.

Anecdotal Record of Children’s Behavior 
During Task Administration

The purpose of this section is to provide ancillary, anecdotal data 

that further elucidate the hypotheses. Although the anecdotal data do 

not purport to be complete, these data are, nevertheless, informative be­

cause they depict salient aspects of the children's performance.

During Studies 1 and 2 children were not encouraged to discuss their 

responses while performing the tasks. However, the few spontaneous com­

ments that were uttered by children were recorded. Children in a pilot



study performed prior to Studies 1 and 2 were sometimes asked to comment on 

how they compared arrays and these comments were recorded. Whenever children 

made their comparison strategies manifest the interviewer recorded those 

strategies.

During the administration of the IP and SP tasks in Study 1, a conserver 

who, in conformity with Study 1 inspection set instructions, looked at the 

arrays without counting decals spontaneously reported, in referring to each 

of several correct responses, "I can tell it's more." Another conserver spon­

taneously moved her finger in such a way as to establish, as far as could be 

established, a one-to-one correspondence between green and red decals before 

responding on each of the Study 1 IP and SCI comparisons. She never responded 

incorrectly on either of the two tasks. A level 2 nonconserver in the pilot 

study who responded correctly on most of the IP and TPO-I comparisons indicated 

that he knew which array had more because "candies were missing," i.e., there 

were gaps in the less numerous row. These are the result of the none-to-one 

correspondences that mark the injective tasks. He responded correctly on most 

SP and TPO-S comparisons and justified his responses by indicating that the 

second decals in the two-to-one correspondences were "extra candies." Two-to- 

one correspondences mark the surjective tasks.
A number of children spontaneously commented on the first IS comparison. 

In the first IS comparison, which is depicted in Figure 1, each child viewed 
two arrays that were numerically equal. Of the seven green and seven red 
decals that were viewed, five green and five red were matched one-to-one.
No red decal corresponded to the centermost (fourth from the left) green de­
cal. It appeared as a gap in the red array. Two red decals corresponded to 
one green decal in the second position from the left. A number of children in 
the pilot sample, the Study 1 sample, and the Study 2 matching and inspect­
ing samples reported to have accurately compared the arrays by mentally



moving ("in my mind," "I moved this one in my head") the upper one of 

the two red decals that corresponded to the single green decal into 

the gap in the red array. In that way a mental representation of a 

one-to-one correspondence could be established (cf. Beilin, 1969).

In Study 2 level 1 NCs assigned to the counting condition tended to 

employ counterproductive counting strategies on the numerical tasks.

Many of these children included all the green and red decals on a card 

in the same count. They counted every decal of one color, then increased 

that total by counting every decal of the other color. Finally they ar­

rived at the total number of decals on a card, a number that was not re­

levant to ascertaining the relative numerosity of the arrays. During the 

TPR-I and -S tasks , a small number of children counted the total number of 

decals by, first, counting the total number of green and red morning de­

cals, then, continuing the count with the afternoon decals. It is inter­

esting to note that counting accuracy was not a problem. All the children 

who attempted to count the total number of decals counted accurately or 

missed arriving at the total number of decals on a card by no more than 

one or two. The children’s inappropriate counting strategies, not count­

ing accuracy, led to poor performances (see Saxe, 1977).

Other level 1 NCs, as well as some young level 2 NCs, employed, in 

contrast to the above children, more adequate counting strategies, yet 

performed poorly on the numerical tasks. These children accurately counted 

the seven green decals and the nine red decals in the first SCI comparison 

depicted in Figure 1, yet indicated that there was the same amount of green

as red, i.e., that Bert and Ernie got the same amount of candy. That is, they 
responded as if the relative length of the arrays— a pair of SCI arrays had 

the same length but different density— was the sole index of relative 

numerosity.



Level 1 NCs assigned to the matching condition committed comparable 

errors. On the SCI task, some of these children matched green and red de­

cals one-to-one until there were no more decals in the less numerous ar­

ray to match to the remaining decals in the more numerous array. For 

example, in the first SCI comparison depicted in Figure 1, the children 

matched green-red, green-red, . . . until the green decals were ex­

hausted and two red decals remained unmatched. Instead of indicating 

that the array that contained unmatched decals was the more numerous array, 

the children indicated that there was the same amount of red and green de­

cals. The children responded as if the relative length of the arrays was 

a more appropriate index of relative numerosity than the finding of unmatched 

decals. Study 2 children who conserved number tended to use counting and 

matching to compare SCI arrays accurately. Comparable children in the in­

spection condition also performed well on the SCI task. During an SCI com­

parison a conserver in the inspection condition commented that the decals 

in the less numerous array were "further away" from each other, i.e., less 

dense than the decals in the more numerous array.

Many children, including conservers, manifested some difficulty in 

applying matching to the IS and the TPR-I and -S tasks. In the IS task, 

children sometimes ignored two-to-one correspondences. They tended to 

match, as in the first IS comparison, the two red decals that faced a single 

green decal to that green decal. They failed to match the upper red decal 

to the next available green. Children sometimes ignored none-to-one cor­

respondences during the IS comparisons. A none-to-one correspondence ap­

peared as a gap in the flow of green-red mappings. A child would proceed 

in matching green and red decals one-to-one, then, where faced with a none- 

to-one correspondence, would continue to move his finger as if to match the 

decal which faced the gap to an Imaginary decal opposite it. A few more



advanced children were able to accommodate for none-to-one and two-to-one 

correspondences in matching green-red, green-red . . . until all possible 

matches were exhausted.

In the TPR-I task, level 1 and 2 NCs assigned to the matching con­

dition tended to ignore gaps created by none-to-one correspondences. As 

in the IS task, a child would proceed to match green and red decals one- 

to-one, then where faced with a gap created by a none-to-one correspon­

dence, continue moving his finger as if to match the decal that faced 

the gap to an imaginary decal opposite it. Some advanced children ac­

commodated to the gaps by continuing to match decals one-to-one in a 

slantwise pattern. Other advanced children employed a different strategy. 

Recall that in the TPR-I task one puppet's candy was more numerous in 

the morning and the other puppet's, in the afternoon. In the first 

TPR-I comparison (see Figure 1), there were more green than red decals 

in the morning, and green was matched to red one-to-one and one-to-none. 

Red was more numerous in the afternoon, and red was matched to green 

one-to-one and one-to-none. That is to say, there were gaps in the red 

array in the morning portion and gaps in the green array in the afternoon 

portion. Some number conservers accurately compared arrays by matching 

the morning and afternoon gaps. In the first TPR-I comparison, these 

children discerned that there were fewer gaps in the morning portion 

of the red array than in the afternoon portion of the green array.

From that standpoint they concluded that there was more red, i.e., that 

Ernie got more candy in the whole day.

Similar behaviors were observed among children assigned to the 

matching condition during the'TPR-S comparisons. Many children ignored 

the two-to-one comparisons and matched green and red decals as if the



two-to-one correspondences were one-to-one correspondences. Some number 

conservers, but not all, accommodated for the two-to-one correspondences 

found in the TPR-S comparisons. These children matched only what some 

children called the "extra candies." The extra candies were the seconds 

in the two-to-one correspondences. The extra candies stood out because 

they were either above or below the two main rows of decals (see Figure 

1). In each comparison the children matched second greens to second 

reds but did not match the greens and reds that made up the two main 

rows of decals. The green and red decals that made up the two main 

rows on each card were in one-to-one correspondence, and the one-to-one 

correspondence was easily discerned without the aid of finger movements.

If the child found that the red and green seconds were matched one-to- 

one, he responded that Bert and Ernie had the same amount. If the 

matching of seconds resulted in his finding that there were more seconds 

of one color than the other, the child indicated that the puppet with 

more seconds had more candy for the whole day.

Children exhibited interesting task relevant behavior during the 

administration of the Static Quantitative Comparison tasks in Study 2. 

During the administration of the SD task, several children while in­

specting the green and red liquids responded that the liquid in one 

container was "more up" or "higher" than the liquid in the other con­

tainer. Others pointed to the level of each liquid. As reported earlier, 

performance on the SD task was excellent. Almost every child made all 

four SD comparisons accurately.

Most children who failed to conserve liquid performed poorly on 

the SH task. Nonconservers of liquid generally responded incorrectly 

on each of the three comparisons in which the green and red liquids



were unequal. Recall that in this task the heights of the two quantities 

of liquid that were presented in an SH comparison were the same. Thus 

in each of the inequality comparisons the diameters of the cylinders 

holding the liquids differed.

Nonconservers overwhelmingly indicated that the two quantities in 

any SH comparison were the same regardless of the diameters of the cylin­

ders. One nonconserver justified his responses with "because I can see." 

This child and most other nonconservers reasoned as if relative height 

was the sole index of relative quantity and relative diameter was ir­

relevant to the comparison. Their pattern of responses paralleled the 

pattern of responses found among number nonconservers during the ad­

ministration of the SCI task. Number nonconservers overwhelmingly re­

sponded that the puppets had the same amount of candies in each of the 

SCI comparisons. These children responded as if relative length was the 

sole index of relative numerosity and relative density was irrelevant 

to the comparison.

Occasionally liquid nonconservers responded correctly during the 

SH comparisons in which the liquids were unequal. One such child 

volunteered the explanation that one puppet had more because his juice 

was in a "bigger cup." Conservers of liquid who spontaneously justified 

their responses tended to volunteer more sophisticated explanations.

They tended to mention that one cylinder was "fatter" than the other.

One child said, "I can tell [green has more] because this one [red] 

is skinny."

Conservers of liquid tended to perform better than nonconservers 

on the TPO-SD and TPR-SD tasks. During the TPO-SD comparisons a number 

of conservers responded that a particular puppet had more in the whole



day and justified the response by indicating that the puppet had more in 
the morning and the afternoon. During the one equality comparison within 
the TPO-SD task, a conserver responded that the puppets had the same amount 
of juice in the whole day because they had the same amount in the morning 
and the same amount in the afternoon.

Conservers exhibited a number of interesting behaviors during the
TPR-SD task. In attempting to compare Bert and Ernie's juice, one child

used his thumb and forefinger to measure the difference between the heights 
of the green and red morning juice. He then measured the difference between

the heights of the green and red afternoon juice. In the TPR-SD comparison 

depicted in Figure 2 he concluded that Bert got more juice in the whole 
day because Bert got a lot more juice than Ernie in the morning and Ernie 

got a little more juice than Bert in the afternoon. This strategy paral­
lels an explanation provided by a number conserver assigned to the inspec­

tion condition in Study 2. She justified her correct responses in the 

TPR-I and -S tasks on the basis of the inequality between the difference 

in the morning subarrays and the difference in the afternoon subarrays.

For example, in one co'mparison the child indicated that Ernie got more 

candy in the whole day because Bert got a little more candy than Ernie in 

the morning and Ernie got a lot more candy than Bert in the afternoon.

Conservers of liquid also tended to make another variety of cross- 

referencing comparisons during the TPR-SD task. Several conservers 

compared Bert's morning juice with Ernie's afternoon juice and Ernie's 

morning juice with Bert's afternoon juice. In the comparison in which 

Bert got more in the morning and Ernie got more in the afternoon (de­

picted in Figure 2), these children found that Bert's morning juice was 

greater than Ernie's afternoon juice and Bert's afternoon juice was



greater than Ernie's morning juice and concluded that Bert got more 

juice in whe whole day. Although several children justified their 

responses in this manner, only one child spontaneously moved the cylinders 

about to compare directly one puppet's morning juice with the other 

puppet's afternoon juice.

Other conservers took a different approach to the TPR-SD task.

Before judging the relative quantity of the green and red juice, they 

predicted what would result if all the red juice in the morning container 

were poured into the container holding the red afternoon juice . They 

also made a comparable prediction concerning the green juice. They thus 

judged which quantity of juice would overfill the afternoon container.

For example, in the TPRr-SD comparison depicted in Figure 2, the children 

predicted that the morning green would overfill the cylinder containing 

the afternoon green and the morning red would not overfill the cylinder 

containing the afternoon red. They concluded that there was more green 

juice, i.e., that Bert got more for the whole day.

Many nonconservers responded to each TPR-SD comparison that Bert and 

Ernie got the same amount of juice in the whole day regardless of the 

actual quantities presented. To justify his response that Bert and 

Ernie got the same amount of juice in the whole day, one child indicated 

that "Bert had big and little [juice] and Ernie had big and little 

[juice]. The child quantified the morning and afternoon juice in the 

most global terms. Data supporting Hypothesis 8 indicate that noncon­

servers performed better on the TPO-SD task than on the TPR-SD task. 

However, nonconservers sometimes responded incorrectly on the TPO-SD 

comparisons involving unequal amounts of green and red liquid although 

they tended to respond accurately on the one equality comparison. On 

the inequality comparisons one puppet had more than the other in the



morning and the afternoon. However, the puppet who had less juice in 

the morning had more morning juice than the other puppet had afternoon 

juice. For example, if Ernie had more juice in the morning and afternoon, 

Bert's morning juice was more than Ernie's afternoon juice. This situa­

tion is depicted in Figure 2. Some of the nonconservers responded 

as if the latter morning-aftemoon comparison informed the comparison 

of the total quantity of morning and afternoon juice-and, thus, mis­

takenly responded that Bert had more total juice. As depicted in Figure 

2, this morning-aftemoon comparison involved the green and red juice 

contained in the two interior cylinders. Thus it appeared as if the 

children centered on one salient aspect of the comparison to the 

detriment of the overall comparison.



CHAPTER IV

DISCUSSION

The discussion of the results comprises five sections. Each of the 

first four sections is devoted to a major research problem the hypotheses 

were designed to address. The research problems concern the development 

of the child’s capacity to make numerical and quantitative comparisons.

The first section integrates the results that pertain to the nature of the 

cognitive capacities of the preoperational child. The second section 

provides a discussion of knowledge of functional relations in connection 

with the acquisition of conservation. The third section characterizes 

the growth of correspondence and one-way function based reasoning in mak­

ing numerical and quantitative comparisons. The fourth section addresses 

the relation of operative level to the child’s capacity to utilize solu­

tion aids in making numerical comparisons. The investigator's conclusions 

are provided in the fifth, and final, section.

The Cognitive Capacities of Preoperational Children

While the results strongly indicate that the cognitive capacities 

of the concrete operational child are more adequate than those of the 

preoperational child, the cognitive capacities of the preoperational 

child can be characterized in a positive way. Study 1 nonconservers 

tended to perform better on some tasks in which relative numerosity and 

spatial extent cues conflicted than on others. They performed better 

on the IP and SP tasks than might have been expected given their poor 

performance on the SCI task. This is not to say that they performed 

as well on the IP and SP tasks as conservers. The data pertaining



to Hypothesis 1 indicate that conservers performed significantly better 

on the IP and SP tasks than level 1 NCs. However, in some respects, non­

conservers ’ performance on the IP and SP tasks resembled that of con­

servers. Like conservers, level 1 and 2 NCs manifested little tendency 

to judge IP and SP arrays on the basis of spatial extent although the 

two arrays making up an IP and SP comparison were equal in length. In 

contrast, spatial extent schemata appeared to govern nonconservers' judg­

ment on the SCI comparisons. Level 1 and 2 NCs tended to indicate that 

a pair of same-length SCI arrays had the same amount of candies although 

the arrays were actually unequal in number.

Nonconservers' performance on the IP and SP tasks, however, was 

superior to their performance on the SCI task. It appears that an 

emergent understanding of the injective and surjective correspondences that 

characterize the IP and SP comparisons provided some counterweight to the 

preoperational child's tendency to judge quantity on the basis of spatial 

extent, as was manifest in the SCI comparisons.

The results pertaining to Hypothessis 6 indicate that in Study 2 

liquid nonconservers, as expected, performed no differently on the SD 

task than liquid conservers. The two quantities of liquid presented in 

an SD comparison were contained in cylinders that were equal in diameter; 

therefore, the relative height of each column of liquid informed its 

relative quantity. Accurate comparisons of this type required a one-way 

mapping of height on to quantity. The almost perfect scores of the 

nonconservers (M = 3.82 where a score of 4.00 reflects perfect perfor­

mance) indicate that preoperational children are accomplished at making 

accurate SD comparisons.

Number nonconservers manifested some capacity to judge TPO-I and



-S comparisons adequately, although data pertaining to Hypothesis 3 indicate 

that task performance is directly related to.operative level. With regard 

to the two injective subarray tasks, level 1 and 2 NCs, as expected, per­

formed significantly better on the TPO-I task than on the TPR-I task.

Level 2, but not level 1, NCs performed better on the TPO-S task than on 

the TPR-S task. Level 1 and 2 NCs tended to perform as well on the TPO 

numerical tasks as they had on the IP and SP tasks.

To make accurate TPO comparisons, the child needed to compose one-way 

subarray relations such as greater and greater yield greater or equal and 

greater yield greater. For example, if Bert got>more candy in the morning 

and the afternoon, then Bert got more the whole day. In contrast, the TPR 

comparisons required a certain amount of cross-referencing between subarray 

comparisons. For example, if Bert got more candy in the morning, and Ernie 

got more in the afternoon, the whole-day comparison is not as straight­

forward as in the case of the TPO comparisons.

Results, thus, suggest that the preoperational child is more capable 

of making one-way compositions of same-directional subarray comparisons 

(TPO) than coordinating countervailing subgroup comparisons (TPR). More­

over, this view is supported by the Study 2 results that pertain to 

Hypothesis 8. The TPO-SD and TPR-SD tasks used in Study 2 are, in the 

domain of liquid, cognate with the TPO and TPR numerical tasks used in 

Study 1. In the TPO-SD comparisons one puppet got more juice than the 

other in the morning and in the afternoon. The TPR-SD comparisons were 

presented in a context in which one puppet got more juice in the morning, 

and the other puppet got more in the afternoon. Study 2 liquid non­

conservers performed significantly better on the TPO-SD task than on the 

TPR-SD task.



Thus it appears that the preoperational child's capacity to make 

accurate numerical and quantitative comparisons can be characterized 

in terms other than what the child lacks. Although his capacity to 

compare quantities is not as adequate as that of the concrete opera­

tional child, the preoperational child does not compare quantities 

unintelligently. For example, the preoperational child's propensity 

to base quantitative comparisons on a single dimension such as height 

— quantity often covaries with height, albeit imperfectly— is more 

adaptive than to respond haphazardly. In sum, preoperational children 

possess adaptive comparison making capabilities that are founded on a 

rudimentary understanding of injective and surjective correspondences, 

one-way function based mappings of height on to quantity, arid one-way 

compositions of same-directional subquantity comparisons.

Piaget et al. (1977) posit that schemes of action constitute the 

source of the child's understanding of functions. They define a scheme 

as "that which makes [an action] repeatable, transposable, or generaliz- 

able, in others words, -its structure or form as opposed to the objects 

which serve as its variable contents" (p. 171). The types of elementary 

actions that become schematized include acts of finding, displacing, and 

modifying objects.

Four modes of functioning characterize action schemes (Piaget et 

al., 1977). These include reproductory, recognitory, generalizing, 

and reciprocal assimilation. Each of these modes of functioning is 

linked to an understanding of functional relations among objects.

Reproductory assimilation refers to the capacity to reproduce an 

action and apply it to one or more objects. Reproductory assimilation, 

according to Piaget et al. (1977), forms the basis for the expectation



that "phenomena or the behaviors of objects are expected to repeat them­

selves" (p. 176). Recognitory assimilation makes possible the discrimina­

tion and identification of objects. Recognitory assimilation, according 

to the Genevans, underlies the child's capacity to conserve the identity 

of objects (in a qualitative but not quantitative sense).

Generalizing assimilation refers to the application of a scheme 

to new objects. It constitutes the basis for the child's expectation 

that parallel actions on objects lead to parallel results. Reciprocal 

assimilation refers to the coordination of successive applications of 

the same scheme.

The above characterization of the functioning of action schemes 

provides a framework within which to understand the performance of pre­

operational children on the comparison tasks. Although such a frame­

work is far from complete, the conceptualization of the functioning 

of schemes provides a starting point for the analysis of preoperational 

children's performance on the comparison tasks.

Consider, for example, the IP and TPO-I tasks. Recognitory as­

similation may be implicated in the success preoperational children mani­

fest on these tasks. Recall that as a result of the none-to-one cor­

respondences that characterize these tasks, there appeared one or more 

gaps in one of the two arrays of decals presented.for comparison. ..

The array having gaps was the smaller of the two. Anecdotal data reveal 

that preoperational children were capable of recognizing the presence of 

gaps and justifying their numerosity judgments by identifying gaps.

In the SP and TPO-S tasks, what have been called "extra" candies 

(the seconds in the two-to-one correspondences) mark the larger of the 

two arrays presented in any comparison. Anecdotal data indicate that



preoperational children are capable of recognizing the presence of extra 

decals and justifying their numerosity judgments by identifying the extras. 

Thus extra decals in the SP and TPO-S arrays as well'as gaps in the IP and 

TPO-I arrays map on'to judgments of relative numerosity.

Judgments in the TPO-I and -S tasks, while possibly sustained by 

recognitory functioning, may also require the support of reciprocal 

and generalizing assimilation. Recall that in most TPO numerical 

comparisons a puppet who received more candy in the morning also 

received more candy in the afternoon. Some coordination of successive 

same-directional subarray mappings appears to be needed. Moreover, the 

generalization of the subarray comparisons is manifest in the judgment 

that the puppet who received more in the morning and the afternoon 

also received more in the whole day.

Preoperational performance on the SH and SCI tasks may be character­

ized by what might be termed the misapplication of generalization.

This view can be made clear by citing results from the liquid draining 

study of Piaget et al. (1977). In this study preoperational children 

tended to predict that liquid which drained out of one container into 

a differently shaped container would collect to a level that matched 

the level of the original container. These children mapped height on 

to height without an operative understanding of the relation between height 

and diameter dimensions. The performance of preoperational children 

on the SH tasks is characterized by the mapping of water level on to 

quantity without regard to differences in the containers’ diameters. 

Similarly, in the SCI task, preoperational children tended to map 

length on to quantity without regard for density. Thus on both SCI 

and SH comparisons, preoperational children tended to overgeneralize



the relation of one dimension to total quantity. On the SD comparisons, 

however, the mapping of one dimension, height, on to quantity provides 

the basis for accurate judgments.

Just as reciprocal and generalizing assimilation were used to ac­

count for the preoperational child's success on the TPO-I and -S 

tasks, these two modes of functioning may also underlie preoperational 

performance on the TPO-SD task. In the TPO-SD task, one puppet received 

more juice in the morning and the afternoon. Some coordination of 

same-directional subquantity mappings may be needed. In addition, the 

genera H z  a t  ion of the subquantity comparisons is that the puppet who 

received more juice in the morning and the afternoon also received 

more in the whole day.

The nature of preoperational functioning is relevant to the pre­

sence of decalage effects in children's performance on the numerical 

and liquid TPO tasks and corresponding simple one-way tasks (IP, SP, 

and SD). Study 1 data that pertain to Hypothesis 3 indicate, at best, 

weak decalage effects. Among level 1 and 2 NCs, the difference in 

performance on the SP and TPO-S tasks, although in the expected direc­

tion, was not significant. Level 2, but not level 1, NCs performed 

significantly better on the IP task than on the TPO-I task. Study 2 

results that pertain to Hypothesis 8 revealed that liquid nonconservers’ 

performance on the SD task was significantly better than their per­

formance on the TPO-SD task, although nonconservers' TPO-SD task per­

formance was superior to their performance on the TPR-SD task. The 

pattern of results supports the expectation that task structure is 

relevant to the presence of decalage effects. The numerical and liquid 

TPO tasks .cohstitute function-of-function tasks. Success on the TPO 

tasks calls for the same-directional composition of subquantity relations,



which was expected to make these tasks more difficult than related 

correspondence (IP and SP) and one-way mapping (SD) tasks. As mentioned 

in Chapter I, a feature of the TPO liquid task was expected to engage 

the thinking of preoperational children and, thus, create a difficulty 

not present in the TPO numerical tasks. In the TPO-SD (liquid) task, 

the tendency to center on the comparison of the interior subquantities 

was expected to provoke inaccurate judgments. Anecdotal data indicate 

that some liquid nonconservers responded as if the interior subquantity 

comparison informed the comparison of the total amount of green and 

red liquid.

An alternative to a Genevan oriented explanation of the pra- 

operational child’s performance on the Study 1 and 2 tasks might be 

based on perceptual salience. Length, for example, is arguably a 

salient cue; therefore, performance on the SCI task is explained by 

the salience of the length cue. Such an explanation parallels a view 

espoused by Wallach (1969) which holds that performance on conser­

vation tasks, both nonconserving and conserving, is the based on the 

criterion stimuli the child employs as indices of quantity.

A perceptual salience based explanation of children's task per­

formance is subject to three interrelated problems. In addressing 

these problems, a major asset of the Genevan viewpoint, namely theo­

retical coherence, will be underlined. First consider performance 

on the IP, SP, and SCI tasks. In each of the three tasks the terminal 

points of any pair of arrays presented for comparison were aligned.

If length were their only basis for comparing quantity, preoperational 

children would have performed on the IP and SP tasks as they had on 

the SCI task. That is to say, preoperational children would have 

repeatedly judged the two arrays making up an IP or SP pair to be



equal. Such a result was not obtained. In contrast, preoperational 

children performed significantly better on the IP and SP tasks than on 

the SCI task. Moreover, hypotheses informed by a theory of the child’s 

understanding of correspondence relations, i.e., the Genevan theory 

of functions, anticipated the differences in task performance.

Secondly, a perceptual salience based explanation is taxed by 

the problem of determining the source of a cue's salience. It is not 

enough to examine the cue. That a cue is salient indicates than an 

organism reponds to it in a consistent way. To determine if a cue is 

salient, then, one must look to the responding organism as well as to 

the cue. The Genevan theory of functions provides a general develop­

mental formulation which constitutes a basis for generating hypotheses 

that are relevant to task performance. Length appears to be a singly 

dominant cue in the preoperational (but not concrete operational) 

child's performance on the SCI task. The Genevans (Inhelder, Sinclair,

& Bovet, 1974; Piaget, Inhelder, & Szeminska, 1960) advanced the view 

that preoperational quantification is based on length because of the early 

elaboration of ordinal schemes of "going beyond." Genevan theory holds 

that among late preoperational children (aged approximately four years) 

"evaluation by length is actually based on an ordinal quantification 

which is already of a conceptual (emphasis mine) nature" (Piaget, 1968, 

p. 976). Thus, the preoperational child's response that two same- 

length SCI arrays are equal is conceptually, not perceptually, based.

Moreover, Genevan theory embeds the late preoperational child's 

tendency to evaluate quantity by length within a general develop­

mental formulation. With operative development, evaluation by length 

is expected to yield to a more sophisticated evaluation of quantity,



such as the joint evaluation of quantity by length and density. Prior 

to the late preoperational period, Genevan theory holds that topological 

notions of crowding govern the child's evaluation of quantity, only 

to be supplanted by evaluations by length (Piaget, 1968).

Third, perceptual salience based explanations lack parsimony. 

Wallach, Wall, and Anderson (1967) found that, in the standard number 

conservation paradigm, length constitutes a cue that frequently mis­

leads young children. P. H. Miller (1973) found that, in the standard 

liquid conservation paradigm, height constitutes a cue that frequently 

misleads young children. However, neither study provides a basis for 

linking cue salience in one domain with cue salience in the other. By 

constrast, the Genevan theory of functions provides a coherent frame­

work within which to view the salience of length and height cues.

Genevan theory holds that the preoperational child's use of length and 

height as indices of quantity reflect a level of conceptual develop­

ment. The level of conceptual development is governed by the semi­

logic made manifest by the Genevan theory of functions.

Knowledge of Functional Relations and the 

Acquisition of Conservation

Although this investigation does not purport, to be a conservation 

training study, data relevant to Hypotheses 5 and 10 indicate that 

experience with the static numerical and quantitative comparison tasks 

does not promote the acquisition of conservation. Such findings do not, 

however, imply that experience with functional relations is unrelated 

to the acquisition of conservation. In view of the Genevan theory 

of functions, a reexamination of American conservation training re­



search might indicate that instruction in functional relations attends 

conservation training. Since the conservation training literature is 

vast, the following discussion will be confined to two exemplary 

studies.

In a number conservation training study, Wohlwill and Lowe (1962) 

attempted to modify the preoperational child's tendency to use .length 

as an index of numerosity. The training procedure began with the 

child counting the members of each of two equal rows of stars. The 

rows were initially in one-to-one correspondence. As in the standard 

number conservation test; one row was expanded or contracted during 

the training trials. However, during two-thirds of the training trials 

the interviewer, just prior to changing the length of a row, added a 

star to (or subtracted a star from) the row to be altered. Despite 

having features that were designed to affect the child’*s understanding 

of length-numerosity relations, the procedure was reported to have had 

marginal effects on conservation performance.

In contrast, Wallach, Wall, and Anderson (1967) developed a train­

ing procedure that was better suited to altering the young child's ten­

dency to map length on to numerosity. They developed a "doll revers­

ibility training" procedure which began with the child placing each 

of six dolls in one of six beds, thus, creating a one-to-one relation 

between dolls and beds. The interviewer removed the dolls from the 

beds and placed them closer together (further apart). The child was 

questioned about the possibility of restoring the original doll-bed 

correspondence.

Children in the reversibility training condition tended to per­

form better on a number conservation posttest than comparable children



assigned to an addition-subtraction training group. Wallach et al. (1967) 

argued that reversibility training, by inducing children to rely less 

upon misleading length cues, provoked improved performance on number 

conservation tests.

From the standpoint of the theory of functions, Wallach et al.

(1967) and Wohlwill and Lowe (1962) attempted to enrich the child's under­

standing of the length-numerosity relation. An important aspect of this 

enriched understanding is the quantity-informing character of the one- 

to-one correspondence. Doll reversibility training, in particular, 

emphasizes the relation between sets of objects within the framework 

of an attractive— to a child— thematic context (cf. the "provoked 

correspondence" of Piaget and Szeminska, 1952). The thematic context, 

a doll in every bed, anchored every change in the length of the set of 

dolls. After each change the child was questioned about the doll-bed 

relation and witnessed the dolls' return to their beds. In doll re­

versibility training the notion that the doll-bed correspondence rela­

tion nullifies the length-numerosity relation is emphasized. Piaget 

and Szeminska (1952) evolved the view that in the domain of number con­

servation, an understanding of the reversibility of action enables the 

child to proceed "exclusively by reference to the one-to-one correspon­

dence" (p. 89).

One-to-one correspondence constitutes a basic functional relation, 

bijection. The acquisition of number conservation implies that the 

child's understanding of bijection has become "operatory" (Piaget, 1968). 

In the preoperational subperiod, one-to-one correspondence marks an 

equivalence relation just as injective and surjective correspondences 

may mark nonequivalence relations. However, these relations apply only



to the domain of static comparisons. With operative development the 

equivalence-informing character of the one-to-one correspondence is 

preserved despite the destruction of the optical correspondence. It 

is in this way that number conservation constitutes a more developed 

understanding of bijection.

Suppose, in a slight variation of the number conservation para­

digm, an injective or surjective arrangement (such as the IP or SP 

arrangements used in Study 1) of two rows of tokens was placed before 

a child. Study 1 data indicate that if the rows are left untransformed, 

preoperational children would be capable of indicating which row held 

more. However, the young child's understanding of injective and sur­

jective relations is not yet operatory. If the optical correspondences 

were altered such that the terminal points of the less numerous array 

were extended beyond those of the more numerous array, it is likely 

that the preoperational child's judgment of the numerositydelation 

would reflect the new length relations. With operative development it 

is expected that the child would become capable of maintaining his 

initial judgment despite the destruction of the initial optical cor­

respondence. That is to say, the child's understanding of injective 

and surjective correspondences would become operatory.

It is also expected that the child's judgment of height relations 

also undergoes developmental change. Consider two glasses having the 

same diameter but containing unequal quantities of liquid (as in the 

SD task). Study 2 data indicate that preoperational children are 

highly accurate at comparing liquids thus arranged. Suppose the lesser 

quantity of liquid is poured into a narrower glass and, after pouring, 

rises to a level which is higher than that of the other quantity.



It is expected that the preoperational child would alter his judgment 

to reflect the new height relations. However, with development the 

child's understanding of height relations should become operatory.

The child should become capable of maintaining a judgment based on pre- 

transformation height relations despite their alteration. This ad­

vance in cognitive functioning is thought to be supported by a growing 

understanding of height-diameter relations and the reversibility of 

actions.

The Growth of Correspondence and One-Way 
Function Based Comparisons

The results of the investigation generally indicate that the 

child's capacity to make accurate numerical and quantitative compari­

sons becomes more adequate with operative development. Significant 

qperative level effects were found in every instance of task perfor­

mance except the SD task.

As anticipated in Hypothesis 2, significant operative level ef­

fects on the performance of the Study 1 SCI task were found. The re­

sults ;pertaining to the SCI task indicate that number conservers are 

significantly more accurate in judging SCI arrays than nonconservers. 

Conservers' performance appeared to be governed less by spatial extent 

schemata than the performance of nonconservers. Since Study 1 children 

were not permitted to count in comparing arrays, conservers appeared to be 

more sensitive to another quantity informing cue, relative density.

In order to use relative density as an index of relative quantity, 

the child's judgments of SCI arrays must be decentered from the spatial 

extent schemata that appeared todominate the judgements of the pre- 

operhtional child. That is not to say that quantitative judgments



become insensitive to spatial extent cues. Rather, density and spatial 

extent provide joint bases which, in concert, inform judgments of rela­

tive quantity. Relative density was an informative cue because paired 

SCI arrays were equal in length.

This interpretation is supported by the Study 2 results anticipated 

in Hypothesis 7. The results pertain to performance on the SH task, 

the liquid cognate of the SCI task. In each of the tasks, a prepotent 

cue, height of two liquids in the SH task and length of two arrays in 

the SCI task, was held constant. In the SH task, relative diameter 

had the same quantity informing function relative density had in the 

SCI task. The results obtained on SH performance paralleled the re­

sults obtained on Study 1 SCI performance. Just as spatial extent 

appeared to govern the judgments of number nonconservers on the SCI 

task, relative height appeared to govern the judgments of liquid non­

conservers on the SH task. That is to say, liquid nonconservers tended 

to judge two quantities of liquid that were equal in height to be the 

same regardless of the relative diameters of the cylinders containing 

them.

It was, therefore, expected that some degree of decentering away 

from an overreliance on the height cue would attend operative develop­

ment. Moreover, height and diameter, with development, would be 

expected to constitute joint bases which inform judgments of relative 

quantity. Relative diameter was an informative cue in the SH task 

because the heights of the quantities compared were equal. The re­

sults relevant to Hypothesis 7 support this view in that they reveal 

a highly significant relation between accurate judgment on the SH 

comparisons and level of operative development.



The performance of Study 1 children on the TPR tasks revealed sig­

nificant operative level effects. It was thought that accurate judgment 

on the TPR comparisons required a capcity to coordinate countervailing 

subarray relations. The general capacity to coordinate one-way functional 

relations, i.e., compensation, is considered a characteristic of concrete 

operational thought (Piaget et al., 1977). Results pertinent to Hypo­

thesis 2, which revealed a significant relation between TPR-I and -S 

task performance and operative level, support this view.

Moreover, the view is supported by Study 2 results that pertain 

to Hypothesis 9. Hypothesis 9 addresses performance on the TPR-SD 

task. The TPR-SD task is, in the domain of liquid, cognate with the 

TPR numerical tasks. In order to compare adequately the overall quantity 

of green and red liquid presented in the task, the child must coordinate 

subquantity comparisons. The results relevant to Hypothesis 9 revealed 

highly significant operative effects in the expected direction.

The view is further supported by the Study 1 results that pertain 

to the children's performance on the IS task. It was thought that ac­

curate judgment on the IS task required some capacity to coordinate 

countervailing two-to-one and none-to-one correspondences. The results 

pertaining to Hypothesis 2 revealed the expected significant operative 

level effects on performance on the IS task.

Operative level, thus, appears to be reflected in performance on 

tasks in which a certaiii degree of cognitive decentering or coordina­

tion of countervailing relationships is required. Operative level 

effects have also been observed in the performance on tasks in which 

preoperational children manifest some degree of success.

Preoperational children manifested some success in comparing IP



and SP arrays. This success appears to reflect some rudimentary under­

standing of injective and surjective correspondences. Preoperational 

children also manifested some success on the numerical and liquid TPO 

tasks. Success on these tasks appears to reflect an understanding of 

one-way compositions of same-directional comparisons. Results pertaining 

to Hypothesis 1 revealed significant operative level related improve­

ments in performance on the IP and SP tasks. Significant results 

relevant to Hypothesis 3 indicated that performance on the TPO-I and 

-S tasks is related to operative level. Results relevant to Hyr 

jjottesdsS revealed operative level effects on the TPO-SD task.

With respect to the child's capacity to make numerical and quantita­

tive comparisons, the concrete operations appear to support two kinds 

of functioning: the emergence of new comparison-making capabilities

and the strengthening of capabilities in which preoperational children 

manifest some degree of competence. In regard to the first change in 

functioning, powerful new comparison-making capabilities emerge in the 

concrete operational period. Results pertinent to SCI and SH task 

performance revealed that with operative development children become 

capable of using two dimensions as joint bases for comparisons. SCI 

judgments become based on density and length cues, and SH judgments, on 

diameter and height cues. At the preoperational level, performance on 

these tasks appeared to be informed by only one dimension, length in the 

instance of the SCI task, and height in the instance of the SH task. 

Results pertaining to the TPR task revealed an emergent capacity to 

make cross-referencing types of comparisons. This was underlined by 

the anecdotal data on TPR-SD task performance. These data depicted 

liquid conservers who spontaneously reported making cross-comparisons 

of one puppet's morning juice and another puppet's afternoon juice or



imagining the overfilling of a cylinder if morning juice were to be 

poured into the cylinder containing same colored afternoon juice. 

Nonconservers, on the other hand, manifested none of these tendencies.

The second type of change in functioning to occur with the develop­

ment of the concrete operations involves the strengthening of comparison- 

making capacities that first appear in the preoperational subperiod. 

Children’s performance on the IP, SP, and TPO-I, -S and -SD tasks, 

tasks on which preoperational children manifest some positive capability 

appears to improve further with operative development. That is to say, 

with operative development children become increasingly accurate in 

applying elementary correspondence and function based knowledge.

The investigation of the child's capacity to compare quantities 

on the basis of his developing understanding of correspondence and 

one-way function relations raises three issues that pertain to future 

research. The first issue involves a major implication of the Genevan 

theory of functions, namely, the "limitless" extension of the child's 

capacity to understand functional relations (Piaget et al., 1977).

The Genevans contend that functions "are constituted without limit" as 

a result of an abstracting process arising from the concrete operations 

(p. 194). It follows from Genevan theory that the comparison tasks 

employed in Studies 1 and 2 constitute a mere sample of the comparisons 

concrete operational children eventually master. Such comparisons 

might include tasks in which the quantities to be compared consist of 

materials that differ from the materials used in Studies 1 and 2 (e.g., 

clay, rice, wood— the variety is great). More importantly, concrete 

operational children would be expected, on the basis, of Genevan theory, 

to become capable of making quantitative comparisons within conceptual



domains not explored in Studies 1 and 2. These conceptual domains 

might Include length, area, and speed among others. Comparisons might 

also involve quantities that are "packaged" such that they are divided 

into three or more subquantities or arrays in which three-, four-, or 

more-to-one mappings are found. New research is needed to explore more 

fully the growth of the child's capacity to compare quantities that 

embody $ach of the many material and conceptual domains.

The second research issue involves the relation of school learning 

to a major component of development, that of the progressive arithmetiz- 

ation of thought. The present investigation underlines the emergence 

of new comparison-making capabilities and the increasing accuracy with 

which children compare quantities. However, success at the tasks 

employed in this investigation did not require an understanding of arith­

metic [as opposed to logical] multiplication and proportion. It is only 

with further development that children acquire knowledge of multiplica­

tive relations (e.g., n + n +...+ = mn) and proportion and how to

use that knowledge to inform comparisons. In a number of studies,

Piaget et al. (1977) examined aspects of the child's late developing 

understanding of multiplicative relations (e.g., in the operation of a 

lever; in the problem of the "buckling square") and proportion (e.g., in 

double seriation problems in which a constant ratio marked the relation 

between the quantitative values— number, length, and area— of correspond­

ing elements). Despite their interest in multiplicative relations and 

proportion, Piaget and his colleagues, surprisingly, do not characterize 

the role of school learning in the development of the child's understand­

ing in these school relevant areas. Even in their work on the develop­

ment of the child's understanding of geometry concepts (Piaget, Inhelder,



& Szeminska, 1960), the Genevans neglect the role of school learning—  

and this neglect Is all the more conspicuous because they deal with 

school oriented topics such as measurement.

Future research on the relation between development and formal in­

struction can take two coordinate courses. The role of development in 

structuring the child's capacity to profit from mathematical instruction 

constitutes one course of research. However, since mathematics instruc­

tion constitutes a major source of mathematical knowledge, future 

research must also examine the products of mathematics instruction as they 

feed into the developmental process. Surely the children who manifested 

some knowledge of multiplicative relations and proportionality, as 

depicted by Piaget et al. (1977), attended school. It is almost incon­

ceivable that these children could have reached the highest levels of 

problem solving in the area of, for example, proportion without school 

experiences. It is, therefore, important that future research investigate 

the role of school learning in the course of general developmental 

advance.

The third research issue involves the relation of correspondence 

and function based thought to problems that are not purely mathematical 

in content. Piaget et al. (1977) provide a starting point for such 

research by studying the child's understanding of functional relations in 

the context of simple machines (e.g., the operation of a lever; the 

force of a weight on a spring). Future research can extend this work 

by examining the relation between the child's understanding of functional 

relations in mathematical and causal-scientific contexts. Such research 

is Important from the standpoint of elucidating the connection between 

the child's mathematical understanding and his understanding of physical



phenomena.

The Relation of Operative Level to the 
Effective Use of Solution Aids -

In Study 2 children were randomly assigned to three instructional 

set conditions in which they were induced to employ different solution 

aids in comparing arrays. The solution aids consisted of the following 

comparison procedures: inspection, counting, and matching. Across all

set conditions, results pertinent to Hypothesis 4 revealed a highly 

significant relation between operative level and performance on each 

of the static numerical comparison tasks administered in Study 2. 

However, the principal purpose of the investigation of children's 

performance on the Study 2 numerical tasks was to examine the effective­

ness of the different solution aid approaches within each operative 

level. Results pertaining to within operative level performance were 

expected to elucidate the formulations of Cattell and Horn, on one 

hand, and the Genevans, on the other.

Cattell and Horn's theory of fluid and crystallized intelligence 

posits that solution aids may "compensate for limitations in anlage 

capacities" (Horn, 1968, p. 244). Counting and matching are knowledge 

extracting skills that ought to inform the numerical comparisons. To 

the extent they are a subset of the learned noegenetic skills the 

child has acquired during his lifetime, counting and matching consti­

tute crystallized skills, or solution aids (Horn, 1968; Horn & Cattell, 

1966).

The Cattell-Horn view is relevant to the performance of the 

preoperational group on the Study 2 static numerical comparison tasks.



However, in the domain of number nonconservation, preoperational children 

were classified according to two developmental levels. Children in the 

more advanced preoperational group, level 2 NCs, although failing to 

conserve number, tended to establish spontaneously a one-to-one cor­

respondence in creating two equal sets of checkers. Children in the less 

advanced preoperational group, level 1 NCs, failed to conserve and 

evidenced difficulty in spontaneously establishing a one-to-one corres­

pondence for the purpose of creating equal sets. According to the 

Cattell-Horn view, all children, including those who were likely to 

perform poorest, i.e., level 1 NCs, when induced to employ counting or 

matching in comparing arrays, should manifest better performance 

relative to comparable children in the inspection condition. Moreover, 

counting was potentially a viable solution aid for all groups. All 

children, level 1 and 2 NCs and conservers, included in Study 2 were 

capable of counting a set of items whose cardinal value, ten, was equal 

to the greatest cardinal value a static numerical comparison array could 

assume. Passing a preliminary counting task where the child was asked 

to count a set of ten items was a criterion for inclusion in the study.

The Genevans, to some extent, differ with this formulation. The 

Genevans hold that operative level structures strict sense learning 

(Furth, 1969, 1974; Inhelder, Sinclair, & Bovet, 1974; Piaget, 1970b, 

1971). This view implies that the child's operative level largely 

determines whether a solution aid would be used effectively in comparing 

arrays. Level 1 NCs, in contrast to children of more advanced operative 

levels, constitute the group least expected to manifest improved per­

formance when induced to employ counting or matching.

The four static numerical comparison tasks included in Study 2



for the purpose of investigating set induced solution aid effects were

abridged versions of the four most difficult Study 1 tasks. On three

of the tasks— the IS, TPR-I, and TPR-S tasks— Table 3 indicates that in

Study 1 level 1 NCs performed at approximately chance levels of respond-
3ing, given that 2.33 correct responses constitutes chance level.

Level 1 NCs tended not >to respond randomly on the SCI task. They con­

sistently, and inaccurately, judged same-length SCI arrays to have the 

same amount of candies regardless of differences in density. Thus, 

the four static numerical comparison tasks that were selected to 

be administered in Study 2 constituted good candidate tasks in which 

to examine set induced solution aid effects among level 1 NCs.

Results pertaining to Hypothesis 4 support the Genevan view.

Simple main effects for set on the four static numerical comparison 

tasks administered in Study 2 were nonsignificant among level 1 NCs.

In contrast, simple main set effects were found among level 2 NCs 

and conservers. Study 2 results indicate that simple main set effects 

for SH task performance were found among conservers of liquid. Although 

the counting set condition appeared to induce the best performance, 

the reason for this effect to occur in the domain of liquid comparisons 

is unclear. Of note is that the simple main effects of set occurred 

among liquid conservers, and not among nonconservers.

Genevan theory, with its stress on universal features of cognitive 

development, sometimes neglects issues concerning localized functioning

3In Study 1, 2.33 correct judgments was considered chance re­
sponding since there were seven comparisons in each task, and one 
of three possible responses was considered correc;t: Bert has more 
candy; Ernie has more candy; both puppets have the same amount of 
candy.



such as the question of the efficacy of rival solution approaches. The 

Cattell-Horn view, by contrast, implies that well-learned knowledge- 

extracting skills constitute potential solution aids, and that children 

differ in what solution aids they may adopt. That children assigned 

to the counting condition tended to make more accurate judgments than 

children assigned to other solution aid conditions implies that count­

ing constitutes a solution aid that is more cognitively efficient 

(Beilin, 1969) than either inspection or matching.

A number of characteristics of counting are possible sources 

of efficiency. Counting is an indexing operation. Number names are 

ordered and assigned one-to-one to countable objects. By conforming 

to rules of order and one-to-one correspondence, the counter is 

guaranteed an accurate representation of the cardinal value of an 

aggregate. In addition, for many children, counting becomes highly 

routinized. Routinization makes counting easy to invoke. According 

to Werner (1957), with development counting becomes progressively 

less disturbed by the configuration of the countables in an aggregate.

A characteristic of matching suggests that it too constitutes a 

cognitively efficient solution aid. Matching and .counting share a 

feature not shared with inspection. Both matching and counting require 

the establishment of one-to-one correspondences. In matching, a one- 

to-one correspondence between decals making up each of two rows is 

established. In counting, a one-to-one correspondence between an 

ordered list of number names and decals is established.

However, despite the common feature, counting and .matching are 

not always equally superior tb inspection. Study 2 results indicate that, 

in the IS, TPR-I, and TPR-S tasks, matching, unlike counting, does not



constitute a solution aid that is superior to inspection. This is per­

haps because of the features counting and matching do not share. Count­

ing is a "tool" that has wide cultural-environmental support within the 

context of the child’s everyday experiences (Saxe, 1979a; Vygotsky,

1978). An ordered list of number names is provided by the culture and 

can be invoked regardless of the configuration of the aggregate 

to be counted. It is perhaps because of wide cultural-environmental 

support that counting functions as a quantitative skill that is acquired 

relatively early in life. Saxe (1977, 1979b) adduced evidence indicat­

ing that children employ counting to compare and reproduce arrays even 

before they conserve number.

Study 2 anecdotal data indicate that children of all operative 

levels manifested difficulty in matching green and red decals in the 

IS, TPR-I, and TPR-S tasks. This is probably because children have 

less cultural-environmental support for matching sets of items, especial­

ly when the sets vary in configuration, than counting items. However, 

in the SCI task, matching tended to Improve performance relative 

to inspection. The features of the IS, TPR-I, and TPR-S arrays— gaps, 

two-to-one mappings, the division of arrays into subarrays— that inter­

fered with the children’s attempts to match decals one-to-one, were 

absent in the SCI arrays. Anecdotal evidence suggests that the un­

interrupted linear character of the SCI arrays facilitates matching.

Study 1 data indicate that on the SCI task, the performance of level 

2 NCs was very inaccurate and resembled the performance of level 1 

NCs. All Study 1 children were induced to inspect arrays. In study 

2, when inspection was pitted against counting and matching, the 

performance of level 2 NCs assigned to the counting and matching set



conditions was superior to that of peers assigned to the inspection set 

condition. When children counted or matched decals, they discovered which 

array had more, and, in effect, freed themselves from the tendency to 

base judgments on spatial extent that characterized the performance of 

level 2 NCs who were induced to inspect arrays. By contrast, counting 

and matching sets appeared to be insufficient to free level 1 NCs from 

the tendency to base judgments on spatial extent. Anecdotal data revealed 

that some level 1 NCs matched SCI decals one-to-one until finding 

unmatched decals in the more numerous row, yet these children always 

responded that the puppets had the same amount of candy. Analogous 

anecdotal findings bear on the performance of level 1 NCs assigned to 

the counting condition. Some level 1 NCs accurately counted each member 

of a pair of unequal SCI arrays but reported that the puppets had the 

same amount of candy.. This finding reflects Saxe's (1977) result that 

among some children, "numerical comparisons based on counting and 

spatial extent compete with one another" (p. 1515). Other level 1 NCs 

assigned to the counting set condition employed a counting strategy that 

was inappropriate given that the SCI or any other numerical task called 

for the comparison of two arrays (cf. Saxe, 1977). These children tended 

to count out the total number of decals presented instead of the number 

of decals In each of the two arrays.

Operative level appears to provide a framework within which the 

competition between the results of counting or matching and spatial 

extent can be understood. Study 2 data indicate that level 1 NCs were 

influenced by the length of the SCI arrays in all solution set condi­

tions. However, matching and, to a greater extent, counting tended to 

induce level 2 NCs to compare arrays more accurately. An important



characteristic of the functioning of level 2 NCs may sustain these 

results. Level 2 NCs are capable of creating equal sets of items by 

establishing a one-to-one corresnondence between the members of the. 

sets. Level 1 NCs, by contrast,, are incapable of this type of function­

ing. The child who uses matching to compare arrays establishes a one- 

to-one correspondence between green and red decals. The child who 

uses counting to compare arrays establishes a one-to-one correspondence 

between green decals and ordered number names, and again between red 

decals and ordered number names. Since level 2 NCs are capable of 

establishing one-to-one correspondences to inform quantity judgements, 

when induced to count or match in comparing arrays, the quantity, 

informing capability inherent in establishing one-to-one correspondences 

is probably invoked. Thus:,.their SCI task performance is likely to be 

better than the performance of comparable children assigned to the 

inspection set condition, a condition in which the quantity informing 

capability inherent in establishing one-to-one correspondences is probably 

not invoked. Given level 1 NCs' limitations in functioning, no such 

performance differential among children at this level is likely.

On the Study 2 IS, TPR-I, and TPR-S tasks, level 1 NCs performed

at approximately chance levels, given that 1.33 correct responses
4constitutes chance level. Counting or matching did not lead to

4In study 2, 1.33 correct judgments was considered chance respond 
ing since there were four comparisons in each task, and one of three 
possible responses was considered correct: Bert has more candy; Ernie 
has more candy; both puppets have the same amount of candy.



improved performance relative to inspection. However, at more advanced 

operative levels, i.e., among level 2 NCs and conservers, children in 

the counting condition tended to perform better than peers in the 

inspection and matching conditions.

Study 2 results, thus, support the view derived from the Genevan 

interpretation of the relation of learning in the strict sense and 

operative level. The Genevan view suggests that children at more 

advanced operative levels are more flexible than level 1 NCs in adjust­

ing their counting to the configurational subtleties of the SCI, TPR, 

and IS numerical tasks. This flexibility is likely to derive from a 

growing capacity to coordinate each of the following: length and den­

sity relations, countervailing subgroup comparisons, and counter­

vailing injective and surjective relations. This flexibility, largely 

absent in early preoperational thought, is characteristic of the emerg­

ing reversibility inherent in concrete operational thinking.

The relation of operative level to the child's capacity to utilize 

solution aids has practical applications in the area of instruction.

A major implication of this relation is that with development children 

become increasingly capable of solving problems by a variety of means. 

The investigation revealed that counting and, sometimes, matching 

constitute quantity-informing solution approaches that are effective 

alternatives to inspection. Data indicated that among conservers and 

level 2, but not level 1, nonconservers counting and matching were 

effective solution approaches. Moreover, counting and, perhaps, match­

ing are solution approaches that may be considered the result of infor­

mal instruction.

The above cited results should not be construed within the limits



of time-worn "readiness" explanations. Vygotsky (1962) wrote that 

instruction "must be aimed not so much at the ripe as at the ripening 

[cognitive] functions" (p. 104). He further argued that a certain 

"minimal ripeness of functions is required" before instruction can be 

effective (p. 104). However, Vygotsky (1962) rejected the view that 

"instruction hobbles behind development" (p. 94). Vygotsky contended 

that Instruction must be slightly in advance of development in that it 

is aimed at ripening cognitive functions. The results of the present 

investigation support Vygotsky's views.

Recall that in the present investigation a subgroup of the preop­

erational children tended to apply counting and matching effectively 

in responding to the static numerical comparison tasks. What distin­

guished the preoperational children who tended to apply counting and 

matching effectively from the preoperational children who failed to 

apply the solution aids effectively was the capacity to invoke the 

quantity-informing character of the one-to-one correspondence. The 

former, in contrast to the latter, group of children exhibited, within 

the context of the Piagetian conservation of number paradigm, a 

greater capacity to invoke the quantity-informing character of one-to- 

one correspondence. That is to say, the quantity-informing character 

of one-to-one correspondence constituted a "ripening" function for the 

former, but not the latter, group. Members of neither group, however, 

were able to conserve number. This finding is important because a 

considerable body of research (cited in Chapter 1) assumes that number 

conservation— number conservation entails a relatively advanced, or 

"ripe", understanding of one-to-one correspondences (see pp. 84 to 85) 

— is a basic constituent of quantitative thinking. Thus conserver



status does not constitute the minimum prerequisite for applying count­

ing or matching based enumerational solution strategies, underlining 

the Vygotskean notion that instruction is best linked to ripening 

rather than ripe cognitive functions.

The relation of operative level to learning should be construed in 

a broad sense. Development paves the way for a variety of approaches 

to a concept. One characteristic of concrete operational thinking is 

the emergence of the child's understanding of vicariance relations 

(Flavell, 1963; Piaget, 1960, 1972), i.e., the great variety of ways 

in which conceptual relations can be recast (e.g., mammals a dogs + 

non-dogs = cats + non-cats *» ...). Furthermore, the Genevan theory of 

functions and corresondences stresses the virtually "limitless" capa­

city to the concrete operational child to mastey the ingredients of 

mathematical and physical-causal functional relations (Piaget et al., 

1977). In addition, the Genevan investigations of ontogenesis open 

up, rather than exclude, areas of instruction. For example, geometry 

is a subject that has long been considered appropriate to high school. 

However, Genevan research (Piaget & Inhelder, 1967; Piaget, Inhelder,

& Szeminska, 1960) revealed that children's concepts of space and 

geometry have a long developmental history. As a result of this 

research, it becomes possible to adjust instruction in geometry to 

levels of conceptual development found among children in lower grades.

The present investigation identifies certain content domains as 

objects of mathematics instruction for kindergarten and first grade. 

These content domains, estimating and comparing quantities, make use 

of children's informal learning in the areas of counting and matching.

Individuals routinely estimate quantities without counting, and



with practice improve their accuracy in estimating quantities. In 

kindergarten and first grade classrooms, children can be induced to 

estimate arrays of discrete objects and contrast the results of inspec­

tion based estimation activities with the results of counting. Con­

figurational subtleties such as length of an array or the division of 

the array into subarrays, which are expected affect the child's accur­

acy in estimating the array's numerosity, can be varied. Estimation 

activity can be centered around arrays of objects of interest such as 

arrays consisting of pictures of toys. Activity of this sort can be 

extended to include the estimation of the size of groups of classmates. 

For example, some children can be asked to stand in a group while 

remaining class members can estimate group size, and then check their 

estimates by counting the number of children in the group. The con­

figuration of the group can also be altered.

The purpose of instruction in estimation is twofold. First, by 

receiving feedback regarding their estimates, children can be induced 

to become better estimators. Secondly, children should begin to 

become aware of the difficulties configurational subtleties impose 

upon inspection based estimation activity and how these difficulties 

might be systematically overcome. It is expected that children will 

vary in the strategies they use to overcome configurational subtleties. 

These strategies can be shared among class members and compared for 

effectiveness.

The second content domain, the comparison of quantities, is re­

lated to the first. Children can be induced to compare arrays of 

objects without counting, and then compare the same arrays using count­

ing and/or matching. The different approaches to comparing arrays can



thus be contrasted. Groups of children can also be compared. For 

example, the teacher might ask if there are more boys or girls. A 

variety of strategies ranging from one-to-one correspondence to sub­

grouping procedures are potentially elicitable. The children's strate­

gies can be shared and contrasted for effectiveness. In addition to 

inducing children to become more accurate in making numerical compari­

sons, instruction in this content domain should help to make children 

aware of distorting configurational features and how to overcome them.

The present investigation indicates that children as young as four 

years can benefit from instruction in the estimation and comparison 

content domains. A child need not be a number conserver in order to 

participate in a classroom in which these content domains are addressed. 

The present investigation, however, does emphasize that the child 

should evidence some understanding of one-to-one correspondence if he 

is to benefit from instruction in these domains.

Conclusion

The present investigation was designed to examine three aspects 

of the development of the child's capacity to make numerical and 

quantitative comparisons. These include characterizing the cognitive 

capacities of the preoperational child, the achievements of the con­

crete operational child, and the relation of operative level to the 

child's capacity to utilize solution aids.

Preoperational children— defined by their nonconserving performance 

on conservation of number and liquid tests— were found to have positive 

comparison-making capabilities reflecting a rudimentary understanding 

of injective and surjective correspondences, one-way function based



mappings of height on to quantity, and one-way compositions of same- 

directional subquantity comparisons (e.g., greater and greater yield 

greater). The concrete operations were found to sustain two types 

of changes in functioning. One type of change in functioning involves 

the emergence of powerful new comparison-making capabilities. Unlike 

preoperational children who based quantity judgments exclusively on 

a single dimension such as length or height, concrete operational 

children— conservers of number, conservers of liquid— tended to use 

joint bases such as length and density or height and diameter to 

inform quantity judgments. Concrete operational children were also 

found to be capable of comparing quantities in which some degree 

of cross-referencing of subquantity comparisons was required. The 

other change in functioning that characterizes the concrete operational 

period involves the strengthening of comparison-making capabilities that 

first appear in. the preoperational subperiod.

The investigation also supports the Genevan view that operative 

level regulates the child's capacity to use solution aids effectively. 

Number nonconservers who evinced little mastery of one-to-one correspon­

dence tended to perform poorly on numerical comparison tasks regard­

less of the solution aids the children were induced to adopt. In 

contrast, tohen nonconservers who evinced mastery of one-to-one cor­

respondence and conservers were assigned to the counting condition, 

they tended to perform better than peers in the inspection and match­

ing conditions. The capacity of fchildren at more advanced operative 

levels to benefit from the use of solution aids is an expression of 

the flexibility that is characteristic of the emerging reversibility 

inherent in concrete operational thought.



FIGURE 1

SAMPLE STATIC NUMERICAL COMPARISONS 
(RED ROW ON TOP - GREEN ROW ON BOTTOM)
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FIGURE 2

SAMPLE STATIC QUANTITATIVE COMPARISONS 
(DARK COLOR REPRESENTS RED LIQUID AND 
LIGHT COLOR REPRESENTS GREEN LIQUID)
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