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Abstract

Essays in Applied Microeconomics

by

Laxman Timilsina

Advisers: Prabal K. De and Wim P.M. Vijverberg

This dissertation consists of three chapters.

Chapter 1 Immigration Policy Shocks and Infant Health This paper evaluates the
effect of positive and negative immigration policy shocks on infant health outcomes in the
U.S. I examine changes in mean birth weight and the incidence of low birth weight (LBW)
at the metropolitan statistical area (MSA) level around two major institutional shocks: The
1986 Immigration Reform Act (IRCA), which favored immigrants, and the increase in Immi-
gration and Customs Enforcement (ICE) agency arrests at the start of 2017 which might have
put immigrants at greater risk of apprehension. It uses a triple difference approach, com-
paring birth outcomes of foreign-born mothers with U.S.-born mothers (relative to mothers
living in MSAs with a higher and lower concentration of IRCA applications and an increase
in ICE arrests) before and after the two immigration policies. I find that in MSAs that had
higher IRCA applications, mean birth weight increased, and the incidence of LBW decreased
by 3−6 percent for babies born to foreign-born mothers. By contrast, in MSAs that had
higher ICE arrests starting in 2017, mean birth weight decreased, and the incidence of LBW
increased by 3−7 percent for babies born to foreign-born mothers. The effect of the increase
in ICE arrests was more pronounced among mothers who were born in Latin and Central
American countries. Sub-sample analysis shows that the incidence of LBW increased by as
much as 12 percent for babies born to foreign-born mothers of Hispanic origin.

Chapter 2 Cash-based Maternal Health Interventions Can Improve Childhood
Vaccination - Evidence from India Childhood vaccination has lagged in countries like
India, despite its demonstrated positive effects on health outcomes like infant mortality. At
the same time, many Conditional Cash Transfer programs have been effective in improving
health outcomes. We estimate the effect of the world’s largest maternal health program,
Janani Surakhsa Yojana (JSY, Maternal Protection Scheme), on childhood vaccination in
India. We exploit exogenous variations in the expansion of the policy around the country
and the fact that some key vaccines are given at or near birth to identify the effects of
cash-based maternal health policy on infant immunization. We find that JSY increased the
probability of BCG and DPT vaccination among newborns and infants. However, we find
almost no significant effects on the measles vaccine, which is administered several months



v

after birth.

Chapter 3 Political Connections and Household Welfare: Evidence from India
Using nationally represented survey data from India, this paper estimates the effect of know-
ing a politician on household welfare by first looking at the household’s ability to capture
public welfare programs, followed by jobs prospect of the household members. To rule out
the potential endogeneity, household’s acquaintance to politicians is instrumented with per-
centage of household within each village that are member of Self-Help Groups (SHGs). I
propose that higher prevalence of SHGs in the village, a traditional micro money lending
scheme in India, increases the probability of knowing a politician. Results show that know-
ing a politician at a local level vastly improves the chances of a household to obtain welfare
programs like ration cards and insurance cards. Similarly, members of households that know
a politician at the state and federal level are more likely to have a government job and less
likely to work as daily wage laborers.
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Chapter 1

Immigration Policy Shocks and Infant

Health

1.1 Introduction

The political debate on immigration is at a historic peak on both sides of the Atlantic.1

While the majority of the literature looks at the impact of immigration policies on the labor

market and crime2, this paper evaluates one of the lesser studied consequences of immigration

policies — impact on infant health, specifically, mean birth weight and incidence of low birth

weight (LBW), which is one of the key indicators of lifetime health and economic well-being.

I analyze differences in birth outcomes around two major institutional shocks: the 1986

Immigration Reform Act (IRCA) and the increase in Immigration and Customs Enforcement

1For example, the response to North African immigrants crossing the Mediterranean, the influx of refugees
from Syria’s civil war into Europe, and the rise of political rhetoric against undocumented immigrants in
the United States and the increasing Immigration and Customs Enforcement (ICE) arrests of immigrants
during and after the 2016 presidential election.

2Considerable literature on economics has been devoted to determining the cause and effect of immigra-
tion. A primary concern of immigration is its impact on the labor market, especially on the natives’ wages
(Card, 1990; Borjas, 2003; Dustmann et al., 2016).Other research focuses on its effect on legal status and
crime (Butcher and Piehl, 1998; Bell et al., 2010; Baker, 2015). Few but growing studies have looked at the
impact of immigration on child health (Amuedo-Dorantes and Mundra, 2005; Salmasi and Pieroni, 2015).

1
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(ICE) agency arrests at the start of 2017.

The IRCA was an institutional shock that favored immigrants by legalizing over three

million people, almost 1.1 percent of the total population, implying a substantial shift in the

lives of both immigrants and the U.S.-born population (Baker, 2015). This law, dubbed one

of the most substantial amnesty provisions to date, undoubtedly favored immigrants.3 On

the contrary, the intense debate surrounding the issue of immigration during the 2016 election

and the subsequent Executive Order 13,768 issued at the start of the new administration

was an institutional shock that put immigrants at risk, as it led to a spike in Immigration

and Customs Enforcement (ICE) agency arrests. For example, comparison of ICE arrests

from January 20, 2016 through the end of the fiscal year with the same period in the fiscal

year 2017 shows a 42 percent increase, from 77,806 to 110,568 in 2017 (ICE, 2017). This

increase coupled with an increasing frequency of hate crimes — a rise of 17 percent from

2016 to 2017 (FBI, 2017)— put immigrant communities at a heightened sense of fear and/or

concern of being deported (Perreira and Pedroza, 2019).

A study of the impact of these two immigration policies on child health is important for

a number of reasons. First, early childhood shocks, especially in utero, can have long-term

health and economic effects that extend to adulthood (Almond and Currie, 2011; Almond

et al., 2017). Second, low birth weight can result in high costs, directly as medical expenses4

and indirectly as long-term health and other cognitive development consequences.5 Third,

the impact of immigration laws can be felt for generations, as those born to immigrants are

3After the law was enacted, the twin Legalized Population Surveys (LPS1 and LPS2) were conducted
in 1989 and 1992. Of the respondents, 75 percent said that finding work was “somewhat or much easier”
after the IRCA. Similarly, reported wages increased by 30 percent to 40 percent (Baker, 2015). Although no
surveys or research have been done to look at the law’s impact on child health, it is likely that due to increase
in wage and employment, the latter of which typically means an increase in health insurance coverage, as
well as the lack of fear of deportation among previously undocumented immigrants, the law might have
improved health outcomes for infants.

4Studies estimate that a representative newborn weighing 2000g or less can result in direct hospital costs
of $15,000 (Almond et al., 2005; Abrevaya and Dahl, 2008).

5The effects of early health measured through LBW on adult outcomes are set early in life and tend to
remain constant over time (Figlio et al., 2014).
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automatically U.S. citizens and most stay in the country (Camarota et al., 2018).6 Given

that approximately one in five births in the U..S are to immigrant mothers, and annually

around 300,000 births are to undocumented mothers (Camarota et al., 2018), understanding

the health impact on these infants should be a significant public policy interest. It is well

documented in the literature that immigrants (especially undocumented) report high level

of stress, depression and anxiety disorders (Giuntella et al., 2020; Perreira and Pedroza,

2019). Because of the lack of work authorization, health insurance and limited or no access

to welfare programs immigrants live with unmet healthcare needs and often have worse

self-reported health outcomes (Giuntella et al., 2020).These problems are further magnified

by anti-immigrant rhetoric, hate crimes, negative media coverage, language barriers, and

the lack of knowledge of often complex healthcare services in the U.S. (Martinez et al.,

2015; Suárez-Orozco and Hirokazu, 2013). Thus, adding the fear of deportation on top

of already existing precarious socio-economic conditions may increase the stress level of

pregnant mothers resulting in adverse birth outcomes.

Using Natality microdata from the National Vital Statistics System, which covers the full

census of births in the U.S., I construct birth outcome variables and mothers’ nativity. Since

it is difficult to identify who is an immigrant mother (either documented or undocumented)

in the data, I first compare yearly birth outcomes by mothers’ nativity (U.S.-born versus

foreign-born) before and after the two institutional shocks, 1983–1987 and 1988–1992 for

the IRCA law and 2013–2016 and 2017–2018 for increase in ICE arrests. Additionally, I

compare mothers born in Latin American, Central American countries and Mexico with

the U.S.-born mothers. Interpreting the double-difference as causal estimates of the policies

would require that the trends in birth outcomes between U.S. and foreign-born mothers

be parallel. However, the birth outcomes of U.S.-born mothers might be characteristically

6The 14th Amendment: “All persons born or naturalized in the United States, and subject to the juris-
diction thereof, are citizens of the United States and of the State wherein they reside. . . ”
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different than foreign-born mothers, and the healthcare intake between them could also be

different. Further, not all foreign-born mothers are immigrants; they could have become a

naturalized U.S citizens and as such might not be affected by the policies.

To overcome these concerns, I employ a triple difference strategy. Exploiting the varia-

tions in IRCA applications and an increase in ICE arrests by Metropolitan Areas (MSAs), I

compare the double-difference with mothers living in different types of MSAs. I use the data

from the 1990 Legalization Summary Tapes created by the Immigration and Naturalization

Service (now US Citizenship and Immigration Service), which lists total application and

approved applications by counties to proxy MSAs that had relatively more undocumented

immigrants. I classify MSAs that had higher per capita7 applications as “treated” MSAs

and those who had fewer (less than the mean and median value) as “control” MSAs. Simi-

larly, I use the data from Transactional Records Access Clearinghouse (TRAC) at Syracuse

University, which has detailed arrests by ICE by counties from 2014 to 2018 (TRAC, 2018)

to proxy the “fear” felt by the immigrants following the 2016 election. I classify MSAs that

had a higher per capita increase in arrests (total from February 2017 to May 2018 minus

total from October 2015 to January 2017) as above and create treated and control MSAs.

Foreign-born mothers living in MSAs that had lesser or no IRCA applications are more likely

to be U.S. citizens. Similarly, foreign-born mothers living in MSAs who saw no changes in

ICE arrests might not have felt a heightened sense of stress and fear of deportation and

arrests and may therefore serve as control groups.

Using the DD and DDD method, this paper measures the impact of the two immigration

policies on mean birth weight and LBW, defined as less than 2,500 grams. These outcomes

are standard in measuring infant health and are highly correlated with the long-term health

and economic wellbeing of an individual (Almond and Currie, 2011; Hoynes et al., 2015a). I

7I divide the applications by MSA’s foreign-born population. I use per-capita applications/arrests and
per-capita foreign-born population interchangeably.
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further look at possible mechanisms that might drive these birth outcomes such as maternal

health behaviors and prenatal care (PNC) utilizations. Moreover, contrary to popular belief,

the effect of anti-immigration rhetoric and fear of detention and deportations might not be

only limited to unauthorized immigrants. The stress and anxiety surrounding deportation

and anti-immigrant sentiment are also prevalent among documented immigrants and U.S.

citizens whose legal presence is questioned because of race/ethnicity (Wang and Kaushal,

2018; Perreira and Pedroza, 2019). Thus, I also conduct sub-sample analyses by mothers’

race and ethnicity for increase in ICE arrests.

I find that infants born to foreign-born mothers in MSAs that had higher number of per-

capita IRCA applications weighed, on average, 14 grams more. More importantly, there is

a significant decrease in the incidence of LBW for foreign-born mothers living in MSAs that

had per-capita application greater than mean and median - a decrease of 6 and 3 percent,

respectively. The effect is more pronounced among mothers born in Mexico (a decrease in

the incidence of LBW by 10 and 12 percent). Similarly, there is a significant improvement

in the utilization of prenatal care visits. The number of PNC visits increased by 2 visits and

the percentage of mothers with no PNC care decreased. The impact of increased ICE arrests

had the opposite effect. Infants born to foreign-born mothers in MSAs that had a higher

number of increases in ICE arrests weighed on average 12 grams less. More importantly,

there is a significant increase in the incidence of LBW among foreign-born mothers living in

MSAs that had an increase in ICE arrests of higher than mean and median – an increase of

6 and 3 percent, respectively.

The effect is more pronounced among mothers born in Latin American countries (an

increase in the incidence of LBW by 7 and 6 percent). Similarly, for infants born to mothers

from Central American countries, the incidence of LBW increased by 8 and 7 percent. The

uses of prenatal care decreased slightly, but the coefficients are not significant. Further-

more, the mean birth weight decreased by more than 20 grams, and the incidence of LBW
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increased by 11 and 12 percent for foreign-born Hispanic mothers. The birth outcomes are

not significant for non-Hispanic White and Black mothers. The results are consistent across

various models and robustness checks.

Although the debate on immigration is mostly focused on wages and crime, these results

indicate that policymakers should also focus on the health consequences of immigration

policies, especially for newborn babies. Low birth weight is one of the leading indicators

of infant health and a key risk factor in infant mortality. In fact, the mortality rate is

24 times higher for babies with low birth weights than those with normal birth weights

(Matthews and MacDorman, 2013). Similarly, prenatal care visits are crucial in detecting

high-risk pregnancies and other complications. The American Academy of Pediatrics and the

American College of Obstetricians and Gynecologists recommends between 9 and 15 PNC

visits, starting in the first trimester (AAP, 2012). Given the importance of LBW and PNC

utilization for pregnant mothers, this paper is one of the first to comprehensively examine

the impact of negative and positive immigration laws and policies in the U.S. especially for

infants born to immigrants (documented and undocumented) mothers.

1.2 Background

The number of people living in a country they were not born in is increasing across the

globe. In 1980, approximately 100 million people lived in a country other than that of their

birth (Friedberg and Hunt, 1995). By 2017, the number of immigrants had increased to 258

million (UN, 2017). The highest numbers of immigrants reside in the Euro Zone (78 million)

and the U.S. (50 million). In Europe and in the U.S, this large presence of immigrants, either

documented and undocumented, has stimulated debate among politicians and policymakers.

In political discourse, the current rightward shift of western democracies is often blamed on

immigration.



CHAPTER 1. IMMIGRATION AND HEALTH 7

While the primary concerns of a large immigrant population are employment, wages,

crime, and the uses of social safety nets, one important, yet less discussed, issue is child

health. With unprecedented worldwide migration, countries increasingly have used denial of

access to healthcare to dissuade immigration (Hacker et al., 2015). Thus, immigrants, es-

pecially undocumented, have little access to medical care, and even when they have access,

the fear of being reported to immigration authorities stops them from utilizing it. Immi-

grants, documented or not, underutilize healthcare and have less health insurance coverage

than their native counterparts either by governmental policy design or because of their in-

ability to navigate the complex healthcare system, bureaucratic issues and discrimination

(Hacker et al., 2015; Khanlou et al., 2017). Martinez et al. (2015) conducted a system-

atic review of literature that examined the impact of immigration policies on health status

among undocumented immigrants throughout the world. They report that the “majority of

studies established a clear association between harsh immigration policies and mental health

outcomes such as depression, anxiety, and post-traumatic stress disorder.”8

While the direct result of immigrant-averse health policies is a lack of access to health

care, intangible aspects, like psychological trauma, are often more troublesome. In par-

ticular, a mother’s trauma while pregnant affects the newborn’s immediate and long-term

health and cognitive abilities. Ample medical and psychological literature has linked stress

during pregnancy with birth outcomes. Psychosocial stressors can affect pregnant mothers

by shifting stress hormone balances to affect a developing fetus, triggering premature birth,

and leading to growth restriction and low birth weight (Novak et al., 2017).9 Severe stress

on the parent can affect the offspring’s health, including psychopathology, or so-called inter-

8Health outcomes like, PTSD, anxiety and depression were found not only in adult undocumented immi-
grants but also among young children. For more see (Martinez et al., 2015).

9The hypothesis is that, such stress disrupts the balance of maternal glucocorticoid levels and 11 beta-
hydroxysteroid dehydrogenase type 2 (HSD2), an enzyme that metabolizes cortisol into inactive cortisone.
Glucocorticoid concentrations and lower placental HSD2 are linked to LBW (O’Donnell et al., 2011; Novak
et al., 2017).
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generational transmission of stress (Bowers and Yehuda, 2016). The psychological trauma

can be exacerbated when the fear increases.

In the next subsections, I discuss in detail two institutional shocks (Immigration Reform

and Control Act (IRCA) of 1986, and immigration rhetoric during and the increase in ICE

arrests after the 2016 election) that affected immigrant communities, along with other policies

(Medicaid Expansion in 1986 and 2010) which may have impacted the birth outcomes of

infants.

1.2.1 Immigration Reform and Control Act of 1986

Broadly, immigration can be divided into two kinds: legal (documented) and illegal (undoc-

umented). In the U.S., documented immigrants can legally work and obtain certain welfare

benefits; undocumented immigrants often remain underground and work for lower wages

with no benefits (Fasani, 2014). The number of undocumented immigrants was estimated to

be 1.5 million in 1980, increasing to 11 million by 2018 (Fazel-Zarandi et al., 2018; Passel,

1986). Because these people often live in an informal, ‘shadow’ economy, there is an ongoing

debate about their future. One policy initiative that dealt favorably with undocumented im-

migrants in the United States is the 1986 Immigration Reform and Control Act (IRCA). In

the U.S., immigration laws have been passed and amended since 1929, and from 1986 to 2009,

approximately four million immigrants have been legalized (Kerwin, 2010). Historically the

living conditions of undocumented immigrants have been consistently poor.10

Following such reports, the US Congress with bipartisan support passed IRCA in Oc-

tober 1986. This is one of the most significant immigration policy changes that positively

10For example: “In 1951 the President’s Commission on Migratory Labor condemned the abysmal living
conditions of illegal immigrants employed as migrant farm workers in the United States. At the time,
workers were found living in orchards and irrigation ditches. They lived in constant fear of apprehension,
like fugitives, and were routinely exploited by their employers, who could maintain unsafe working conditions,
cut wages, or abruptly dismiss them with little fear of reprisal. In many cases the life of these migrants was,
according to the commission, ‘virtually peonage’” (Schlosser, 1995).
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affected undocumented immigrants. In exchange for legalizing approximately three million

undocumented immigrants, the law sought to curtail the future flow of undocumented im-

migration by imposing sanctions on employers who knowingly hired undocumented workers

and by increasing border enforcement (Linder, 2011). Of the approximately 3.2 million un-

documented immigrants in 1986, 3.04 million applied for the program (Woodrow and Passel,

1990).

Between 1987 and 1990, over 2.8 million were given legal status (Baker, 2015). The

applications were predominantly in coastal states, larger counties, and metropolitan areas.

I aggregate the county-level population by MSAs and State and divide it by the foreign-

born population in 1990. Applications vary by states (Figure 1.1a) and by MSAs (Figure

1.1b). California, Texas, and Arizona have the highest per capita applications. MSAs with

applications higher than the median (dark colored in Figure 1.1b) are also found across the

Midwest and in the Northeast.11

Figure 1.1a: IRCA Applications per 1000 by State
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11Four states, North Dakota, South Dakota, Wyoming and Vermont, had no counties with more than 25
applications; hence, the MSAs in these states have no data.
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Figure 1.1b: IRCA Applications by MSA

Greater than median
Less than median

Notes: Author’s calculation using 1990 Legalization Summary Tapes data. Dark MSAs have greater than median IRCA applications and light
MSAs have less than median.

All in all, the legalized immigrants represented approximately 1.1 percent of the then

U.S population. This kind of large scale of legalization can produce a behavior shift in

societies: in the labor market, family life, health, and the interaction between government

and community (Baker, 2015). Given the massive changes in immigrants’ legal status, there

are many comprehensive studies on the impact of this law. For example, Linder (2011)

examined the impact of the law on the future flow of undocumented immigration, while

Baker (2015) studied its impact on crime. Cascio and Lewis (2016) analyzed the impact of

IRCA on social safety nets, like the earned income tax credit (EITC) and food stamps, and

Cobb-Clark et al. (1995) examined the law’s impact on wages.

Furthermore, along with the IRCA, the federal government passed the Federal Omnibus

Budget Reconciliation Act, which provided some social and welfare protection to these ap-

plicants.12 Although one aim of the IRCA law was to curtail the flow of undocumented

12I discuss the issue in detail in section 1.2.3.
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immigrants into the United States, by 2000, the number of immigrants had increased to 9

million and, by 2016, approximately 11 million (Fazel-Zarandi et al., 2018).

1.2.2 Immigration Rhetoric and the 2016 Election

The landscape of rhetoric hostile to undocumented immigrants has changed significantly in

the last few decades. Following the passage of the Illegal Immigration Reform and Immi-

grant Responsibility Act of 1996 and the subsequent creation of Immigration and Customs

Enforcement (ICE), a new division within the Department of Homeland Security, the num-

ber of deportations of illegal immigration accelerated (Hacker et al., 2015). The launch of

the Secure Communities program in 2008, which required local police to match fingerprints

of all arrested individuals with the ICE database, amplified the ICE detention and arrests.

Figure 1.2a shows ICE apprehensions by year. They peaked in 2011 and gradually decreased

afterward, significantly so in 2015 and 2016. This is largely due to the memorandum issued

by the Department of Homeland Security (DHS), which discontinued the Secure Communi-

ties program and started the Priority Enforcement Program (PEP) on November 20, 2014.

The PEP prioritizes arrests of convicted criminals and other undocumented immigrants who

pose a danger to public safety. However, Executive Order 13,768 issued on January 25, 2017,

reversed the program back to Secure Communities Era (ICE, 2017).

This decision increased the number of arrests by ICE dramatically. Figure 1.2b compares

the ICE arrests for the first 100 days of the current administration to the same period of

previous administration. There is an almost 40 percent increase in ICE arrests. Overall,

between the fiscal year 2016 and 2017, total requests to detain immigrants increased by 81

percent, and complete removals by ICE increased by 37 percent (ICE, 2017).
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Figure 1.2a: ICE Administrative (Interior) Arrests, FY 2010 - FY 2018
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Figure 1.2b: First 100 days comparison between two administration
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Transactional Records Access Clearinghouse at Syracuse University, records data about

immigration and has detailed arrest information on all individuals from 2014 to May 2018

by ICE (TRAC, 2018). Using the data, I calculate total monthly arrests from October 2015

to May 2018 and plot it in Figure 2.3. The small dotted line shows the average arrests from

October 2015 to January 2017, and the more prominent dotted line shows the average arrests

from February 2017 to May 2018. The number of average monthly arrests jumped by 45

percent, closely aligning with the administrative data from ICE.

Figure 1.3: Monthly ICE Arrest
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For each state and MSA, I calculate the difference in a total change in ICE arrests nine

months before (October 2015 to January 2017) and after (February 2017 to May 2018)
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January 2017. I divide the change by the number of the foreign-born population in 2017.

Figure 1.4a below presents the change in ICE arrests by states per 1000 population. The

increase in arrests varies across states and is more prevalent in Texas, Georgia, and Arizona.

Figure 1.4b provides data by MSAs. The dark-bordered MSAs had arrests higher than the

median.

Figure 1.4a: Change in ICE Arrests per 1000 by State
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Figure 1.4b: Change in ICE Arrests by MSA

Greater than median
Less than median

Notes: Author’s calculation using TRAC data. Dark MSAs have greater than median ICE arrests and light MSAs have less than median.

The 2016 presidential election, especially during the Republican party’s primary race,

was heavily focused on the issue of immigration (Edwards and Rushin, 2018). Coupled

with the increasing ICE arrests following the 2016 election, evidence suggests that hate

crimes against immigrants, the non-white population in the U.S., and in general are on the

rise (Edwards and Rushin, 2018). In one recently reported incident, ICE agents arrested

a patient in surgery and a mother who came to the hospital to pick up her newborn son.

In addition, many workers who were injured on the job were arrested while on their way

to the hospital (Saadi et al., 2017). This led the American Academy of Pediatrics to issue

a statement highlighting an unusual ripple effect of immigration crackdowns: “They harm

children’s health, potentially for life” (Stein, 2017).

A small but growing number of empirical studies have documented the impact of in-

creasing ICE arrests and hateful rhetoric on the immigration population (Novak et al., 2017;
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Lopez et al., 2016). These studies have found that a raid in a small community in Iowa

in 2016 resulted in both American-born and immigrant Latina mothers in Iowa being 24

percent more likely to have low birthweight babies (Novak et al., 2017). Similarly, the raid

was associated with increase in stress and lower self-rated health scores (Lopez et al., 2016).

Likewise, Krieger et al. (2018) found an increase in severe stressors among pregnant women

in NYC after the 2016 election, which might have contributed to the increase in preterm

births. The results were more pronounced among Hispanic women. A considerable literature

has found a negative impact on immigrant communities’ mental health following detention

by immigration authorities (Werthern et al., 2018). Finally, the literature suggests a nega-

tive relationship between restrictive immigration laws and the birth outcomes of immigrant

women (Torche and Sirois, 2018; Villalonga-Olives et al., 2016).

1.2.3 Health Insurance and Medicaid

While these two institutional shocks could potentially impact infant health, especially among

immigrant mothers, it is necessary to discuss the uses of healthcare and various healthcare

laws that impact the wellbeing of newborns directly. In this section, I discuss the U.S.

healthcare system and laws that impact health outcomes.

The U.S. healthcare system is expensive, complex, and fragmented. It is a mixture of

private sector, government-sponsored, and government-owned. While the majority of the

population receives employment-based private insurance, and the elderly receive Medicare,

the poor depend on government-financed Medicaid. Launched in 1965, Medicaid has signifi-

cant impact. As of 2017, it covered approximately 75 million Americans, almost 19 percent

of the total population.13 Medicaid is jointly administered by the federal and state govern-

ments. The Medicaid program underwent two major reforms in 1986 and 2010. In 1986,

along with the passage of IRCA, Medicaid was expanded significantly as part of an omnibus

13https://www.nber.org/reporter/2017number1/duggan.html
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bill, especially in regard to pregnant mothers.

1986 Medicaid Expansion

During the early 1980s, the U.S. lagged behind other developed nations in child health in-

dicators, especially infant mortality rates (Howell, 2001). In 1980, the United States was

ranked 19th among developed countries in its rate of infant deaths. While other developed

nations had programs that helped pregnant mothers and young infants, ranging from univer-

sal health coverage to paid maternity leave, many poor pregnant women in the U.S. were left

uninsured (Howell, 2001). The Omnibus Budget Reconciliation Act (OBRA) of 1981 had

severely reduced access to healthcare, especially for the poor. Studies have estimated that as

many as 500,000 families lost healthcare due to OBRA (Yelowitz, 1995). A study conducted

by the Institute of Medicine investigated the relationship between access to prenatal care and

infant health. This study found every dollar spent on prenatal care reduced health expen-

diture during childbirth arising from low birth weight by $3.38 (IOM, 1985). Based on the

IOM study and other public and political pressure, a bipartisan coalition in Congress passed

various Medicaid related bills, starting in 1986, which significantly expanded Medicaid: a

major expansion occurred between April 1987 and July 1989 (Hill, 1990).

The Consolidated Omnibus Budget Reconciliation Act (COBRA) passed in 1985 started

the expansion of Medicaid in subsequent years.14 Given the mandate from the federal govern-

ment, states rapidly expanded eligibility, but few states went beyond the Federal mandate.

In the first two years of the law, half the states expanded eligibility up to 100 percent of

the Federal Poverty Level (FPL) (Hill, 1990). By 1991, the average income threshold for

14Hill (1990) summarizes the legislation as follows: COBRA-1986 gave states the option to extend Medicaid
income eligibility to pregnant women and children 0 to 5 up to 100 percent of Federal Poverty Level (FPL)
and allowed states to simplify enrollment processes; COBRA-1987 gave states the option to extend Medicaid
income eligibility to pregnant women and infants to 185 percent FPL; COBRA-1989 mandated coverage for
pregnant women up to 133 percent FPL; COBRA-1990 mandated continuous eligibility for pregnant women
through 60 days postpartum and for newborns living in their mothers’ households up to age one.
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Medicaid eligibility for pregnant women rose from just 48 percent to 159 percent of FPL

(NGA, 1992).

Consequently, the law has helped poor pregnant mothers as well. Between 1979 and

1992, the percentage of pregnant women receiving public insurance rose from 12.4 percent

to 43.3 percent, an increase of 250 percent (Currie and Gruber, 1996). The majority of these

women had low socioeconomic status (Dubay et al., 2001). However, some studies have

questioned this huge jump in coverage (Dave et al., 2008). While some research has found

a positive impact of Medicaid expansion on health outcomes (Currie and Gruber, 1996),

others have yielded negative results (Epstein and Newhouse, 1998). Howell (2001) reviewed

all the literature on the impact of Medicaid expansion on pregnant women and summarized,

“these studies show evidence that new groups of pregnant women received health insurance

coverage through Medicaid, and that some women received improved prenatal care services.

The evidence is much weaker that the expansions led to improved birth outcomes.” Thus,

although some of the results are less conclusive, the expansion did help many pregnant and

poor women and families.

2010 Medicaid Expansion

Although the U.S spends about 20 percent of its GDP on healthcare, there are disparities in

access and care (Gruber, 2011). The healthcare system is still fragmented, and, as of 2010,

approximately 50 million people remained uninsured (Gruber, 2011). The U.S is the only

industrialized country without universal coverage. To improve on coverage among other

things, on March 23, 2010, President Barack Obama signed the Patient Protection and

Affordable Care Act (ACA). This act has many insurance-related components; one of the

most important is its expansion of the Medicaid program. Although the law mandated all

states to expand Medicaid to everyone below 138 percent of Federal Poverty Level (FPL), a

2012 Supreme Court decision allowed states to opt-out of the program (Simon et al., 2017).
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As a result, only 37 states and the District of Columbia had expanded Medicaid by the end

of 2015: two in 2011, four in 2012, twenty-two in 2014, three in 2015, and six more recently

(Simon et al., 2017).15 In essence, the Medicaid expansion made public health insurance

available to low-income, non-elderly, non-disabled childless adults (Simon et al., 2017). As

of 2019, some 12 million Americans gained Medicaid coverage through the ACA Medicaid

expansions (Soni, 2020).

The early impact of the law has generally been positive. First, the uninsured rate declined

sharply following the law, decreasing to 9.1 percent in 2015 from 16 percent in 2010, a change

of 43 percent (Obama, 2016). This growth was mostly due to the expansion of Medicaid

eligibility. States that expanded Medicaid contributed more to the improvement in uninsured

rates. Moreover, the law’s passage had many other positive health benefits, such as access to

treatment and overall lower healthcare costs (Fry and Sommers, 2018). Despite this success,

the American healthcare system is still flawed in important ways. Critically to the scope of

this study, undocumented/unauthorized immigrants’ families and children cannot purchase

insurance through ACA, nor can they access public welfare programs like Medicaid (Perreira

and Pedroza, 2019). Below I discuss this issue further.

1.2.4 Immigrants and Access to Health Care

In 2014, approximately one in five births in the U.S. was to a foreign-born (either documented

or undocumented) mother (Camarota et al., 2018). Out of that twenty percent, around seven

percent of the births were to undocumented parents (Passel and Cohn, 2018).16 In the United

States, undocumented immigrants are normally barred from receiving any government ben-

efits (Camarota et al., 2018; Perreira and Pedroza, 2019). Given this, understanding the

health impact on these infants should be of significant public policy interest.

15States are continuingly expanding the Medicaid.
16That is approximately 300,000 births per year.
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Before the Emergency Medical Treatment and Active Labor Act (EMTALA) in 1986,

uninsured patients were denied any form of medical treatment or were transferred to public

hospitals, a process called dumping (Zibulewsky, 2001). After the law, all patients had to be

admitted to hospitals for emergencies and are treated regardless of immigrant or insurance

status. As such, all pregnant mothers are provided for during delivery, and the child has

guaranteed access to medical assistance for 60 days after birth (Camarota et al., 2018).

Although helped during the delivery, these women cannot seek other necessary treatments,

like prenatal care and other regular checkups. The IRCA law, which also expanded Medicaid,

restricted the newly legalized immigrants from certain benefits for five years (OIG, 1998).

Similarly, the ACA law passed in 2010 prevents undocumented immigrants from using its

services (Fernández and Rodriguez, 2017).

As a result of these limitations, undocumented immigrants often seek healthcare only in

life-threatening conditions. Overall, they use less healthcare than native or legal immigrants

(Sabin, 2009; Perreira and Pedroza, 2019). In addition to their legal inability to access private

and public health insurance, factors such as language barriers, fear of deportation, failure to

take time off work, mistrust of the healthcare system, and lack of access to transportation bar

them from seeking proper medical treatment. As a result, many undocumented immigrants

live with unmet healthcare needs (Derose KP, 2007; Gusmano, 2012), faring worse on self-

reported health outcomes than their native and immigrant counterparts (Derose et al., 2009;

Wolff et al., 2005).

Access to healthcare improves maternal and child health in many ways (Currie and

Gruber, 1996). The primary source is prenatal care visits. The link between prenatal care

and reproductive and infant health is well established (Cohen, 2009; Hill, 1990; Korinek and

Smith, 2011). Mothers who lack prenatal care are twice as likely to have low birth weight

babies and one and half times more likely to have babies born prematurely (Gold et al.,

1987). Birth weight is one of the leading indicators of fetus health. Children born with low
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birth weights are at risk of mortality and post-neonatal mortality (OTA, 1987a). In 1996 the

average cost of caring for a surviving low-birth weight baby was $9,712 compared to $678

for an infant weighing more than 2,500 grams (Currie and Gruber, 1996).

While some states and cities have expanded their inclusion to undocumented mothers

during pregnancy, these mothers could also seek prenatal care and other routine services via

Federally Qualified Health Centers, which offer health services for uninsured patients. These

services are available for free or are scaled according to the patient’s ability to pay (Fabi,

2019). Although the children born to undocumented parents are automatically American

citizens and thus qualify for federal health benefits, parents are often hesitant to enroll,

fearing deportation (Perreira and Pedroza, 2019).17

In politics and other public discourse, immigrants are often blamed for increasing medical

costs in the United States (Bell et al., 2010). However, Goldman (2006) have found that the

foreign-born, especially undocumented immigrants, use few medical services and contribute

significantly less than U.S. born natives to the nation’s medical costs. Since public welfare

programs, like Medicaid, are not readily available to them (Camarota et al., 2018; Perreira

and Pedroza, 2019), the health status of pregnant mothers and the unborn child might be at

risk. These problems are further magnified by anti-immigrant rhetoric, hate crimes, negative

media coverage, language barriers faced by the mothers, and the lack of knowledge of often

complex healthcare services in the United States (Martinez et al., 2015; Suárez-Orozco and

Hirokazu, 2013).

Whether because of lack of access to health care, fear of deportation, or other barriers,

both documented and undocumented immigrants face challenges when seeking proper health

care in the U.S. Given the short-term (direct medical bills) and long-term (cognitive devel-

opment) costs to infants born in poor health, this subject needs to be carefully examined.

17For anecdotal evidence covered in press see: https://www.theguardian.com/us-news/2018/dec/21/us-
immigrant-undocumented-families-benefit-programs-chip-snap-deportation-fears
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Focusing on two major immigration institutional shocks, this study estimates the effect on

birth outcomes such as low birth weights and prenatal care behaviors of pregnant mothers.

1.3 Data and Variables

1.3.1 Data

To analyze the impact of immigration laws on birth outcomes, this paper uses data from

various sources. First, to calculate the birth outcomes, I use Vital Statistics Natality Files

for- the years 1983 to 1992, and 2012 to 2018. I obtained the restricted dataset from the

Center for Disease Control and Prevention (CDC), which identifies the mothers’ county of

residence. The files contain information regarding almost all births taking place in the United

States within the relevant time frames.

I use the MSA definition defined in the 1992 Natality files.18 All mothers’ MSA and

County Federal Information Processing Standards (FIPS) of residence are identified. There

is a total of 320 MSAs in 1992 Natality files. Using this definition, I construct 320 unique

MSAs for the years 1983 to 1992. These MSAs represent 80 percent of total births in the

U.S. Similarly, for the second part of the analysis, I use the 5-digit MSA and Division code

defined by the Office of Management and Budget in September 2018. At that time, there

was a total of 384 MSAs. I construct 384 unique MSAs from the Natality Files for the years

2013 to 2018.19 These MSAs represent approximately 87 percent of total births in the U.S.

Second, to calculate the concentration of immigrants who applied for legalization after the

IRCA, I use the data from the 1990 Legalization Summary Tapes created by the Immigration

and Naturalization Service (now U.S. Citizenship and Immigration Service), which includes

18According to National Center for Health Statistics (1994), “MSA: Metropolitan statistical areas are those
established by the U.S. Office of Management and Budget (OMB) using 1990 Census population counts. For
New England, the New England County Metropolitan Areas (NECMA) are used.”

19The MSAs FIPS recorded in Natality files keep changing boundaries over time. This is a common way
of aggregating MSA level data when there are county identifiers (Dettling and Kearney, 2011).
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the number of total applications and approved applications by counties.20 Only counties that

had applications over 25 are reported, and there are 382 counties in total. About 3.2 million

people filed and application, and about 5 percent of the applications were rejected. Appendix

Table 1.A1 shows the types of applicants who applied as well as those who were rejected.

About 5 percent of the applicants were rejected. Similarly, Appendix Table 1.A2 shows the

characteristics of the population that was legalized under IRCA. About 70 percent of the

applicants were from Mexico. Appendix Table 1.A3 shows the timing of the application.

Approximately 38 percent of the applicants applied in 1987, and 62 percent applied in 1988.

To calculate the change in ICE arrests following the election, I use the data from TRAC

at Syracuse University, which collects data on individual arrests by ICE and the border

patrol agency and has detailed ICE arrests by county from 2014 to 2018. The data includes

only the “interior” arrests by ICE.21 The majority of deportation and apprehensions by

ICE include the capture by U.S. Customs and Border Protection (CBP) at the borders.

For example, 30 percent of removals by ICE in 2015 were from interior arrests, and other

removals are apprehended at or near the border or ports of entry (ICE, 2015). Because of

this, I exclude the 23 border counties along the Mexico-US border in my main analysis. Due

to this, 10 MSAs along the border are dropped, which represents around 3 percent of total

MSA births.

I get county-level foreign-born population from the Census Bureau for 1990 and American

Community Survey 2017. Furthermore, to control for MSA specific characteristics, I use data

from the Bureau of Economic Analysis. I get the data by county and collapse them by MSA.

Specifically, I use percentage change in total employment, per capita total transfers by the

20The data are available in Scott Baker’s website.
21The specific data I use, according to TRAC, is “what ICE refers to as ”interior arrests.” Ac-

cording to ICE, “these data do not include arrests made by Customs and Border Protection (CBP)
when the individual is transferred to ICE for detention and eventual removal.” See more at: https :
//trac.syr.edu/phptools/immigration/arrest/aboutdata.html
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government,22 and income per capita per MSA.

1.3.2 Variables

First, using the Natality files, I create birth outcome variables. I keep only singleton births. I

drop observations that had missing birth weights.23 Next, I compute a binary variable equal

to 1 if birth weight is less than 2500 grams. Similarly, to analyze the prenatal characteristics,

I create a binary variable for whether mothers had any prenatal care and a variable for the

total number of prenatal care visits. I multiply the fraction variables by 100.

I aggregate the above data by year, MSAs, and demographics groups. Following Hoynes

et al. (2015a), I define the demographic groups as follows: mother’s age (<25, 25-34 and

>34), education (<12, 12, >12 and missing), parity of birth (1st, 2nd, and 3rd or greater

birth to a mother), race (white, black and others), marital status and the sex of the child.

The groups are similar for IRCA and ICE arrests except for race/ethnicity, where complete

ethnicity in Natality files is not available during IRCA years. For ICE, I create 4 mutually

exclusive race/ethnicity variables, non-Hispanic white, non-Hispanic black, Hispanic, and

others.

1.3.3 Treatment Groups

Using mothers’ countries of birth first, I define treatment and control groups of mothers.

Given that the distinction is available for the U.S., Mexico, Canada, and the rest of the

world for IRCA years, I make three groups, U.S.-born, Outside of the U.S (foreign-born)

22This is defined as the sum of: “Personal current transfer receipts- Receipts of persons from government
and business for which no current services are performed. Current transfer receipts from government include
Social Security benefits, medical benefits, veterans’ benefits, and unemployment insurance benefits. Current
transfer receipts from business include liability payments for personal injury and corporate gifts to non-
profit institutions.” (https : //apps.bea.gov/iTable/iTable.cfm?reqid = 70&step = 1&isuri = 1&acrdn =
7#reqid = 70&step = 1&isuri = 1&acrdn = 7)

23This is a common way of calculating births weights in the literature (Hoynes et al., 2015a).
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and Mexico born. Thus, the main treatment group is coded 1 if a mother is born outside

of the U.S. and 0 if born in the U.S. Further, I only look at mothers born in Mexico vs.

born in the U.S. For ICE years, mothers’ birth country is identified for all countries and as

such I create four groups of mothers: the U.S.-born, rest of the world (foreign-born), born

in Latin American countries and Central American countries.24 Thus, the main treatment

group is coded 1 for mothers born outside of the U.S. and 0 if born in the U.S. Furthermore, I

compare mothers born in Latin American counties vs. the U.S. and mothers born in Central

American countries vs. the U.S. Table 1.1a, below shows the percentages of mothers born

in respective countries. Column 1 shows the mothers’ birthplace characteristics for IRCA

application years. On average, 16 percent of mothers were born outside of the U.S. of whom

6 percent were born in Mexico. Column 2 shows the mothers’ birthplace characteristics for

ICE arrests. On average, 24 percent of mothers were born outside of the U.S. Of these 12

percent were born in Latin American countries, and 9 percent were born in Central American

countries.

Table 1.1a: Percentages of Births by Mothers’ Country of Birth

IRCA Applications ICE Arrests

U.S. % 84.49 75.53
Foreign % 15.51 24.47
Mexico % 6.13
Latin American Countries % 12.45
Central American Countries % 9.34

Notes: The sample period is 1983-1992 for IRCA applications and 2013-2018 for ICE arrests.
Percentages of births from mothers born in the U.S., Outside of the U.S (Foreign), Mexico, Latin
American Countries and Central American Countries are reported. The list of countries for Latin
and Central American countries are in Appendix Table A4.

Next, I define the treatment and control periods as follows. I define the pre-intervention

years before IRCA from 1983 to 1987. Although IRCA was passed in October 1986, the law

24I show the list of countries for each group in the Appendix Table 1.A4.
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took time to take effect.25 Since I examine yearly data, I make 1988 births the starting point

as when the law had an effect on pregnant mothers.26 Thus, I code the post-intervention

years from 1988 to 1992. Similarly, for ICE arrests, I define the pre-intervention period as

births in 2012 to 2016 and post-intervention period for the years 2017 and 2018. Table 1.1b

provides basic summary statistics for all MSAs by mother’s country of birth before and after

the intervention for IRCA applications.

25There are three types of delay, which may overlap. One is the administrative implementation of the law.
The second is a response lag: people need to realize their opportunity to file an application and need time
to compete their application. In fact, 38 percent applied for the program in 1987 and the other 62 percent
in 1988 (see Table 1.A3 in the appendix). The third is the length of time (up to nine months) of pregnancy.

26Making 1987 the start does not change the results.
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Table 1.1b: Summary Statistics by Mother’s Country of Birth (IRCA)

Before After

Main Variables U.S. Foreign Mexico U.S. Foreign Mexico

Birth Weight (grams) 3366 3359 3413 3364 3355 3392
LBW <2500g % 6.05 4.94 4.22 6.19 4.94 4.27
No Prenatal Care % 1.68 3.41 5.46 1.81 3.00 5.00
No. of PNC Visit 9.88 6.39 3.32 10.98 9.19 7.90

Other Variables (Share)
Age <25 0.42 0.34 0.46 0.38 0.34 0.47
Age >24 & <36 0.51 0.55 0.46 0.53 0.55 0.45
Age >35 0.06 0.11 0.08 0.09 0.12 0.08
Education 1 (Less than HS) 0.15 0.13 0.12 0.17 0.37 0.62
Education 2 (HS) 0.32 0.17 0.03 0.35 0.24 0.15
Education 3 (more than HS) 0.30 0.19 0.01 0.38 0.27 0.07
Education 4 (missing) 0.23 0.51 0.84 0.10 0.13 0.15
Parity 1 0.43 0.39 0.32 0.42 0.39 0.36
Parity 2 0.33 0.31 0.28 0.33 0.30 0.27
Parity 3 or more 0.23 0.30 0.40 0.25 0.30 0.37
Race 1 (White) 0.81 0.68 0.99 0.79 0.71 1.00
Race 2 (Black) 0.18 0.10 0.00 0.05 0.18 0.00
Race 3 (Others) 0.01 0.22 0.01 0.16 0.11 0.00
Married 0.76 0.81 0.75 0.71 0.74 0.66
Female Child 0.49 0.49 0.49 0.49 0.49 0.49

Notes: Sample period for before is 1983-1987 and after is 1988-1982.

The average birth weight of children born to mothers born in the U.S. and the rest of

the world is similar before the IRCA; however, it is higher for mothers born in Mexico.

Furthermore, the incidence of LBW among U.S born mothers is much lower compared to

mothers born outside of the U.S and Mexico. Although surprising, this is consistent with

the literature of “healthy immigrant effect” or “Hispanic health paradox” (Giuntella and

Mazzonna, 2015; Giuntella, 2017). The epidemiological paradox reflects that despite a vast

difference in socioeconomic profile, the incidence of LBW is lower or similar for mothers of
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Hispanic origin. The incidence of LBW remains constant among mothers born outside of

the U.S and Mexico; it seems to have increased slightly among U.S born mothers. Similarly,

the percentage of mothers with no prenatal care decreased among mothers born outside of

the U.S and Mexico. Other points to note are that mothers born in the U.S. have a better

education than that of mothers born outside, and that foreign-born mothers are older than

native mothers.

Table 1.1c below shows the summary statistics by different groups of mothers for ICE

arrests. Similar to IRCA applications, the incidence of LBW is higher among the U.S

born mothers. Similarly, the percentage of mothers with no prenatal care decreased among

mothers born outside of the U.S and Mexico. Other point to note is that mothers born in

the U.S. have a better education than that of mothers born outside. Similarly, foreign-born

mothers are older than native mothers.
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Table 1.1c: Summary Statistics by Mother’s Country of Birth (ICE)

Before After

Main Variables U.S. Foreign Latin
America

Central
America

U.S Foreign Latin
America

Central
America

Birth Weight (grams) 3308 3294 3313 3323 3299 3281 3295 3304
LBW <2500g % 6.48 5.71 5.61 5.32 6.76 6.02 6.01 5.75
No Prenatal Care % 1.48 1.61 1.94 2.22 1.71 1.85 2.27 2.60
No. of PNC Visit 11.36 10.91 10.80 10.73 11.43 10.91 10.74 10.69

Other Variables (Share)
Age <25 0.30 0.17 0.23 0.25 0.26 0.15 0.21 0.23
Age >24 & <36 0.56 0.59 0.55 0.55 0.58 0.59 0.55 0.54
Age >35 0.14 0.24 0.22 0.20 0.16 0.26 0.25 0.23
Education 1 (Less than HS) 0.11 0.27 0.43 0.52 0.09 0.23 0.37 0.47
Education 2 (HS) 0.24 0.23 0.29 0.29 0.25 0.23 0.30 0.31
Education 3 (more than HS) 0.64 0.48 0.27 0.17 0.65 0.52 0.31 0.20
Education 4 (missing) 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02
Parity 1 0.41 0.35 0.28 0.24 0.40 0.35 0.29 0.24
Parity 2 0.32 0.32 0.30 0.28 0.32 0.32 0.30 0.28
Parity 3 or more 0.27 0.33 0.42 0.47 0.28 0.32 0.41 0.47
Race 1 (Non-Hispanic White) 0.63 0.16 0.02 0.01 0.61 0.16 0.02 0.01
Race 2 (Non-Hispanic Black) 0.18 0.11 0.07 0.00 0.18 0.12 0.08 0.00
Race 3 (Hispanic) 0.16 0.48 0.90 0.98 0.17 0.46 0.89 0.98
Race (Others) 0.04 0.25 0.01 0.00 0.04 0.26 0.01 0.01
Female Child 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51
Married 0.58 0.67 0.51 0.49 0.58 0.69 0.53 0.49

Notes: Sample period for before is 2013-2016 and after is 2017-2018.

Next, I use the variation in IRCA applications and ICE arrests to create treated and

control MSAs. Using the 1990 Legalization Summary Tapes, I calculate the total IRCA

applications by MSA and divide it by the MSA’s foreign-born population in 1990. Then,

using the data from TRAC, I calculate total monthly ICE arrests by MSA form October 2015

to January 2017 and from February 2017 to May 2018. I subtract the latter from the former

and divide it by the MSA’s foreign-born population in 2017. Henceforth for simplicity, I will

refer to the IRCA per foreign-born population applicants as IRCA applications and change
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in ICE arrests per foreign-born population as ICE arrests. Table 1.2a, panel A below, shows

the distribution of IRCA applications and ICE arrests. The data is right skewed in both

cases.

Table 1.2a: Distribution of Treatment MSAs

Panel A: Summary Statistics IRCA Applications per
1000 foreign population

ICE Arrests per 1000
foreign population

Mean 79.88 3.27
Median 25.07 1.19
Standard Deviation 122.27 7.26
Min 0.00 0.00
Max 661.13 77.13
Interquartile Range 94.85 3.43

Panel B: Number of Unique MSAs

Total MSAs 320 374
MSAs with zero Applications/Arrests 76 84
MSAs with non-zero Applications/Arrests 244 290

Treat MSAs (1 if greater than Mean)
Treated MSAs 91 99
Control MSAs 229 275
Treat MSAs (1 if greater than Median)
Treated MSAs 160 187
Control MSAs 160 187

Notes: When treatment is defined by above mean, 28 and 27 percent of MSAs are in treatment group for IRCA
and ICE respectively. One MSA for ICE Arrests per 1000 is outlier and is top coded. It is top coded to 77.13 from
271.94 arrests. 76 MSAs has no IRCA applications (only counties with greater than 25 applications are reported
in the data) and 84 counties have no change in increase in ICE arrests.

I use the above distribution to proxy Metropolitan Statistical Areas that had relatively

more undocumented immigrant mothers. Specifically I define two types of MSAs: (i) a

variable treat msa mean as 1 if the IRCA applications/ICE arrests in an MSA are greater

than the mean and as 0 if less than the mean and ii) a variable treat msa median as 1 if
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the IRCA applications/ICE arrests in an MSA are greater than the median and as 0 if less

than the median. Mothers living in the “treated” MSAs should be impacted by the laws

more severely compared to mothers living in the “control” MSAs. I call these treatment

groups, ‘mean’ and ‘median’ treatment. Table 2a, panel B shows a unique number of MSAs

by treatment and control group. The percentage of treated MSAs for mean treatment by

above and below mean is 28 percent for IRCA applications and 27 percent for ICE arrests.

There were 76 MSAs that had zero applications; this is because the IRCA data provides

for counties that had 25 or more applications. Counties in these MSAs had no reported

applications. Similarly, 84 MSAs have zero arrests as there were no reported arrests in

TRAC data. Table 1.2b and 1.2c below show the difference in the estimation sample by

treated and control MSAs. Table 1.2b below shows summary statistics for mothers living

in MSAs, which has greater than mean and median applications for IRCA. The first thing

to note is that the percentage of U.S born mothers is above 90 percent in control MSAs.

Further the percentage of mothers born in Mexico is less than one percent in control MSAs

compared to over 10 percent in treated MSAs. The birth outcomes in treated MSAs are

better after the IRCA. The incidence of LBW decreased significantly. This is likely because

these MSAs had more undocumented immigrants who lacked health insurance, among many

other factors that affect birth outcomes.
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Table 1.2b: Summary Statistics by Treatment MSAs (IRCA)

Treat MSA Mean Treat MSA Median

Before After Before After

Mother’s Cntry of Birth Treat Control Treat Control Treat Control Treat Control

U.S. % 79.77 91.05 73.58 89.11 82.54 95.42 77.59 94.81
Foreign % 20.23 8.95 26.42 10.89 17.46 4.58 22.41 5.19
Mexico % 11.44 0.29 17.01 0.65 6.91 0.20 10.63 0.36

Main Variables
Birth Weight (grams) 3366 3364 3365 3360 3359 3379 3358 3372
LBW <2500g % 5.71 6.02 5.63 6.22 5.97 5.74 5.98 5.96
No Prenatal Care % 2.15 1.76 2.4 1.74 2.31 1.04 2.31 1.32
No. of PNC Visit 7.07 10.88 10.05 11.1 8.61 11.15 10.4 11.32

Other Variables (Share)
Age <25 0.42 0.41 0.39 0.36 0.41 0.43 0.37 0.39
Age >24 & <36 0.51 0.53 0.51 0.54 0.52 0.52 0.53 0.53
Age >35 0.07 0.07 0.09 0.09 0.07 0.06 0.1 0.08
Education 1 (Less than HS) 0.09 0.18 0.25 0.17 0.13 0.18 0.22 0.17
Education 2 (HS) 0.15 0.40 0.29 0.36 0.25 0.41 0.31 0.37
Education 3 (more than HS) 0.16 0.37 0.33 0.39 0.25 0.37 0.35 0.38
Education 4 (missing) 0.61 0.05 0.13 0.08 0.37 0.04 0.11 0.08
Parity 1 0.42 0.44 0.41 0.42 0.43 0.43 0.42 0.42
Parity 2 0.32 0.33 0.31 0.33 0.32 0.34 0.32 0.33
Parity 3 or more 0.26 0.23 0.28 0.25 0.25 0.23 0.27 0.25
Race 1 (White) 0.81 0.78 0.81 0.76 0.78 0.82 0.77 0.8
Race 2 (Black) 0.13 0.19 0.08 0.07 0.17 0.15 0.08 0.06
Race 3 (Others) 0.06 0.03 0.12 0.17 0.05 0.03 0.15 0.15
Female Child 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Married 0.77 0.77 0.72 0.71 0.76 0.79 0.71 0.73

Notes: Sample period for before is 1983-1987 and after is 1988-1982. Treat MSA Mean implies MSAs that had application
greater than mean are coded 1and 0 otherwise and Treat MSA Median implies that MSAs that had application greater
than the median is coded 1 and 0 otherwise.

Table 1.2c shows similar statistics for change in ICE arrests by treated and control MSAs

before and after the 2016 election. The percentage of foreign-born mothers is slightly lower

in treated MSAs than control MSAs. The change in birth weights is similar for both groups

before and after. However, the percent of mothers with no PNC changed more in treated
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MSAs post-2016, a difference of 0.11 percent.

Table 1.2c: Summary Statistics by Treatment MSAs (ICE)

Treat MSA Mean Treat MSA Median

Before After Before After

Mother’s Cntry of Birth Treat Control Treat Control Treat Control Treat Control

U.S. % 85.37 73.15 84.64 73.04 81.63 69.67 81.08 69.69
Foreign % 14.63 26.85 15.36 26.96 18.37 30.33 18.92 30.31
Latin America % 8.34 15.70 8.68 15.66 10.81 17.67 10.84 17.74
Central America % 7.12 12.32 7.14 11.45 9.54 13.03 9.16 12.04

Main Variables
Birth Weight (grams) 3288 3309 3278 3298 3297 3313 3286 3302
LBW <2500g % 6.91 6.14 7.20 6.42 6.63 5.97 6.90 6.25
No Prenatal Care % 1.93 1.41 2.23 1.62 2.08 0.95 2.36 1.13
No. of PNC Visit 11.21 11.26 11.34 11.29 11.10 11.41 11.19 11.41

Other Variables (Share)
Age <25 0.31 0.26 0.27 0.22 0.30 0.24 0.26 0.20
Age >24 & <36 0.56 0.57 0.58 0.58 0.56 0.57 0.58 0.58
Age >35 0.13 0.17 0.15 0.20 0.14 0.19 0.16 0.22
Education 1 (Less than HS) 0.14 0.15 0.12 0.12 0.15 0.14 0.13 0.12
Education 2 (HS) 0.25 0.24 0.27 0.24 0.25 0.23 0.26 0.23
Education 3 (more than HS) 0.59 0.60 0.60 0.62 0.59 0.61 0.61 0.63
Education 4 (missing) 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02
Parity 1 0.39 0.40 0.38 0.39 0.39 0.41 0.38 0.40
Parity 2 0.31 0.32 0.32 0.32 0.31 0.32 0.32 0.32
Parity 3 or more 0.30 0.28 0.30 0.29 0.30 0.27 0.31 0.28
Race 1 (Non-Hispanic White) 0.60 0.49 0.58 0.48 0.56 0.47 0.54 0.46
Race 2 (Non-Hispanic Black) 0.22 0.15 0.22 0.15 0.19 0.14 0.19 0.14
Race 3 (Hispanic) 0.13 0.26 0.14 0.27 0.19 0.28 0.20 0.28
Race 4 (Others) 0.05 0.10 0.05 0.10 0.06 0.12 0.06 0.13
Female Child 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51
Married 0.58 0.61 0.58 0.61 0.59 0.61 0.59 0.62

Notes: Sample period for before is 2013-2016 and after is 2017-2018. Treat MSA Mean implies MSAs that had application
greater than mean are coded 1and 0 otherwise and Treat MSA Median implies that MSAs that had application greater
than the median is coded 1 and 0 otherwise.
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1.4 Empirical Strategy

1.4.1 Difference in Difference (DD) Estimate

The main outcome of interest is mean birth weight and the incidence of low birth weight

(LBW) of a newborn child. The first difference compares the birth outcomes of infants before

and after the IRCA applications and ICE arrests. Given that I cannot identify the mother’s

immigration and nativity status in the Natality files, first I proxy immigrant mothers by using

their country of birth. The U.S. Census Bureau estimated that in 2015, approximately 60

percent of the foreign-born population were not a U.S citizen.27 Using the definition of post

and pre years as defined above, I estimate the following standard difference-in-differences

regression model.

ymgit = β0+β1Postt+β2Treat Motherm+β3(Postt∗Treat Motherm)+πXit+δi+λt+γg+εmgit

(1)

where ymgit is the outcome variable indicating birth outcomes for the cell defined as

treated mother (mothers’ nativity/country of birth) m, demographic group g, living in MSA

i and in year t. Xit is a set of time varying MSA characteristics, which are percent change

in total employment, per capita total transfers by the government and income per capita;

δi is a set of MSA dummies, which controls for MSA fixed effects; λt is a vector of year

dummies; γg is a vector of demographic group dummies and β3 is the coefficient of interest,

which measures the impact of two laws on birth outcomes. Finally, εmgit is the error term

and standard errors are clustered at the MSA-level. I estimate the above equation for both

laws.

27https://www.migrationpolicy.org/article/frequently-requested-statistics-immigrants-and-immigration-
united-states
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1.4.2 Parallel Trends and Placebo Tests

The identification of the model above relies on the assumption that in the absence of the

IRCA applications and ICE arrests, the difference in birth outcomes would have been sim-

ilar among treated and control group of mothers. As discussed above, the birth outcomes

among U.S.-born mothers are very different from foreign-born mothers. The incidence of

LBW among U.S.-born mother is much higher, due to the so-called “Hispanic paradox”.

Next the healthcare intake for native mothers is different from those of immigrant mothers.

Similarly, as discussed above, the expansion of Medicaid, along with the IRCA act and Med-

icaid expansion following ACA, might differentially affect these different groups of mothers,

especially since both laws explicitly barred the use of Medicaid for undocumented migrants.

Further, over time, overall birth outcomes across the country might have been improving.

One way of testing whether the trends are similar before the law is to plot the trends

before and after the intervention and visually inspect if the pre-trends are similar. Given that

I have a long enough pre-treatment period, I can perform a formal test, a so-called placebo,

or falsification test. Specifically, I limit the data to the pre-intervention period, assign a

different pre and post period and estimate the equation (1) above. I code the post-period as

1985 and 1986 and pre-period as 1983 and 1984 for IRCA, and the post-period as 2014 and

2015 and pre-period as 2012 and 2013 for ICE arrests. If the coefficient β3 is close to zero

and/or statistically insignificant, we may be relatively sure that the trends in birth outcomes

are parallel. However, if the coefficient β3 is nonzero and statistically significant, then it fails

the parallel trend assumption (which I show it fails for ICE arrests); in that case, interpreting

the coefficient β3 in equation (1) above as the causal impact of IRCA applications and ICE

arrests could be a problem.
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1.4.3 Difference in Difference in Difference (DDD) Estimate

As discussed above, the trends in birth outcomes among native and foreign-born mothers

might be different. Not only that, but the estimate from DD might also be confounded by

omitted variables such as immigrants choosing to live in the same places. To mitigate this

issue, I exploit the variation in IRCA applications and ICE arrests in MSAs and estimate a

triple difference (DDD) model. Essentially, I compare the double difference in equation (1)

above with birth outcomes in treated and control MSAs. Comparing the double-difference

above for mothers living in MSAs with lower and higher applications/arrests is credible for

several reasons.

First, if the expansion of Medicaid in 1986 led to an improvement in birth outcomes for

all groups of mothers across the country, then the DDD model will net out such effects.

Second, given the difficulty in identifying a mother’s migration status, it could be plausible

to assume that MSAs that had lesser or no IRCA applications are likely to be the MSAs

where fewer undocumented mothers were present and may not have been affected by the

law. Similarly, immigrant mothers living in MSAs that saw an increase in ICE arrests are

more likely to be at risk and might be more in fear of deportation than mothers living in

MSAs that saw no change or lower increase in arrests. The sudden increase of ICE arrests

(a change of 45 percent – see Figure 2.3 above) starting in 2017 might have put pregnant

mothers at a heightened sense of fear relative to those living in communities that saw less

or no increase in arrests. Thus, comparing the double-difference above with control and

treatment MSAs will net out any omitted variables and unobservable characteristics that

affect birth outcomes among native and foreign-born mothers.

The triple difference estimates of the impact of IRCA and ICE arrests are estimated by
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the following equation.

ymgzt = β0 + β1Postt + β2Treat Motherm + β3Treat MSA Typez + β4(Postt ∗ Treat Motherm)

+ β5(Postt ∗ Treat MSA Typez) + β6(Treat Motherm ∗ Treat MSA Typez)

+ β7(Postt ∗ Treat Motherm ∗ Treat MSA Typez) + πXzt + δz + λt + γg + εmgzt

(2)

where ymgzt is a measure of infant health for the cell defined by treated mother (mother’s

nativity/country of birth) m, demographic group g, in MSA treatment type z and year t.

The main coefficient of interest is β7 (the DDD estimator), which measures the impact

of the IRCA and ICE laws on foreign-born mothers, living in MSAs that had higher appli-

cation/arrests in post-intervention years (1988-1992) and (2017 and 2018). Coefficients β1

to β6 are slopes on linear terms and double interactions. Standard levels are clustered at

MSA levels. All variables are the same as defined in equation (1) except Treat MSA Typez

which indicates observation in treatment (highly affected) or control (less affected) MSAs.

Treat MSA Typez is classified in the following models:

Model 1 : Treat MSAz Mean equal to 1 if applications/arrests28 in MSA z exceed the

mean and 0 otherwise

Model 2 : Treat MSAz Median equal to 1 if applications/arrests in MSA z exceed the

median and 0 otherwise

Dividing the variables, applications per MSAs and change in ICE arrests per MSAs, into

mean and median might fail to capture the distributional impact of the laws. Particularly,

there could be no difference between MSAs that are just above the median and MSAs that

are just below; however, they will be classified in treated and control MSAs. Thus, as an

alternative identification strategy, I modify the above setting and estimate a DDD model

28Arrests refers as change in ICE arrests as defined earlier.
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with continuous treatment. Instead of two treated and control MSA groups, I now have a

continuous treatment, which is applications/arrests per foreign population. Therefore, the

third model is:

Model 3 : Treat MSAz Cont as the actual number of applications/arrests for MSA i.29

As mentioned above, I perform placebo tests for the DDD analysis as well. I only take

the data for the pre-intervention year and re-define the post and pre years as similar as above

and run equation (2).

1.5 Results

First I begin with presenting results for IRCA applications. Section 1.5.1 presents the main

results, section 1.5.1 tests parallel trend assumption and in section 1.5.1 I show event study

analysis. Then I present the results for ICE arrests. Section 1.5.2 presents the main results

of ICE and section 1.5.2 tests parallel trend assumption and finally section 1.5.2 shows event

study analysis.

1.5.1 Main results IRCA

Table 1.3 presents the impact of IRCA on mothers’ birth outcomes. Panel A presents the

results of DD regression. Only the coefficient of the interaction term β3 is reported in the

table. Column 1 shows that babies born after the IRCA law to mothers who were born

outside of the U.S. on average weighed 8 grams more. Similarly, the incidence of LBW

(column 2) decreased by 0.276 percentage points (relative to the mean of 5.94 percent).

Column 3-4 shows that the babies born after the IRCA law to mothers born in Mexico on

average weighed 24 grams more, and the incidence of LBW decreased by 0.846 percentage

points (relative to the mean of 6.01) compared to babies born to U.S. born mothers after

29For ICE arrests I divide the per-foreign-born population change in arrests by 100 in all regression analysis.
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IRCA.

Panel B presents results for DDD estimations. Model 1 compares the double-difference

results above between mothers living in MSAs that had IRCA applications of greater than

mean. It shows that babies born to foreign-born mothers living in MSAs that had higher

IRCA applications on average weighed 14 grams more, and the incidence of LBW decreased

by 0.340 percentage points (relative to the mean of 5.94) after the IRCA. Model 2 shows

similar results, but when comparing MSAs that had greater than median applications. The

coefficients are smaller, but the signs are in the same direction. Model 3 shows that a 10

percentage points increase in IRCA applications corresponds to an increase of 6 grams in

birth weights and decrease in the incidence of LBW by 0.168 percentage points for babies

born to foreign-born mothers after IRCA. Similarly, when comparing U.S born mothers to

mothers born in Mexico, the effect size increases. One thing to note is that the magnitude of

the DDD estimates is larger than that of the DD estimates. This is expected, as foreign-born

mothers living in MSAs that had more IRCA applications are more likely to be undocumented

mothers and as such more affected by the law.
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Table 1.3: Impact of IRCA Applications

Mother’s Cntry of Birth Foreign vs U.S. Mexico vs U.S.

Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 7.548** -0.276*** 23.510*** -0.846***
(3.259) (0.077) (3.902) (0.097)

Panel B: DDD Regression

Model 1: 14.067*** -0.340*** 22.705*** -0.602**
Treat Mother*Post*Treat MSA Mean (3.295) (0.084) (6.018) (0.245)

Model 2: 5.746 -0.189* 9.327 -0.717**
Treat Mother*Post*Treat MSA Median (3.877) (0.100) (8.060) (0.290)

Model 3: 62.236*** -1.680*** 72.909** -2.100**
Treat Mother*Post*Treat MSA Cont (13.276) (0.332) (35.706) (0.838)

N 886089 886089 651303 651303
Dep Var Mean 3363.34 5.94 3366.73 6.01

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients.
Observations are at the year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are
infant birth outcomes. All regressions control for the year, MSA and demographic group fixed effects. Additional
controls for time varying MSA characteristics include percent change in total employment, per capita total transfers
by the government and income per capita. All estimates are weighted by the total number of births per MSAs-
year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *,
** and *** represent significance at the 10, 5 and 1 percent, respectively.

However, as discussed above, the aforementioned results are formulated based on the

assumption that in the absence of treatment (IRCA), the outcome would have been similar

between treated and untreated mothers and MSAs across the pre and post-intervention pe-

riods. This is commonly known as “parallel trend assumption” in the difference-in-difference

model. In the next subsection, I examine this assumption.
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Parallel trends and Placebo Test

One way to check if the pre-trends in birth outcomes among different groups of mothers are

similar, is to visually inspect the trends. Figure 1.5a below plots the trends in birth weights

and the incidence of LBW for various groups of mothers before and after IRCA. Panel A

plots raw trends. As discussed above, the incidence of LBW among U.S. born mothers is

much higher than among foreign-born mothers. Although we do not see much difference

in raw trends, panel B plots conditional birth outcomes for the same groups of mothers. I

plot the marginal coefficients of birth outcomes by year after running the equation (1). It

shows that the average outcomes for all three types of mothers are similar before IRCA and

seem to increase for foreign-born and Mexico born mothers. Similarly, the incidence of LBW

remains constant for U.S. born mothers and seem to have decreased from among mothers

born outside of the U.S.
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Figure 1.5a: IRCA - Trends by mother birth Country
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Panel B: Conditional Trends

Notes: Panel A plots mean birth weights and LBW by mothers’ birth country. Panel B presents the
marginal coefficients of mothers’ birth country after running equation 1 above before and after IRCA
applications.

Next in Figure 1.5b I plot the conditional trends graphs by mothers living in MSAs

that greater and less than mean IRCA applications. Panel A shows the birth outcomes for
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mothers living in MSAs that had IRCA applications of greater than mean. Birth weights

for all three groups are similar before the law and start to increase among foreign-born

and Mexican-born mothers. However, in panel B, the trends are similar for all groups of

mothers before and after the program likely due to the mothers here not being affected by

the program.
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Figure 1.5b: IRCA - Conditional Trends by MSA Type
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Notes: Panel A plots the marginal coefficients of mothers’ birth country after running equation for treated
MSAs (MSAs that is greater than mean) and panel B plots the marginal coefficients of mothers’ birth
country for control MSAs (MSAs that is less than mean) before and after IRCA applications.

One way to check whether there were differential trends in birth outcomes among treated

and control groups of mothers is to run a placebo test. Specifically, I code the post-period

as 1985 and 1986 and pre-period as 1983 and 1984 and run equations (1) and (2) above.

Table 1.4 below presents the results. None of the results, both in DD and DDD regression,
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are significant. Further, the coefficients are much smaller and close to zero. To some extent

this validates the parallel trend assumption.

Table 1.4: Placebo Test, IRCA Applications

Mother’s Cntry of Birth Foreign vs U.S. Mexico vs U.S.

Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 0.029 0.028 2.312 -0.019
(1.572) (0.057) (3.182) (0.061)

Panel B: DDD Regression

Model 1: -1.747 0.153 4.135 0.027
Treat Mother*Post*Treat MSA Mean (3.214) (0.116) (13.325) (0.367)

Model 2: 1.957 0.013 10.046 0.358
Treat Mother*Post*Treat MSA Median (3.631) (0.130) (26.932) (0.677)

Model 3: 1.666 0.107 -13.597 1.578*
Treat Mother*Post*Treat MSA Cont (13.330) (0.416) (25.633) (0.875)

N 317900 317900 232470 232470
Dep Var Mean 3364.87 5.88 3367.98 5.94

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients.
Observations are at the year, MSA, demographic group and mothers’ nativity cell level. Dependent variables
are infant birth outcomes. Post is coded as 1 for year 1985 and 1986 and 0 for years 1983 and 1984. All
regressions control for the year, MSA and demographic group fixed effects. Additional controls for time
varying MSA characteristics include percent change in total employment, per capita total transfers by the
government and income per capita. All estimates are weighted by the total number of births per MSAs-year-
demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols
*, ** and *** represent significance at the 10, 5 and 1 percent, respectively.

We see that the IRCA had a significant impact, especially among foreign-born mothers,

in reducing the incidence of LBW. Overall, the program had an impact on the increase in

average birth weights and reduction of incidence of LBW by 5 to 15 percent.
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Event Study

Next I perform an event study analysis for different groups of mothers living in treated and

control MSAs. Specifically, this means estimating equation (2) above with year dummies

interacted with MSA type dummies. This will also allow to detect if there are differential

trends between different groups of mothers before IRCA. For each group of mothers (U.S.-

born, foreign-born and born in Mexico) I estimate the following equation.

ygzt = α +
∑
j 6=k

βj(MSA Treat Typez ∗ Y ear(t = j)) + πXgzt + δz + λt + γg + εgzt (3)

where t = 1983, 1985. . . 1992 and k = 1987. Variables (MSA Treat Typez ∗ Y ear(t = j))

are the interaction of treatment MSAs (mean treatment)30 with year dummies except for

the year 1987 which is comparison year. I plot the coefficients of βj from equation (3) for

three different types of mothers group in Figure 1.6.

30Using median treatment yields similar results.
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Figure 1.6: Event Study - IRCA

-2
0

-1
0

0
10

20
30

40

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Birth Weight

-1
-.5

0
.5

1

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Foreign Born Mexico
U.S. Born

LBW

Note: Relative Year is 1987

Notes: Panel A plots mean birth weights and Panel B plots LBW by mothers’ birth country.

Figure 1.6, panel A shows the event study analysis for birth weights. The coefficients

from 1983 to 1986 are smaller and around zero and starts to increase after 1988. One point

to note is that, for babies born to U.S. born mothers, average birth weights remain the

same after the IRCA. This is not surprising since they are not affected by the law. Panel B

shows the event study analysis for LBW. The coefficients after 1987 are decreasing but the

trends are not as clear. Appendix Table 1.A5 shows the results of equation (3).31 Similarly,

appendix Figure 2.A1, shows the Figure 1.6 with 95 percent confidence interval lines.

31I also perform a F-Test for coefficients of year 1983-1986 being jointly 0. All p-values are insignificant
except for birth weight for foreign-born mothers.
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1.5.2 Main results ICE

Next, I look at the results from the increase in ICE arrests. Table 1.5a displays the impact

of the increase in ICE arrests after 2016 on birth outcomes. Panel A shows the results

of DD results. Column 1-2 compares foreign-born mothers to U.S-born mothers; column

3-4 compares the U.S.-born mothers to mothers born in Latin American and Caribbean

countries; and column 5-6 compares U.S. born mothers to mothers born in Central American

countries. The table is structured similarly to Table 1.3 above. Average birth weight for

babies born to foreign-born mothers living in MSAs that saw an increase in ICE arrests after

2016 decreased, and the incidence of LBW increased, but the coefficients are not significant.

Panel B shows DDD results. Model 1 compares the double-difference results between

mothers living in MSAs that saw an increase in ICE arrests of greater than mean. It shows

that babies born to foreign-born mothers living in MSAs that had higher ICE arrests on

average weighed 13 grams less, and the incidence of LBW increased by 0.403 percentage

points (relative to the mean of 6.42) after 2016. Model 2 shows similar results, but when

comparing MSAs that had greater than median applications. The coefficients are similar in

magnitude. Model 3 shows that a 10-percentage point increase in ICE arrests per 100 foreign-

born population corresponds to a decrease of 2 grams in birth weights and an increase in the

incidence of LBW by 0.04 percentage points for babies born to foreign-born mothers after

2016. Similarly, when comparing the U.S born mothers to mothers born in Latin American

countries (columns 3 and 4), the effect size increases slightly, and the signs are similar.

Further, when comparing mothers born in Central American countries, the magnitude of

coefficients increases more. Overall, the increase in ICE arrests after 2016 increased the

incidence of LBW by 3-8 percent. The magnitude of coefficient increases in DDD estimates

compared to DD estimates. This is expected, as foreign-born mothers living in MSAs that

had higher ICE arrests are likely to be undocumented mothers and as such affected by the
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law.

Table 1.5a: Impact of ICE Arrests

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post -0.704 0.011 -5.891* 0.067 -5.787 0.036
(2.450) (0.065) (3.086) (0.083) (4.003) (0.114)

Panel B: DDD Regression

Model 1: -12.976*** 0.403*** -15.656*** 0.454*** -18.985*** 0.513***
Treat Mother*Post*Treat MSA Mean (3.716) (0.115) (4.604) (0.117) (5.441) (0.147)

Model 2: -11.608*** 0.214* -14.106*** 0.371*** -16.211*** 0.478***
Treat Mother*Post*Treat MSA Median (3.626) (0.114) (4.136) (0.122) (5.498) (0.161)

Model 3: -12.616*** 0.293** -14.750*** 0.403** -16.742** 0.425**
Treat Mother*Post*Treat MSA Cont (4.827) (0.136) (5.627) (0.156) (7.022) (0.201)

N 1062820 1062820 805166 805166 805166 805166
Dep Var Mean 3301.24 6.42 3305.99 6.48 3305.99 6.48

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the year,
MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. All regressions control for year, MSA
and demographic group fixed effects. Additional controls for time varying MSA characteristics include percent change in total employment,
per capita total transfers by the government and income per capita. All estimates are weighted by the total number of births per MSAs-year-
demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance
at the 10, 5 and 1 percent, respectively.

Given the intense debate about immigration, race, and ethnicity during the 2016 elections,

especially during the Republican primaries, coupled with increasing hate crimes in 2017, I

next look at the impact by the race of mothers. Table 1.5b below shows the impact of ICE

arrests for mothers by race and ethnicity. I run equations (1) and (2) above on sub-samples

of mothers. Column 1-2 shows results for non-Hispanic White mothers; column 3-4 shows

result for non-Hispanic Black mothers, and column 5-6 shows results for Hispanic mothers.

There is a slight decrease in average birth weight for non-Hispanic white and Black mothers,
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but the coefficients are not significant. However, for Hispanic mothers, the effect is larger.

The incidence of LBW increased by 10-12 percent for foreign-born Hispanic mothers living

in MSAs that saw an increase in ICE arrest after 2016.

Table 1.5b: Impact of ICE Arrests by Race of Mother

Mother’s Cntry of Birth (Foreign vs U.S.) White Black Hispanic

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 2.216 -0.121 9.066*** -0.360*** 1.004 -0.111
(3.014) (0.073) (2.673) (0.095) (4.803) (0.120)

Panel B: DDD Regression

Model 1: -16.208*** 0.334** -8.393 0.441 -19.692*** 0.661***
Treat Mother*Post*Treat MSA Mean (5.827) (0.168) (7.813) (0.280) (6.888) (0.210)

Model 2: -14.946*** 0.162 2.659 0.048 -26.202*** 0.727***
Treat Mother*Post*Treat MSA Median (4.988) (0.140) (6.364) (0.222) (7.335) (0.194)

Model 3: -16.834** 0.219 -3.575 0.381 -17.530** 0.552***
Treat Mother*Post*Treat MSA Cont (7.471) (0.214) (8.294) (0.352) (7.201) (0.192)

N 344138 344138 225562 225562 305338 305338
Dep Var Mean 3374.91 5.04 3120.02 11.17 3295.37 5.96

Notes: Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the
year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. All results are for foreign-born
vs the U.S born mothers. All regressions control for year, MSA and demographic group fixed effects. Additional controls for time varying MSA
characteristics include percent change in total employment, per capita total transfers by the government and income per capita. All estimates
are weighted by the total number of births per MSAs-year-demographics groups. Standard errors are clustered at the MSA level and are in
parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.

Parallel trends and Placebo Test

Similar to IRCA above, Figure 1.7a plots the birth outcome trends among different groups

of mothers before and after 2016. Panel A plots raw trends. The incidence of LBW among

U.S. born mothers is much higher compared to foreign-born mothers. The incidence of LBW

starts to increase, starting in 2015. Likely because the impact of rhetoric about immigration
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during the 2015 republican primary election was felt among foreign-born mothers. Panel B

plots conditional birth outcomes for the same groups of mothers, and the trends are similar.

Figure 1.7a: ICE - Trends by mother birth Country
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Panel B: Conditional Trends

Notes: Panel A plots mean birth weights and LBW by mothers’ birth country. Panel B presents the
marginal coefficients of mothers’ birth country after running equation 1 above before and after ICE arrests.

Figure 1.7b plots the trends among different groups of mothers in MSAs that saw an

increase in ICE arrests greater than mean (panel A) and less than mean (panel B). The
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decrease in average birth outcomes and an increase in the incidence of LBW among foreign-

born mothers are more pronounced in MSAs that saw an increase in ICE arrests of greater

than mean.

Figure 1.7b: ICE - Conditional Trends by MSA Type
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Panel A: Treated MSAs (greater than mean)
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Panel B: Control MSAs (less than mean)

Notes: Panel A plots the marginal coefficients of mothers’ birth country after running equation for treated
MSAs (MSAs that is greater than mean) and panel B plots the marginal coefficients of mothers’ birth
country for control MSAs (MSAs that is less than mean) before and after ICE arrests.

A more formal way of checking whether the pre-trends were similar is to run a placebo
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test. I code year 2014 and 2015 as 1 (post-period) and 2012 and 2013 as 0 (pre-period).

Table 1.6a panel A shows DD results. Average birth weight decreased among foreign-born

mothers. However, the DDD results (panel B) are not significant, and the coefficients are

close to zero except for average birth outcomes for model 2 among Latin American and

Central American mothers.

Table 1.6a: Placebo Test, ICE Arrests

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post -4.010*** -0.021 -5.466*** -0.002 -5.742*** -0.013
(1.191) (0.045) (1.210) (0.040) (1.375) (0.048)

Panel B: DDD Regression

Model 1: -1.605 0.098 -0.744 -0.037 -0.037 -0.046
Treat Mother*Post*Treat MSA Mean (2.215) (0.112) (2.834) (3.215) (3.215) (0.126)

Model 2: -1.945 0.038 -4.656** 0.043 -5.633** 0.097
Treat Mother*Post*Treat MSA Median (2.433) (0.084) (2.327) (0.085) (2.585) (0.094)

Model 3: -2.959 0.057 -6.723 0.140 -7.079 0.138
Treat Mother*Post*Treat MSA Cont (3.882) (0.140) (4.117) (0.134) (5.104) (0.160)

N 604634 604634 512278 512278 458683 458683
Dep Var Mean 3306.16 6.26 3310.04 6.33 3310.94 6.32

Notes: Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are
at the year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. Post is coded 1 for
years 2014 and 2015 and 0 for years 2012 and 2013. All regressions control for year, MSA and demographic group fixed effects. Additional
controls for time varying MSA characteristics include percent change in total employment, per capita total transfers by the government
and income per capita. All estimates are weighted by the total number of births per MSAs-year-demographics groups. Standard errors
are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent,
respectively.

Table 1.6b shows the placebo test results by race and ethnicity of mothers. The results

are similar.
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Table 1.6b: Placebo Test, ICE Arrests by Race of Mother

Mother’s Cntry of Birth (Foreign vs U.S.) White Black Hispanic

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post -5.037*** -0.071 6.279** -0.206* -5.031*** 0.018
(1.927) (0.056) (3.108) (0.118) (1.272) (0.059)

Panel B: DDD Regression

Model 1: -11.234*** 0.244 -4.224 0.062 -0.080 -0.023
Treat Mother*Post*Treat MSA Mean (4.271) (0.195) (7.020) (0.325) (3.678) (0.156)

Model 2: -8.883** 0.139 7.347 -0.144 -3.559 0.026
Treat Mother*Post*Treat MSA Median (3.464) (0.120) (7.477) (0.261) (2.564) (0.119)

Model 3: -3.677 -0.019 -17.339** 0.092 -3.904 0.079
Treat Mother*Post*Treat MSA Cont (7.611) (0.294) (7.119) (0.304) (3.058) (0.153)

N 196877 196877 125796 125796 173662 173662
Dep Var Mean 3377.99 4.97 3124.66 10.95 3302.38 5.79

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the
year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. Post is coded 1 for years
2014 and 2015 and 0 for years 2012 and 2013. All results are for foreign-born vs the U.S born mothers. All regressions control for year, MSA
and demographic group fixed effects. Additional controls for time varying MSA characteristics include percent change in total employment,
per capita total transfers by the government and income per capita. All estimates are weighted by the total number of births per MSAs-
year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent
significance at the 10, 5 and 1 percent, respectively.

Event Study

Similarly, to section 1.5.1 above, next I perform an event study analysis for different groups

of mothers living in treated and control MSAs for ICE years. Specifically, for each group

of mothers (U.S. born, foreign-born, Latin American Countries born and born in Central

American Countries) I estimate the following equation.

ygzt = α +
∑
j 6=k

βj(MSA Treat Typez ∗ Y ear(t = j)) + πXgzt + δz + λt + γg + εgzt (4)
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where t = 2013, 2014. . . 2018 and k = 2016. Variables ((MSA Treat Typez*Year(t=j)) are

the interaction of treatment MSAs (mean treatment) with year dummies except for the year

2016, which is the comparison year. I plot the coefficients of βj for 4 different types of

mothers group in Figure 1.8a.

Figure 1.8a: Event Study - ICE
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Notes: Panel A plots mean birth weights and Panel B plots LBW by mothers’ birth country.

Figure 1.8a, panel A shows the event study analysis for birth weights. The coefficients

from 2012 to 2014 for U.S. born mothers are around zero and remain the same after 2016.

However, birth weight for mothers born outside of the U.S. are higher and decreases sig-
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nificantly in 2018. This is also not surprising as U.S. born mothers are not affected by

the increase in ICE arrests. LBW follows similar pattern. Next in Figure 1.8b, I plot the

same figures for only Hispanic mothers. The birth weights increase for foreign-born Hispanic

mothers after 2016 but not for U.S. born Hispanic mothers. Appendix Table 1.A6 shows the

results of equation (4).32 Similarly, appendix Figure 1.A2 and 1.A3, shows the Figure 1.8a

and 1.8b with 95 percent confidence interval lines.

Figure 1.8b: Event Study - ICE (Hispanic mothers)
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Notes: Panel A plots mean birth weights and Panel B plots LBW for Hispanic mothers (U.S. born vs.

Foreign-Born)

32I also perform a F-Test for coefficients of year 2012-2016 being jointly 0. None of the p-values are
significant.
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1.6 Mechanisms

What mechanisms lead to decreasing/increasing birth outcomes? Inputs that impacts birth

outcomes are access to health care, nutritional intake, smoking and drinking, education,

neighborhood, wealth, and uses of prenatal care among others (Chung et al., 2016). All

these issues, while important, are beyond the scope of this study. However, the data allows

to look at the prenatal care utilization of mothers. One of the leading indicators of low

and premature birth prevention is the use of prenatal care. Given the stigma, and fear of

being reported to ICE, immigrant mothers may delay prenatal care (PNC) visits. Perceived

fear of deportation and harassment may also delay immigrant mothers’ visits (Hacker et al.,

2015). The utilization of PNC among immigrant mothers is inadequate. Studies estimate

that uninsured women are up to five times more likely to delay prenatal care until late in

their pregnancies and consequently have adverse health outcomes, including low baby birth

weight and prematurity (Haas et al., 1993).

I examine the PNC utilization of pregnant mothers before and after the interventions.

Specifically, I analyze whether mothers had any prenatal care visits and the total number of

prenatal care visits. The structure and methodology are similar to above. Table 1.7 presents

the impact of IRCA law on PNC characteristics. The number of PNC visits went up by

about 2 times in all specifications. The incidence of mothers with no PNC is not significant,

although the signs are negative, indicating that the percentage of the mothers with no PNC

went down after the IRCA.
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Table 1.7: Mechanisms IRCA Applications

Mother’s Cntry of Birth Outside vs U.S. Mexico vs U.S.

No PNC Num.
of Visits

No PNC Num.
of Visits

Panel A: DD Regression

Treat Mother*Post -0.440 0.680*** -0.868* 1.410***
(0.275) (0.229) (0.451) (0.345)

Panel B: DDD Regression

Model 1: 0.324 1.491*** 1.359 1.191***
Treat Mother*Post*Treat MSA Mean (0.432) (0.328) (1.764) (0.390)

Model 2: -0.692*** 1.143*** -1.668 1.647***
Treat Mother*Post*Treat MSA Median (0.246) (0.265) (1.459) (0.410)

Model 3: -0.853 5.220*** -2.017 2.302
Treat Mother*Post*Treat MSA Cont (1.551) (1.551) (3.218) (2.721)

N 880723 858760 647730 631438
Dep Var Mean 1.97 10.09 1.96 10.20

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression
coefficients. Observations are at the year, MSA, demographic group and mothers’ nativity cell level.
Dependent variables are mother’s prenatal care utilization. All regressions control for the year, MSA
and demographic group fixed effects. Additional controls for time varying MSA characteristics include
percent change in total employment, per capita total transfers by the government and income per
capita. All estimates are weighted by the total number of births per MSAs-year-demographics groups.
Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and ***
represent significance at the 10, 5 and 1 percent, respectively.

Table 1.8a shows results for PNC utilization for ICE arrests. Panel A shows DD regression

results. The incidence of mothers with no PNC increased for all groups of mothers, and the

number of PNC visits decreased. For DDD specifications, however, the results are opposite.
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Table 1.8a: Mechanisms ICE Arrests

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

No PNC Num.
of Visits

No PNC Num.
of Visits

No PNC Num.
of Visits

Panel A: DD Regression

Treat Mother*Post 0.234** -0.139*** 0.457** -0.259*** 0.551** -0.240***
(0.115) (0.033) (0.181) (0.052) (0.219) (0.064)

Panel B: DDD Regression

Model 1: 0.003 0.181*** -0.119 0.311*** -0.182 0.279**
Treat Mother*Post*Treat MSA Mean (0.267) (0.069) (0.273) (0.118) (0.333) (0.136)

Model 2: 0.064 0.177*** 0.053 0.315*** -0.001 0.248**
Treat Mother*Post*Treat MSA Median (0.196) (0.065) (0.313) (0.098) (0.369) (0.126)

Model 3: 0.062 0.231** -0.020 0.392*** -0.063 0.359**
Treat Mother*Post*Treat MSA Cont (0.212) (0.097) (0.261) (0.146) (0.327) (0.157)

N 901595 901595 891124 891124 794671 794671
Dep Var Mean 1.60 11.25 1.66 11.27 1.68 11.28

Notes: Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations
are at the year, MSA, demographic group and mothers’ nativity cell level. Dependents variables are the mother’s prenatal care
utilization. All regressions control for year, MSA and demographic group fixed effects. Additional controls for time varying MSA
characteristics include percent change in total employment, per capita total transfers by the government and income per capita.
All estimates are weighted by the total number of births per MSAs-year-demographics groups. Standard errors are clustered at
the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.

Table 1.8b shows the same results by the mother’s race and ethnicity. The incidence of

mothers with no PNC increased among Hispanic mothers, and the number of PNC visits

decreased. However, for DDD specifications, the results are not significant.
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Table 1.8b: Mechanisms ICE Arrests, by Mother Race

Mother’s Cntry of Birth (Foreign vs U.S.) White Black Hispanic

No PNC Num.
of Visits

No PNC Num.
of Visits

No PNC Num.
of Visits

Panel A: DD Regression

Treat Mother*Post 0.062 -0.079** 0.019 -0.059 0.448** -0.233***
(0.076) (0.032) (0.133) (0.049) (0.177) (0.067)

Panel B: DDD Regression

Model 1: -0.147 0.145** 0.215 0.223*** 0.082 0.185
Treat Mother*Post*Treat MSA Mean (0.202) (0.060) (0.470) (0.085) (0.277) (0.115)

Model 2: -0.067 0.138** 0.233 0.089 0.171 0.221*
Treat Mother*Post*Treat MSA Median (0.164) (0.059) (0.279) (0.085) (0.296) (0.118)

Model 3: -0.094 0.104 0.199 0.398*** -0.063 0.298**
Treat Mother*Post*Treat MSA Cont (0.131) (0.080) (0.507) (0.124) (0.207) (0.122)

N 340530 340530 221747 221747 301435 301435
Dep Var Mean 1.07 11.70 3.07 10.37 2.00 10.86

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations
are at the year, MSA, demographic group and mothers’ nativity cell level. Dependents variables are the mother’s prenatal care
utilization. All results are for foreign-born vs the U.S born mothers. All regressions control for year, MSA and demographic
group fixed effects. Additional controls for time varying MSA characteristics include percent change in total employment, per
capita total transfers by the government and income per capita. All estimates are weighted by the total number of births per
MSAs-year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and
*** represent significance at the 10, 5 and 1 percent, respectively.

The results presented above strongly suggest that the reduced form estimates measuring

the impact of IRCA applications and ICE arrests are causal. However, the results might

be biased if other laws that might impact birth outcomes were passed along with IRCA

applications and ICE arrests. To address such concerns, I next conduct various robustness

checks.
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1.7 Robustness Checks

1.7.1 Endogeneity - Medicaid Expansion

As noted above, concurrent with the IRCA law, the federal government expanded Medicaid,

thereby giving states some flexibility to implement the expansion. Although the law man-

dated all states to cover the benefits by 1990, if some states expanded earlier or more than

others, the estimate could be biased. States had a two-year window to meet the federal

standard for minimum coverage for Medicaid. By 1989, all States were mandated to cover

citizens up to 133 percent of the Federal Poverty Level. I use the data from Hill (1990),

that lists the year which states decided to expand the FPL coverage and the percentage of

coverage.33 I control for these two variables and re-run Table 1.3 above. Appendix Table

1.A7 shows the results, and the result does not change.

Similarly, following the ACA in 2010, and the Supreme Court decision of 2012,34 states

could opt-in/out of Medicaid expansion. Using the data from the Kaiser Family Foundation

(KFF, 2020), I create a start year of Medicaid expansion and the percentage of population

covered by the state. I control for these variables and re-run Table 1.5a above, and the

results are robust. Appendix Table 1.A8 shows the results. Given that some MSAs falls in

multiple states controlling with the state dummy variable becomes tricky. For MSAs that

are in multiple states, I took the mean of the states.35

Although I control for yearly per-capita government transfers by MSAs and start year

of Medicaid expansion in the specification above, if the expansion affected birth outcomes

differentially across treated and control groups, then the estimates above might be biased.

Using Current Population Survey (CPS) data, I plot the percentage of mothers who have

33Percentage of coverage is for 1989 and 1991. I replace 75 percent for year 1988 and earlier. I replace
coverage of 1991 for 1990-1992.

34In National Federation of Independent Business v. Sebelius.
35If for example, one MSA falls in 3 state, and only 2 state expanded Medicaid in 1989 then, that MSA

has a dummy variable of 0.66.
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children less than 5 years old who were covered by Medicaid before and after IRCA. The data

do not identify the mother’s nativity or place of birth. Figure 1.9a below plots the yearly

coverage. The top two figures plot Medicaid coverage of mothers living in treatment and

control MSAs by mean and median. Post-1987, the coverage starts to increase, but the rates

are similar in both types of MSAs. The bottom figures plot the percentage of households

that had at least one person covered by Medicaid, and it shows a similar pattern.

Figure 1.9a: Medicaid Coverage 1983-1992
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Notes: Panel A plots yearly percentage of mothers who have children less than 5 years old who are covered
by Medicaid before and after IRCA applications. Figure on the left plots MSA treatment defined by mean
and the right is for median. Panel B plots the same graphs but for percentages of households covered by
Medicaid.
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Figure 1.9b plots mothers and households covered by private insurance. The data pre-

1987 were not available. It shows that private insurance coverage is decreasing, but the

trends are parallel. It is consistent with the literature that following Medicaid expansion,

there is some evidence of crowding out of private insurance coverage.

Figure 1.9b: Insurance Coverage 1983-1992
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Notes: Panel A plots yearly percentage of mothers who have children less than 5 years old who are covered
by private insurance before and after IRCA applications. Figure on the left plots MSA treatment defined
by mean and the right is for median. Panel B plots the same graphs but for percentages of households
covered by private insurance. Data is not available from 1983-1986.

Although the trends look parallel, I run a DD regression for Medicaid and Insurance
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coverage as dependent variable for mothers and households before and after the IRCA.

The dependent variable is coded 1 if mothers and households are covered by Medicaid.

Demographic group control includes age, marital status, education, and race.36 Table 1.9

below shows the results. None of the coefficients is significant likely suggesting that the

Medicaid expansion affected mothers living in treated and control MSAs similarly.

Table 1.9: Medicaid Expansion of 1986

MSA Treat Type: Mean Median Continuous

Mother HH Mother HH Mother HH

DD 0.709 -0.091 0.907 0.190 6.632 0.449
(1.121) (0.408) (0.932) (0.362) (5.994) (2.522)

N 55593 360532 55593 360532 55593 360532
Dep Var Mean 16.96 7.68 16.96 7.68 16.96 7.68

Notes: Only the DD coefficient is reported. Dependent variable Mother is a binary variable indicating if mothers with children
less than five years of age are covered by the Medicaid. HH is a binary variable indicating if a household is covered by the Medicaid
expansion of 1986. Observations are at the mother and HH level respectively. Columns 1-2 present results for treatment greater
than mean per capita IRCA application, columns 3-4 present results for treatment greater median and column 5-6 presents
results for continuous treatment. All regression controls for the year and MSA fixed effects. Columns 1, 3 and 5 controls for
mothers’ age, education, marital status, and race/ethnicity. Additional controls for time varying MSA characteristics include
percent change in total employment, per capita total transfers by the government and income per capita. Standard errors are
clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent,
respectively.

Next, I perform a similar exercise for ICE arrests. Using American Community Survey

(ACS) data, I plot Medicaid coverage for non-citizen mothers. Figure 1.10a top left plots,

Medicaid coverage for mothers with children less than 5 years old. The coverage increased

after 2013 for such mothers and converged by 2016, probably because of the expansion of

Medicaid coverage post-2014. Top right plots the coverage by MSA type (defined greater

than mean). MSAs that saw an increase in ICE arrests of greater than mean has lesser

coverage, but the trends are similar. The bottom left figure plots the coverage by non-

36Race is defined as, White, Black and Others.
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citizen and citizen mothers in MSAs with greater than mean ICE arrests. The difference in

coverage is higher, but the trends are similar. Bottom right plots by mother’s type in MSAs

that saw an increase in ICE arrests less than mean, and the coverage is very similar.

Figure 1.10a: Health Insurance Coverage
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Panel B: Mothers with Children less than 5 years age, Covered By Medicaid

Notes: Panel A left figure plots yearly percentage of mothers who have children less than 5 years old who
are covered by Medicaid during before and after ICE arrests by mother’s nativity. Figure on the left plots
the same coverage by MSA treatment defined by mean. Panel B plots the same graphs by mothers’
nativity for treated MSA (left) and control MSA (left). MSA treatment definition is mean treatment.

Next, in Figure 1.10b below, I plot similar figures for private insurance coverage. Non-

citizen mothers are covered by private insurance at a much lower rate, but the trends are
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similar.

Figure 1.10b: Health Insurance Coverage
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Panel B: Mothers with Children less than 5 years age, Covered By Private Insurance

Notes: Panel A left figure plots yearly percentage of mothers who have children less than 5 years old who
are covered by private insurance during before and after ICE arrests by mother’s nativity. Figure on the left
plots the same coverage by MSA treatment defined by mean. Panel B plots the same graphs by mothers’
nativity for treated MSA (left) and control MSA (left). MSA treatment definition is mean treatment.

Next, I run regression as Medicaid coverage and private insurance coverage for mothers

with children less than 5 years of age dependent variable. Table 1.10 Panel A presents DD

regression results, and panel B presents DDD regression. Column 1-2 present results for

all mothers. It shows that non-citizen mothers’ Medicaid coverage and private insurance
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coverage went up after 2016; however, that is not the case for DDD regression. There is

significant negative coverage for Medicaid and positive coverage for private insurance for

model 2 but not significant for other models. Columns 3-8 present result by mothers’ race,

and there is no consistent difference in Medicaid as well as private insurance coverage. This

further assures that the expansion of Medicaid after 2010 did not affect native and foreign-

born mothers living in treated and control MSAs differentially.

Table 1.10: Medicaid Expansion 2014

All Mothers White Black Hispanic

Panel A: DD Regression Medicaid Insurance Medicaid Insurance Medicaid Insurance Medicaid Insurance

Non-Citizen*Post 2.695*** 0.938** 3.455* -2.408 0.494 -1.593 1.947* 1.384**
(0.767) (0.433) (1.760) (2.030) (1.907) (1.762) (1.003) (0.678)

Panel B: DDD Regression

Model 1: -1.118 2.072 -2.782 -4.091 -1.232 1.892 1.308 2.804
Non-Citizen*Post*Treat MSA Mean (1.407) (1.544) (3.597) (5.484) (5.464) (5.618) (2.369) (2.743)

Model 2: -3.432*** 1.930** -0.082 1.676 0.943 2.002 -3.292** 0.153
Non-Citizen*Post*Treat MSA Median (1.169) (0.939) (3.410) (3.895) (3.815) (3.498) (1.590) (1.411)

Model 3: 0.771 -2.563 4.386* -10.173** 5.595 -5.100 0.570 -2.028
Non-Citizen*Post*Treat MSA Cont (2.029) (2.344) (2.455) (4.296) (6.627) (6.980) (1.939) (2.080)

N 390168 390168 201105 201105 48284 48284 101616 101616
Dep Var Mean 26.69 58.64 19.19 73.55 44.29 44.40 30.32 38.91

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Non-Citizen is coded 0 if a mother is either a
U.S. citizen (including naturalized citizen) and 0 otherwise. Observations are the individual (mother) level. Dependent variable Medicaid is coded 1 if mothers
with children less than five years of age are covered by the Medicaid and Insurance is coded 1 if mothers with children less than five years of age are covered
by private insurance. Columns 1-2 presents results for all mothers, columns 3-4 presents result for non-Hispanic White mothers, columns 5-6 presents result
for non-Hispanic Black mothers and columns 7-8 presents results for Hispanic mothers. All regression controls for the year and MSA fixed effects and mothers’
age, education, marital status and race/ethnicity. Additional controls for time varying MSA characteristics include percent change in total employment, per
capita total transfers by the government and income per capita. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and
*** represent significance at the 10, 5 and 1 percent, respectively.

Furthermore, along with Medicaid, the Earned Income Tax Credit (EITC) was expanded

in 1986 and again in 1990. States had some flexibility in implementing EITC. Hoynes et al.

(2015a) find that “a $1,000 treatment-on-the-treated leads to a 2 to 3 percent decline in low

birth weight”. One way to check if these laws might have differentially impact treated and
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control MSAs would be to look at the growth of government funding by year. I graph per

capita government transfer before and after each law in treated and control MSAs. Figure

1.11 shows the transfers before and after the IRCA law. Overall, the transfers are increasing;

however, the increment is parallel between treated and control MSAs both before and after

the IRCA.

Figure 1.11: Per-Capita Transfers 1983-1992
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Notes: The figure plots yearly per capita government transfers for treated and control MSAs before and
after IRCA applications which is defined as the sum of: “Personal current transfer receipts- Receipts of
persons from government and business for which no current services are performed. Current transfer
receipts from government include Social Security benefits, medical benefits, veterans’ benefits, and
unemployment insurance benefits. Current transfer receipts from business include liability payments for
personal injury and corporate gifts to nonprofit institutions.”

Figure 1.12 shows the transfer before and after 2016, and the trends are parallel indicating
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that although there is a slight difference in government transfers between treated and control

MSAs, the trends are similar.

Figure 1.12: Per-Capita Transfers 2012-2018
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Notes: The figure plots yearly per capita government transfers for treated and control MSAs before and
after ICE arrests which is defined as the sum of: “Personal current transfer receipts- Receipts of persons
from government and business for which no current services are performed. Current transfer receipts from
government include Social Security benefits, medical benefits, veterans’ benefits, and unemployment
insurance benefits. Current transfer receipts from business include liability payments for personal injury
and corporate gifts to nonprofit institutions.”

1.7.2 Endogeneity – Sanctuary Cities

Among many other things, one of the main roles of Sanctuary cities is to limit the role of

federal and local officials in emigration enforcement by refusing to honor ICE detainers’ re-
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quest (Mart́ınez-Schuldt and Mart́ınez, 2017). Citing that these jurisdictions encourage more

undocumented immigrants which deter more crime, the executive order entitled “Enhanc-

ing Public Safety in the Interior of the United States” (Executive Order No. 13768, 2017)

was signed in 2017. This law primarily threatened to withhold funding for law enforcement

initiatives, from such jurisdictions until they fully cooperate with the federal government

(Mart́ınez-Schuldt and Mart́ınez, 2017).

Sanctuary cities started as a faith-based response to the mass migration of Central Amer-

ican refugees to the United States in the 1980s, commonly known as the Central American

Refugee Sanctuary Movement (CSM). By 1987, twenty-two city councils had declared some

form of CSM (Aboii, 2014). According to the Center for Immigration Studies (CIS), as of

2020, ten states and 69 counties from 16 other states have some form of sanctuary laws

passed.37 If there is a differential impact on birth outcomes among mothers living in sanc-

tuary states and cities, then the DDD estimates above will be biased. Using the data from

CIS, I create a dummy variable for sanctuary MSAs if an MSA has at least one county that

is a sanctuary county. I run a quadruple difference estimate as follows.

ymgzts = β0 + β1(Postt ∗ Treat Motherm ∗ Treat MSA Typez ∗ Sanctuary MSAs)

+
5∑

k=2

βk ∗ (4 Tripple Interactions) +
11∑
k=6

βk ∗ (6 Double Interactions)

+
15∑

k=12

βk ∗ (4 Linear Terms) + πXzt + δz + λt + γg + εmgzt (5)

where β1 is the quadruple difference estimate and coefficient of interest and indicates if

the triple difference estimates in equation (2) are differentially affected sanctuary MSAs.

Sanctuary MSAs indicates if an MSA is a sanctuary MSA. All estimation samples and

37https://cis.org/Map-Sanctuary-Cities-Counties-and-States
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methodology are the same as equation (2) above. I run this equation across the 3 models

described above.

Table 1.11 below shows the results. If sanctuary MSAs were affected differently, then we

should see a positive effect on birth outcomes among foreign-born mothers living in sanctuary

MSAs before and after 2016. None of the coefficients are significant for model 1. For model

2, the incidence of LBW decreased. Although not all results show positive birth outcomes

among mothers living in sanctuary cities and states, I control for sanctuary MSAs and re-run

estimates in Table 1.5a, and the results are robust. The results are in Appendix Table 1.A9.

Table 1.11: Impact of ICE Arrests - Quadruple Difference

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Model 1:
Mother Birth*Post* 1.488 0.053 -1.816 0.020 -0.766 0.122
Treat MSA Mean*Sanctuary MSA (7.171) (0.200) (8.765) (0.231) (9.949) (0.222)

Model 2:
Mother Birth*Post* 1.542 -0.411** 5.858 -0.566*** 12.432 -0.904***
Treat MSA Median*Sanctuary MSA (9.225) (0.201) (7.241) (0.210) (10.169) (0.292)

Model 3:
Mother Birth*Post* 14.940* -0.639* -0.556 -0.449 0.912 -0.269
Treat MSA Cont*Sanctuary MSA (8.954) (0.330) (11.697) (0.390) (13.311) (0.363)

N 1062820 1062820 904000 904000 805166 805166
Dep Var Mean 3301.24 6.42 3304.96 6.48 3305.99 6.48

Notes: Only the coefficient of Quadruple (DDDD) is reported. Observations are at the year, MSA, demographic group, mothers’ nativity
and MSA cell level. Sanctuary MSA is coded 1 if at least 1 county in the MSA has a sanctuary county. Dependent variables are infant birth
outcomes. All regression controls for year, MSA and demographic group fixed effects. Additional controls for time varying MSA characteristics
include percent change in total employment, per capita total transfers by the government and income per capita. All estimates are weighted
by total number of births per MSAs-year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The
symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.
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1.7.3 Endogeneity – Fertility Selection

The IRCA law legalized around 3 million people and it could lead to changes in fertility

behaviors among the newly legalized population. It could be that foreign-born mothers in

treated MSAs might select to have more births due to perhaps increasing income through

new and better jobs. Following Hoynes et al. (2015a), in Table 1.12, I regress the log of

births on treatment types similar to the Tables 1.3 and 1.5a. Column 1-2 shows results for

IRCA applications, and columns 3-5 shows results for ICE arrests. The results show a small

but inconsistent impact on overall births. Panel A shows DD results. Births increase among

foreign-born mothers but decrease for Mexican-born mothers. However, the results are not

significant in the DDD model. Similarly, there is a decrease in births among foreign-born

mothers after 2016; however, the results are opposite in the DDD model.
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Table 1.12: Composition of Births

IRCA ICE

Mother’s Cntry of Birth Foreign
v U.S.

Mexico
v U.S.

Foreign
v U.S.

LA v
U.S.

CA v
U.S.

Panel A: DD Regression

Treat Mother 0.056*** -0.111*** -0.009 -0.039* -0.108***
(0.013) (0.036) (0.012) (0.021) (0.024)

Panel B: DDD Regression

Model 1: -0.006 -0.166** 0.052*** 0.046 0.119***
Treat Mother*Post*Treat MSA Mean (0.037) (0.066) (0.019) (0.030) (0.036)

Model 2: 0.056** -0.027 0.041* 0.056 0.161***
Treat Mother*Post*Treat MSA Median (0.022) (0.068) (0.024) (0.043) (0.050)

Model 3: -0.316 -0.478 0.025* 0.020 0.058**
Treat Mother*Post*Treat MSA Cont (0.197) (0.308) (0.014) (0.020) (0.028)

N 886089 651303 1062820 904000 805166
Dep Var Mean 1.78 2.00 1.46 1.49 1.58

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients.
Observations are at the year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are log
of total births by cell. Columns 1-2 presents results for IRCA. Columns 3-5 presents results for ICE arrests. All
regression controls for year, MSA and demographic group fixed effects. Additional controls for time varying MSA
characteristics include percent change in total employment, per capita total transfers by the government and income
per capita. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent
significance at the 10, 5 and 1 percent, respectively.

Further, if the composition of birth among different groups is affected differently, then the

estimates might be biased. Next, I examine the impact of IRCA applications and ICE arrests

on the compositions of births among various demographic groups. Specifically, I create

dependent variables equal to the share of births for each demographic’s group of mothers.

Appendix Table 1.A10 shows the results for IRCA applications. Appendix Table 1.A11
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shows results for ICE arrests. The results show small but significant increases/decreases in

the share of births; however, the pattern is inconsistent across groups.

Since the regressions in all of the models above are weighted by total births per cell,

the increase in births and share of births should not be a threat to the regression design

itself. However, if there are differences in the number of births, there might be concern

about the endogeneity of unobservable characteristics. I control for linear year times demo-

graphic groups and re-estimate the main results. Appendix Table 1.A12 and 1.A13 for IRCA

applications and ICE arrests show the results respectively, and the results are robust.

Another concern of endogeneity could be the issue of non-random migration of mothers

and families into immigrant friendly MSAs. Since I look at mothers’ county of residence and

not the occurrence of birth, this issue should not be a problem. Although the results are

robust, it might be sensitive to alternative specifications. In the following section, I carry

out various sensitivity analyses.

1.8 Sensitivity Analysis

1.8.1 Alternative specifications for IRCA

First, in the primary analysis, I define my treatment MSAs using the total applications for

IRCA. However, given that I am looking at birth outcomes, it may be more representative

to look at applications by women age 15-49 and divide it by the MSA’s foreign population.

Thus, I re-define the treatment types of above mean, median, and continuous treatment and

re-estimate the main analysis for IRCA. All other specifications are the same as the main

results. Tables 1.13 below shows the results.
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Table 1.13: Impact of IRCA Applications - Alternative Specification

Mother’s Cntry of Birth Foreign vs U.S. Mexico vs U.S.

Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 7.548** -0.276*** 23.510*** -0.846***
(3.259) (0.077) (3.902) (0.097)

Panel B: DDD Regression

Model 1: 3.561 -0.098 21.716*** -0.802***
Treat Mother*Post*Treat MSA Mean (4.231) (0.105) (7.288) (0.238)

Model 2: 7.018* -0.212** 12.187 -0.527*
Treat Mother*Post*Treat MSA Median (3.805) (0.101) (7.662) (0.283)

Model 3: 226.596*** -6.205*** 277.395** -8.349***
Treat Mother*Post*Treat MSA Cont (39.474) (0.950) (115.738) (2.599)

N 886089 886089 651303 651303
Dep Var Mean 3363.34 5.94 3366.73 6.01

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients.
Observations are at the year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are
infant birth outcomes. All regressions control for the year, MSA and demographic group fixed effects. Additional
controls for time varying MSA characteristics include percent change in total employment, per capita total transfers
by the government and income per capita. All estimates are weighted by the total number of births per MSAs-
year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *,
** and *** represent significance at the 10, 5 and 1 percent, respectively.

The results are very similar to the main results. The coefficients are a little smaller in

magnitude compared to Table 1.3. Second, in the main analysis I use all MSAs, however,

only 244 MSAs have positive applications. I drop the missing MSAs and re-estimate the

main analysis for IRCA. All other specifications are the same as the main results. Tables

1.14 below shows the results. The results are similar to the Table 1.3.
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Table 1.14: Impact of IRCA Applications (Non-Missing MSAs)

Mother’s Cntry of Birth Foreign vs U.S. Mexico vs U.S.

Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 7.335** -0.278*** 23.121*** -0.847***
(3.278) (0.078) (3.885) (0.097)

Panel B: DDD Regression

Model 1: 15.337*** -0.411*** 20.367*** -0.534**
Treat Mother*Post*Treat MSA Mean (3.068) (0.072) (6.536) (0.237)

Model 2: 3.905 -0.077 35.270*** -1.327***
Treat Mother*Post*Treat MSA Median (4.305) (0.113) (9.310) (0.318)

Model 3: 62.785*** -1.675*** 76.121** -2.147**
Treat Mother*Post*Treat MSA Cont (13.515) (0.337) (38.159) (0.896)

N 754463 754463 543210 543210
Dep Var Mean 3361.92 5.97 3365.32 6.04

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients.
Observations are at the year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are
infant birth outcomes. Only non-missing MSAs are in the sample, a total of 244 MSAs. All regressions control for
year, MSA and demographic group fixed effects. Additional controls for time varying MSA characteristics include
percent change in total employment, per capita total transfers by the government and income per capita. All
estimates are weighted by the total number of births per MSAs-year-demographics groups. Standard errors are
clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5
and 1 percent, respectively.

1.8.2 Alternative specifications for ICE

In the main specification for ICE arrests (Table 1.5a) above, I exclude the border counties.

Here I include all counties and MSAs and re-estimate Table 1.5a. The number of MSAs

increase to 384 compared to 374 in the main specification. Table 1.15 below shows the
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results. The magnitudes of coefficients are a little smaller, and the coefficients in model 1

in DDD specifications are not significant; however, the signs are similar. Given these border

counties might skew the data and therefore it is not surprising that the mean treatment

specification is not significant.

Table 1.15: Impact of ICE Arrests- Alternative Specification

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post -0.155 -0.001 -5.134* 0.048 -4.847 0.014
(2.474) (0.065) (2.940) (0.080) (3.718) (0.106)

Panel B: DDD Regression

Model 1: -6.056 0.244 -8.277 0.262 -9.835 0.272
Treat Mother*Post*Treat MSA Mean (7.061) (0.177) (7.642) (0.191) (8.956) (0.231)

Model 2: -8.605** 0.144 -10.351** 0.277** -11.211* 0.350**
Treat Mother*Post*Treat MSA Median (4.105) (0.118) (4.601) (0.130) (5.865) (0.166)

Model 3: -10.536** 0.249* -12.508** 0.356** -13.960** 0.363*
Treat Mother*Post*Treat MSA Cont (4.923) (0.139) (5.599) (0.158) (6.860) (0.198)

N 1089695 1089695 927981 927981 827481 827481
Dep Var Mean 3300.63 6.40 3304.25 6.46 3305.22 6.46

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the year,
MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. All 384 MSAs are included in the
analysis. All regressions control for year, MSA and demographic group fixed effects. Additional controls for time varying MSA characteristics
include percent change in total employment, per capita total transfers by the government and income per capita. All estimates are weighted
by the total number of births per MSAs-year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis.
The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.

Next, in the main analysis I use all MSAs, however, only 290 MSAs have increasing

arrests. I drop the missing MSAs and re-estimate the main analysis for ICE. All other

specifications are the same as the main results. Tables 1.16 below shows the results. The

results are similar to the Table 1.5a.
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Table 1.16: Impact of ICE Arrests (Non-Missing MSAs)

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post -1.108 0.025 -5.390*** -0.014 -5.789*** -0.021
(2.640) (0.068) (1.279) (0.042) (1.483) (0.051)

Panel B: DDD Regression

Model 1: -13.818*** 0.480*** -16.831*** 0.506*** -19.102*** 0.528***
Treat Mother*Post*Treat MSA Mean (4.057) (0.114) (4.860) (0.125) (5.884) (0.161)

Model 2: -10.731*** 0.191* -10.962** 0.289** -12.630** 0.366**
Treat Mother*Post*Treat MSA Median (3.813) (0.115) (4.524) (0.121) (5.832) (0.162)

665065 665065
Model 3: -12.016** 0.274* -13.946** 0.388** -16.225** 0.415*
Treat Mother*Post*Treat MSA Cont (5.014) (0.139) (5.870) (0.161) (7.487) (0.213)

N 882539 882539 753636 753636 665065 665065
Dep Var Mean 3297.72 6.46 3301.32 6.53 3302.31 6.53

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the year,
MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. Only non-missing MSAs are in the
sample, a total of 290 MSAs All regressions control for year, MSA and demographic group fixed effects. Additional controls for time varying
MSA characteristics include percent change in total employment, per capita total transfers by the government and income per capita. All
estimates are weighted by the total number of births per MSAs-year-demographics groups. Standard errors are clustered at the MSA level and
are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.

The raw IRCA applications and ICE arrests data in the study are at the county level,

and the Natality files also have geographic details at the county level. Thus, analyzing the

data at the county level might give more precision to the estimates. Next, I estimate the

main results at the county level. Given that only 382 counties had more than 25 IRCA

applications, I limit my analysis to these counties only.38 Table 1.17 shows the for IRCA

applications. The estimated coefficients are very similar to Table 1.3 and the standard errors

are smaller.

38This is mainly because the number of counties with IRCA applications greater than median will be 0
and counties greater than mean will be considerably fewer in treated groups.
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Table 1.17: Impact of IRCA - County Level

Mother’s Cntry of Birth Foreign vs U.S. Mexico vs U.S.

Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 5.653** -0.208*** 21.462*** -0.809***
(2.468) (0.074) (4.318) (0.103)

Panel B: DDD Regression

Model 1: 14.703*** -0.424*** 23.546*** -0.609**
Treat Mother*Post*Treat County Mean (2.361) (0.069) (8.669) (0.283)

Model 2: 5.657* -0.117 36.668*** -1.688***
Treat Mother*Post*Treat County Median (3.174) (0.092) (10.864) (0.397)

Model 3: 53.069*** -1.517*** 69.082* -2.055**
Treat Mother*Post*Treat County Cont (10.267) (0.311) (39.643) (1.006)

N 1088958 1088958 526091 526091
Dep Var Mean 3358.57 6.03 3362.53 6.10

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients.
Observations are at the year, county, demographic group and mothers’ nativity cell level. Dependent variables are
infant birth outcomes. All regressions control for the year, county and demographic group fixed effects. Additional
controls for time varying county characteristics include percent change in total employment, per capita total transfers
by the government and income per capita. All estimates are weighted by the total number of births per counties-
year-demographics groups. Standard errors are clustered at the county level and are in parenthesis. The symbols *,
** and *** represent significance at the 10, 5 and 1 percent, respectively.

Table 1.18 shows the results for ICE arrests. All counties are used in the estimation.

The estimated coefficients are very similar to Table 1.5a and the standard error are smaller.

Using the county level analysis does not change the magnitude of the coefficients but it

decreases the standard errors giving the model more precision.
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Table 1.18: Impact of ICE - County Level

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post -1.561 0.015 -6.873*** 0.063 -6.598** 0.038
(1.732) (0.040) (2.346) (0.064) (3.041) (0.087)

Panel B: DDD Regression

Model 1: -9.548*** 0.294*** -9.849*** 0.305*** -11.761*** 0.360***
Treat Mother*Post*Treat MSA Mean (2.553) (0.072) (3.206) (0.095) (4.012) (0.122)

Model 2: -6.103** 0.164** -8.332** 0.294*** -11.536** 0.467***
Treat Mother*Post*Treat MSA Median (2.619) (0.071) (3.707) (0.105) (4.934) (0.146)

Model 3: -2.681** 0.076** -2.898** 0.085** -2.688 0.076
Treat Mother*Post*Treat MSA Cont (1.241) (0.038) (1.421) (0.041) (1.637) (0.052)

N 3204760 3204760 2857244 2857244 2684512 2684512
Dep Var Mean 3301.74 6.44 3305.02 6.49 3305.89 6.49

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the
year, county, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. All regressions control for
year, county and demographic group fixed effects. Additional controls for time varying county characteristics include percent change in total
employment, per capita total transfers by the government and income per capita. All estimates are weighted by the total number of births per
counties-year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent
significance at the 10, 5 and 1 percent, respectively.

1.9 Discussion

In this paper, I find that immigration policy favoring immigrants has had a positive impact

on infant health outcomes, while policy that puts immigrants at risk has had a negative

one. The results are robust across various specifications. One of the key limitations of

this research is the difficulty in identifying the mother’s immigrant status. The Natality

files do not identify the immigration status of a mother. In addition, it is hard to iden-

tify the undocumented population in the U.S. To estimate the number of children born to

documented/undocumented mothers, researchers use Natality files as well as other surveys,
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such as the American Community Survey and Current Population Survey. They use various

methodologies to estimate the total number of immigrants (especially undocumented immi-

grants) in the U.S. Often they use criteria such as foreign-born mothers, mothers’ origin,

nonmarried mothers, and those with less than a college education to estimate the number

of births to undocumented mothers (Camarota et al., 2018).

One way to check whether the immigration policies affected mothers whose characteristics

closely resembles immigrants, especially undocumented mothers, is to carry out a subsam-

ple analysis for those who are likely to be documented and undocumented. If foreign-born

mothers who are older and married and have more education are likely to be documented

immigrants, then there should be a differential impact for these two different groups. In

Appendix Table 1.A14 , I regress mothers with two different sets of demographic character-

istics. One group consists of likely documented mothers who are married, older than 35, and

have more than a high school education, while the other group consists of likely undocu-

mented mothers, those who are unmarried, younger than 25, and have at most a high school

education.

Columns 1–4 shows results for IRCA. Columns 1–2 shows results for “likely documented”

mothers. The coefficients are similar in sign and magnitude compared to the main estimates

(Table 1.3), but not all of them are significant. However, for “likely undocumented” mothers

(columns 3–4), the coefficients are significant and much larger (almost double). Columns 5–8

show a similar analysis for ICE arrests. Once again, the coefficients are similar in magnitude

and signs, but not all are significant for likely documented samples of mothers and are larger

and significant for likely undocumented groups of mothers compared to the main estimates in

Table 1.5a above. While the classification of mothers’ immigration type is a rough measure,

the coefficients for likely undocumented immigrant mothers are much higher for both IRCA

applications and ICE arrests. This finding suggests that the main results above are therefore

lower-bound estimates.
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While the IRCA law affected solely immigrants or undocumented immigrants who entered

the U.S after 1980, the ICE arrests might have affected all migrant mothers and, in some

cases, even non-White U.S. citizen mothers. The heightened sense of fear and stress of being

deported is prevalent not only among undocumented citizens but also among their friends,

family, and sometimes the whole community (Perreira and Pedroza, 2019). Thus, the impact

of an increase in ICE arrests may not be solely among the undocumented immigrants but

even among U.S citizens and lawfully present immigrants whose legal presence in the U.S

is questioned on the basis of race and ethnicity (Perreira and Pedroza, 2019). Overall, the

magnitude of estimated coefficients in this paper is similar to the prevalent literature. For

example, Salmasi and Pieroni (2015) finds that the legalization of 1.2 million immigrants

in Italy in 2002 led to a reduction in the incidence of low birth weight by 2-3 percent.

On the other hand, Novak et al. (2017) find that following a large immigration raid in a

small community, babies born to Latino mothers had a 24 percent greater risk of LBW. The

estimated impact of IRCA law and ICE arrests falls between these two estimates.

1.10 Conclusion

Adverse birth outcomes have been found to result in high economic costs in the form of direct

medical costs and long-term developmental consequences. While the direct cost is obvious,

indirect consequences could be more harmful to society. Infants born with low birth weight

are likely to delay schooling, attend special education, and face worse labor outcomes and

even earn less (Corman and Chaikind, 1998; Currie and Hyson, 1999). Since one in five

births in the U.S. is to an immigrant mother, and approximately 300,000 births per year are

to undocumented mothers understanding these infants’ health impacts should be of public

policy interest. Since undocumented immigrants are generally poor and are barred from

receiving any government benefits, and any child born in the U.S. is automatically a citizen,
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understanding the health of such infants is crucial.

The 1986 IRCA policy legalized approximately three million undocumented immigrants.

This paper finds that immigration laws favoring immigrants have positive impacts on infant

health, while policies that put immigrants at risk have negative impacts on the birth out-

comes. I find that the IRCA law reduced the incidence of LBW by 3–6 percent, and infants

in general weighed 14 grams more. This effect is more pronounced among mothers born in

Mexico (a decrease in the incidence of LBW by 10 and 12 percent). On the other hand,

the rhetoric against undocumented immigration during the 2016 election and subsequent in-

crease of arrests by ICE of undocumented immigration at the start of the new administration

had a negative impact on birth outcomes.

I find that infants born to foreign-born mothers in MSAs that had a higher number of

increases in ICE arrests weighed on average 12 grams less. More importantly, there is a

significant increase in the incidence of LBW by 3–6 percent. The effect is more pronounced

among mothers born in Latin American countries (an increase in the incidence of LBW

by 6–7 percent). Similarly, for infants born to Central American mothers, the incidence of

LBW increased by 7–8 percent. Finally, the subsample analysis shows that the incidence

of LBW increased by 11–12 percent for foreign-born Hispanic mothers. Similarly, there is

some improvement in the usage of PNC visits after the IRCA law. The results are robust to

various sensitivity analysis and robustness checks.

Legalization policies such as the IRCA have positive effects on pregnant mothers, giving

access to healthcare, better working conditions, and credit as well as increasing prenatal

care visits. On the other hand, ICE arrests might induce stress, which can cause LBW and

affect the infant beyond birth. Fear of deportation by ICE is one of the leading worries of

immigrants (Hacker et al., 2011). While it can be assumed it to be true for undocumented

immigrants, often documented immigrants are also fearful of their own “status” being ques-

tioned and being harassed (Hacker et al., 2011). Thus, in this context, the findings in this
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study should be of huge concern to various stakeholders of society.

These results are striking for several reasons. First, often immigration debates focus on

the cost of health care, reduced wages, culture, and politics, but rarely address infant health.

Second, because caring for infants regardless of their parents’ status, given that all children

are US citizens, is ethical, public policy should focus on improving infant health, especially

reducing the incidence of Low Birth Weight.
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1.11 Appendix

1.11.1 Tables

Table 1.A1: Summary Statistics of Applicants

Number of Application Applied Rejected

SAW Applicants 1,276,743 49,128
Non-SAW Applicants 1,762,495 96,842

Total 3,039,238 145,970

Source: Taken from Baker (2015). SAW refers to the IRCA’s Special Agricultural Worker program
which provided legal status to certain types of agricultural workers present in the United States.

Table 1.A2: Characteristics of IRCA Legalized Population

IRCA Applicants

Percent from Mexico 69
Percent from Mexico, Central America 82
Percent with no high school diploma 72
Percent with college education 12
Mean age 34
Percent male 58
Percent married 62
Median weekly earnings in 2012 prices (ages 18 to 64) $455
Ratio of earnings to all US full-time workers 60%

Source: Enchautegui, 2013 - using LPS Survey
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Table 1.A3: IRCA Applicants by year

Year Percentage of Applications
1987 38.17%
1988 61.99%
1989 0.26%

Source: Enchautegui, 2013 - using LPS Survey

Table 1.A4: Mother Birth Country Classification

Latin America and the Caribbean (LA) Central America (CA)

Antigua and Barbuda Guyana Mexico
Argentina Haiti Guatemala
Bahamas Honduras Honduras
Barbados Jamaica Nicaragua
Belize Mexico El Salvador
Bolivia Nicaragua Costa Rica
Brazil Panama Panama
Chile Paraguay Belize
Colombia Peru
Costa Rica Saint Kitts & Nevis
Cuba Saint Lucia
Dominica St. Vincent & Grenadines
Dominican Republic Suriname
Ecuador Trinidad and Tobago
El Salvador Uruguay
Grenada Venezuela
Guatemala
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Table 1.A5: Event Study - IRCA

U.S. Born Foreign-Born Mexico Born

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Year 1983 0.883 -0.091 -2.725 0.037 -5.238 0.292
(2.425) (0.079) (2.771) (0.099) (17.648) (0.472)

Year 1984 1.152 -0.028 3.482 0.062 3.345 -0.276
(2.069) (0.074) (3.117) (0.109) (13.485) (0.388)

Year 1985 0.721 -0.070 4.708 -0.152 6.297 -0.292
(1.839) (0.072) (3.173) (0.116) (8.165) (0.344)

Year 1986 1.742 -0.035 0.303 0.002 -0.652 0.492
(1.385) (0.050) (3.000) (0.110) (10.004) (0.388)

Year 1988 -2.058* 0.013 3.475 0.122 8.129 0.315
(1.178) (0.043) (3.078) (0.113) (9.756) (0.345)

Year 1989 2.325 -0.099 12.976*** -0.129 23.407*** -0.020
(1.819) (0.068) (4.554) (0.135) (8.404) (0.357)

Year 1990 0.312 -0.039 12.304*** -0.085 21.391** -0.027
(2.219) (0.077) (3.836) (0.132) (9.791) (0.305)

Year 1991 -7.061*** 0.119 1.570 0.009 14.907* 0.302
(2.509) (0.087) (3.738) (0.127) (8.383) (0.316)

Year 1992 0.182 -0.070 10.932** -0.089 27.805*** -0.156
(2.838) (0.097) (4.366) (0.140) (9.119) (0.269)

N 579450 579450 306639 306639 71853 71853
R-squared 0.705 0.375 0.374 0.064 0.464 0.064
Dep Var Mean 3364.59 6.12 3356.54 4.94 3399.55 4.25

F-Test 0.748 0.678 0.063 0.451 0.882 0.327

Notes: Only the βj coefficients from equation 3 are reported. Relative year is 1987. Observations are at the
year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes.
All regressions control for the year, MSA and demographic group fixed effects. Additional controls for time
varying MSA characteristics include percent change in total employment, per capita total transfers by the
government and income per capita. All estimates are weighted by the total number of births per MSAs-year-
demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *,
** and *** represent significance at the 10, 5 and 1 percent, respectively.
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Table 1.A6: Event Study - ICE

U.S. Born Foreign-Born LA Born CA Born

Birth Weight LBW Birth Weight LBW Birth Weight LBW Birth Weight LBW

Year 2012 -1.285 0.002 6.384** -0.288** 6.723 -0.214 7.433 -0.131
(2.259) (0.077) (2.802) (0.116) (4.783) (0.167) (5.579) (0.178)

Year 2013 0.248 0.006 5.506* -0.153 2.814 -0.038 4.356 0.037
(2.615) (0.081) (3.026) (0.124) (4.256) (0.187) (4.851) (0.212)

Year 2014 0.920 0.000 5.543** -0.092 6.831 -0.179 8.600* -0.088
(1.800) (0.064) (2.817) (0.114) (4.389) (0.163) (4.674) (0.168)

Year 2015 1.954 -0.068 3.020 -0.103 3.717 -0.087 6.483 -0.120
(1.522) (0.056) (3.244) (0.113) (3.691) (0.138) (4.146) (0.163)

Year 2017 3.042** -0.126** -0.674 0.017 -0.046 -0.017 -0.881 0.005
(1.525) (0.064) (3.298) (0.112) (4.024) (0.158) (4.796) (0.182)

Year 2018 0.652 -0.003 -6.160 0.303** -9.133** 0.361** -7.529 0.341*
(1.684) (0.064) (3.817) (0.145) (4.385) (0.163) (4.820) (0.199)

N 669429 669429 440145 440145 270757 270757 170093 170093
R-squared 0.580 0.245 0.261 0.056 0.194 0.051 0.199 0.038
Dep Var Mean 3304.69 6.60 3290.28 5.83 3306.59 5.76 3316.76 5.46

F-Test 0.489 0.606 0.184 0.160 0.368 0.645 0.297 0.736

Notes: Only the βj coefficients from equation 4 are reported. Relative year is 2016. Observations are at the year, MSA, demographic group and
mothers’ nativity cell level. Dependent variables are infant birth outcomes. All regressions control for year, MSA and demographic group fixed
effects. Additional controls for time varying MSA characteristics include percent change in total employment, per capita total transfers by the
government and income per capita. All estimates are weighted by the total number of births per MSAs-year-demographics groups. Standard
errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent,
respectively.
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Table 1.A7: Impact of IRCA Applications (Medicaid Expansion Control)

Mother’s Cntry of Birth Foreign vs U.S. Mexico vs U.S.

Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 7.456** 23.495*** -0.853*** -0.846***
(3.246) (3.841) (0.097) (0.097)

Panel B: DDD Regression

Model 1: 14.189*** -0.346*** 22.754*** -0.610**
Treat Mother*Post*Treat MSA Mean (3.271) (0.083) (5.975) (0.245)

Model 2: 5.694 -0.190* 9.330 -0.728**
Treat Mother*Post*Treat MSA Median (3.855) (0.099) (8.025) (0.292)

Model 3: 62.682*** -1.703*** 73.113** -2.122**
Treat Mother*Post*Treat MSA Cont (13.186) (0.330) (35.551) (0.836)

N 886089 886089 651303 651303
Dep Var Mean 3363.34 5.94 3366.73 6.01

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients.
Observations are at the year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are
infant birth outcomes. All regressions control for the year, MSA and demographic group fixed effects. Additional
controls for time varying MSA characteristics include percent change in total employment, per capita total transfers
by the government and income per capita. It also controls for the year MSAs expanded the Medicaid up to 133%
of Federal Poverty Level (FPL) and yearly percentage of FPL covered. All estimates are weighted by the total
number of births per MSAs-year-demographics groups. Standard errors are clustered at the MSA level and are in
parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.
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Table 1.A8: Impact of ICE Arrests (Medicaid Expansion Control)

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post -0.762 0.007 -6.050** 0.063 -5.863 0.035
(2.424) (0.064) (3.039) (0.083) (3.977) (0.113)

Panel B: DDD Regression

Model 1: -12.955*** 0.407*** -15.603*** 0.458*** -19.030*** 0.516***
Treat Mother*Post*Treat MSA Mean (3.718) (0.115) (4.586) (0.117) (5.414) (0.147)

Model 2: -11.508*** 0.217* -13.931*** 0.373*** -16.187*** 0.477***
Treat Mother*Post*Treat MSA Median (3.625) (0.114) (4.119) (0.122) (5.494) (0.161)

Model 3: -12.599*** 0.298** -14.694*** 0.407*** -16.814** 0.428**
Treat Mother*Post*Treat MSA Cont (4.814) (0.136) (5.584) (0.156) (6.992) (0.201)

N 1062820 1062820 805166 805166 805166 805166
Dep Var Mean 3301.24 6.42 3305.99 6.48 3305.99 6.48

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the year,
MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. All regressions control for year, MSA
and demographic group fixed effects. Additional controls for time varying MSA characteristics include percent change in total employment,
per capita total transfers by the government and income per capita. It also controls for the year MSAs expanded the Medicaid after the 2012
Supreme court ruling under ACA up and yearly percentage of population covered by Medicaid. All estimates are weighted by the total number
of births per MSAs-year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and
*** represent significance at the 10, 5 and 1 percent, respectively.
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Table 1.A9: Impact of ICE Arrests - Control for Sanctuary MSAs

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Mother Birth*Post -0.704 0.011 -5.891* 0.067 -5.787 0.036
(2.450) (0.065) (3.086) (0.083) (4.003) (0.114)

Panel B: DDD Regression

Model 1: -12.976*** 0.403*** -15.656*** 0.454*** -18.985*** 0.513***
Treat Mother*Post*Treat MSA Mean (3.716) (0.115) (4.604) (0.117) (5.441) (0.147)

Model 2: -11.608*** 0.214* -14.106*** 0.371*** -16.211*** 0.478***
Treat Mother*Post*Treat MSA Median (3.626) (0.114) (4.136) (0.122) (5.498) (0.161)

Model 3: -12.616*** 0.293** -14.750*** 0.403** -16.742** 0.425**
Treat Mother*Post*Treat MSA Cont (4.827) (0.136) (5.627) (0.156) (7.022) (0.201)

N 1062820 1062820 904000 904000 805166 805166
Dep Var Mean 3301.24 6.42 3304.96 6.48 3305.99 6.48

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the year,
MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. All regressions control for year, MSA
and demographic group fixed effects. Additional controls for time varying MSA characteristics include percent change in total employment,
per capita total transfers by the government and income per capita and if a MSA is a sanctuary MSA. All estimates are weighted by the total
number of births per MSAs-year-demographics groups. Standard errors are clustered at the MSA level and are in parenthesis. The symbols *,
** and *** represent significance at the 10, 5 and 1 percent, respectively.
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Table 1.A10: Fraction of Birth, IRCA

DD DDD
Foreign vs U.S. Mexico vs U.S. Foreign vs U.S. Mexico vs U.S.

Age <25 0.011*** 0.074*** 0.024*** -0.050***
(0.003) (0.010) (0.006) (0.016)

Age >24 & <36 -0.005* -0.046*** -0.015*** 0.050***
(0.003) (0.010) (0.005) (0.016)

Age >35 -0.007*** -0.028*** -0.010*** -0.001
(0.001) (0.005) (0.002) (0.008)

Education 1 (Less than HS) 0.048*** 0.106*** 0.141*** 0.126***
(0.006) (0.013) (0.014) (0.027)

Education 2 (HS) -0.014*** 0.000 -0.075*** -0.083***
(0.004) (0.009) (0.009) (0.016)

Education 3 (more than HS) -0.034*** -0.090*** -0.071*** -0.050***
(0.004) (0.009) (0.009) (0.018)

Education 4 (missing) 0.000 -0.016*** 0.005** 0.007
(0.001) (0.004) (0.002) (0.006)

Parity 1 0.016*** 0.041*** 0.002 0.013
(0.002) (0.009) (0.004) (0.014)

Parity 2 -0.004** -0.001 0.006* 0.003
(0.002) (0.008) (0.003) (0.012)

Parity 3 -0.012*** -0.039*** -0.008* -0.016
(0.002) (0.008) (0.004) (0.013)

Race 1 (White) 0.005* 0.015*** 0.028*** -0.003
(0.003) (0.003) (0.007) (0.005)

Race 2 (Black) 0.266*** 0.096*** -0.110*** -0.026**
(0.008) (0.006) (0.017) (0.012)

Race 3 (Others) -0.271*** -0.111*** 0.082*** 0.029**
(0.008) (0.007) (0.018) (0.013)

Female Child 0.001 -0.024*** -0.004 0.032**
(0.002) (0.009) (0.003) (0.014)

Married 0.013*** -0.007 -0.027*** -0.010
(0.002) (0.006) (0.004) (0.010)

Notes: For each variable, the coefficients of DD and DDD are reported. Each coefficient is for regressing fraction of births by demographic
groups on treatment and controls for year and MSA fixed effect. DD results is comparing mothers’ birth countries and DDD results compare
the DD results with MSA treatment define as greater and less than mean IRCA applications. Column 1 shows DD coefficients for each
demographic group for mother born outside vs born in the U.S. Column 2 shows for mother born in Mexico vs born in the U.S. Column 3
shows DDD coefficients for each demographic group for mother born outside vs born in the U.S comparing with treated and control MSAs.
Column 4 shows for mothers born in Mexico vs born in the U.S. with treated and control MSAs. Additional controls for time varying MSA
characteristics include percent change in total employment, per capita total transfers by the government and income per capita. Standard
errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent,
respectively.
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Table 1.A11: Fraction of Birth, ICE

DD DDD

Foreign vs
U.S.

LA vs U.S CA v U.S Foreign vs
U.S.

Mexico vs
U.S.

CA v U.S

Age <25 -0.127*** -0.080*** -0.061*** 0.004 -0.001 -0.004
(0.003) (0.004) (0.004) (0.004) (0.006) (0.007)

Age >24 & <36 0.041*** -0.000 -0.005 -0.007 -0.000 0.001
(0.002) (0.003) (0.004) (0.005) (0.007) (0.009)

Age >35 0.087*** 0.080*** 0.066*** 0.003 0.001 0.004
(0.002) (0.002) (0.003) (0.003) (0.005) (0.005)

Education 1 (Less than HS) 0.159*** 0.296*** 0.376*** 0.002 0.006 0.007
(0.007) (0.007) (0.007) (0.006) (0.008) (0.009)

Education 2 (HS) -0.039*** 0.005 0.016*** 0.007 0.005 -0.007
(0.003) (0.004) (0.004) (0.005) (0.007) (0.008)

Education 3 (more than HS) -0.129*** -0.309*** -0.402*** -0.006 -0.009 -0.003
(0.008) (0.008) (0.007) (0.007) (0.008) (0.008)

Education 4 (missing) 0.010*** 0.008*** 0.010*** -0.002 -0.002 0.002
(0.001) (0.001) (0.001) (0.003) (0.003) (0.002)

Parity 1 -0.067*** -0.123*** -0.154*** 0.001 -0.002 0.003
(0.003) (0.003) (0.003) (0.004) (0.006) (0.007)

Parity 2 -0.008*** -0.027*** -0.037*** -0.001 0.005 -0.003
(0.002) (0.002) (0.002) (0.003) (0.006) (0.007)

Parity 3 0.075*** 0.150*** 0.191*** -0.001 -0.003 0.001
(0.004) (0.004) (0.004) (0.003) (0.006) (0.006)

Race 1 (Non-Hispanic White) -0.505*** -0.675*** -0.692*** -0.001 -0.002 -0.004
(0.008) (0.008) (0.009) (0.004) (0.004) (0.004)

Race 2 (Non-Hispanic Black) -0.043*** -0.081*** -0.135*** 0.003 -0.003 0.002
(0.008) (0.008) (0.007) (0.004) (0.005) (0.002)

Race 3 (Hispanic) 0.336*** 0.778*** 0.852*** -0.001 0.000 -0.002
(0.010) (0.008) (0.007) (0.005) (0.005) (0.005)

Race 4 (Others) 0.212*** -0.021*** -0.026*** -0.001 0.005*** 0.004***
(0.007) (0.003) (0.003) (0.004) (0.002) (0.001)

Female Child 0.001* 0.007*** 0.008*** 0.005 -0.001 0.004
(0.001) (0.002) (0.002) (0.003) (0.006) (0.008)

Married 0.127*** 0.002 -0.035*** 0.001 -0.014 -0.008
(0.006) (0.006) (0.007) (0.008) (0.009) (0.011)

Notes: For each variable the coefficients of DD and DDD are reported. Each coefficient is for regressing fraction of births by groups
on treatment and controls for year and MSA fixed effect. DD results are comparing mothers’ birth countries and DDD results compare
the DD results with MSA treatment define greater and less than mean IRCA applications. Column 1 shows DD coefficients for each
demographic group for mother born outside vs born in the U.S. Column 2 shows for mother born in Latin American countries vs born
in the U.S. Column 3 shows for mother born in Central American countries vs born in the U.S. Column 4 shows DDD coefficients for
each demographic group for mother born outside vs born in the U.S comparing with treated and control MSAs. Column 5 shows for
mothers born in Latin American countries vs born in the U.S with treated and control MSAs. Column 6 shows for mothers born in Central
American countries vs born in the U.S with treated and control MSAs. Additional controls for time varying MSA characteristics include
percent change in total employment, per capita total transfers by the government and income per capita. Standard errors are clustered at
the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.
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Table 1.A12: Impact of IRCA Applications (Linear Trends Controls)

Mother’s Cntry of Birth Foreign vs U.S. Mexico vs U.S.

Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 12.401*** -0.538*** 18.943*** -0.696***
(3.258) (0.072) (3.721) (0.087)

Panel B: DDD Regression

Model 1: 11.360*** -0.266** 25.714*** -0.683***
Treat Mother*Post*Treat MSA Mean (3.791) (0.107) (6.131) (0.236)

Model 2: -0.311 0.068 9.273 -0.713**
Treat Mother*Post*Treat MSA Median (4.037) (0.126) (8.309) (0.291)

Model 3: 43.846*** -0.970** 87.654** -2.508***
Treat Mother*Post*Treat MSA Cont (14.958) (0.411) (35.955) (0.807)

N 886089 886089 651303 651303
Dep Var Mean 3363.34 5.94 3366.73 6.01

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients.
Observations are at the year, MSA, demographic group and mothers’ nativity cell level. Dependent variables are
infant birth outcomes. All regressions control for the year, MSA and demographic group fixed effects. Additional
controls for time varying MSA characteristics include percent change in total employment, per capita total transfers
by the government and income per capita. All regression controls for demographic-group times linear year dummies.
All estimates are weighted by the total number of births per MSAs-year-demographics groups. Standard errors
are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10,
5 and 1 percent, respectively.
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Table 1.A13: Impact of ICE Arrests (Linear Trends Controls)

Mother’s Cntry of Birth Foreign vs U.S. LA vs U.S. CA vs U.S.

Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 4.113 -0.102 1.486 -0.068 2.447 -0.123
(2.585) (0.066) (3.673) (0.099) (5.181) (0.149)

Panel B: DDD Regression

Model 1:
Treat Mother*Post*Treat MSA Mean -11.924*** 0.394*** -15.266*** 0.461*** -14.538*** 0.408***

(3.703) (0.116) (4.613) (0.116) (5.484) (0.154)
Model 2:
Treat Mother*Post*Treat MSA Median -10.610*** 0.206* -13.725*** 0.383*** -16.419*** 0.501***

(3.647) (0.115) (4.068) (0.120) (5.548) (0.163)
Model 3:
Treat Mother*Post*Treat MSA Cont -11.530** 0.280** -14.538*** 0.408*** -16.933** 0.436**

(4.585) (0.134) (5.484) (0.154) (7.006) (0.201)

N 1062820 1062820 805166 805166 805166 805166
Dep Var Mean 3301.24 6.42 3305.99 6.48 3305.99 6.48

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the year,
MSA, demographic group and mothers’ nativity cell level. Dependent variables are infant birth outcomes. All regressions control for year, MSA
and demographic group fixed effects. Additional controls for time varying MSA characteristics include percent change in total employment,
per capita total transfers by the government and income per capita. It also controls for the year MSAs expanded the Medicaid after the 2012
Supreme court ruling under ACA up and yearly percentage of population covered by Medicaid. All estimates are weighted by the total number
of births per MSAs-year-demographics groups. All regression controls for demographic-group times linear year dummies. Standard errors are
clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.
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Table 1.A14 : Heterogeneous Impact of IRCA and ICE

Mother’s Cntry of Birth (Foreign vs U.S.) IRCA (Likely
Documented)

IRCA (Likely
Undocumented)

ICE (Likely
Documented)

ICE (Likely Un-
documented)

Birth Weight LBW Birth Weight LBW Birth Weight LBW Birth Weight LBW

Panel A: DD Regression

Treat Mother*Post 2.082 0.190 -42.181*** 0.958*** -2.543 0.253*** -2.006 -0.205
(4.942) (0.141) (10.752) (0.300) (1.926) (0.097) (3.883) (0.179)

Panel B: DDD Regression

Model 1: 30.995*** -0.152 -24.396** 0.791** -13.932** 0.493* -23.614*** 0.772*
Treat Mother*Post*Treat MSA Mean (10.501) (0.257) (11.400) (0.386) (6.874) (0.262) (7.271) (0.400)

Model 2: 6.435 -0.305 -51.609*** 2.071*** -5.272 -0.114 -21.192*** 0.742**
Treat Mother*Post*Treat MSA Median (10.524) (0.312) (16.541) (0.732) (4.045) (0.197) (6.754) (0.361)

Model 3: 158.293 -1.838 -115.629* 4.246** -13.505* -0.029 -15.631* 0.060
Treat Mother*Post*Treat MSA Cont (103.721) (1.602) (68.457) (2.094) (7.486) (0.369) (8.346) (0.348)

N 48382 48382 50847 50847 74752 74752 60473 60473
Dep Var Mean 3466.61 4.56 3159.10 0.10 3364.99 5.47 3158.10 9.08

Notes: Panel A reports the coefficients of DD regressions and Panel B reports the DDD regression coefficients. Observations are at the year, MSA, demographic group and
mothers’ nativity cell level. Dependent variables are infant birth outcomes. Columns 1-4 presents results for IRCA and 5-8 for ICE arrests. Likely Undocumented implies
sub sample of demographic group: married mothers, greater than high school education and greater than 35 years of age and Likely undocumented implies sub sample of
demographic group: unmarried mothers, less than high school or less education and less than 25 years of age. All results compare foreign-born mothers with the U.S. born
mothers. All regression controls for year, MSA and demographic group fixed effects. Additional controls for time varying MSA characteristics include percent change in total
employment, per capita total transfers by the government and income per capita. All estimates are weighted by total number of births per MSAs-year-demographics groups.
Standard errors are clustered at the MSA level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.
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1.11.2 Figures

Figure 1.A1: Event Study - IRCA
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Notes: Panel A plots mean birth weights and Panel B plots LBW by mothers’ birth country.



CHAPTER 1. IMMIGRATION AND HEALTH 98

Figure 1.A2: Event Study - ICE
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Figure 1.A3: Event Study - ICE (Hispanic mothers)
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Chapter 2

Cash-based Maternal Health

Interventions Can Improve Childhood

Vaccination - Evidence from India

2.1 Introduction

More than four million infants died around the world within the first year of life in 2017, which

was 75% of all under-five deaths (WHO, 2017). More than 90% of these deaths occurred in

developing countries mainly due to limited access to basic but effective health interventions.

Vaccination is one such intervention that plays a vital role in preventing communicable

diseases and reducing infant mortality and morbidity in one of the most cost-effective ways

(Anand and Barnighausen, 1994; Ekwueme et al., 2000). Specifically, vaccines prevent an

estimated 2 to 3 million deaths every year from diphtheria, tetanus, pertussis (whooping

cough), and measles; yet, 18.7 million infant children worldwide still lack basic vaccines

(WHO, 2015). Though the lack of immunization remains a bigger problem in developing

countries, vaccine-preventable diseases like measles have threatened parts of the developed

100
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world in the recent past (Nelson, 2019). The overarching policy question is to find effective

policy interventions to increase vaccination. Though lack of vaccine uptake can be a result

of a multitude of factors, limited available evidence suggests that parents generally want to

vaccinate their children, but sometimes fail to do so, particularly in poorer countries, because

of lack of resources and incentives (Banerjee et al., 2010; Das, 2010).

Despite making progress in child immunization in recent years, India has one of the

biggest populations of unvaccinated children (WHO, 2020). Successive governments have

focused both on maternal health services and childhood vaccination against major infectious

diseases in the early 2000s. The most prominent maternal health program undertaken was

Janani Surakhsa Yojana (JSY) in 2005, a conditional cash transfer program where mothers

received monetary incentives varying by rural location and poverty status, for institutional

or health care worker-supervised childbirth (GOI, 2006). The rationale was two-fold. First,

it was based on the presumption that high out-of-pocket-expenditure deters families from

seeking skilled/institutional care. Second, the actual cash benefit would provide additional

incentives to access safe delivery.

Though the program was not directly focused on vaccination, there are two ways it could

potentially impact the uptake. First, the program relied on health workers called Accredited

Social Health Activists (ASHA) for various logistical purposes, as we discuss in detail later

in the paper. One of the responsibilities of these workers was to help the mother vaccinate

their child on schedule (Sidney et al., 2012; JSI, 2016; Debnath, 2018). Second, there were

also potential spillover effects. The incentive to give birth at health facilities was also likely

to increase the chance of being vaccinated compared to giving birth at home. Vaccines are

inexpensive in India, and the actual cost to families for vaccination is small or zero meaning

that institutional and informational barriers are more likely to prevent vaccination than

cost barriers. According to one estimate, as of 2017, the cost of each dose of BCG cost

around Rs. 3.25 ($0.05), Rs 2.6 ($0.04), and Rs. 32.5 ($0.5), respectively, while the central
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government allocates approximately US$25 (Rs 1625) per child for vaccines and operational

costs (Chatterjee et al., 2018). Together, we expect a priori that exposure to the JSY will

increase vaccination.

We examine the effect of the JSY program on child vaccination using a nationally rep-

resentative longitudinal survey that collected data on a panel of women between the ages of

15 and 49, before and after the implementation of the program, allowing us to identify the

effect of the program cleanly. Although there have been several studies on the impact of the

JSY on maternal health, this paper offers several new contributions. We present one of the

first comprehensive evidences on the effect of the JSY on child vaccination, as all the previ-

ous studies were mostly focused only on maternal health behaviors and outcomes. Second,

longitudinal data allow us to track the same mothers before and after the policy, yielding

clearer estimates of these effects. Third, the majority of the studies discussed below were

conducted before 2012 and captured only the early effects of the program. Our data allow

us to examine the program effect up to six years after the program’s introduction. Finally,

our results offer insights for health policymakers trying to increase vaccination uptakes in

countries that have lagged.

The primary analysis uses the India Human Development Survey (IHDS), a 2-wave na-

tionally representative longitudinal dataset. The survey collected data in 2004 and 2012,

respectively, on a large set of demographic, reproductive health, and economic variables in

India. The dataset has allowed us to create both a pooled and a longitudinal sample of

women with recent pregnancy and delivery. The state-level rollout of the JSY across India

started in 2005-06. Therefore, the first round of IHDS interviews occurred before the rollout

and the second round occurred when the rollout was well underway. Our vaccination vari-

ables and control variables come from this dataset. Our treatment variable comes from the

District Level Health Survey (DLHS), conducted by the Government of India. Combining

two datasets allows us to link individual vaccination with district-wide deployment of the
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JSY. While DLHS does not allow us to build a panel dataset, it contains specific questions on

delivery-related cash transfer and is conducted several times between 2004 and 2012, allow-

ing us to map the JSY expansion more precisely. Additionally, the majority of the previous

studies have used DLHS data making our results comparable to the existing literature. On

the other hand, the IHDS allows us to create a panel of mothers who gave birth before and

after the introduction of JSY, a novelty compared to the pre-existing literature on the JSY.

The main empirical strategy is based on a difference in differences estimation both within

a pooled cross-section and a longitudinal framework. Our sample consists of women who

gave birth within 4 years of the interview in wave 1 and 6-7 years of the interview in wave

2 of IHDS. There was no JSY during the first-round interviews ending in 2004, and children

born before then were not exposed to the JSY, as the program was rolled out after the

fiscal year 2005-2006 and for all JSY treatment calculations, we maintain fiscal years. For

the second round, depending on the year of birth of the child (which we can identify from

the birth history module), we can assign the rate of dissemination of the JSY within that

district. Additionally, to test robustness, we estimate similar models (subject to variable

availability) using the DLHS data.

Using these data and empirical strategy, we find that JSY has had large effects on vac-

cination, though such effects are strongest for vaccines such as BCG and DPT that are

administered at birth and less so for measles that is administered at least nine months after

birth. Specifically, children born in districts where at least 25% of the women reported get-

ting JSY incentives that year are between 4% to 6% more likely to receive BCG and DPT.

Such effects are obtained after controlling for numerous time-varying and time-invariant con-

founding variables, including district and time fixed effects, and are robust to several model

specifications.

The results come with some empirical concerns, the main being the fact that the JSY was

not rolled out randomly across India. States that had low institutional delivery and higher
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maternal mortality rates were prioritized. However, there are several reasons why this is not

a major threat to our strategy. First, though decisions were made at the state level; the

actual rollout was not smooth and not according to the laid-out plans. Additionally, our

policy variations come from district-level implementations, which are nested within states

administratively in India. Even if a state was designated as a priority state, variations

existed between districts, meaning that the program was not necessarily implemented in

all districts in a high priority state before a low-priority one. A related empirical concern

is the possibility that variations in other variables (for example, better district-level health

awareness) over time may affect both JSY and women’s health outcomes. There are two

safeguards against this threat in our strategy. First, we control for district fixed effects in

the relevant specification to control for time-invariant factors. Next, for the time-varying

district-level factors, in addition to controlling for time-varying district-level factors in some

specifications, we test for the presence of such forces by mapping district-level trends in

vaccination before the program started rolling out. By showing visually that the pre-existing

differential trends in vaccinations are parallel to each other for districts that do and do not

add JSY, we argue that there does not seem to be the presence of such forces. The timing of

birth and JSY introduction also ameliorates concerns of self-selection, as we associate JSY

dissemination at the time of birth, not conception. One has to anticipate the introduction

of JSY several months ahead to select herself into the program, making it an unlikely source

of bias. Nevertheless, we perform additional tests to examine if such behavior is found in

our sample.

Policymakers and academics often argue that a significant investment in mothers leads

to improvement in children’s health by making pregnancy safer, preventing mother-to-child

transmission of disease, and expanding programs of immunization. Our results contribute

to such a policy domain. If maternal health programs are also instrumental in improving

some of the child outcomes, then such benefits should be factored into the overall cost-
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effectiveness and welfare analysis of these programs. At the same time, policymakers need

to be careful that such programs may not completely substitute more targeted programs like

specific immunization drives, such as for polio vaccination in India that has helped eliminate

the disease.

2.2 Background

2.2.1 Vaccinations in India

Vaccination rates in India lag behind global rates. For example, the rate of complete vac-

cinations for infants aged 12-23 months in terms of BCG (Bacillus Calmette Guerin), DPT

(Diphtheria, Pertussis and Tetanus Toxoid) and the measles was 64% in India in 2010, com-

pared to the global rate of 81%. One notable exception is the polio vaccine, which has

achieved universal coverage.1 Lack of vaccination has also impacted overall infant health,

mortality, and gender equity. India ranks 163 among 223 countries in the world in terms of

life expectancy at birth (Arsenault et al., 2017). There was inequity in uptake also, as Oster

(2009) found that about 30% of the gender imbalance in mortality could be explained by

differential access to vaccination. Several factors contributed to this lack of uptake, including

supply bottlenecks, infrastructure problems such as lack of cold storage and absentee health

workers (Paul et al., 2011). There is also considerable spatial heterogeneity in vaccination

(Khan et al., 2018). Finally, while vaccines like BCG that are administered at birth have a

higher rate, such rates for vaccines like DPT that require follow-up visits with multiple doses

and MMR that requires taking a child to vaccination several months after birth were lower.

1We do not include polio vaccination in our analysis, because (i) As of February 25, 2012, the World
Health Organization (WHO) removed India from the list of ‘polio-endemic’ countries (PAHO, 2012), and
(ii) the campaign for polio vaccination started in in India in 1979 by forming the Expanded Programme
on Immunization (EPI) (John and Vashishtha, 2013), a long time before the JSY came into existence,. A
similar approach has also been adopted in previous literature as citetvikram2012a. We find no significant
impact of the JSY on polio vaccine uptake, as shown in Appendix Table 2.A2.
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The current vaccination schedule is still governed by the Universal Vaccination Program

(UIP) adopted in 1985.2

2.2.2 JSY in India - Timing and Expansion

The Janani Suraksha Yojana (JSY), the Maternal Protection Scheme, was started by the

Government of India as part of the National Rural Health Mission (NRHM) in India. The

main objective was to lower maternal, and infant mortality rates by increasing institutional

and professionally supervised birth delivery particularly in rural areas and for families below

the poverty line. The program was set up as a conditional cash transfer scheme to overcome

financial constraints and set incentives for extra income. Under the scheme, all pregnant

women irrespective of age and socioeconomic status were eligible for a cash incentive after

delivery in a government or accredited private health facility. The actual amount of money

offered differed between “high focus” and “low focus” states. The former referred to states

that lagged in maternal health indicators before the program, while the latter constitutes

all other states. In 10 high-focus states, the cash incentive was 1,000 rupees (roughly $20 at

the time) for women from urban areas and 1,400 rupees ($28) for women from rural areas.

In low-focus states, the cash incentive is 700 rupees and was limited to women below the

poverty line, as well as scheduled caste/tribe women (GOI, 2014). The logistics were often

carried out by community-level health workers who were formally called ASHA, a word that

means ‘hope’ in many Indian languages and is an acronym for Accredited Social Health

Activists. These social health workers were hired mainly on a part-time basis and tasked

2Currently the vaccination schedule under the UIP includes BCG (Bacillus Calmette Guerin) (1 dose at
Birth, up to 1 year if not given earlier), DPT (Diphtheria, Pertussis and Tetanus Toxoid) (5 doses; three
primary doses at 6,10,14 weeks and two booster doses at 16-24 months and 5 Years of age), OPV (Oral Polio
Vaccine) (5 doses; dose at birth, three primary doses at 6,10 and 14 weeks and one booster dose at 16-24
months of age); Hepatitis B vaccine (4 doses; 0 dose within 24 hours of birth and three doses at 6, 10 and
14 weeks of age); and Measles (2 doses; first dose at 9-12 months and second dose at 16-24 months of age)
(GOI, 2015). We also abstain from analyzing Hepatitis vaccines due to overall lack of uptake, particularly
in the early 2000’s.
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with identifying pregnant women and motivating them to receive antenatal care, institutional

deliveries, and postnatal care.3 Even though JSY was a federal (central government in India)

scheme, its implementation differed across the states and union territories (Lim et al., 2010).

However, the overall program expanded over the years with the number of beneficiaries

increasing from 0.74 million in 2005-06 to 10 million in 2009-10, thus covering around 40

percent of total deliveries in the country (Paul, 2010).

2.2.3 Previous Research on the impacts of JSY

A considerable body of research exists on the impact of JSY, but the focus has mostly been on

antenatal and postnatal care utilization and on in-facility deliveries. By contrast, with some

exceptions, vaccination has not been rigorously analyzed to the same extent in the context of

this program despite being a first order policy concern. Some of the preliminary studies were

confined to specific villages or hospitals in India (Deolalikar et al., 2008; Satapathy et al.,

2009). Given the principal focus of the program on reproductive health, more research

focuses on maternal health outcomes. Khan et al. (2010) reported on the early expansion

of JSY in the state of Uttar Pradesh and one of the few ones to document some of the

logistics of the program, such as targeting, awareness, and whether eligible families received

the cash incentives after delivery. They found that women were aware of the program, and

the majority of them did receive full financial incentives. They also found that institutional

deliveries increased. This is similar to Guin et al. (2012)) and Gupta et al. (2012), who

evaluated (before and after design) the impact of JSY in a Tertiary Referral Hospital in

the state of Madhya Pradesh in India. However, they did not find any change in maternal

mortality. Other studies confirm local findings at the national level. Randive et al. (2013)

found an increase in institutional delivery combining two national surveys, but no changes

3Appendix Table A4 reports our results on the impact of JSY on institutional deliveries to update the
existing literature some of which dealt with only early impacts.
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in maternal mortality rates. In one of the first rigorous statistical impact evaluations of the

program at the national level, Lim et al. (2010) found that the program increased institutional

deliveries and reproductive health outcomes significantly. In a qualitative study, Vellakkal

et al. (2017) identify some enabling factors like involvement of ASHA workers and some

impeding factors such as trust in traditional child-birth processes. Carvalho and Rokicki

(2018) replicated those findings and confirmed that the original results to be replicable and

robust to various specifications. However, they failed to make a convincing argument for

causality. Powell-Jackson et al. (2015) use a linear difference-in-difference model to estimate

the impacts of the JSY on maternal and neonatal health. One of the first studies on the

impacts of JSY on immunization was Carvalho et al. (2014), who analyzed the early effect

of JSY on immunization, among other variables using DLHS data. Our study is different

in several respects. First, the paper uses data from 2007-2008 which captured only early

impacts of the program. Second, it did not focus on obtaining causal estimates. Finally, in

a recent paper, Andrew and Vera-Hernández (2020) discuss the role of supply constraints

played in mediating the spill-over effects of the JSY on vaccination. Our study extends this

approach to focus on additional positive spillover effects. We also extend the methodology

by using longitudinal data, accounting for individual unobserved heterogeneity. Moreover

these studies report the early effects of the program, while our analysis uses more recent

data.4 Finally, a recent work by Chatterjee et al. (2018) found a positive impact of JSY on

immunization in India, though the data used and methodology are different from this paper.

4Previous research has also focused on different outcomes of interest. For example Modugu et al. (2012)
focus on the effects of the JSY on out of pocket expenditures, while Jain et al. (2015) focus on the role of
the JSY in reducing socioeconomic inequalities and conclude that the program has been equitable in nature
by weakening the link between mother’s wealth and education and desirable health behaviors like health
professional-assisted deliveries and postnatal checkups. Surprisingly, none of the studies above emphasized
the program’s potential impact on infant mortality or other health outcomes including vaccination.
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2.3 Data

2.3.1 Data Sources

The data come from multiple sources. To measure children and mothers’ characteristics,

including vaccination rates, we use two waves of the India Human Development Survey

(IHDS), a quasi- nationally representative multi-topic survey. Interviews for the two waves

were conducted in 2003-04 and 2011-12, respectively. In the first wave, 41,554 households

located in 384 districts (out of 593 districts identified in the 2001 Indian Census) in 33

states and union territories of India were interviewed. The primary sampling units were

households living in the same residence. The household module contains information on

family backgrounds such as religion and economic status. The individual module in the first

wave has data on birth history, including information on the last birth of eligible women

aged 15-49 and constitutes the main source of our outcome and control variables. Finally,

the village module contains information on community-level infrastructure questions like the

availability of roads, health centers, and hospitals.

The IHDS lacks information on JSY transfers. To construct JSY coverage and test

parallel trends for vaccination rates between JSY and non-JSY districts, we use the District

Level Household and Facility Survey (DLHS) for its eligible women section of round III and

IV data. This is a repeated cross-section survey carried out by the International Institute

for Population Sciences in Mumbai, India, and designed to provide estimates on maternal

and child health and service utilization at the district level in India (NFHS-4, 2016). In

particular, we use DLHS III and IV that were carried out in 2007-2008 and 2011-2012,

respectively. However, for DLHS IV, the states of Assam, Bihar, Chhattisgarh, Jharkhand,

Madhya Pradesh, Odisha, Rajasthan, Uttar Pradesh, and Uttarakhand were not covered in

a different survey called the Annual Health Survey (AHS). Accordingly, we supplement the

above data with the AHS data for the year 2010-2011 and 2012-2013, respectively. Finally,



CHAPTER 2. JSY AND VACCINATION 110

since the publicly available dataset for DLHS IV is missing for the three states of Gujarat,

Jammu and Kashmir, and Delhi, we use the National Family Health Survey (NFHS-4, 2016)

data to get JSY data for these states. To summarize, IHDS provides data to identify infants

and their mothers in the two waves, providing a pre- and post- JSY comparison. To analyze

which districts are covered by the program, DLHS, AHS, and NFHS were used.

2.3.2 Sample Selection

IHDS is a longitudinal survey of households. However, since we are concerned with neonatal

health, the same women might not appear twice in the sample unless they gave birth in both

rounds of interview (even though the survey could otherwise track and interview them).

Additionally, there is a new group of women who gave live births within that period who

were not included in the mothers’ sample in the first round. To capture these changes, we

have constructed two different samples. First, we have created a sample that includes all

relevant mothers (and their children) in both rounds resulting in a repeated cross-section

sample akin to many non-longitudinal surveys that take place over several years (for example,

the District Level Health Survey in India that we have used to construct the JSY expansion

variable). Second, we have created a (balanced) panel sample where every member has

given birth within the relevant time window within each round. Results corresponding to

this sample can be found in the appendix.

The wave I selection in both cases is identical. We gather information from the eligible

women aged 15-49 about their last birth(s). As mentioned earlier, the interviews took place

in 2003-2004, and the cut-off date for these women to report their last birth was January

01, 2000. Their birth history file has detailed information on childhood vaccination. For

the pooled sample, we repeat this procedure in the second round where the interviews were

carried out between 2011-2013, and the cut-off date to report last birth is January 01,

2005. Then we append these two samples to create our pooled estimation sample. For
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the longitudinal sample, we retain only those mothers who gave birth again within that

relevant period in wave II. Having identified the mothers, we go into the birth history file

to establish the link between children’s characteristics and mothers’ characteristics. Once

this link is established, we merge several individual and household level characteristics from

the individual and household files, respectively. Therefore, each row of data consists of a

child-mother combination with their own and household information.

2.3.3 Treatment and Control Groups

While creating the JSY coverage variable, we follow the same methodology as Powell-Jackson

et al. (2015). We select all women who gave birth (live birth or stillbirth) in the last 12 months

by the date of the last birth. Among them, we select those who gave birth in government

facilities only. Then for those who reported giving birth in government facilities, we check

if they received any financial aid, especially if they answered ‘yes’ to the following question:

“Did you receive any government financial assistance for delivery care under the Janani

Suraksha Yojana or state-specific scheme.”5 Then we calculate the JSY coverage rates by

collapsing the above variable by State and Districts, which is merged to birth-year of last

births from IHDS dataset. For the three States missing in DLHS-IV, we use NFHS data to

proxy different years, as discussed above. Finally, to create the JSY treatment variable, we

follow the literature such as Powell-Jackson et al. (2015) and create JSY coverage thresholds

to create our binary treatment variable.6 Unlike the previous studies, we choose 25% as our

threshold to create a “JSY district,” instead of 10%, because we have more recent data, and

the program coverage increased over time. We perform a robustness analysis with a 50%

5We treat the birth year as a fiscal year to align with the JSY policy and use, April 2004 -March 2005 as
the birth year 2004-2005 and so forth.

6“Specifically, we use the term JSY coverage to refer to the number of women who gave birth in a public
facility and received the cash as a proportion of women who gave birth in a public facility” ((Powell-Jackson
et al., 2015), p 158).
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threshold.7

2.3.4 Migration and Attrition

Since our identification strategy depends on exogenous geographic variations in the pol-

icy rollout, domestic migration can bias our estimates. Fortunately, domestic migration is

small in India in general citetchandrasekhar2015a that is also reflected in our sample. In

the balanced panel sample, 3807 mothers gave birth in both rounds. Among them, 2773

stayed in the same house, 544 split off from their initial household but remained in same

building/compound, 488 split and remained in the same village/urban locality, and only two

migrated elsewhere. Another potential problem is selective attrition. Note that due to the

specific way our longitudinal sample is constructed, which is a balanced panel by design, the

usual meaning of attrition is less relevant here. In a typical longitudinal household survey,

the main attrition issue is lack of trackability. However, in our case, that is less of a problem,

because we drop women in the second round who were trackable but did not give birth within

the relevant time frame.

For the pooled cross-section sample, 11968 mothers reported having given births after

January 01, 2000. To match the fiscal year settings, we only take births after April 2000.

There were 632 births with a birthdate before April 2000. There were 432 births with no

birthdate and 14 births with the birth ID missing leaving us with 10980 births in wave I.

Among these women, 3807 gave birth in the second round also, which is the size of our

balanced panel sample. In wave II, 14254 women who gave birth after January 01, 2005.

Out of these, 456 births have a missing ID, 61 were born before January 01, 2005, and 15

had the dates of birth missing, leaving us with a sample of 13722 livebirths.

7We do not use a continuous measure because we think that impact of a “marginal” increase in coverage
on the outcomes would fail to capture the nature of the program. However, our results are qualitatively
similar when a continuous measure of JSY (percentage of women reporting receiving JSY benefit) is used.
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2.3.5 Outcome and Control Variables

We examine three types of vaccination, namely, BCG, DPT (first dose), and Measles. Each

mother was asked about their last birth’s vaccination information. Variables are coded one

if vaccine dates are written on their vaccination card or if the mother responded that her

child received the corresponding vaccines. We have used the broader definition of vaccination

because it closely aligns with the countrywide statistics available for India from international

agencies like the World Health Organization (WHO, 2020). For the first dose vaccine of DPT,

we drop the observation for children who are less than two months old during the time of the

interview and were reported to have taken the vaccine. Similarly, for the measles vaccine,

we exclude children under nine months old.8 For control variables, we use the child’s gender,

child’s age, mother’s age, mother’s education, mother’s employment, birth order9, if the

mother gave birth in both of the rounds, father’s education, interview recall period (month’s

since last birth and interview date), household poverty status (or asset holding) and urban

location according to the 2000 census and religion dummies. In some specifications, we

also control for community and district characteristics like the number of health centers and

access to roads.

2.3.6 Descriptive statistics

Tables 2.1 reports the summary statistics for the study variables for the pooled sample. In

Table 2.1, the average rates of BCG vaccination were 89% for districts that received JSY

according to our definition and 84% for districts that did not, respectively. These uptake rates

are similar to the estimated numbers reported by the WHO (World Health Organization,

2012).

8Since these vaccines were administered before relevant ages, the data likely suffers from measurement
errors from recall bias. The main results remain the same if these observations are included.

9Birth order is defined as follows: first child 1, second child 2, third child 3 and 4 for 4 or more than 4th
child
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Table 2.1: Summary Statistics Pooled Sample - IHDS wave I and II

JSY District Non-JSY District

Outcome Variables
= 1 if BCG vaccine (at birth) 0.8898 0.8434

[.3132] [.3634]
= 1 if DPT vaccine (4-6 weeks from birth) 0.8750 0.8343

[.3307] [.3719]
= 1 if Measles vaccine (9 months from birth) 0.7396 0.7114

[.4389] [.4531]

Observations 8020 13941

Selected Control Variables

= 1 if Boy 0.5502 0.5544
[.4975] [.497]

Child’s Father’s education 7.0298 7.1555
[4.5692] [4.7807]

Child’s Mother’s education 5.6507 5.3937
[4.8314] [4.9667]

=1 if child’s Mother has a job 0.2431 0.2054
[.429] [.404]

=1 if Urban 0.2978 0.349
[.4573] [.4767]

= 1 if below poverty line 0.2899 0.2669
[.4537] [.4424]

Observations 8020 13941

Note: Standard deviations are in brackets. Parental education is measured in years of schooling.

The rates for DPT vaccine were slightly lower (about 1%). The rates for Measles are lower

by more than fifteen percentage points in both types of the district. This is understandable

because, as the table shows, the measles vaccine is administered at a later age requiring

caregivers to bring the child to a clinic, a more arduous undertaking, particularly in rural

areas. The tables also show that there are very few differences between the two groups.
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2.4 Empirical Strategy

In this section, we describe each of the model specifications estimated. Our basic empirical

strategy is to compare changes in our measures of vaccination in districts where JSY was

introduced between the two waves at various time points, relative to those where it was not.

For the pooled sample, we supplement our standard difference-in-differences models with an

event study type model to test for dynamic policy effects.

2.4.1 Estimation

First, using our pooled cross-section sample from the two waves of IHDS, we run individual-

level difference-in-differences regressions of each outcome on JSY availability (measured at

the district-level). The primary regression estimated is

Yidt = α + ωJSYdt +Xidtθ + Zidtβ + δd + λt + εidt (1)

where Y is a binary outcome indicating vaccine outcome measures (BCG, DPT, and Measles)

for individual i living in district d born in year t; JSYdt is a binary variable indicating 1

if a district has JSY coverage (25% or more) in year t, and 0 otherwise. δd is a set of

district dummies, which controls for district fixed effects, λt is a vector of year dummies.

Our coefficient of interest is ω, which measures the effect of expanding JSY in a district

on the outcome variable. Z is the matrix of additional (time-varying characteristics at

communities (district level and village level (or sub-district)) in some specifications (such as

health infrastructure). The matrix X includes all the individual- and household- level socio-

economic variables discussed in the previous section. Finally, ε is the error term clustered

at the district-level to address the non-independence of observations from the same district

over time.
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2.4.2 Common trend assumption

These equations are identified under the assumption that in the absence of treatment, the

change in outcome between pre- and post-intervention periods for the treated is similar to

the untreated districts. This is the well-known ”parallel trends” assumption of difference-in-

differences (DID) models. The inability to control for systematic trends in a DID framework

may bias the parameters measuring the program effects (Heckman and Vytlacil, 2007). The

assumption is open to questions for several reasons in this context.

Officially, the program targeted some states as ‘high focus’ states that had high maternal

mortality rates, a concern that has already been documented in the literature such as (Powell-

Jackson et al., 2015). However, we can be confident in our strategy if these two groups of

districts have similar trends in outcomes prior to the start of the program, making our

estimates more credible. The argument proceeds in several steps. First, it is helpful to look

at the timeline of the rate of JSY coverage expansion in India, illustrated in Figure 2.1.

Figure 2.1: Expansion of Janani Suraksha Yojana over time – District Level Health Survey

 

 

 

 

Note: Each bar represents proportion of districts in which at least x% of women reported receiving JSY
benefits, x = 10, 25, 50.
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The figure shows that JSY coverage varies by district and year after its introduction in

2005-06. Therefore, one has to choose a reference year to determine which districts received

the 25% (or 50%) threshold of becoming a treated district. We choose 2008-09 as the the

reference year because, as the graph illustrates, the expansion became stable after this period.

Similar results are obtained if we use 2009-10 as the reference year.10 Next, we can check if

these two groups of districts have similar trends in outcomes before the start of the program,

ameliorating the concerns that forces other than JSY were already in place to influence the

outcome variables differently.

Figure 2.2 illustrates this point, which presents a visual representation of the incidence of

vaccination in JSY and non-JSY districts before the implementation of JSY to see how such

trends have unfolded over time. Since these graphs are critical to our identification strategy,

it is important to explain their construction in detail. We have calculated these proportions

in the following way. We start with DLHS2, which was conducted in 2002-2004. There, all

mothers were asked about their previous two births, and we use the information on their

last birth. The responses help us pin down the year of birth and corresponding vaccination

information. Using this data, we create the vaccination rates by districts starting from 2000-

2001 to 2003-04. Each vaccine was coded one if they answered yes to the question “Received

BCG/DPT/Measles.”

Similarly, we use DLHS3, which was conducted in 2007-2008 to create vaccine rates for

the years 2004-05 to 2008-09. Each vaccine was coded one if there was a vaccination card

with the date written plus if they answered yes to the question “received vaccinations against

tuberculosis/DPT/Measles.” Then we average over annual birth cohorts to calculate, say,

the percentage of newborns who were administered BCG in 2005 in a particular district. We

have combined the graphs for all the years from 2000-01 to 2006-07.11

10The figure is available upon request.
11Though the question for DLHS II and III were somewhat different with respect to the vaccine uptakes,

the results from such differences, if any, would likely affect both the treatment and control group similarly.
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Figure 2.2: Trends in immunization in treated and non-treated districts prior to the program
implementation.
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Vaccination trends in JSY and non-JSY districts: 2000-1 to 2006-07 (Source: DLHS II & III)

Notes: (Definition 1: Treat = 1 if 25% of the mothers reported cash receipt under the program in District

Level Health Survey as of year 2008-09)

The figure shows that (i) the proportion of children who received various vaccines differed

across JSY and non-JSY districts before the program, but (ii) such differences persisted over

time until the roll-out of JSY. Specifically, the trends in all vaccines were similar in both

treatment and control districts, with control districts consistently showing higher vaccination

rates. This is expected and consistent with the policy aspect that JSY targeted low-achieving

(high focus) states. A few more additional facts further strengthen our strategy. First, the

JSY was a maternal health intervention program, and it was not meant to affect vaccination;
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to our knowledge, no pre- or post-policy document focused on this angle. Therefore, from the

immunization policy point of view, it was an exogenous shock with unintended consequences.

Second, most Indian states are big and diverse. Even if a state is deemed high focus, it does

not mean that all districts within that state would also be prioritized at the same time.

Finally, we also use propensity score matching methods to create comparable treatment and

control districts using data from the pre-intervention year as an additional robustness check.

Finally, since it is difficult to pin down treated and control districts with respect to a single

time point, we further do event study analysis to see if there is any difference between treated

and control district in pre-treatment years.

2.4.3 Endogenous Births

One concern is that our method of sample selection can introduce selection bias through

potentially endogenous fertility. We argue that there are several reasons why this may not

be a concern. First, such endogeneity is a threat to our identification strategy only if some

women choose to become pregnant, anticipating the rollout of the JSY. This is highly unlikely.

Benefits from social programs in India are uncertain. Even a highly credible promise of a

cash incentive several months in the future is likely to play a minor, if any, role in fertility

decisions. We are also mindful of this problem while merging the JSY information. The

district-level JSY concentration is merged with the appropriate date of birth.12

Nevertheless, we try to test this conjecture in our data. We cannot create a test of

differential fertility with conventional measures like total fertility rate; such data are not

readily available and often difficult to calculate in India (Guilmoto and Rajan, 2013; Haque

et al., 2019). Therefore, we develop our test following the intuition of Hoynes et al. (2015b)by

adopting the same difference-in-differences strategy to see if the treatment districts had

12It is true that this does not eliminate the possibility that some women became pregnant after the JSY
was introduced to their districts. However, the timeline, where JSY rollout started in right earnest in 2009
and interviews for IHDS taking place in 2010-11 making number of such cases extremely small.



CHAPTER 2. JSY AND VACCINATION 120

significantly higher birth than the control ones. If JSY incentivized fertility, this would be

the case. Specifically, we calculate the total number of births per district-year, we estimate

a model similar to (1) above at district and year level, where our dependent variable is the

log of births.

Table 2.2: Difference-in-differences estimates of JSY on number or births and proportion
of birth among poor families at the district level - wave I and wave II of Indian Human
Development Survey

Log number of births in district-year
cell

Fraction of Birth among
Poor families in district-
year cell

JSY coverage 25% 0.039 -0.0274*
(0.0308) (0.014)

Observations 4,191 4,191

Notes: : Each column is a separate difference in differences regression using IHDS data on JSY treatment.
All regressions are in district-year cell. Column 1 regresses log of total births by district (fiscal) year
and Column 2 regresses fraction of births in households below poverty line by district year respectively.
Regression includes year and district fixed effects. All regressions are estimated with ordinary least squares
model. Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1.

Table 2.2 presents these estimates, where in the first column the dependent variable is

district-year (log) birth rate. To check this potential effect is prevalent only among poorer

households as the financial incentive per se is a small amount, we estimate the same model

with the proportion of birth in each district-year for households below poverty line. The

estimates show that there is no evidence of any positive and significant effect of the JSY

on birth rates. In particular, the negative estimate in column (2) gives us confidence that

empirical evidence supports our conjecture that JSY incentives may be too small to increase

birth rates independently.
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2.5 Results

2.5.1 Main Results

Table 2.3 presents our main results - the difference-in-differences estimates of the implemen-

tation of JSY on measures of vaccination for individual vaccines subject to the appropriate

age. The first column refers to BCG, which is administered at birth, the second column refers

to DPT, which is administered within two months of birth, and the third column refers to

the measles vaccine, which is administered when a child is at least nine months old. The

table shows two key results. First, JSY increased the likelihood of vaccination for all three

vaccines positively and significantly. In terms of magnitude, belonging to a JSY district

increased the probability of getting the BCG vaccine by almost 4.4 percentage points, of

initiating the DPT vaccine by nearly 4.8 percentage points, and of being vaccinated against

measles by roughly 2.5 percentage points. These results correspond to the pooled sample of

children between 0-48 months of age from the India Human Development Survey.
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Table 2.3: Effects of JSY on Child Immunization – Pooled sample from wave I and wave
II of Indian Human Development Survey

(1) (2) (3

BCG DPT Measles

JSY coverage 25% 0.0444*** 0.0477*** 0.0247*
(0.0102) (0.0109) (0.0148)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Controls Yes Yes Yes
Observations 21,961 21,150 18,465

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1.
JSY treatment status is defined at the district level. Controls include, child age in years, mother age,
mother education, mother employment dummy, father education, interview recall period in months,
survey wave dummy, birth order dummies, urban dummy, religion dummy, household below poverty
dummy and dummy for mother who gave birth in both rounds of the survey. For DPT only children
older than 2 months, during the time if interview is included. Similarly, for Measles, children older
than 9 months are included.

Second, the magnitudes of point estimates are higher for BCG and DPT than those of

the measles vaccine. These differences are anticipated and consistent with the mechanism

through which maternal health intervention programs may affect infant health. We hypoth-

esized earlier that the JSY program, by offering cash incentives to mothers to deliver in more

formal settings may indirectly improve related but unintended behaviors like vaccination. If

this is the case, and indeed our main results show that there is supporting empirical evidence,

then the effect should be stronger for vaccines that are given at or very close to birth, which

is tied to financial incentives. Though relationships with a doctor, health worker, or hospital

may still increase the likelihood of bringing the child back for measles vaccine months later,

the JSY-impact is likely to get weaker by then. The results confirm such a phenomenon.
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These results are obtained after controlling for several potential confounding factors such as

child gender and age, parental education, birth order dummies, if mother gave birth in both

rounds, interview recall period, religion, household poverty status, urban location, as well

as district and year fixed effects. The inclusion of district fixed effects allows us to control

for time-invariant unobservable district characteristics, which may affect outcomes, while

year fixed effects absorb the effects of unobservable yearly shocks that are common across

districts. The estimated effects of other explanatory variables are as expected (please see Ap-

pendix Table 2.A3 for the complete version of Table 2.3). Male children are generally more

likely to receive vaccines in general, while being poor reduces it. Both father and mother’s

education are strongly and positively associated with the probability of vaccination.13

2.5.2 Robustness Checks

The main result so far is that JSY significantly and positively increased the probability

of infant vaccination for all three vaccines under consideration, both for our pooled and

longitudinal sample. This section reports the results of several robustness checks of our

main specifications.

Analysis incorporating village infrastructure variables

Apart from being longitudinal, the IHDS also has the useful feature of containing rich village-

level infrastructure data. Even though we control for district fixed effects, time-varying

village level controls are important to partial out additional confounding factors that may

affect health outcomes like vaccination. While this approach adds additional controls, we

have to exclude any villages for which such infrastructure data was not available. The

trade-off is losing a significant sample size. Point estimates from equation (1) that includes

13Similar results are obtained from our balanced panel sample. The details can be found in Appendix
section 2.73 along with the results reported in appendix tables 2.A8 and 2.A9 respectively.
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village-level controls are presented in Table 2.4.

Table 2.4: Robustness tests I – Village health infrastructure controls - wave I and wave II of
Indian Human Development Survey

(1) (2) (3)
BCG DPT Measles

JSY coverage 25% 0.0447*** 0.0429*** 0.0129
(0.014) (0.0145) (0.0182)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Individual Controls Yes Yes Yes
Village Controls Yes Yes Yes
Observations 14,499 13,927 12,164

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1.
JSY treatment status is defined at the district level. Controls include, child age in years, mother age,
mother education, mother employment dummy, father education, interview recall period in months,
survey wave dummy, birth order dummies, urban dummy, religion dummy, household below poverty
dummy and dummy for mother who gave birth in both rounds of the survey. For DPT only children
older than 2 months, during the time if interview is included. Similarly, for Measles, children older than
9 months are included. Village controls include indicator variables for Roads, Public Health Center,
Government Maternity Center, and Anganwadi Center.

The village controls include if the village has (i) a road, (ii) a government maternity

center, (iii) a health center, and (iv) an Anganwadi (public health worker) center. Even

with the inclusion of the village controls, the coefficients on JSY are positive, with similar

magnitude, and significant for BCG and DPT indicating that the addition of such local

infrastructure variables does not take away the contribution of the program. Section 2.72 in

the appendix shows additional robustness checks, such as using alternative treatment status

threshold and time varying district controls.
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Analysis incorporating ASHA Workers

The JSY was largely a demand-side financing of health scheme that encouraged women to

adopt certain health behavior, such as giving birth at a health facility. However, there was a

second, less researched aspect of the program that involved some supply-side incentives. The

National Rural Health Mission (NRHM) also introduced trained Accredited Social Health

Activist (ASHA) workers in India from 2005-2006.14 These workers were typically female, be-

tween 25 and 45 years of age and have schooling level of eighth grade and above (Gupta et al.,

2012; Shrivastava and Shrivastava, 2012; Dongre and Kapur, 2013) . Their general mandate

was to promote health awareness among women. They also received performance-based

incentives for referrals and accompaniments to health care facilities for pregnant women.

Therefore, the presence of these workers can potentially influence our outcome variables

(Debnath, 2018).

14ASHA means hope in several Indian languages.
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Table 2.5: Robustness tests II – Controlling for ASHA worker coverage - wave I and wave II
of Indian Human Development Survey

(1) (2) (3)
BCG DPT Measles

JSY coverage 25% 0.0417*** 0.0449*** 0.0272*
(0.0106) (0.0114) (0.0162)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Individual Controls Yes Yes Yes
ASHA Control Yes Yes Yes
Observations 20,415 19,651 17,058

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY
treatment status is defined at the district level. Controls include, child age in years, mother age, mother
education, mother employment dummy, father education, interview recall period in months, survey wave
dummy, birth order dummies, urban dummy, religion dummy and household below poverty dummy.
For DPT only children older than 2 months, during the time if interview is included. Similarly, for
Measles, children older than 9 months are included. ASHA control refers to percentage of deliveries
urged in health facilities by ASHA workers by district.

Table 2.5 reports coefficient estimates from our model from equation (1) controlling

for ASHA worker coverage. This variable has been constructed the same way as the JSY

variable is created. For each district, from the IHDS, we calculate the percentage of women

who received services of an ASHA worker. As the coefficients show, the results remain

qualitatively similar. However, when we compare the magnitudes with our main results, we

see that they are slightly smaller in this case. This is unsurprising, as, given the ASHA

workers’ mandate, variation in their availability should explain variation in the vaccination

uptake. Nevertheless, the demand-side cash-based incentives continue to remain a significant

explanatory factor.
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Analysis using DLHS Data

We provide additional evidence on the impact of JSY on vaccination using the second dataset

that we have used for constructing the JSY treatment variable and pre-trend analysis. As

discussed above, this data, the DLHS, contains both vaccination and JSY coverage infor-

mation. The data has one key advantage, but several disadvantages. The advantage comes

from its sample size, which is many times larger than the IHDS. Unfortunately, the data

lacks several key control variables like poverty status, which makes the fitted models less

complete. The data also does not allow us to construct any longitudinal sample. Neverthe-

less, it provides a natural robustness check to our main results, because we would be more

confident in our estimates if the coefficient estimates are at least qualitatively similar.

Using this data, we follow a similar specification to that above, regressing vaccination

uptake on JSY treatment. The controls include the infant’s gender, mother’s age, and urban

location indicator. The results are presented in Table 2.6.

Table 2.6: Robustness tests III – Effect of JSY on Childhood Vaccination in DLHS Data

(1) (2) (3)
BCG DPT Measles

JSY coverage 25% 0.0477*** 0.0472*** 0.0176**
(0.00583) (0.00802) (0.00846)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Controls Yes Yes Yes
Observations 1,711,351 1,711,278 1,711,133

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY
treatment status is defined at the district level. Individual characteristics include child gender, mother’s
age, and urban location indicator.
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The coefficient estimates are both qualitatively and quantitatively, similar to those of

Table 2.4. For BCG, living in a JSY district increases the likelihood of vaccination by

roughly 5%, which is similar to DPT vaccination also. Finally, consistent with the IHDS

data, we see a smaller effect on the measles vaccine.

2.5.3 Event study analysis

Our estimates so far have relied on the assumption that districts received the program

exogenously, and the JSY rollout was not correlated with omitted variables. We have already

tried to demonstrate that the trends in vaccination between treatment and control districts

are parallel. Additionally, since the pooled sample spanned more than ten years, it allows

us to perform an event study style analysis to test our assumption of exogeneity of the

treatment. In this model, we create up to five years of lag and lead concerning the year in

which the JSY had been implemented in a particular district. We study the effect of JSY five

years before it was introduced in a district, during the first year of the implementation, and

then five years after the program is in effect. To implement it, we replace the JSY coverage

variable in the model by these lags and leads representing the number of periods relative to

policy implementation. Next, we regress our vaccine variables on the year coefficient and

other control variables used in equation 1 above. The coefficients are plotted in Fig. 2.3.15

15The estimates and standard errors are available upon request.
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Figure 2.3: Initiation of three vaccines, event study coefficients.
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Notes: (Definition 1: Treat = 1 if 25% of the mothers reported cash receipt under the program in District
Level Health Survey as of year 2008-09. Each figure presents the estimated coefficients from the main
regression model from the pooled using data from the IHDS and DLHS, where the outcome variable is
receipt of BCG, first dose of DPT and Measles respectively. Spikes are 95% confidence intervals of the
estimated coefficients.)

The point estimates for the JSY effects indicate that (i) the introduction of JSY led to

increased rates of uptake for both BCG and DPT vaccines, but (ii) such effects were weaker,

or of mixed nature for the measles vaccine. Therefore, the event study results also confirm

the main findings that the JSY was more effective in inducing at-birth vaccination and less

so for follow up ones.16

16One thing to note is that the apparent presence of pre-effects in pre-JSY years for all vaccine types. This
could be due to fact that districts with 10% coverage could still be meaningful, and it is reflected in those
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2.6 Discussion and Conclusion

Health policy has long focused on infants and children, who are at a high risk of diseases.

Some of these diseases are preventable by vaccines in a cost-effective way. Vaccines not only

boost individual immunity but also herd immunity – a process through which a population

develops immunity from a disease in such a way that even people who cannot be vaccinated

are also protected (Anderson and May, 1990; Fine, 1993). Unfortunately, vaccination rates

have lagged in many societies across the world, and policymakers are trying to find ways

to increase vaccination. The range of policies has varied from encouraging medical referrals

to immunization campaigns to creating legal mandates. Since reproductive health policies

focus on pregnant women, a relevant question is whether delivery in a safer environment

may improve not only maternal health but also health outcomes like vaccination, which has

long term positive health consequences.

In this paper, we have addressed that question by examining the effects of India’s largest

maternal health program, JSY, on childhood vaccination which were not directly incentivized

under the program. Our empirical strategy uses the heterogeneity in the implementation of

the program across districts and produces several clear results. First, the program increased

vaccination rates for BCG and DPT, which are administered at or very close to birth.

Second, the effect wanes or disappears for the measles vaccine, which is administered several

months after birth. Third, the program effect for those two vaccines is robust. We have used

two samples, one pooled and one longitudinal, and in both cases, the program effect remains

positive and significant. The effects also remain so in various sub-samples and across groups.

Nevertheless, the study is not devoid of limitations. First, though IHDS is a village-level

survey, it doesn’t provide village-level identifiers so the analysis using district-level aggrega-

effects. We perform an event study analysis for 10% coverage rate. Figure 2.A1 in appendix shows that for
10% coverage the pre-implementation coefficients are zero. This is supported by the regression analysis as
shown in Appendix Table 2.A1.
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tion cannot control for the village-level variation precisely. Second, vaccination also depends

on various technological factors like storage facilities that we have not controlled for (though

there is no evidence that such factors interacted with the policy). It also depends on a vari-

ety of supply-side variables such as availability of vaccines. As Andrew and Vera-Hernández

(2020) show, in supply-constrained areas, the JSY was not as effective. Future research has

to explore these channels in greater details. Vaccination uptakes are also notoriously prone

to measurement errors. Though the problem is less severe here for the reliability of the IHDS

survey, it nevertheless limits certain analyses such as completion of all doses of DPT.

Despite these limitations, we believe our results are credible and contribute towards the

health policy literature on vaccination, particularly in developing countries such as India

(Banerjee et al., 2010; Das, 2010; De, 2017). Since the policy we are evaluating was mainly

focused on specific maternal health behavior and outcomes like institutional delivery, the

driving forces behind the policy were likely to be exogenous to the forces driving immuniza-

tion policy, significantly ameliorating endogeneity concerns. Indeed, previous literature has

demonstrated the exogeneity of the JSY rollout itself. A combination of two data sources

also lowers the potential bias coming in from systematic measurement and survey errors.

Together, the main result, that maternal health interventions can be successful in improving

the uptake of some vaccines is robust and useful for global health policy.
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2.7 Appendix

2.7.1 Figures and Tables

Figure 2.A1: Initiation of three vaccines, event study coefficients
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respectively. Spikes are 95% confidence intervals of the estimated coefficients.)
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Table 2.A1: Alternative treatment status threshold – 10% JSY Coverage - wave I and wave
II of Indian Human Development Survey

(1) (2) (3)
BCG DPT Measles

JSY coverage 10% 0.0171 0.0196 0.0311*
(0.0114) (0.0120) (0.0163)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Controls Yes Yes Yes
Observations 21,961 21,150 18,465

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1.
JSY treatment status is defined at the district level. Controls include, child age in years, mother age,
mother education, mother employment dummy, father education, interview recall period in months,
survey wave dummy, birth order dummies, urban dummy, religion dummy, household below poverty
dummy and dummy for mother who gave birth in both rounds of the survey. For DPT only kids older
than 2 months, during the time if interview is included. Similarly, for Measles, kids older than 9 months
are included.
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Table 2.A2: Effects of JSY on Polio Immunization – Pooled and Panel sample from wave I
and wave II of Indian Human Development Survey

(1) (2)
Polio Pooled Sample Polio Panel Sample

JSY coverage 25% 0.00856 0.0398
(0.0129) (0.0262)

District FE Yes Yes
Year FE Yes No
Controls Yes Yes
Observations 21,961 6,230

Notes: Polio immunization outcomes are binary variables set to one if the mother has answered YES
to Polio immunization question, and zero otherwise. All regressions are estimated with ordinary least
squares model. Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05,
* p<0.1. JSY treatment status is defined at the district level. Column 1 shows for pooled sample and
controls include, child age in years, mother age, mother education, mother employment dummy, father
education, interview recall period in months, survey wave dummy, birth order dummies, urban dummy,
religion dummy, household below poverty dummy and dummy for mother who gave birth in both rounds
of the survey. Column 2 shows results for the panel sample. In this model, the controls include, child
age in years, mother age, mother education, mother employment dummy, father education, interview
recall period in months, survey wave dummy, parity dummy [parity is defined as, 1 if number of children
is 1, 2 if 2 and 3 if 3 and 4 if greater than 4], urban dummy, religion dummy and household below
poverty dummy.
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Table 2.A3: Complete version of Table 2.3

(1) (2) (3)
BCG DPT Measles

JSY coverage 25% 0.0444*** 0.0477*** 0.0247*
(0.0102) (0.0109) (0.0148)

Child AGE 0.00121 0.00728* 0.0355***
(0.00382) (0.00415) (0.00515)

Interview recall period -0.00124 -0.00284*** -0.00312***
(0.000823) (0.000892) (0.00112)

If child is a boy =1 0.0109** 0.00655 0.0200***
(0.00440) (0.00448) (0.00584)

Poor == 1 -0.0190** -0.0148* -0.0222**
(0.00740) (0.00779) (0.00861)

Mother Age -0.000481 -0.000159 0.000331
(0.000616) (0.000710) (0.000793)

Child’s Mother’s education 0.00502*** 0.00530*** 0.0112***
(0.000757) (0.000883) (0.00102)

Child’s Father’s education 0.00520*** 0.00597*** 0.00645***
(0.000784) (0.000871) (0.00100)

Urban residence from census 2011 0.0120 0.0198 0.0309**
(0.0110) (0.0127) (0.0153)

Mother in both round = 1 -0.0115** -0.0142** -0.00516
(0.00572) (0.00607) (0.00754)

Mother has a job = 1 -0.00811 -0.00847 -0.00361
(0.00646) (0.00690) (0.00981)

Parity 2 =1 -0.00204 -0.00652 -0.00537
(0.00563) (0.00600) (0.00821)

Parity 3 =1 0.00707 0.00496 0.00491
(0.00710) (0.00742) (0.00999)

Parity 4 =1 -0.0388*** -0.0527*** -0.0369***
(0.00910) (0.0104) (0.0118)

Religion
Hindu (reference)
Muslim -0.0432*** -0.0368*** -0.0664***

(0.0125) (0.0136) (0.0155)
Other -0.0159 -0.00868 0.0120

(0.0139) (0.0135) (0.0179)
Observations 21,961 21,150 18,465
District FE Yes Yes Yes
Year FE Yes Yes Yes

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY
treatment status is defined at the district level.
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2.7.2 Additional Robustness Checks

We consider additional robustness checks of our main results with tables and figures below.

First we show that, the JSY increased the incidence of institutional delivery. In Table 2.A4

we show that the percentage of mothers giving births in government facilities increased by

7-10%, which is expected. Next, we examine whether our results are sensitive to our choice of

25% threshold by re-classifying districts to be a JSY- district if 50% of the qualifying women

have reported having received the aforementioned financial incentive. Previous literature

such as Powell-Jackson et al. (2015) has also chosen these thresholds. Table 2.A5 reports

these results. The most noteworthy aspect of the point estimates is that the magnitudes

of the effects of JSY are higher for all three vaccines. Additionally, the effect is significant

for vaccination against measles. This is unsurprising and bolsters the claim that JSY was

instrumental in increasing vaccination uptakes – children in districts with a stronger JSY

presence were more likely to be vaccinated.

Although we control for time-varying village controls in a previous specification (section

5.3.1,) it came at the drawbacks of losing sample size. As an additional check, we include

time-varying district-level control variables such as road and health infrastructures to our

baseline specification and examine if the results change. Specifically, we use the DLHS II

and III data to calculate distance to nearest bus stop, distance to district headquarters,

percentage of villages connected by roads, percentage of villages with colleges, percentage

of villages with government hospitals, private clinics, private hospitals, sub-centers, primary

health centers (PHC), community health centers (CHC) and government dispensaries centers.

These variables are calculated from the DLHS and then merged with the individual-level

sample from the IHDS data. Appendix Table 2.A6 shows the results, and estimates are

similar when we control for time-varying district characteristics.

To construct our JSY treatment variable beyond 2007-08 (DLHS III data), we had to
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combine the Annual Health Survey with the District Level Health Survey because they were

split administratively, as subsections 3.1 and 3.2 explain. One concern may be that our results

are influenced by such construction. Table 2.A7 restricts our sample to DLHS II and III

making it directly comparable to the previous literature. The results are similar qualitatively

but are smaller in magnitude, perhaps explaining that in time JSY was influential in driving

vaccination uptake. Finally, for our panel sample, we compute propensity score-adjusted

estimates as an additional robustness check. The results are similar. In all the appendix

tables, further details are provided in table notes.

Table 2.A4: Increase in institutional delivery as a result of JSY - Probability of giving births
in government facilities - wave I and wave II of Indian Human Development Survey

(1) (2)
Births at Government Facilities

Pooled Sample Panel Sample

JSY coverage 25% 0.061*** 0.097***
(0.015) (0.025)

District FE Yes Yes
Year FE Yes No
Mother FE No Yes
Controls Yes Yes
Observations 22045 6280

Notes: The outcome is a binary variable set to one if the mother gave birth in government facilities.
All regressions are estimated with ordinary least squares model. Standard errors in parenthesis are
clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY treatment status is defined at the
district level. . Controls include, child age in years, mother age, mother education, mother employment
dummy, father education, interview recall period in months, survey wave dummy, birth order dummies,
urban dummy, religion dummy, household below poverty dummy and dummy for mother who gave birth
in both rounds of the survey. For DPT only kids older than 2 months, during the time if interview is
included. Similarly, for Measles, kids older than 9 months are included.
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Table 2.A5: Alternative treatment status threshold – 50% JSY Coverage - wave I and wave
II of Indian Human Development Survey

(1) (2) (3)
BCG DPT Measles

JSY coverage 50% 0.0746*** 0.0727*** 0.0495***
(0.0132) (0.0148) (0.0185)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Controls Yes Yes Yes
Observations 21,961 21,150 18,465

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1.
JSY treatment status is defined at the district level. Controls include, child age in years, mother age,
mother education, mother employment dummy, father education, interview recall period in months,
survey wave dummy, birth order dummies, urban dummy, religion dummy, household below poverty
dummy and dummy for mother who gave birth in both rounds of the survey. For DPT only kids older
than 2 months, during the time if interview is included. Similarly, for Measles, kids older than 9 months
are included.
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Table 2.A6: Time-varying District controls - wave I and wave II of Indian Human Develop-
ment Survey and three rounds of District Level Health Survey Data

(1) (2) (3)
BCG DPT Measles

JSY coverage 25% 0.0417*** 0.0454*** 0.0167
(0.0109) (0.0116) (0.0150)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Controls Yes Yes Yes
Observations 21,175 20,388 17,787

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY
treatment status is defined at the district level. Controls include, child age in years, mother age, mother
education, mother employment dummy, father education, interview recall period in months, survey wave
dummy, birth order dummies, urban dummy, religion dummy and household below poverty dummy.
District-level control variables were obtained from various rounds of the District Level Health Survey
data. Specifically, for each village in respective district, we calculate the following variables and take
mean by the district: Distance to nearest bus stand (in km), distance to district headquarter (in km),
if roads connect village, if village has a college, a government hospital, private clinic, private hospitals,
sub-center, public health center, community health center, government dispensary, and mobile health
child clinic.

2.7.3 Balanced Panel

Effects of JSY on childhood vaccination – Panel Sample

Additionally, taking advantage of the longitudinal nature of the IHDS data we estimate

the effects of JSY on vaccinations in our balanced panel sample. The equation (1) above

differs slightly while estimating for the panel sample and takes the following form:

Yidt = α + ωJSYdt + πPOST + β(POST ∗ JSYdt) +Xidtθ +Mi + εidt (2)

where POST is an indicator variable for wave II and Mi captures the mother fixed effect.
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Table 2.A7: Re-estimation of Table 4 when the treatment variable has been constructed by
using only DLHS II and III. All other variables are from wave I and wave II of Indian Human
Development Survey

(1) (2) (3)
BCG DPT Measles

DID 0.0404** 0.0461** 0.0154
(0.0172) (0.0181) (0.0229)

Observations 13,944 13,525 12,201
R-squared 0.249 0.263 0.286

Notes: This table follows the same model as Table 3. Please refer to those notes also. As mentioned
in the text, DLHS IV survey is carried out only for low focus States. Another survey called the Annual
Health Survey substituted it in the high focus states. Given that these surveys might have different
structure and timing, our JSY variable could be noisy. Thus, we only use DLHS II and III to construct
the JSY coverage variable as in Powel-Jackson et al. (2015). The data stops at fiscal year 2007-08.
The significant pattern is similar to our main results, though the magnitudes of coefficients are smaller.
This is to be expected because the impact of JSY increased with along with its coverage captured by
additional years of data.

The key parameter of interest in Equations (2) is β.

Table 2.A8 shows the summary statistics for the panel sample (similar to Table 2.1 above).

Since this is a balanced panel, they offer additional insights. For all three vaccines, the rates

were much lower for non-JSY districts in pre-JSY period. Additionally, these districts had

lower levels of parental education and lower incidence of poverty. This is not surprising,

as the program targeted, poorer, rural states – so called high focus states. However, the

vaccination gap closed considerably for all three vaccines following the program expansion,

even though the poverty gap persisted, or even widened slightly. This is a prima facie

evidence that the program was effective in increasing vaccination in backward areas.
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Table 2.A8: Summary Statistics at baseline in 2004 (wave I) – Panel Sample - IHDS wave I and II

Before JSY After JSY

JSY District Non-JSY
District

JSY Dis-
trict

Non-JSY
District

Outcome Variables
= 1 if BCG vaccine (at birth) 0.7433 0.8253 0.8608 0.849

[.4369] [.3799] [.3463] [.3582]
= 1 if DPT vaccine (2 months from birth) 0.7324 0.818 0.8353 0.8357

[.4428] [.386] [.371] [.3707]
= 1 if Measles vaccine (9 months from birth) 0.5488 0.6688 0.7138 0.783

[.4978] [.4709] [.4521] [.4124]

Observations 1839 1265 1839 1265

Selected Control Variables

= 1 if Boy 0.4356 0.4838 0.5802 0.6032
[.496] [.4999] [.4937] [.4894]

Child’s Father’s education 5.82 7.1391 5.8624 7.0474
[4.743] [4.6299] [4.6431] [4.6393]

Child’s Mother’s education 3.6308 5.3138 3.8668 5.4593
[4.592] [4.878] [4.5516] [4.6751]

=1 if child’s Mother has a job 0.2344 0.1423 0.3502 0.2854
[.4237] [.3495] [.4772] [.4518]

=1 if Urban 0.2561 0.3099 0.267 0.3257
[.4366] [.4626] [.4425] [.4688]

= 1 if below poverty line 0.3622 0.2482 0.3893 0.2474
[.4808] [.4322] [.4877] [.4317]

Observations 1839 1265 1839 1265

Note: Standard deviations are in brackets. Parental education is measured in years of schooling.

The estimated effects of the JSY program for the balanced panel sample of mothers are

given in Table 2.A9. This table is organized in the same way as Table 2.3.



CHAPTER 2. JSY AND VACCINATION 142

Table 2.A9: Effects of JSY on Child Immunization –Panel sample from wave I and wave II
of Indian Human Development Survey

(1) (2) (3)
BCG DPT Measles

JSY coverage 25% 0.0635*** 0.0455** 0.0205
(0.0205) (0.0211) (0.0295)

District FE Yes Yes Yes
Mother FE Yes Yes Yes
Controls Yes Yes Yes
Observations 6,208 5,714 4,430

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY
treatment status is defined at the district level. Controls include, child age in years, mother age, mother
education, mother employment dummy, father education, interview recall period in months, survey wave
dummy, birth order dummies, urban dummy, religion dummy and household below poverty dummy. For
DPT only kids older than 2 months, during the time if interview is included. Similarly, for Measles, kids
older than 9 months are included.

Though the pattern of sign and significance is the same as those corresponding to the

pooled sample, the magnitudes are somewhat different. For example, for the same mother

who gave birth in a JSY district during wave II, the probability of her child getting the

BCG vaccine increases by almost six (compared to four for our pooled sample) percentage

points. The magnitudes of effects for the DPT are similar, and Measles is not significant. We

also present results in the appendix from the specification where the treatment and control

groups are matched by propensity scores to deal with differences in observable characteristics

(Table 2.A10).
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Table 2.A10: Propensity Score Adjusted estimates for the Panel Sample − wave I and wave
II of Indian Human Development Survey

(1) (2) (3)
BCG DPT Measles

JSY coverage 25% 0.0586*** 0.0659*** 0.0455*
(0.0224) (0.0255) (0.0267)

District FE Yes Yes Yes
Mother FE Yes Yes Yes
Controls Yes Yes Yes
Observations 7,180 6,818 5,762

Notes: All three immunization outcomes are binary variables set to one if the mother has answered
YES to that immunization question. All regressions are estimated with ordinary least squares model.
Standard errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY
treatment status is defined at the district level. Controls include, child age in years, mother age, mother
education, mother employment dummy, father education, interview recall period in months, survey wave
dummy, birth order dummies, urban dummy, religion dummy and household below poverty dummy. For
DPT only kids older than 2 months, during the time if interview is included. Similarly, for Measles, kids
older than 9 months are included.

Taken together, our main results (Table 2.3), results using DLHS data (Table 2.6) and

results from panel sample (Table 2.A9) show that, JSY has an positive effect on increasing

immunization rate (especially, BCG and DPT) across India.

2.7.4 Heterogeneity

Finally, we explore wheher there is heterogeneity in the effect of JSY for different sub-

populations. Specifically, we examine if the effects differed differed across the lines of gender

and urbanity respectively. Tables 2.A11 and 2.A12 show the results by gender and by urban

level respectively. India has a long, unfortunate tradition of discriminating against girls in

the fields of health and education. Therefore, it is worth inquiring if the positive effects of

the health programs differed by gender. The gender sub-sample results are reported in Table

A11.
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Table 2.A11: Heterogeneity in childhood vaccination by gender − wave I and wave II of
Indian Human Development Survey

(1) (2) (3) (4) (5) (6)
Boy Girl Boy Girl Boy Girl

BCG DPT Measles

JSY coverage 25% 0.0415*** 0.0465*** 0.0395*** 0.0563*** 0.00499 0.0523**
(0.0121) (0.0140) (0.0129) (0.0146) (0.0170) (0.0207)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Observations 12,142 9,819 11,727 9,423 10,354 8,111

All three immunization outcomes are binary variables set to one if the mother has answered YES to
that immunization question. All regressions are estimated with ordinary least squares model. Standard
errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY treatment
status is defined at the district level. Controls include, child age in years, mother age, mother education,
mother employment dummy, father education, interview recall period in months, survey wave dummy,
birth order dummies, urban dummy, religion dummy and household below poverty dummy. For DPT
only kids older than 2 months, during the time if interview is included. Similarly, for Measles, kids older
than 9 months are included.

The results show that the effect of JSY has been stronger for girls. This may mean

that in the absence of the program, more care would have been taken to vaccinate the boys

anyway; however, the program had an impact on the mothers to vaccinate the girls. These

results are also remarkable against the backdrop of the vast literature on child preference

in India. The rate and problem of preference of a male child are well documented in the

literature and show that girls with two or more elder sisters in the family are more likely

to be stunted and less likely to be fully immunized (Pande et al., 2006). Additionally, girls

are not only less likely to be immunized; they also tend to drop out at a faster rate than

boys for doses of DPT and Polio. Similarly, girls are likely to be immunized at a later age

than boys (Pande and Yazbeck, 2003). Given this problem, our results suggest that JSY

had significantly improved the vaccination rate, specifically among girls.
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Next, we examine the differences across rural and urban regions. These regions are

defined in the IHDS, which in turn used categorization from the Indian census of 2000.

One distinctive feature of India’s growth is that the rural-urban dichotomy is persistent, as

agriculture’s shares in both GDP and total employment have not declined rapidly (Kotwal

et al., 2011). Table A12 disaggregates the impact of JSY on vaccination by urban location.

The urban level sub samples show that the positive effect of the JSY on vacination wa

not limited to a particular rural or urban area. The coefficient estimates are statistically

significant for the rural sample only, showing that the program might have been more effective

in rural areas.

Table 2.A12: Heterogeneity in childhood by rural-urban divide − wave I and wave II of
Indian Human Development Survey

(1) (2) (3) (4) (5) (6)
Urban Rural Urban Rural Urban Rural

BCG DPT Measles

JSY coverage 25% 0.0444*** 0.0433*** 0.0431*** 0.0518*** 0.0117 0.0438**
(0.0137) (0.0137) (0.0144) (0.0142) (0.0182) (0.0199)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Observations 14,708 7,253 14,129 7,021 12,345 6,120

All three immunization outcomes are binary variables set to one if the mother has answered YES to
that immunization question. All regressions are estimated with ordinary least squares model. Standard
errors in parenthesis are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.1. JSY treatment
status is defined at the district level. Controls include, child age in years, mother age, mother education,
mother employment dummy, father education, interview recall period in months, survey wave dummy,
birth order dummies, urban dummy, religion dummy and household below poverty dummy. For DPT
only kids older than 2 months, during the time if interview is included. Similarly, for Measles, kids older
than 9 months are included. Urban location information comes from IHDS, which in turn uses the Indian
census classification.



Chapter 3

Political Connections and Household

Welfare: Evidence from India

“Raul’s mother, Asha, a kindergarden teacher with mysterious connection to local politicians and the
police, had managed to secure him several nights of temp work at the Intercontinental hotel, across the

sewage lake, Rahul [a boy from the slum] . . . had seen the overcity opulence firsthand.”
Katherine Boo: Behind the beautiful forevers1

3.1 Introduction

A large and growing body of literature has shown the role played by community and political

based networks in supporting and gaining private and public economic activity.2 When social

capital and political connections play important roles in economic gains, being in a powerful

political position or knowing a politician matters. Such political capital can be converted

into economic capital by increasing networks, which would add a lot of information related to

job opportunities and other economic opportunities. A household with political connection

would be less vulnerable and more competitive (Chen, 1999). Political connection provides

1Boo (2011).
2e.g., Townsend (1994), Grimard (1997), Fafchamps and Lund (2003), Mazzocco and Saini (2012), An-

gelucci et al. (2017).
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easier access to profitable economic opportunities (eg. government jobs, off farm employment

and private sector employment). Political elites especially in rural places in developing

countries still exert control over valuable economic resources. For example, family members

can be assigned to high-salaried posts and their connections can benefit the family’s private

business (Walder, 2002; Morduch and Sicular, 2000).

When it comes to political rent seeking, India is no different. Patronage is deeply rooted

in India. Xu (2017) finds that in 1854 governors connected to the Secretary of State en-

joyed higher salaries through the promotion to higher paid positions and larger colonies.

In addition to patronage, one common feature of low-income democracies such as India is

political corruption. Various studies have shown the prevalence of elite capture of public

goods (Duflo et al., 2008; Pande, 2008; Panda, 2015) and bribery (Bertrand et al., 2007) in

India. When there is little oversight and benefits come at very little cost for the recipients,

welfare programs and jobs (especially government jobs) are often found to be captured by

wealthy and politically well-connected households (Gaiha, 2000; Kaushik, 1991).

Using the India Human Development Survey (IHDS) data (collected over two waves 2005

and 2011),3 I investigate whether politically connected households are better off in terms

of access to welfare programs and jobs opportunities for their members. While I use a rich

dataset to control for various factors, knowing a politician may depend on unobservable char-

acteristics of a household such as household head’s ability. To rule out potential endogeneity,

I instrument political connection with percentage of household within each village that are

member of Self-Help Groups (SHGs). I propose that being a member of SHGs, a traditional

micro money lending scheme in India increases the probability of “knowing” a politician.

I construct the probability of SHGs being available in the village/town by calculating the

percentages of households in a village/town that say they are member of SHGs. Results

3The data come from the two waves the India Human Development Survey (IHDS), which is a quasi-
nationally representative multi-topic survey (Desai and Vanneman, 2012).
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show that knowing a politician in local level vastly improves the chances of a household to

obtain welfare programs like ration cards and insurance cards. Similarly, household members

are more likely to have government jobs, and are less likely to work as daily wage laborers.

I further look to see if knowing the different types and levels of politicians differs in

gaining vital welfare schemes made for the poor. India is a federal republic with three layers

of government: local, state, and federal levels. The IHDS questionnaire asks a couple of

questions on a household’s acquaintance about politicians. First, it asks if a household knows

a politician at the local level (village panchayat) and second if they know someone who is

elected member of state and federal parliament. Finally, it asks if they know someone who is

a political party official. Using these variables, I create three levels of political connection: If

a household knows someone who is an official/member of village/town, if a household knows

someone who is an elected member of the state or federal parliament, and finally if the

household knows know someone who is a political party official. In 1989, the Indian central

government took steps to add power to local government via direct funding to strengthen

local development. Given this mixed federal, state, and local level power structure, knowing

different types of politicians may yield different benefits.

I find that knowing a local level politician (panchayat officials) increases the probability

of obtaining any ration cards by 12%, below poverty level (BPL) card by 9% Antyodaya card

(card for poorest of the poor) (17%), MGNEGRA card (guaranteed part-time job) (20%)

and RSBY (insurance) card (12%). Knowing elected politicians does not have any effect on

obtaining welfare benefits. This is likely due to the fact that designation of such welfare

program (to qualify for such programs) is administrated at local levels. Similarly, knowing

a politician (elected in state and federal parliament) decreases the probability of at least

one household member working in agriculture and daily labor jobs. Finally knowing elected

politicians and party officials increases the chance of at least one member of the household

having a government and permanent jobs, especially at least one female member. Knowing
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a local level politicians has no effect.

This paper contributes to a growing body of literature in political elite capture. Panda

(2015) finds that a household that knows a politician at the local level (somebody close or a

household member who is an official at village panchayat) is 15% more likely to receive a BPL

card. That paper uses the first wave of IHDS data. However, this essay differs from Panda

(2015) in few different ways. First, it uses the second wave of the IHDS data collected 6

years after the first, and second, it uses a different and novel instrumental variable to correct

for the endogeneity of political connection. Finally, it looks at all kinds of welfare programs

(not just likelyhood of receiving BPL cards) and also looks at a household’s job prospects.

Given that India spends billions of dollars on targeted welfare programs like ration cards for

its poorest citizens, if such programs are misused for political gain then the objectives of

welfare policy are not achieved.

The rest of the paper is structured as follows. Section 2 briefs about background, Sec-

tion 3 describes the data and variables, Section 4 goes over methodology and identification

strategy, Section 5 presents results and Section 6 performs robustness check. Finally Section

7 discusses and Section 8 concludes.

3.2 Background

The power of political connection and its impact on firms, household and individual welfare

is still common. Using data from Italy, Gagliarducci and Manacorda (2016) find that “the

monetary return to having a politician in the family is around 3.5 percent worth of private

sector earnings and that each politician is able to extract rents for his family worth between

one fourth and one full private sector job per year.” Fafchamps and Labonne (2017) find that

in the Philippines families connected to politician with current office holders are likely to

be employed in better paying occupation. Individuals who are connected to such politicians



CHAPTER 3. POLITICAL CONNECTIONS 150

are 22 percent more likely to get the job relative to the control mean. Similarly, Zhang

et al. (2016) find that family member with a political background is more likely to engage

in entrepreneurship. Finally, Folke et al. (2017) find that earnings for children of newly

appointed mayors in Sweden rise by about 15%.

Throughout the known human history, either in tribal villages or in royal courts, one

of the dominant roles in appointment of bureaucratic position has been patronage. Kings

and Chiefs dominated most things and appointed whoever they pleased and often they

would be their family members or friends (Sundell, 2014; Xu, 2017). However, starting

with the imperial China and 19th century Prussia, the way of recruitment has changed

(Weber, 1922). We have education and skills qualification often measured through exams

and interviews, which determines whether one gets the job or not (Sundell, 2014). While the

level of bureaucratic and private sector patronage is on the decline especially in well-advanced

economies, political rent seeking still exists.

How much advantage one inherits from their families’ wealth and status directly im-

pacts the opportunity that society provides to them (Emran and Su, 2015). Extreme level of

inequality may pass across generations and limit opportunity for individuals which could un-

dermine fairer competition and upward mobility. While some researchers claim that “almost

all the earnings advantages or disadvantages of ancestors are wiped out in three generations”

(Becker and Tomes, 1986), looking at the data from Italy, Barone and Mocetti (2016), claim

that persistence of socioeconomic status across generations lasts for more than six centuries.

Panda (2015) looks at the chances of obtaining an important ration card, the so-called

Below Poverty Level (BPL) card, if a household knows a politician. The paper finds that

knowing a politician increases the chance of obtaining BPL card by as much as 15%. Mitra

et al. (2017) observe the spike in household consumption (red meat and clothes) during

election times in India to compare vote buying and an increase in spending during election

times.
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3.2.1 India’s Political Structure

India is a federal republic with 29 states and 6 union territories. There are three distinct

types of governing bodies, federal, state and local. There are a total 257,000 local government

bodies of which 252,249 are rural and 4,751 urbans. Of the rural local government, 608 are

zila parishad at the district level, 6,614 are panchayat samaiti at the block level, and 245,027

gram panchayat at the village level (CLGF, 2019). The definition and governing principle

for local government are different from state to state. While federal government provides

oversight for these governing bodies, states have considerable power. Each state has its own

MPs, and Chief Ministers. And at the federal level is a parliamentary democracy.

“In 1989 the government of India took steps to enhance the role of rural local governments

through direct funding. The aim was to create units responsible for economic development at

the local level, and to create jobs directly” (CLGF, 2019). Given this mixed federal, state and

local level power structure, knowing different types of politician may yield different benefits.

Exploiting the rich survey dataset that asks question about household’s acquaintance with

various level of politicians, I investigate if knowing different kinds of politician improves

household’s well-being.

3.2.2 Public Welfare Programs in India

A popular welfare program run by the Indian government, known as the public distribution

system (PDS), attempts to provide basic food supplies like rice, wheat, etc. at a subsidized

rate. The system has provided food security for millions of poor across urban and rural areas.

There have been three types of PDS cards or ration cards distributed to households across

the country: the BPL card, the Antyodaya card (poorest of the poor), and APL (above-

poverty-line) card (Panda, 2015). Under these schemes, households are allocated a certain

number of grains per month. For example, BPL households could get a quota of 35kg of
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food grains per month. The central government allocates the number of PDS cards per state

and the state government uses these limits to come up with cut-off rates for households to

qualify for the PDS. The local government is responsible for identifying the poor households

by assigning poverty scorecards for each household which will be used to assign PDS cards

for households. Households that fall below their respective state- and district-specific cut-offs

are classified as being below the poverty line and are issued BPL cards (Panda, 2015). Given

the complex layers of identifying the household that qualifies for BPL cards, mismanagement

and corruption is often rampant in India (Saxena, 2009).

The government of India has also expanded the targeted welfare programs into health and

guaranteed jobs programs. The National Rural Employment Guarantee Act, 2005 created

a program called Mahatma Gandhi National Rural Employment Guarantee Scheme (MGN-

REGA), or sometimes called Mahatma Gandhi Employment Guarantee Act (NREGA) which

guarantees up to 100 days of unskilled manual labor per year for qualifying households. Once

again local political officials are given a central role in planning and implementation (Raval-

lion et al., 2013). Next, in 2008, India’s Labor Ministry launched a hospital insurance scheme

called Rashtriya Swasthya Bima Yojana (RSBY), which covered households that are below

the poverty level. RSBY provides affordable and accessible healthcare services along with

insurance coverage for secondary care (Malhi et al., 2020). Finally, in 2005, the government

of India, with an aim to reduce maternal and child health, introduce a maternal health pro-

gram that gave money to incentivize women to give birth in a health facility. In this study,

I evaluate if being connected to a politician increases the probability of obtaining these vital

services aimed at the poor in India.
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3.3 Data and Variables

The data comes from the India Human Development Survey (IHDS), which is a quasi-

nationally representative multi-topic survey (Desai and Vanneman, 2012). The survey is

carried out in two rounds. Wave I interviews were conducted from late 2004 to late 2005 and

wave II was from January 2011 to May 2013. Wave II interviewed 42,152 households across

India.4 I use the second-round survey for the primary analysis in this study. The data is

publicly available to download online.

3.3.1 Variables

Using the rich IHDS data, I create three levels of political connection variables. The first level

of connection is at the village/municipality level. The question in the survey is: Is anyone

in the household a member/official of the village panchayat / nagarpalika / ward committee?

IF NO: Is there someone close to the household, who is a member? This question is mostly

about knowing the village and municipal level leaders. These leaders mostly are responsible

for distributing welfare funds like ration cards. I create three variables, someone in the

household, someone outside of the household, and the final one either of the two.

The second question is about higher-up politicians at the state and federal level, which is

divided into two parts, elected officials and political party officials. Do you or any members

of your household have personal acquaintance with someone who works in any of the following

occupations) i) Among your relatives/caste/community and ii) outside the community/caste?

Such as MP/MLA, Zilla parishad member (excluding village panchayat).5

I use the above questions to create three variables: Village Panchayat member/Official, a

binary variable equal to 1 if a household has members in their household or outside and zero

otherwise; Acquaintance with an elected politician, a binary variable equal to 1 if a household

4For more see: https://www.icpsr.umich.edu/icpsrweb/content/DSDR/idhs-II-data-guide.html
5These are verbatim questions from the questionnaire.

https://www.icpsr.umich.edu/icpsrweb/content/DSDR/idhs-II-data-guide.html
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knows anyone either among their caste/relatives or outside and finally Acquaintance with a

political party officials, a binary variable equal to 1 if a household knows any political party

officials either among their caste/relatives or outside and 0 otherwise. Table 3.1a below

shows the descriptive statistics for political connection variables.

Table 3.1a: Summary Statistics - Political Connection

N Mean

Village Panchayat Member/Official
In Household 41496 4.09%
Someone Close 41494 23.59%
Both 41496 27.68%

Acquaintance with Elected Politician
Among Relatives/community /Caste 41523 6.60%
Outside community /Caste 41523 13.25%
Both 41523 16.15%

Acquaintance with Political Party Officials
Among Relatives/Caste 41523 7.62%
Outside community /Caste 41539 12.73%
Both 41549 16.25%

Notes: Some households have missing values

In the table we can see that around 4% of households have a village panchayat member in

the household and 24% knows someone outside of household and overall, 28% of households

know someone in the village panchayat. Similarly, 7% of households have acquaintance with

elected politician either among relatives within their community and caste, 13% outside of

community and caste and 16% of households have acquaintance with either. Finally, 8%

of households have acquaintance with political party officials either among relatives within

their community and caste, 13% have acquaintance with someone outside of community and

caste and 15% of households have acquaintance with either.
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To see the effect of elite capture among households, I look at various welfare measure

that a household can claim: mainly ration cards (if household has any types of ration card),

BPL card or below poverty line card and Antyodaya card (a ration card for poorest of

the Similarly, I look if a household has a Mahatma Gandhi National Rural Employment

Guarantee Act or MGNREGA card, Rashtriya Swasthya Bima Yojana or RSBY insurance

card, and finally, if the household receives any government provided maternity benefit via

Janani Suraksha Yojana (a maternal health program). All variables are binary.

Next, I examine whether politically connected households have better job opportunities.

I create a variable Agriculture work if at least one person in the household is engaged in

agriculture cultivation or agricultural labor work. Next, I create a variable Labor work if

at least one person in the household works as a daily wage laborer. I create a variable

Government work if at least one person in the household has a government job and create a

variable Permanent Job if at least one person in the household has a permanent job. Finally,

I create two variables, if a female member of the household has a government or permanent

jobs.

Further I create control variables as follows. Poor equals one (defined in the dataset6), log

of family income, household residence type pakka equals 1 if building has walls and flats, and

equals 0 if it is chawl, slums and others. Household head’s education, age, has a government

job, permanent job and a dummy if household head is a male. Similarly, I look at household

head’s father’s or husband’s education level, household size, if household has electricity, and

own a bicycle. We also look at seven caste types of dummy variables, namely: Brahmin,

Forward Caste, OBC, Dalit, Adivasi, Muslim and Sikh/Jain/Christian. Finally, using the

6“Poverty IHDS calculated household poverty based on the monthly consumption per capita (copc, see
Consumption) and the official Planning Commission poverty line as of 2005. poor is a dichotomous (0/1)
variable indicating whether the household is below this poverty line or not. Users can calculate a poverty
line ratio by dividing the monthly consumption per capita (copc) by the official poverty line (pcpl). The
poverty line (pcpl) varies by state and urban/rural residence. It is based on 1970s calculations of income
needed to support minimal calorie consumption and has been adjusted by price indexes since then.” For
more see: https://ihds.umd.edu/poverty

https://ihds.umd.edu/poverty
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census 2011 data I have district level data on literacy rates and total population. Table 2.1b

below provides summary of household level characteristics.

In Table 2.1b we see that households that know a politician at the local level (Village

Panchayat Member/Official) are considerably more likely to have all forms of elite capture

(have a ration and insurance cards). However, if one knows politicians higher up, they are

less likely to obtain welfare benefits. Similarly, a household that knows politicians seem to

be richer, have more income, have more electricity, and own a bicycle.

3.4 Methodology and Identification

3.4.1 Methodology

I begin by estimating the following probit model:

y∗h = β0 + β1POLh + β2Hh + β3Xh + εh (1)

such that,

yh = 1 if y∗h ≥ 0

= 0 if y∗h < 0

where, yh is an outcome variable, POLh is 1 if the household knows a politician, which

is of three kinds: Village panchayat member/office, Acquaintance with elected politician

and political party official. Hh is a vector of household head’s characteristics such as: age,

gender, education level, holds a government job, has a permanent job and HH head’s fa-

ther/husband’s education. Xh is a vector describing the household structure such as: house-

hold poverty, household size and type, has electricity and owns a bicycle and εh is error term
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Table 2.1b: Summary Statistics: All Variables

Village Panchayat Mem-
ber/Official

Acquaintance with Elected
Politician

Acquaintance with Political
Party Officials

Yes No N Yes No N Yes No N

Elite Capture
Has Ration card 0.87 0.86 41472 0.89 0.86 41499 0.90 0.86 41521
Has BPL card 0.36 0.33 41473 0.29 0.35 41500 0.28 0.35 41522
Has Antyodaya card 0.08 0.05 41473 0.03 0.06 41500 0.03 0.06 41522
Has MGNREGA card 0.35 0.26 41426 0.20 0.31 41453 0.22 0.30 41475
Has RSBY 0.15 0.14 41242 0.14 0.15 41268 0.17 0.14 41289
Maternity Benefit 0.03 0.03 41496 0.02 0.03 41523 0.02 0.03 41549
Job Opportunities
Agriculture Work 0.37 0.23 41496 0.31 0.26 41523 0.26 0.27 41549
Labor Work 0.39 0.39 41496 0.27 0.41 41523 0.28 0.41 41549
Government Work 0.10 0.10 41496 0.16 0.09 41523 0.17 0.09 41549
Permanent Job 0.17 0.21 41496 0.27 0.18 41523 0.29 0.18 41549
Government Work (Female Only) 0.03 0.03 41496 0.05 0.02 41523 0.05 0.02 41549
Permanent Job (Female Only) 0.05 0.05 41496 0.07 0.05 41523 0.08 0.05 41549
HH Characteristics
Poor 0.17 0.17 41481 0.11 0.18 41508 0.10 0.18 41526
Household Type Pakka 0.97 0.94 41496 0.93 0.95 41523 0.94 0.95 41549
HH Head Male 0.87 0.86 41496 0.90 0.85 41523 0.90 0.85 41549
HH Head Education 49.94 49.67 41496 51.29 49.44 41523 50.91 49.51 41549
HH Head Age 49.94 49.67 41496 51.29 49.44 41523 50.91 49.51 41549
HH Head Father Edu 2.28 2.62 41162 3.38 2.36 41189 3.56 2.32 41213
Rural 0.80 0.61 41496 0.63 0.67 41523 0.57 0.68 41549
Household Size 5.05 4.77 41496 5.07 4.81 41523 4.98 4.83 41549
Has Electricity 0.87 0.87 41339 0.94 0.86 41366 0.94 0.86 41386
Has a Bicycle 0.56 0.54 41483 0.55 0.54 41510 0.57 0.54 41524
District popn (log) 14.86 15.02 41496 14.99 14.97 41523 15.04 14.96 41549
District Education (years) 5.97 6.39 41496 6.80 6.17 41523 7.01 6.13 41549
Member of SHGs 0.20 0.19 41496 0.20 0.19 41523 0.22 0.18 41549
Caste:
Brahmin 0.05 0.05 41473 0.07 0.05 41500 0.06 0.05 41526
Forward Caste 0.16 0.17 41473 0.23 0.15 41500 0.24 0.15 41526
OBC 0.36 0.34 41473 0.31 0.35 41500 0.29 0.35 41526
Dalit 0.20 0.21 41473 0.15 0.22 41500 0.16 0.22 41526
Adivasi 0.11 0.08 41473 0.09 0.09 41500 0.09 0.09 41526
Muslim 0.09 0.12 41473 0.10 0.12 41500 0.12 0.11 41526
Sikh/Jain/Christian 0.03 0.03 41473 0.04 0.03 41500 0.04 0.03 41526

Notes: Some households have missing values
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clustered at the village level.

β1 is our coefficient of interest.

Estimating the above equations using probit model faces multiple challenges. The co-

efficient β1 is consistent only if εh are independently- and identically-distributed, with zero

mean and unit variance. However, this assumption could be violated for few reasons. The

first and foremost is that, while we have a rich dataset and multiple set of controls, we may

still face the issue of omitted variable such as ability. It could be likely that, a more capable

household is outgoing and knows politician etc. If that is the case, the estimates from probit

are biased due to a correlation between political connection and the unobserved ability.

To correct for these concerns, I estimate a bivariate probit (BP) regression model (Greene,

2001) which uses latent linear index models and assumes joint normal errors. Using a

maximum-likelihood (MLE) method, I estimate the following equations:

y∗h = β0 + β1POLh + β2Hh + β3Xh + νh (2)

POL∗h = β0 + β1(V illage SHG Pctg)h + β2Hh + β3Xh + εh (3)

such that,

POLh = 1 if POL∗h ≥ 0

= 0 if POL∗h < 0

yh = 1 if y∗h ≥ 0

= 0 if y∗h < 0

In order to improve the identification for the bivariate probit model, I use an instrument

called Village SHG Pctg which measures the degree of prevalence of Self-Help Groups (SHGs)

in a village. Specifically, the instrumental variable is the percentage of household in a



CHAPTER 3. POLITICAL CONNECTIONS 159

village that are member of SHGs. An instrument is proper if it is correlated with political

connection (POL∗) but does not directly determine the outcome variable y∗. I propose that

higher prevalence of SHGs in a villages/municipalities increases the probability of knowing

a politician significantly. I argue that availability of SHGs at the village level on population

and education is “as good as random”. I further discuss the validity of the instrument below.

3.4.2 Self Help Groups, Political Connection and Instrumental

Variable

In 1974 when Bangladesh was hit by a devastating flood, Professor Muhammad Yunus lent

27 dollars to group of women in the city of Jobra which they used to make bamboo baskets

and sold them to generate income for their families. The concept of microcredit – providing

small loans to poor people - thus, is mostly associated with Muhammad Yunus, a 2006 Nobel

Prize winner (Yunus, 2003). Since then the idea of microcredit7 has been lauded8 as the cure

to World’s poverty to being a medium to profit off of poor (Polgreen and Bajaj, 2010).

India, home of over a billion people where around 30 percent of the people live below

poverty line,9 has been a hotbed for microcredit. Historically, the typical form of microcredit

has been a Self Help Groups model. SHGs typically composes of 15-20 members, mostly

women who are involved in credit and savings activities. National Bank of Agriculture and

Rural Development (NABARD) plays an important role in financing these groups (Nair,

2005). As of 2003, over 700,000 groups had obtained over Rs.20 billion (US$425 million) in

loans such groups (Nair, 2005). By 2007, some 40 million households were organized in more

than 2.8 million SHGs that borrowed more than US$ 1 billion of credit (Deininger and Liu,

2009).

7Microcredit, microfinance and self-help groups essentially means providing small loans to poor people
which they can use to start business or be in the first ladder of development.

8See Morduch and Haley (2002) for summary of various literature that shows the impact of microcredit.
9In 2011, World Bank estimated 22% lived below poverty line (World Bank, 2020).
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Using the data from District Level Household Survey (DLHS III)10, I plot the percentage

of villages/municipalities in each district that have a SHG in the figure below. For each

village/municipality the survey asks whether any SHGs was available. Using this I calculate

the availability of SHGs at district level. The following map shows the penetration of SHGs

across Indian district. Map on the left is for all the districts in India and on the right are the

sample districts from IHDS II data. We see that SHGs are concentrated in mostly southern

districts.11

Figure 3.1: Percentages of SHG by districts
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No data

All district

80 to 100
60 to 80
40 to 60
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Sample district

Pct. SHGs availability by district

Source: DLHS III

The impact of microcredit loan on poverty alleviation has been highly touted. In the

10The survey was carried out between 2008-2009 (DLHS-3, 2020).
11My analysis is at the village level and uses IHDS data. I use DLHS data for the figure because the IHDS

data does not disclose the village names and the village infrastructure survey is carried out only for rural
areas.
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decade of 2000, many studies studied the impact of microfinance on poverty alleviation

as well as household wellbeing at various level: income, health, children education women

empowerment among others12 and reported positive findings. Given this literature and

its conclusion, SHGs as instrument might be correlated with the outcome variables - job

prospects of a household. However, as of late, studies show that, microcredit credit has little

to no effect in any spectrum of household wellbeing. In January 2015 volume of American

Economic Journal: Applied Economics, six highly influential, RCT evaluations showed mixed

results (Banerjee et al., 2015). These researches find that, microcredit increased credit of a

household and there was uptick in small business activities but found no effect on household’s

income, consumption and social effects.

The other aspect of using SHGs as an instrument is, that the prevalence of higher SHGs in

a village should increases the probability of knowing a politician. Although SHGs primarily

are used to provide small loans, given its structure it may induce other benefits. Among oth-

ers it includes emphasis on social empowerment, outreach, and capacity building. Borrowers

are encouraged to attend regular meetings. Deininger and Liu (2009) write “. . . federation

of SHGs is a central element not only with respect to peer monitoring and diversification of

risks on the financial side but federations at village and higher levels are also used to assist in

implementation of government programs, help SHGs provide other services -from technical

assistance to marketing- and allow members’ participation in local government.”

Given the nature of organization of SHGs, it would be reasonable to argue that mem-

bership of a SHG increases one’s social capital. Social capital is often generated through

repeated interaction and interdependence within a group of population. Increasing level of

politically relevant social capital can enhance the probability of an individual being engaged

in politics (Lake and Huckfeldt, 1998). Mosley et al. (2004) look at the contribution of

microfinance on community-building and political participation. Looking at the data from

12For more see Morduch and Haley (2002) which summaries the literature.
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Russia, Slovakia and Romania they find that being a member of microfinance compared to

control group led to higher membership of church associations and formation of informal po-

litical organization. Howard (2013) shows that, being a microfinance borrower is positively

and significantly associated with political participation in rural Senegal.

From IHDS data, using the question “Is your household a member of Self Help Group”,

I calculate the percentages of households that are a member of SHG in a village. In Ap-

pendix Table 3.A1 I regress three types of political connections on the percentage of villages

and I find the higher prevalence of SHGs at the village/town increases the probability of

knowing a politician at the local level by 7%. However, the higher prevalence of SHGs at

the village/town has no effect on knowing elected politicians and party officials.

3.5 Results

I start by presenting probit regression. Table 3.2a presents results for the household’s ability

to obtain various welfare programs (access to welfare benefits). We see that knowing any kind

of politician increases the probability of obtaining any ration cards by almost two percentage

points. A household’s political connection in obtaining BPL and Antyodaya card does not

matter, if anything it has negative effect.

Table 3.2b shows the results for the household’s job prospects. Knowing a politician

increases the probability of at least one household member working in agriculture and de-

creases the probability of doing manual labor jobs. Similarly, it increases the probability of

having a government jobs and permanent jobs.

However, as discussed above, these results might be biased due to the likely endogeneity

of political connections. It could be that the probability of obtaining welfare benefits and

political connection could be jointly determined. Next I present results from the bivariate

probit regression models which corrects for the endogeneity.
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Table 3.2a: Probit Regression (Elite Capture)

Ration Card
Any

BPL Card Antyodaya
Card

MGNREGA
Card

RSBY (In-
surance)

Maternity
Benefit

Village Panchayat 0.011** -0.004 0.007 0.038*** 0.024*** -0.000
(0.005) (0.007) (0.007) (0.006) (0.005) (0.002)

N 40841 40918 40918 40733 40286 40287
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Acqt Elected Official 0.015*** -0.024*** -0.033*** -0.020*** 0.006 -0.004
(0.006) (0.007) (0.007) (0.007) (0.006) (0.003)

N 40868 40945 40945 40760 40312 40314
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Acqt Party Official 0.021*** -0.028*** -0.032*** -0.016** 0.030*** -0.006*
(0.006) (0.007) (0.007) (0.007) (0.006) (0.003)

N 40881 40958 40958 40773 40325 40327
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Notes: Only the marginal effect of main variable (types of political connection) is reported. Controls include: log of income,
family size, male HH head (dummy), HH head education, HH head father/husband education, HH head permanent job, HH head
government job, HH has electricity, owns a bicycle, rural (dummy) and if household is pakka and 7 caste groups. All regressions
include State level fixed effects. Robust standard errors are in parenthesis. The symbols *, ** and *** represent significance at
the 10, 5 and 1 percent, respectively.
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Table 3.2b: Probit Regression (Job Opportunities)

Agriculture
Work

Labor
Work

Government
Work

Permanent
Job

Government
Work (Fe-
male Only)

Permanent
Job (Fe-
male Only)

Village Panchayat 0.032*** -0.010 0.009** 0.001 0.005** 0.004
(0.006) (0.007) (0.004) (0.005) (0.002) (0.003)

N 40940 40940 40940 40940 40940 40940
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Acqt Elected Official 0.022*** -0.059*** 0.020*** 0.026*** 0.007*** 0.010***
(0.007) (0.008) (0.004) (0.006) (0.002) (0.003)

N 40967 40967 40967 40967 40967 40967
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Acqt Party Official 0.014* -0.058*** 0.016*** 0.026*** 0.007*** 0.010***
(0.007) (0.008) (0.004) (0.006) (0.002) (0.003)

N 40980 40980 40980 40980 40980 40980
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Notes: Only the marginal effect of main variable (types of political connection) is reported. All regressions are instrumented
by the percentage of households in each village/town who are members of Self-Help Groups. Controls include: log of income,
family size, male HH head (dummy), HH head education, HH head father/husband education, HH head permanent job, HH head
government job, HH has electricity, owns a bicycle, rural (dummy) and if household is pakka and 7 caste groups. All regressions
include State level fixed effects. Robust standard errors are in parenthesis. The symbols *, ** and *** represent significance at
the 10, 5 and 1 percent, respectively.
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Table 3.3a shows results from the bivariate probit regression models where the political

connection is instrumented by the prevalence of SHGs in a village. It presents results for the

household’s ability to obtain various welfare programs (access to welfare benefits). Results

show that knowing a politician at the local level, increases the probability of obtaining, any

rations cards by (12%), BPL card (9%), Antyodaya card (17%), MGNEGRA card (20%)

and RSBY card (12%). Knowing a politician at higher level (elected politicians and political

party officials) does not seem to have much effect in obtaining welfare benefits; if anything

has negative effect. This is likely due to the fact that designation of such welfare program

(to qualify for such programs) are administrated at local levels.

Table 3.3a: IV Probit Regression (Elite Capture)

Ration Card
Any

BPL Card Antyodaya
Card

NEGRA Card RSBY (In-
surance)

Maternity
Benefit

Village Panchayat 0.118*** 0.090* 0.166*** 0.195*** 0.123** 0.006
(0.043) (0.054) (0.059) (0.043) (0.049) (0.014)

N 40917 40918 40918 40872 40696 40940
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Acqt Elected Official -0.076** -0.364*** -0.345*** -0.112*** -0.074** -0.074*
(0.033) (0.024) (0.026) (0.035) (0.036) (0.040)

N 40944 40945 40945 40899 40722 40967
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Acqt Party Official 0.053 -0.315*** -0.240*** -0.031 0.033 -0.108
(0.036) (0.033) (0.047) (0.040) (0.032) (0.069)

N 40957 40958 40958 40912 40735 40980
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Notes: Only the marginal effect of main variable (types of political connection) is reported. All regressions are instrumented
by the percentage of households in each village/town who are members of Self-Help Groups. Controls include: log of income,
family size, male HH head (dummy), HH head education, HH head father/husband education, HH head permanent job, HH head
government job, HH has electricity, owns a bicycle, rural (dummy) and if household is pakka and 7 caste groups. Additional
controls include district level log of population and literacy rates. All regressions include State level fixed effects. Standard errors
clustered at village/town level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent,
respectively.

Table 3.3b shows the results from the bivariate probit regression models for the house-
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hold’s job prospects. Knowing any kinds of politicians at the local level has no effect.

However, knowing elected politicians and political party officials decreases the probability

of at least one person in the household working in agriculture and daily wage labor. Know-

ing a politician does not have any effect on the probability of at least one member in the

household having a government and permanent jobs. However, knowing elected official in-

creases the probability of at least one female member of a household having a government

and permanent jobs.

Table 3.3b: IV Probit Regression (Job Opportunities)

Agriculture
Work

Labor Work Government
Work

Permanent
Job

Government
Work (Female
Only)

Permanent
Job (Female
Only)

Village Panchayat -0.079 0.059 0.005 -0.009 -0.005 0.005
(0.199) (0.071) (0.030) (0.053) (0.013) (0.025)

N 40940 40940 40940 40940 40940 40940
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Acqt Elected Official -0.133*** -0.387*** 0.025 -0.040 0.043* 0.086***
(0.051) (0.027) (0.112) (0.059) (0.025) (0.024)

N 40967 40967 40967 40967 40967 40967
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Acqt Party Official -0.085* -0.299*** -0.199*** 0.031 0.030 0.026
(0.046) (0.055) (0.030) (0.043) (0.020) (0.024)

N 40980 40980 40980 40980 40980 40980
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Notes: Only the marginal effect of main variable (types of political connection) is reported. All regressions are instrumented by the
percentage of households in each village/town who are members of Self-Help Groups. Controls include: log of income, family size, male
HH head (dummy), HH head education, HH head father/husband education, HH head permanent job, HH head government job, HH has
electricity, owns a bicycle, rural (dummy) and if household is pakka and 7 caste groups. Additional controls include district level log of
population and literacy rates. All regressions include State level fixed effects. Standard errors clustered at village/town level and are in
parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.
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3.6 Robustness Check

Panda (2015) uses being a member of a social group13 to instrument political connection to

estimate the elite capture of obtaining BPL card in India. Member of social group is defined

as 1 if anybody in the household is a member of a social group association and 0 otherwise.

In order to gauge the effectiveness of the instrument (prevalence of SHGs in village/town), I

use being a member of a social group and run the analysis above. Results are reported the

results in Tables 3.4a and 3.4b. Results show that knowing a local level politician increases

the probability of obtaining any ration cards increases by almost 9%. The probability of

obtaining a BPL card and an Antyodaya card is positive but not significant. Similarly, it

increases the probability of obtaining RSBY (insurance) by 10%.

Table 4b shows the results for the household’s job prospects. Knowing a politician de-

creases the probability of at least one household member in agriculture and labor work.

Finally, knowing elected politicians increases the probability of at least one female member

of the household in having permanent jobs. The magnitudes are smaller, but the results are

similar to my main results in Table 3a and b.

13for more see Panda (2015).
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Table 3.4a: IV Probit Regression (Elite Capture) - Social Group Instrument

Ration Card
Any

BPL Card Antyodaya
Card

NEGRA Card RSBY (In-
surance)

Maternity
Benefit

Village Panchayat 0.088** 0.041 0.097 0.065 0.098* -0.002
(0.038) (0.059) (0.082) (0.078) (0.055) (0.015)

N 40909 40910 40910 40864 40688 40932
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Acqt Elected Official -0.018 -0.325*** -0.313*** -0.077*** 0.023 -0.020**
(0.036) (0.030) (0.031) (0.025) (0.025) (0.009)

N 40909 40910 40910 40864 40688 40932
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Acqt Party Official 0.066** -0.305*** -0.244*** -0.061** 0.063** -0.040**
(0.029) (0.032) (0.039) (0.026) (0.026) (0.019)

N 40909 40910 40910 40864 40688 40932
Dep Var Mean 0.865 0.342 0.397 0.288 0.144 0.029

Notes: Only the marginal effect of main variable (types of political connection) is reported. All regressions are instrumented by
if a family member is member of a social group (caste) association. Controls include: log of income, family size, male HH head
(dummy), HH head education, HH head father/husband education, HH head permanent job, HH head government job, HH has
electricity, owns a bicycle, rural (dummy) and if household is pakka and 7 caste groups. Additional controls include district level
log of population and literacy rates. All regressions include State level fixed effects. Standard errors clustered at village/town level
and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.
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Table 3.4b: IV Probit Regression (Job Opportunities) - Social Group Instrument

Agriculture
Work

Labor Work Government
Work

Permanent
Job

Government
Work (Female
Only)

Permanent
Job (Female
Only)

Village Panchayat -0.191*** 0.008 0.022 -0.017 -0.003 0.011
(0.039) (0.085) (0.026) (0.049) (0.013) (0.022)

N 40932 40932 40932 40932 40932 40932
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Acqt Elected Official -0.095** -0.347*** 0.053 0.012 0.032 0.076***
(0.042) (0.040) (0.040) (0.037) (0.026) (0.022)

N 40932 40932 40932 40932 40932 40932
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Acqt Party Official -0.101*** -0.280*** 0.049 0.046 0.030 0.034*
(0.037) (0.058) (0.035) (0.035) (0.019) (0.020)

N 40932 40932 40932 40932 40932 40932
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Notes: Only the marginal effect of main variable (types of political connection) is reported. All regressions are instrumented by if a

family member is member of a social group (caste) association. Controls include: log of income, family size, male HH head (dummy),

HH head education, HH head father/husband education, HH head permanent job, HH head government job, HH has electricity, owns

a bicycle, rural (dummy) and if household is pakka and 7 caste groups. Additional controls include district level log of population and

literacy rates. All regressions include State level fixed effects. Standard errors clustered at village/town level and are in parenthesis. The

symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.

Further, I use the prevalence of SHGs in village/town in 2005 (the first wave of the IHDS

survey) to instrument for wave II data. Using the wave I data to instrument reduces the

threat to the validity of the instrument. Given that the prevalence of SHG in a village/down

becomes predetermined in a temporal sense, it may add extra validity to the instrument.

Results are reported the results in Tables 3.5a and 3.5b below. Results show that knowing

a local level politician increases the probability of obtaining Antyodaya card increases by

almost 12%. The probability of obtaining a BPL card and any ration card is positive but

not significant.
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Table 3.5a: IV Probit Regression (Elite Capture) - 2005 SHG Instrument

Ration Card
Any

BPL Card Antyodaya
Card

NEGRA Card RSBY (In-
surance)

Maternity
Benefit

Village Panchayat 0.051 0.054 0.122* 0.049 -0.157** -0.024
(0.037) (0.059) (0.074) (0.097) (0.072) (0.048)

N 40900 40901 40901 40855 40679 40923
Dep Var Mean 0.865 0.342 0.397 0.288 0.145 0.029

Acqt Elected Official -0.069** -0.359*** -0.339*** -0.093*** -0.069** -0.062**
(0.032) (0.024) (0.027) (0.028) (0.031) (0.025)

N 40927 40928 40928 40882 40705 40950
Dep Var Mean 0.865 0.342 0.397 0.288 0.145 0.029

Acqt Party Official 0.035 -0.319*** -0.249*** -0.056* 0.013 -0.129***
(0.031) (0.030) (0.040) (0.029) (0.032) (0.039)

N 40940 40941 40941 40895 40718 40963
Dep Var Mean 0.865 0.342 0.397 0.288 0.145 0.029

Notes: Only the marginal effect of main variable (types of political connection) is reported. All regressions are instrumented

by the percentage of households in each village/town who are members of Self-Help Groups. Controls include: log of income,

family size, male HH head (dummy), HH head education, HH head father/husband education, HH head permanent job, HH head

government job, HH has electricity, owns a bicycle, rural (dummy) and if household is pakka and 7 caste groups. Additional

controls include district level log of population and literacy rates. All regressions include State level fixed effects. Standard errors

clustered at village/town level and are in parenthesis. The symbols *, ** and *** represent significance at the 10, 5 and 1 percent,

respectively.

Table 5b shows the results for the household’s job prospects. Knowing a politician de-

creases the probability of at least one household member in agriculture and labor work.

Finally, knowing elected politicians increases the probability of at least one female member

of the household in having permanent jobs. The magnitudes are smaller but the results are

similar to my main results in Table 3a and b.
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Table 3.5b: IV Probit Regression (Job Opportunities) - 2005 SHG Instrument

Agriculture
Work

Labor Work Government
Work

Permanent
Job

Government
Work (Female
Only)

Permanent
Job (Female
Only)

Village Panchayat -0.192*** 0.008 0.022 -0.017 -0.003 0.011
(0.039) (0.085) (0.026) (0.049) (0.013) (0.022)

N 40915 40915 40915 40915 40915 40915
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Acqt Elected Official -0.094** -0.347*** 0.053 0.012 0.032 0.076***
(0.042) (0.040) (0.039) (0.037) (0.026) (0.022)

N 40915 40915 40915 40915 40915 40915
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Acqt Party Official -0.100*** -0.280*** 0.048 0.044 0.030 0.034*
(0.037) (0.058) (0.035) (0.035) (0.019) (0.020)

N 40915 40915 40915 40915 40915 40915
Dep Var Mean 0.272 0.389 0.101 0.198 0.028 0.051

Notes: Only the marginal effect of main variable (types of political connection) is reported. All regressions are instrumented by if a

family member is member of a social group (caste) association. Controls include: log of income, family size, male HH head (dummy),

HH head education, HH head father/husband education, HH head permanent job, HH head government job, HH has electricity, owns

a bicycle, rural (dummy) and if household is pakka and 7 caste groups. Additional controls include district level log of population and

literacy rates. All regressions include State level fixed effects. Standard errors clustered at village/town level and are in parenthesis. The

symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.

3.7 Discussion

Given the federal structure and more emphasis in local level of India, the operation and

supervising of Ration Cards programs and other subsidies program largely is the respon-

sibility of local and state government. State Government uses local governing bodies for

identification of eligible families and other matters (Panda, 2015). When federal oversight is

poor and programs are distributed at the local level, the chances of elite capture increases.

The results in this paper could provide some important policy lesson in terms of curbing

corruption at the local level.
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India spends large sum of money for its various targeted welfare programs to alleviate

poverty and hardships to its vulnerable citizens. In 2014–15, Rs 1,226.76 billion (US$18.9

billion) was spent on food subsidies (Shrayana Bhattacharya and Puri, 2017). Similarly, for

MGNREGA, in last 10 years, it spent $51 billion in wages (Mathur and Bolia, 2016). The

Indian Ministry of Labor and Employment (MoLE) launched the RSBY in April 2008, to

provide insurance coverage for inpatient care to poor families. It spent about $1 billion in

2016 (Raghavan, 2018). Given these huge expenditures, especially targeted for the poor,

misuse and misallocation of such funds is concerning. When welfare program does not reach

the intended beneficiaries, it adds more pressure to Government to increase the funding.

These benefits in turn could be passed to the children in the household giving them unfair

advantage.

3.8 Conclusion

Patronage, corruption, and elite capture are not new issues in any society but are especially

prevalent in developing countries where institutions and rule of law are weak. Providing

welfare to protect its vulnerable citizen has become a hallmark of democratic countries.

When political corruption runs high, welfare is often assigned to relatives and used for vote

buying. In this paper, I look at a household’s likelihood to obtain welfare benefits and their

member’s job prospects if they know politicians. I categorize politicians into three types:

members at the local level (village/municipalities), elected politicians at the state and federal

level, and finally political party officials.

To rule out of endogeneity I instrument political connection with prevalence of SHGs

at village/town level. First stage results show that being a member of SHGs increases the

portability of knowing a politician by 7 percent. I find that households that know politicians

at local level are almost 20 percent more likely to obtain Rations cards. If such large number
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of critical benefits targeted for the poor is captured by elites and political clients, it should be

matter of high concern for the government, policymakers and stakeholders of our societies.

Further I look at the job prospects of a household. Households that know a politician

(elected and party officials) are less likely to have at least one-member working as agriculture

or labor work and more likely to have government or permanent jobs.

3.9 Appendix

Table 3.A1: Political Connection and prevalence of SHGs

Village Pan-
chayat

Acqt Elected Of-
ficial

Acqt Party Offi-
cial

Village SHG Pctg 0.073** -0.017 0.027
(0.030) (0.020) (0.020)

N 40940 40967 40980
R-squared 0.165 0.136 0.158
Dep Var Mean 0.277 0.161 0.161

Notes: Only the marginal effect of main variable is reported. Controls include: log of
income, family size, male HH head (dummy), HH head education, HH head father/husband
education, HH head permanent job, HH head government job, HH has electricity, owns a
bicycle, rural (dummy) and if household is pakka and 7 caste groups. Additional controls
include district level log of population and literacy rates. All regressions include State level
fixed effects. Standard errors clustered at village/town level and are in parenthesis. The
symbols *, ** and *** represent significance at the 10, 5 and 1 percent, respectively.
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