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Chapter 1. 

Introduction 

1.1. Background   

Reactive oxygen intermediates (ROIs, oxygen radicals and singlet oxygen) which are produced in 

photooxidative processes, can be destructive in nature and detrimental to materials. While uncontrolled 

ROIs can result in disaster, however, under controlled conditions ROIs can be of great use in areas such as 

disinfection and synthesis. These species, including ROO∙, RO∙, OH∙, HO2∙, 1O2, and O2∙
—,1-5 are produced 

in complex mixtures, which complicates the study of ROIs individual primary production and downstream 

mechanisms.6,7  The undefined generation events as well as the unknown downstream reactions of many 

ROIs causes difficulty in the orderly application of these species. Further complication can arise from 

photo-bleaching of the sensitizer required for their production.8 However, the study of specific purified 

ROIs can be achieved through the use of phase separation and interfacial chemistry techniques. Here we 

approach the deconvolution of ROI reactions, in order to study photosensitized peroxides and their resultant 

alkoxy radicals. Such elucidation will help to control the oxidation of natural and synthetic molecules, 

reduce toxicity to organisms and damage to materials, and develop new methods for disinfection of bacteria 

and water supplies. 

While a great deal of photooxidation research has been performed to elucidate the primary processes 

which occur upon light exposure and the initial photooxidative products, only a small number of studies 

have focused on secondary processes which occur post the production of the initial products which have 

shown to be of proportional consequence.9-13 For example, primary reactions often lead to peroxides, which 

in secondary reactions can homolyze their O–O bonds and form alkoxy radicals. Some literature has shown 

that the secondary products of primarily formed peroxides can highly detrimental to organisms.14-18 Thus, 

studying the reactions of primarily formed peroxides provides important new information on the outcomes 

of multistage oxidative events. The research described here was on new techniques in the study of sensitized 
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photolysis of peroxides and the subsequent radical reactions. We report some of the first studies on 

heterogeneous surfaces with selective ROI type and quantity to help deduce the mechanisms. 

 

1.2. Purpose of Research  

We have developed two and three phase devices for phase-separated photosensitization methods to 

selectively produce individual ROIs. Methods which utilize our three phase device, such as the sandwich 

device we developed for the study of singlet oxygen,19 permit us to examine specific ROI mechanisms. 

Interfacial phase separation has allowed us to address the important topics of post-illumination migration 

of alkoxy radicals on surfaces, in a newly developed technique described in chapter 2, and dual functioning 

photosensitizers binding to shut off ROI production described in chapter 3. These results have multiple 

potential applications, such as in synthesis, photochemistry, device development, facile materials and 

plastics photodegradation, and enhanced PDT. The further development of our three phase devices is still 

ongoing, and some potential means of enhancing these techniques is discussed in chapter 4.  

 The study of surface radicals has been a large component in the study of particulate matter in air 

pollution. Particularly, the long lives measured for many radicals on the particles’ surface.20-31 The current 

methods of detecting surface radicals, those methods being electron paramagnetic resonance (EPR) 

spectroscopy32-36 and 31P NMR37 in conjunction with phosphite radical traps, have limitations. Specifically, 

these methods are unable to distinguish between a single molecular radical lifetime and a radical 

propagation lifetime. This distinction is important in determining the specific radical mechanisms, products, 

toxicity, as well as potential methods of damage prevention. Thus, we developed the symmetrical product 

upon recombination (SPR) method, discussed in chapter 2, to further the study of specific radical 

mechanisms on particle surfaces. The SPR method study discussed in chapter 2 studies peroxides and their 

resultant alkoxy radicals, both of which can be destructive when produced in natural photooxidative events. 

The development of the SPR method is important to the further study and reduction of ROIs damage to 

materials and toxicity to organisms.   
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 While the uncontrolled production of ROIs can be harmful, ROIs can also be well utilized when 

produced in a controlled manner. ROIs can be used for disinfection, as well as in therapeutics such as 

photodynamic therapy (PDT). Some dual action approaches have arisen in the field of PDT. Those being 

theranostics, and approach which combines therapy and diagnostics, often accomplishing both through the 

use of a single compound, and combination chemotherapy and PDT methods accomplished with the use of 

multiple compounds to increase resultant killing. In chapter 3 we explore the potential of diketones to 

develop a new class of light-dark dual action compounds, which combine photosensitized ROI production 

and drug like binding in a single compound.  
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2017, 93, 912-919. 
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1991, 54, 659-659. 
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Figure 2.2. Proposed paths for the photosensitized homolysis of cumylethyl peroxide 2 at the 

gas/nanoparticle interface. Concentrations of alkoxy radicals forming a symmetrical peroxide product 3 

increase at the air/solid interface as EtO• and CH3• fragments volatilize away from the surface. A two-phase 

sensitized photolysis of a lighter peroxide, which induces this combination of heavier alkoxy radicals to 

provide mechanistic details to radical mobility on a surface. An additional scheme with structure drawings 

is shown in Figure 2.4.  

 

2.1. Results and Discussion 

2.1.1. Products of the Reaction. Nanoparticles co-adsorbed with 4,4′-dimethylbenzil (sensitizer 

1) and cumylethyl peroxide 2 were irradiated with (280 < λ < 700 nm) light in a N2-degassed glass vessel. 

Five products were detected in the photoreaction (Table 2.1). The products were dicumyl peroxide 3, cumyl 

alcohol 4, and acetophenone 5, as detected upon desorbing products from the particle surface. Ethanal 6 

and methane 7 can be detected when analyzing the headspace or in a solution-phase photoreaction 

containing dissolved sensitizer 1 and cumylethyl peroxide 2. Diethyl peroxide 8 was not detected with our 

HPLC and 1H NMR analyses. Reversible dimerization from primary products 3 and 8 does not yield 2 in 

3sens*

hn

(migration distance <2.9 nm)

(sens to 2 distance 6-9 Å)

nanopartic
le surfa

ce



11 
 

high yields, apparently because the EtO• is sufficiently volatile to disconnect from the surface. The reaction 

allows for a radical mobility test because it forms the bilaterally symmetrical dicumyl peroxide 3 from 

recombination of cumyloxy radicals. This is somewhat reminiscent to bilaterally symmetric 1,2-di-p-

tolylethane and 1,2-bis(4-methoxyphenyl)ethane from the radical combination of p-xylene radical and 1-

methoxy-4-methylbenzene radical, respectively, in the photolysis of silica-adsorbed l-(4-methylphenyl)-3-

(4-methoxyphenyl)-2-propanone.21 

 

Table 2.1. Product distribution (%) for the sensitized homolysis of cumylethyl peroxide 2 that generates 

oxygen- and carbon-centered radicals and stable products.a  

 

 

 

 

 

 

 

 

 

 

a Selective irradiation of 4,4ꞌ-dimethylbenzil sensitizer 1 (330 µmol/g silica) with (280 < λ < 700 nm) light 

was carried out in the presence of cumylethyl peroxide 2 co-adsorbed on particles. b Relative yields 

determined by HPLC or 1H NMR and were based on their integrated peak areas without the use of an 

 

relative yields b,c 

conditions A condition B d 

entry 

peroxide 2 

adsorbed 

(µmol/g) 

dicumyl 

peroxide 3 

cumyl 

alcohol 4 

acetophenone 

5 

ethanal 

6 

methane 

7 

1 108 25.2±0.5 12.7±0.1 12.4±0.02 12.4 37.3 

2 53.2 18.2±1.0 14.9±0.1 13.8±0.1 13.3 39.8 

3 27.1 11.8±0.8 15.9±0.2 15.3±0.2 14.6 43.7 

4 13.4 9.8±0.6 14.9±0.4 17.6±1.3 14.4 43.2 

5 6.78 4.0±2.4 13.2±1.6 16.7±0.7 16.5 49.6 
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external standard. Relative yields of product at the air/solid interface relative to solution-phase conditions. 

c Condition A: air/solid interface; condition B: homogeneous photoreaction of sensitizer 1 (0.01 mM) and 

peroxide 2 (0.1 mM) in acetonitrile-d3 irradiated in an NMR tube. d The experimental error in condition B 

is ±5%. 

 

2.1.2. Radical Mobility Test. Here, sensitizer 1 was used to homolyze 2, where we use radical 

recombination to symmetrical product 3 was used as a test for radical mobility on the nanoparticle surface. 

Eq 1 shows the calculated number of 1 or 2 molecules adsorbed on the particle surface using Avogadro’s 

number (NA). Eq 2 shows the average distance between adsorbed 1 or 2 molecules. Eq 3 is used in 

conjunction with eq 2 to deduce the radical migration distance upon recombination to symmetrical 3, 

estimating the shape of cumyloxy radical as a rectangle (0.71 nm × 0.43 nm) sitting parallel to the particle 

surface. Eq 4 shows the calculation for the percent particle coverage of 1 or 2. Cumyloxy radicals were 

generated and recombined to 3 in amounts ranging from a high of 25.2% to a low of 4.0% yield (Table 2.1, 

entries 1 and 5). This led to the calculated surface migration distance of cumyloxy radical on the 

nanoparticle of 0.27 nm up to a maximum of 2.9 nm (Figure 2.3). The selectivity is not caused by heating 

of the reaction. The nanoparticle photoreactions were carried out at 26 °C. During the photolysis, the 

particles increased in temperature by ~10 °C, where this rise is insufficient to cause the thermolysis of 2 or 

3, based on control reactions, where thermolysis temperatures of 130 °C would have been required.22 A 

weaker peroxide, benzoyl peroxide, requires heating above 80 °C to split into benzoyl radicals, which in 

turn form phenyl radicals and CO2.23 Next, we compute the difference in O−O bond strength of 2 relative 

to 3 to help rationalize selectivity for the high yields of the product 3. 

 

molecules of 1 or 2 = moles of 1 or 2 × 𝑁𝐴………………………………………………….………….(2.1) 
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molecule to molecule distance (nm) = √
particle surface area (nm2/g)

molecules of 𝟏 or 𝟐
  …………...……………..…….(2.2) 

 

radical migration distance (nm) =
𝟑−to−𝟑 distance(nm)

2
− 𝟑 length (nm)…………..……….…….…(2.3) 

           

percent particle coverage of 1 or 2 = 
moles of 𝟏 or 𝟐/g

SiOH groups (moles) g⁄
…………….................…………...……..….(2.4) 

 

Figure 2.3. Correlation of dicumyl peroxide 3 with cumyloxy radical migration distance on the 

nanoparticles that arose by the sensitized homolysis of 2.  

2.1.3. Radical “Self-Sorting”. Unrestricted M06-2X/6-31G(d,p) calculations are used to 

help explain the selective formation of the O–O bond in dicumyl peroxide 3. The DFT method 
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employed here is found to reproduce experimental O–O bond dissociation energies of organic 

peroxides.24 Our DFT study was designed to assess the geometries and bonding based on the 

influence the PhC(Me)2 and Et groups impart on peroxides 2, 3, and 8 , and radicals PhC(Me)2O• 

and EtO•, and also rationalize possible interfacial effects. 

Peroxides 2, 3, and 8, and their corresponding alkoxy radicals PhC(Me)2O• and EtO• 

optimized to minima. The calculated torsion angle  (C–O–O–C) of 3 is increased (178.0°) when 

compared to 2 (124.8°) and 8 (109.9°). As the size of the substituent of the peroxide increases (8 

< 2 < 3), then rotation about this torsion  energy is increased, as we will see. To explore the 

energy associated with rotation around the  torsion angle, minima and transition structures (TS) 

were located on the potential energy surface. Rotation around the  torsion angle among gauche 

and anti geometries changed the energy by 3.5 kcal/mol (for 3), whereas it only changed by 0.63 

kcal/mol (for 2), and 0.43 kcal/mol (for 8). The larger PhC(Me)2 substituent at the O−O bond 

increases the activation barrier that yields full rotation. Rotating the  torsion angle where they 

adopt a syn TS geometry was large 28.0 kcal/mol for 3 (due to destabilizing PhC(Me)2/PhC(Me)2 

interactions, whereas the TS is 19.3 kcal/mol for 2 (due to modestly destabilizing PhC(Me)2/Et 

interactions), and even less at 11.2 kcal/mol for the TS of 8 (due to less destabilizing Et/Et 

interactions). The substituent effects that influence the structures can also influence the bond 

energies. 

Thus, next we investigated the energetics for O–O bond homolysis. The O–O bond in 

peroxides is weak due in part to electronic repulsion of lone pairs on the adjacent oxygen atoms. 

The π MO is strong between the two oxygen atoms, and the antibonding π* is destabilizing. 

Endothermicity increases for 3 (due to a stronger O–O) than in 2 and 8. The endothermicity of 3 

relative to 2 PhC(Me)2O• (39.2 kcal/mol) is greater than PhC(Me)2OOEt 2 relative to PhC(Me)2O• 


