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ABSTRACT

An Analysis of the Friendship Paradox and Derived Sampling Methods

by

Yitzchak Novick

Advisor: Amotz Bar-Noy

The friendship paradox (FP) is the famous sampling-bias phenomenon that leads to the

seemingly paradoxical truth that, on average, people’s friends have more friends than they

do. Among the many far-reaching research findings the FP inspired is a sampling method

that samples neighbors of vertices in a graph in order to acquire random vertices that are of

higher expected degree than average.

Our research examines the friendship paradox on a local level. We seek to quantify the

impact of the FP on an individual vertex by defining the vertex’s “friendship index”, a mea-

sure of the extent to which the phenomenon affects the vertex, either positively or negatively.

We extend this measure to create aggregate measures that are indicative of FP-characteristics

of the graph as a whole. We then examine these measures experimentally on theoretical

canonical graphs, synthetic graphs, and the graphs of real-world networks as a means of

demonstrating their usefulness for revealing information about a graph. These analyses place

a particular focus on the similarities and differences our metrics have with the well-known

degree-homophily measure, assortativity.

Having defined this metric and quantified information about the FP’s impact on graphs

and vertices, we turn to one of the famous results of the paradox, the ability to sample neigh-

bors of vertices instead of the vertices themselves in order to find high-degree vertices in a

graph. We focus on an overlooked detail of this sampling method, the additional computa-
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tional cost it incurs for each sampled vertex. We analyze this cost from a few perspectives,

breaking it down into multiple costs that might apply in varied situations, and then create a

strong model that enables a fair comparison between sampling methods to better quantify

the value of this method versus naïve random sampling. As we define costs, certain tweaks

that can be applied to the method become apparent. Some of these allow us to amortize

the cost of a more computationally expensive step over more vertices and achieve superior

results for the investment. This leads to a number of new versions of the sampling method

which we present and analyze.

We then perform an extensive study on a particularly novel tweak, ‘inclusive random

sampling’. Whereas the original method of sampling neighbors blindly exchanges a vertex

for its neighbor, inclusive sampling learns the degree of both the vertex and the neighbor

and chooses the one of higher degree. We explore this idea by applying it to two FP-inspired

sampling methods, the previously mentioned random neighbor sampling, and a lesser-known

method that samples edges instead of vertices. We prove interesting theoretical bounds

on these methods and show their applications to different graph types. We also show the

strengths and weaknesses of the different inclusive and exclusive methods through exper-

imentation on a variety of synthetic and real-world graphs. We explore the connection be-

tween these methods and assortativity which further elucidates the characteristics that make

one method superior to another for a given graph.
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graphs with varying probability of connection 0< p < 1; Barabási-Albert graphs
with varying edge density 2≤ m≤ 50. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Results on friendship indices and assortativity of Barabási-Albert graphs for vary-
ing values of n and m. Results on AFI, GFI and assortativity of Barabási-Albert graphs
shown for varying values of 0< n< 10000 and m= 1,2, 3,4, 5. Local FI distri-
bution shown through a heatplot for varying 0< n< 10000 along the y-axis. . . 25

2.4 Scatter plot between T-local assortativity and local FI for the hamsterer network 27

2.5 Scatter plot between T-local assortativity and local FI for the Euro Road network 28

3.1 Sampling iterations required to acquire the top x percent of vertices ranked by de-
gree for both RV and RN in BA and ER graphs . . . . . . . . . . . . . . . . . . . . . 36

3.2 Max-degree vertices in a collection for budget b . . . . . . . . . . . . . . . . . . . . 37

3.3 CCn for total degrees, the x-axes of the plots are the number of iterations (top),
and the desired total (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 CCn for total distinct degrees, the x-axes of the plots are the number of iterations
(top), and the desired total (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 CCn for max-degree, the x-axes of the plots are the number of iterations (top), and
the desired max-degree (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



List of Figures x

3.6 Comparison of RN and RVN for max-degree maximization . . . . . . . . . . . . . . 48

3.7 Required Cv costs for the top x% of high-degree vertices in BA graphs . . . . . . 50

3.8 Required Cn costs for the top x% of high-degree vertices in BA graphs . . . . . . 51

3.9 Required α costs for the top x% of high-degree vertices in BA graphs . . . . . . . 51

3.10 Required Cs costs for the top x% of high-degree vertices in BA graphs . . . . . . . 52

3.11 Heat maps representing the effects of sampling costs for the top 10% and 90% of
high-degree vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 Heat maps representing effects of sampling and selection costs for the top 10% and
90% of high-degree vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.13 Costs of selecting percents of unique degrees by k in RkN . . . . . . . . . . . . . . 56

4.1 A graph where the strict inequality of the FP holds, yet RN is equivalent to RV . 65

4.2 A graph with a clique of c vertices and s vertices arranged in a star . . . . . . . . 68

4.3 A graph with a clique of c vertices and s vertices arranged as isolated edges . . . 69

4.4 A graph with a root vertex, c internal (or ‘core’) vertices, and c(s− 1) leaves (or
‘sink’ vertices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 A tree where E[IRN]> E[IRE]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Sampling expectations according to assortativity in rewired ER and BA graphs . 83



xi

Overview

Chapter 1 (Introduction and a review of the prior work). We introduce our research on

the friendship paradox and random vertex sampling, present a summary of prior work that is

relevant to our research, and summarize some notations and terminology we use throughout

this work.

Chapter 2. We describe our novel ‘friendship index’ measure as well as the aggregate mea-

sures we derive from it. We prove bounds on these measures and demonstrate their useful-

ness in graph analysis by applying them to different diverse graph types.

Chapter 3. We review the random neighbor sampling method and analyze a number of its

characteristics. We then analyze it from the perspective of cost and offer our cost model, as

well as alternative methods that the cost analyses suggest.

Chapters 4. We explore the idea of ‘inclusive’ random sampling. We apply this idea to both

random neighbor sampling as well as random edge sampling and demonstrate strengths and

weaknesses of the different methods.
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CHAPTER 1

Introduction

The friendship paradox (FP) is the phenomenon that, on average, people’s friends have

more friends than they do. It results from an inherent sampling bias where higher-degree

vertices in a graph are over-represented in the collection of edge endpoints, which is what is

being sampled when the ‘friends’ in a network are collected.

The paradox inspired a great deal of related research, such as its application to network

traits other than degree [Jo and Eom, 2014] and its effect in directed graphs [Hodas et al.,

2013]. In 2003, Cohen et al [Cohen et al., 2003] used the idea of the FP to suggest a novel

approach to sampling vertices from a graph at random with the goal of acquiring vertices of

higher degree. If the neighbor of a vertex is more likely to be of higher degree than the ver-

tex itself, exchanging a sampled vertex for one of its neighbors should increase the expected

degree of the vertex that is ultimately selected.

Our research begins with a direct exploration of the FP on a local level. For any vertex

in a graph we ask, does this vertex experience the FP, or is it a vertex that has more friends

than its friends? We also want to know how strong the effect (or antieffect) is. How much

more (or less) popular are the friends of this vertex than it is? To this end, we introduce a

new measure, the friendship index (F I), that quantifies this comparison between the degrees

of a vertex and its neighbors. We evaluate this measure and try to demonstrate its useful-

ness in a variety of graphs, both synthetic and real-world. We then extend the measure by

defining aggregate measures based on F I that apply to the graph as a whole. We prove inter-

esting bounds on these measures, and we further explore their usefulness by calculating their

values on synthetic and real-world graphs.

Significantly, we compare and contrast these measures with a well-known measure of
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degree-homophily, assortativity [Newman, 2002]. Using assortativity as a basis for compar-

ison, we demonstrate that F I and its related measures capture information about degree-

homophily in the graph on both the local and global levels. We also present areas where

these measures distinguish themselves from assortativity, capturing different information for

certain graph types than assortativity does.

The FP’s impact on vertices is the inspiration for Cohen et al’s suggestion of selecting

a neighbor of a vertex instead of the vertex itself in order to acquire vertices of higher de-

gree. There is, however, a computational cost for this method, the extra step of sampling

from the neighbors of the already sampled vertex. The second focus of our research is an

in-depth study of the costs that are associated with this sampling method. The naïve assump-

tion would be that the cost of sampling a neighbor is equal to the cost of sampling a vertex,

but we suggest that this may not be the case in all scenarios and therefore generalize to two

separate costs. Probing the implications of the sampling method, we establish another poten-

tial cost, the cost of actually selecting the vertex, that is utilizing it instead of discarding it.

With these three costs as our model, we compare costs in different graph types and perform a

true cost-benefit analysis on the sampling method.

Understanding the costs associated with sampling not only enhances our understand-

ing of the given method, but suggests additional tweaks that can improve the method. We

present a number of these alternative sampling methods here and analyze each of them in

light of our cost model.

One tweak to RN in particular involves the suggestion that in some scenarios it may

be feasible to learn the degree of sampled vertices and make an informed decision to select

a vertex of higher degree. When this is the case, we can retain the original vertex when it

is of higher degree than the neighbor that is sampled. Building on a paper in progress by

Kumar et al [Kumar et al., 2018], we study a sampling method where an edge is selected at

random instead of a vertex. We analyze this method and compare and contrast it to RN and

then apply our ‘inclusive’ tweak to both methods. We explore these four methods through
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analysis and experimentation. We prove interesting bounds on their performances and we

demonstrate their differences. We further examine their correlation to assortativity which

highlights additional strengths and weaknesses that lead to a better understanding of how

they should be applied to different graph types.

1.1 Terminology and Notations

This section summarizes a few notations we use in this work. Most are fairly common

but some may be a little novel. We enumerate them here to assist the reader and remove any

potential confusion.

• A graph G = (V, E) is comprised of the sets V of vertices, and E of edges. We use n to

refer to the number of vertices, |V |, and m to refer to the number of edges, |E|.

• We denote the degree of vertex v in a graph as dv.

• We denote the neighbors of vertex v, that is the set of vertices adjacent to v, as N(v).

• We define Sv =
∑

u∈N(v) du.

• We use abbreviations to refer to the sampling methods we discuss in this work. For

example, we use RN to refer to ‘random neighbor’ sampling, IRE to refer to ‘inclusive

random edge’ sampling, etc. Our analysis focuses on a method’s ability to sample high-

degree vertices, so when we refer to the ‘strength’ or ‘success’ of a method, it should

be understood in this context. When we use a specific metric of success such as the

expected degree of a vertex selected by a sampling method, the expressions include

the notation. For example, E[RN] > E[RV ] means “The expected degree of a vertex

sampled by RN is greater than the expected degree of a vertex sampled by RV ”.

• We distinguish between the terms ‘sample’ and ‘select’ when we discuss sampling or

selecting vertices from a collection. ‘Sample’ refers to isolating a vertex from among a

collection of vertices. ‘Select’ refers to actually retaining the vertex and utilizing it, as

opposed to discarding it and selecting another sampled vertex instead.

• We occasionally use the term ‘hub’ to refer to a vertex of particularly high-degree com-
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pared to the degree distribution of the rest of the graph.

1.2 Background and Prior Work

We present here a summary of prior work upon which our research is built. In addition

to the background for our research, some prior work relates to techniques we employ for

specific experiments.

1.2.1 The Friendship Paradox

The “Friendship Paradox” is a social network phenomenon introduced by Scott Feld

in 1991 [Feld, 1991]. Summarized in a sentence, it states that, on average, peoples’ friends

have more friends than they do. In the study, Feld views every vertex as playing two distinct

roles, that of an “individual” and that of some other individual’s “friend”. If you collect all

“friends” (note that a single “individual” can be in this collection multiple times as a “friend”

of different individuals) and calculate the arithmetic mean of their number of friends, this

number is greater than or equal to the arithmetic mean of the number of friends of individu-

als.

The phenomenon occurs because collecting friends requires counting each vertex once

for each edge at which it is an endpoint which necessarily counts higher degree vertices

more times than lower degree ones. In fact, the only time these two averages can be equal

is in a regular graph, as Feld proves the difference between the two is a function of the vari-

ance of degree, as follows:

The mean of friends of individuals is simply

µ=

∑

v∈V dv

n
(1.1)

To calculate the mean number of friends of friends we recognize that every vertex

contributes its degree to the sum of all friends of friends precisely the number of times as its
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degree, so the mean can be expressed as

∑

v∈V d2
v
∑

v∈V dv
(1.2)

The variance of degree in the graph is

σ2 =

∑

v∈V d2
v

n
−µ2 (1.3)

And therefore Equation 1.2 can be rewritten as

∑

v∈V d2
v
∑

v∈V dv
=
(µ2 +σ2)n
µn

= µ+
σ2

µ
(1.4)

For the purpose of our research it is important to clarify that the friendship paradox is

not saying that all, or even a majority, of individuals will find that their friends on average

have more friends than they do. It it simply a phenomenon of the collections of friends and

individuals taken as whole entities. In fact, Feld gives a simple counter example where the

majority of individuals have more friends than the average of their friends’ friends. Another

simple counter example could be constructed by removing a single edge from a complete

graph. Figure 1.1 illustrates both of these constructions. For practical purposes, it is worth

noting that these cases are contrived. In most real-world networks, an analysis of the indi-

vidual vertices is consistent with the graph phenomenon and the majority of people will find

that their friends have a higher average number of friends than they themselves do [See

also: Hodas et al., 2013, Momeni and Rabbat, 2016]. But it is mathematically possible for a

majority of vertices to have higher relative degree as compared to the mean degree of their

neighbors, despite the seemingly contradictory phenomenon of the graph taken as a whole.

1.2.2 Assortativity

One measure that is extremely relevant to our research is that of assortativity. In net-

works, measures of homophily are often of interest. Homophily refers to similarities of traits
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Figure 1.1: Two examples of graphs where the majority of vertices in a graph have a higher degree
than the average degree of their neighbors

between connected vertices in a network [McPherson et al., 2001]. Assortativity is a type

of homophily, specifically the measure of ‘degree-homophily’, that is the similarity of degree

between adjacent vertices in the graph.

Global Assortativity

The measure of assortativity was formally defined by Newman [Newman, 2002] as a

Pearson correlation [Pearson, 1896] between the degrees of the vertices on the ends of the

edges of the graph. Newman measures the ‘excess degree’ of vertices, i.e., one less than the

actual degree of the vertex. The motivation for this measure is that when two neighboring

vertices’ degrees are being compared, the connection between the two should not be taken

into account. In reality though, the equations give the same result for actual degree. New-

man’s first equation to define assortativity, r, of a graph G is:

r(G) =
1
σ2

q

∑

jk

jk(e j,k − q( j)q(k)) (1.5)

where e j,k is the joint probability distribution over all edges of an edge having end-

point excess degrees of j and k, q( j) is the distribution over all edges of an edge having one

endpoint of excess degree j, and σ2
q is the standard deviation of endpoint excess degrees.

Another form of this equation is

r(G) =
1
m

∑

e jeke −
�

1
m

∑

e
1
2( je + ke)
�2

1
m

∑

e
1
2( j2

e + k2
e )−
�

1
m

∑

e
1
2( je + ke)
�2 (1.6)
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where je, ke are the excess degrees of the endpoints of e ∈ E. The value r falls in the range

−1 ≤ r ≤ 1 with −1 being a perfectly disassortative graph, 1 being a perfectly assortative

graph, and 0 being a perfectly unassortative graph. A regular graph, where the calculated

value of r is undefined, is perfectly assortative by definition.

Equation 1.6 is an adaptation of the Pearson correlation coefficient equation applied to

edge-endpoints. An abundance of edges with little difference between the edge-endpoints

causes the first terms in the numerator and denominator to be close in value, as the product

of je and ke is similar to one half of the sum of their squares. On the other hand, a lopsided

pair of degree values causes the first term in the denominator to be far larger than the first

term in the numerator. The absolute values of the differences in the numerator and denomi-

nator is similar, with the numerator being negative and the denominator being positive.

Local Assortativity

Newman’s measure of assortativity, which is a global measure indicating the degree-

homophily of the graph, has been extended to give a local measure of an individual vertex’s

similarity or dissimilarity to its neighbors’ degrees. Local assortativity was first defined by

Piraveenan et al [Piraveenan et al., 2010]. The definition given by Thedchanamoorthy [Thed-

chanamoorthy et al., 2014] was argued to be a superior measure that is more in line with the

fundamental notion of Newman’s assortativity so we use this measure in our research. The

measure starts by defining a measure δv for a vertex v

δv =
1
dv

∑

u∈N(v)

|dv − du| (1.7)

which is then scaled by the sum of all such neighbor differences across all vertices, to

obtain the normalized neighbor differences δ̄v. The final assortativity of a vertex, which we

call the T -local assortativity, or rT (v) is obtained by

rT (v) = λ− δ̄v (1.8)
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where λ = r+1
n , such that the sum of all the local assortativity values is equal to the

global assortativity r.

1.2.3 Graph Rewiring

An important experimental technique that relates directly to assortativity is that of

graph rewiring. The technique is employed theoretically as part of the proof of the Havel

Hakimi theorem [Havel, 1955, Hakimi, 1962], and is studied in direct connection to assorta-

tivity by Xulvi-Brunet and Sokolov [Xulvi-Brunet and Sokolov, 2004] as well as Vanmiegham

[Van Mieghem et al., 2010]. The technique is shown in Figures 1.2 and 1.3. Two edges are

removed from the graph and replaced with two new edges in such a way that there is no net

change to the degrees of all vertices involved. In this way, the degree sequence of the graph

is preserved, and traits such as the degree distribution with it, but a trait like assortativity

can be modified by exchanging existing connections for connections between vertices with

more of the desired level of degree-homophily. This technique is useful for creating graphs

with different levels of assortativity in order to examine how assortativity correlates with

other phenomena and we employ it in our experiments.

1.2.4 Random Graph Models

Much of our research is applied to graphs we generate using the well-known random

graph models of Erdős Rényi and Barábasi Albert. We review these models here.

Erdős Rényi Random Graphs (ER)

The simplest random graph model is probably that of Erdős and Rényi [Erdős and

Rényi, 1960]. In its original form, an Erdős Rényi graph would be chosen at random with

uniform probability from all possible graphs with n vertices and m edges, where n and m are

specified as parameters. A slight variation of this algorithm is attributable to E. N. Gilbert

[Gilbert, 1959]. This algorithm accepts parameters n and p where p is a real value 0≤ p ≤ 1,
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Figure 1.2: Edges (a, b) and (c, d) can be rewired in two ways while preserving the degrees of all
vertices

Figure 1.3: With three edges forming a line there is only one possible rewiring
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and every edge of the
�n

2

�

possible edges in a graph of n vertices is included with independent

probability p. In practice, these methods are treated as equivalent, as clearly the expectation

for the number of edges in the second method can be set to m by setting p = m/
�n

2

�

.

The simplicity of this model is its strength and its limitation. As there is no bias to-

wards any edge over any other, the only traits of an Erdős Rényi random graph that are un-

der any influence are the size of the graph and the edge density. The degree of any vertex is

entirely random and, as such, the degrees follow a binomial distribution. However, they offer

a base-line ‘sanity test’ and also often highlight the effect of a particular graph characteristic

in a study.

We work with varying parameters of both n and p. At times we fix one and vary the

other. For a fixed n, increases in p increase the edge-density of the graph and for a fixed p

increases in n normalize the graph to help it actualize the edge-density that the fixed p value

suggests.

Barabási Albert Random Graphs (BA)

The model of Barabási and Albert seeks to mimic the power-law distribution of degree

that is very common in real-world networks [Barabási and Albert, 1999]. The probability

of any vertex’s degree D being equal to d is P [D = d] = d−α, where α is the power law

exponent of the distribution.

The algorithm takes three parameters, n, m, and m0, though most implementations

use the same value for m and m0 and this is the practice we follow as well. A graph of m

0−degree vertices is created. The remaining n − m vertices are added one at a time. Each

added vertex attaches to m of the existing vertices and chooses to attach to a vertex vi with

probability

p =
dvi
∑

v∈V dv
(1.9)

The first of these vertices simply attaches to the m initial vertices. This algorithm gives
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the desired effect with the resulting graph tending toward a power-law distribution as n

increases. The authors establish that the power law exponent converges to ≈ 2.9 [Barabási

and Albert, 1999].

As with ER graphs, some experiments are based on fixing the values of one of the pa-

rameters n and m and varying the other to examine the effects. If we fix the value of m and

generate graphs for varying values of n, the graphs approach the expected degree distribu-

tion of the model as n increases. For the same reason, if we fix the value of n and increase

the value used for m, the effects of the preferential attachment are less pronounced. The

graph has a higher degree-density and a lower power-law exponent.
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CHAPTER 2

Friendship Index (F I)

This chapter presents a study of the FP on a local level. We seek a metric that answers

two questions about an individual vertex:

1. Does the vertex experience the FP? In other words, is this vertex a vertex that finds

its friends have more friends than it does on average, or does this vertex have more

friends than the average number of friends its friends have? We refer to a vertex that

experiences the former as a ‘relatively popular’ vertex, and a vertex that experiences

the latter as a ‘relatively unpopular’ vertex.

2. How strong is this experience? For both relatively popular and relatively unpopular

vertices, how great is the difference between the degree of the vertex and the average

degree of its neighbors?

2.1 Friendship Index - Definition

To this end, we have defined the ‘Friendship Index’ of a vertex v, or F I(v) as the follow-

ing ratio [Pal et al., 2019]:

F I(v) =

∑

u∈N(v) du

d2
v

(2.1)

Alternatively:

F I(v) =
Sv

d2
v

(2.2)

This value can be used to answer both questions above. A vertex v with F I(v) > 1

experiences the FP on a local level, that is it is relatively unpopular, and a vertex v with
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F I(v) < 1 does not experience the FP, or is relatively popular. Furthermore, the distance of

F I(v) from 1, in either direction, reflects the strength of the paradox or anti-paradox for this

vertex.

This immediately raises a question as to how to evaluate the F I of a 0-degree vertex.

Mathematically, it should be undefined. In [Pal et al., 2019] we defined it explicitly as 1,

similar to a vertex that is ‘FP-neutral’ and we employ the same definition here.

We establish the usefulness of F I by calculating its value analytically or experimentally

in various graphs. A significant focus is its connection to assortativity, both global and local.

As F I measures the direction and extent of the FP on a vertex, it also captures information

related to the similarity and dissimilarity between adjacent vertices’ degrees. It therefore

captures a lot of the same information as measures of assortativity, but we also demonstrate

some marked differences between the two that suggest that F I captures significant informa-

tion that assortativity does not.

2.2 Global FI Measures

While F I is a strictly local measure, we also extend it to define aggregate measures

that reflect the impact of the FP on a graph as a whole. We take the mean measure of the

values {F I(v)|v ∈ V} using two separate mean measurements, the arithmetic mean and the

geometric mean.

Definitions

The Arithmetic Mean FI (AFI) We define AF I(G) of graph G as the arithmetic mean of all

values F I(v) for v ∈ V .

AF I(G) =
1
n

∑

v∈V

F I(v) (2.3)

AF I(G) can also be expressed as a summation over the collection of edges E. Rewriting

Equation 2.3 using Equation 2.1 gives
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AF I(G) =
1
n

∑

v∈V

∑

u∈N(v) du

d2
v

(2.4)

Observe that every edge e(u, v) contributes du/d
2
v + dv/d

2
u to the summation over v ∈ V .

Therefore

AF I(G) =
1
n

∑

e(u,v)∈E

�

du

d2
v

+
dv

d2
u

�

(2.5)

The Geometric Mean FI (GFI) We define GF I(G) of graph G as the geometric mean of all

values F I(v) for v ∈ V .

GF I(G) =

�

∏

v∈V

F I(v)

�
1
n

=
1
n

∑

v∈V

log F I(v)

(2.6)

It is worth noting that, while F I(v) is in the range (0,∞), with relatively popular ver-

tices having F I(v) in the range (0,1) and relatively unpopular vertices having F I(v) in the

range (1,∞), log F I(v) is in the range (−∞,∞) with vertices falling on either side of 0

based on their respective relative popularity. This symmetric range for both vertex types is an

advantage of GF I .

F I Means and Degree-Homophily Clearly both AF I and GF I can be used to capture some

information about degree homophily. Both reflect more degree homophily in moderate val-

ues and less in extreme values, and the distance from the most moderate value captures how

pronounced the lack of degree-homophily is. The topic is explored further in subsequent

sections.
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2.3 Bounds on Global FI Measures

Here we establish significant bounds on the ranges of the aggregate measures. We have

proven that both AF I and GF I are always greater than or equal to 1 and 0 respectively with

equality occurring only in a perfectly assortative graph [Pal et al., 2019].

The following lemma is used in proving these bounds.

Lemma 2.3.1. For any x and y with x , y >= 1, and any monotonically increasing functions f

and g such that f (x), g(x)≥ 0 for x ≥ 11, it is true that

f (x)
g(y)

+
f (y)
g(x)
≥

f (x)
g(x)

+
f (y)
g(y)

Proof. For x , y ≥ 1

�

f (x)
g(y)

+
f (y)
g(x)

�

−
�

f (x)
g(x)

+
f (y)
g(y)

�

=
( f (x)− f (y))(g(x)− g(y))

g(x)g(y)
≥ 0

(2.7)

■

Theorem 2.3.2. For all Graphs G, AF I(G)≥ 1

If we set f (x) = x and g(x) = x2, we can derive the following corollary:

Corollary 2.3.3. For any edge e(u, v),

du

d2
v

+
dv

d2
u

≥
1
du
+

1
dv

We can use this corollary to prove the theorem.

1It should be noted that the statement is also true if f (x) and g(x) are both monotonically decreasing in-
stead. Also, the requirement x >= 1 is necessary to include f (x) = log(x) which is used for Theorems 2.3.6
and 2.3.8
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Proof Using Corollary 2.3.3 and Equation 2.5 we can prove that

AF I(G) =
1
n

∑

e(u,v)∈E

�

du

d2
v

+
dv

d2
u

�

≥
1
n

∑

e(u,v)∈E

�

1
du
+

1
dv

�

=
1
n

∑

v∈V

dv

dv
= 1 (2.8)

■

The final step results from observing that every vertex v contributes 1
dv

to the summa-

tion once for every edge to which it is connected.

The expression in Equation 2.7 is strictly greater than 0 except in the case where

f (x) = f (y) and g(x) = g(y). We can therefore derive the corollary:

Corollary 2.3.4. For any non-assortative edge e(v, u)

du

d2
v

+
dv

d2
u

>
1
du
+

1
dv

This allows us to rewrite the inequality in Equation 2.8 as

AF I(G) =
1
n

∑

e(u,v)∈E

�

du

d2
v

+
dv

d2
u

�

>
1
n

∑

e(u,v)∈E

�

1
du
+

1
dv

�

= 1 (2.9)

for any graph containing a single non-assortative edge which proves the following

theorem:

Theorem 2.3.5. AF I(G) = 1 if and only if G is made up of one or more separate components

which are all regular graphs

There is an interesting parallel between Theorems 2.3.2 and 2.3.5 on the one hand and

the FP on the other. While it is possible for a graph to have a majority of vertices with F I
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values greater than 1, a trend indicative of relative popularity, the aggregate effect always

indicates equal popularity or relative unpopularity, with equality only occurring in a graph

with a symmetric characteristic. The FP requires a perfectly regular graph to achieve equality,

while AF I achieves equality even in an irregular graph if it contains only assortative edges.

These bounds for AF I have appeared in [Jackson, 2016] as well.

Theorem 2.3.2 is also significant because of its implications on the ability of AF I to

reflect degree-homophily in a graph. We established that F I values further from 1 indicate a

disparity in degree between a vertex and its neighbors and values closer to 1 indicate a like-

ness. With 1 as the lower bound on AF I , we can make a stronger statement. Lower AF I val-

ues indicate more degree-homophily and higher AF I values indicate less degree-homophily.

Theorem 2.3.6. For all graphs G, GF I(G)≥ 0.

Proof We begin with another corollary derived from Lemma 2.3.1.

Corollary 2.3.7. For any edge e(u, v),

log du

dv
+

log dv

du
≥

log du

du
+

log dv

dv

Use Equation 2.1 to rewrite Equation 2.6 as

GF I(G) =
1
n

∑

v∈V

log

∑

u∈N(v) du

d2
v

=
1
n

∑

v∈V

log
1
dv
+

1
n

∑

v∈V

log
∑

u∈N(v)

�

1
dv

du

�

(2.10)

Jensen’s inequality [Jensen, 1906] states that for any positive numbers p1, p2, ...pn that

sum to 1, and real continuous concave function f ,

f

�

n
∑

i=1

(pi x i)

�

≥
n
∑

i=1

(pi f (x i))
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With f (x) = log x and the dv coefficients of 1
dv

being the values of p1, p2, ...pn, we can

apply Jensen’s inequality to the second term in Equation 2.10 and rewrite the equation as the

following inequality:

GF I(G)≥
1
n

∑

v∈V

log
1
dv
+

1
n

∑

v∈V

∑

u∈N(v)

�

1
dv

log du

�

=
1
n

∑

v∈V

log
1
dv
+

1
n

∑

e(v,u)∈E

�

1
dv

log du +
1
du

log dv

�

(2.11)

The last step uses a similar observation to the one we noted in Equation 2.5. Corollary 2.3.7

allows us to conclude that

GF I(G)≥
1
n

∑

v∈V

log
1
dv
+

1
n

∑

e(v,u)∈E

�

1
dv

log dv +
1
du

log du

�

=
1
n

∑

v∈V

log
1
dv
+

1
n

∑

v∈V

log dv = 0 (2.12)

■

Theorem 2.3.8. GF I(G) = 0 if and only if G is made up of one or more separate components

which are all regular graphs

Proof Similar to the proof of Theorem 2.3.5, the expression in Corollary 2.3.7 is only equal

when dv = du. ■

The parallel we noted between Theorems 2.3.2 and 2.3.5 and the FP applies to this

theorem as well. While those theorems have been published previously [Jackson, 2016], The-

orems 2.3.6 and 2.3.8 are new. It should also be noted that Theorem 2.3.2 might intuitively

be attributed to the asymmetric range of AF I which favors F I values greater than 1. Prov-

ing these theorems for GF I is more significant because the range is symmetric around 0. In

addition, our observation on AF I and homophily applies to GF I as well. Lower GF I values

indicate degree-homophily, higher GF I values indicate the opposite.
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2.4 Aggregate FI Measures in Canonical Graphs

To further develop the usefulness of these aggregate measures, we calculate their val-

ues in three well-known canonical graph structures, d-regular graphs, star graphs, and com-

plete bipartite graphs.

Cliques and Other d-Regular Graphs Because all vertices have the same degree, by sym-

metry all vertices have an F I value of 1. Therefore, AF I = 1 and GF I = 0. Recall that these

are the minimum possible values for both AF I and GF I per Theorems 2.3.2 and 2.3.6. For d-

regular graphs, the aggregate measures are consistent with assortativity which also evaluates

to 1, indicating perfect degree homophily. In a d-regular graph, calculating local assortativity

is impossible because it involves normalizing by 0. One could assume it would be 1 for all

vertices by definition, so F I and rT perform the same for capturing assortativity on a local

level.

Star Graphs Consider a star graph of n vertices. We can calculate the F I for the vertices in

terms of n. The center vertex has an F I value of 1
n−1 , and the leaves have an F I value of n− 1.

These values are the maximum and minimum possible F I values for a graph of n vertices.

This accentuates the extent of the effect of the FP in star graphs as all but 1 vertex have the

maximum possible F I value for a graph of n vertices.

To calculate AF I(G) for the star graph, we take the mean F I value of the hub, 1
n−1 , and

the n− 1 leaves (n− 1 each):

AF I =
1
n

�

1
n− 1

+ (n− 1)(n− 1)
�

=
1

n(n− 1)
+
(n− 1)2

n

=
1+ (n− 1)3

n(n− 1)

= n− 2+
1

n− 1
(2.13)
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Similarly, we can calculate GF I(G) for the star graph as follows:

GF I =
1
n

�

log
1

n− 1
+ (n− 1)(log (n− 1))

�

=
1
n
(log1− log n− 1+ (n− 1)(log (n− 1)))

=
(n− 2)(log (n− 1))

n
(2.14)

We again note the advantage of GF I over AF I as the logarithmic values of the leaves

and hub have the same absolute value.

We can calculate the global assortativity of the star graph using Equation 1.6 with the

values je and ke being equal to n− 1 and 1 for all of the n− 1 edges.

r(G) =
1
m

∑

e jeke −
�

1
m

∑

e
1
2( je + ke)
�2

1
m

∑

e
1
2( j2

e + k2
e )−
�

1
m

∑

e
1
2( je + ke)
�2

=
1

n−1

∑

e(n− 1)−
�

1
n−1

∑

e
n
2

�2

1
n−1

∑

e
1
2((n− 1)2 + 1)−

�

1
n−1

∑

e
n
2

�2

=
(n− 1)−
�

n
2

�2

1
2((n− 1)2 + 1)−

�

n
2

�2

=
n− 1− n2

4

( n2

2 − n+ 1)− n2

4

=
−n2 + 4n− 4
n2 − 4n+ 4

= −1 (2.15)

To calculate the local assortativity, we note that the value δv from Equation 1.7 is iden-

tical for the hub and all leaves, and therefore the value δ̄v =
1
n for all vertices by symmetry. λ

from Equation 1.8 is simply λ= r+1
n = 0. Therefore rT (v) = −

1
n for all vertices.

Comparing AF I to assortativity in star graphs highlights a significant difference be-

tween the two. AF I in a star graph increases as n increases, capturing the additional lop-

sidedness resulting from a higher number of leaves. Assortativity simply gives the maximal

value for a star graph of size 2, and the minimal value for all star graphs with 3 or more ver-

tices. For local assortativity, the value − 1
n is actually counterintuitive as a greater number of

leaf vertices increases the local assortativity of the individual vertices. Again the same logic

of AF I describes GF I as well.
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Complete Bipartite Graphs Consider a bipartite graph with l vertices on one side and r

vertices on the other. We denote this as Bipar t i te(l, r), and use L and R to refer to the sets

of vertices on each side. For v ∈ L, F I(v) = l
r and for v ∈ R, F I(v) = r

l . If l > r, vertices

in L have F I > 1 and vertices in R have F I < 1. AF I = 1 + (l−r)2

l r which is always strictly

greater than 1 as long as l ̸= r. If we fix l at some constant value, AF I = 1 when r = l and it

increases as r increases or decreases away from l. This is consistent with the behavior of AF I

in star graphs as a function of n, complete bipartite graphs are a generalization of stars, but

complete bipartite graphs demonstrate this behavior without monotonicity. Here we draw

perhaps the strongest contrast between AF I and assortativity. The assortativity of a complete

bipartite graph is always -1 as long as l ̸= r and 1 when l = r. Once again the behavior for

GF I is identical.

2.5 Experimental Results

While AF I and GF I can be calculated theoretically for canonical graphs, it can be evalu-

ated experimentally for actual graphs when full knowledge of the graph is available. To this

end, we evaluate AF I and GF I in randomly generated graphs and the graphs of real-world

networks.

2.5.1 Synthetic Graphs

We use sets of both ER and BA graphs with varying parameter values and calculate AF I

and GF I values.

Erdős-Rényi

Our experiments with ER graphs include varying values for n and varying values of

0 ≤ p ≤ 1. The results are displayed in Figure 2.1. These experiments show that the effect

of the FP, as measured by AF I values’ distances from 1, is minimal for smaller and larger

values of p. For low values of p, we attribute it to the high number of 0-degree vertices that
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Figure 2.1: Results on AFI, GFI and assortativity of Erdős-Rényi graphs shown for varying values of
0< p < 0.1 and n= 100,200, 300,400, 500. Local FI distribution shown through a heatplot for
varying 0< p < 0.1 along the y-axis.

have an F I value of 1 by definition. As p increases, more vertices have neighbors, and the

FP becomes more prevalent. Then, as p continues to increase beyond some maximal point,

the graph approaches a complete graph in which all vertices have an F I value of 1 so the AF I

and GF I values decrease again and approach their respective minimal values. We also find

that AF I decreases as n increases for a fixed p, assuming a large enough p to create a dense

graph with minimal 0-degree vertices. The heatplot in Figure 2.1 plots F I values along the

x-axis and p values on the y-axis. The density represents the percent of vertices in the graph

with the corresponding F I values. The heatplot inidicates a high density of vertices with F I

close to 1 for all values of p. Extremely high concentration near 1 occurs at extremely low

values of p, then the concentration decreases as p increases, then increases again. This is all

consistent with the results for AF I and GF I as discussed.

These results present another significant contrast between AF I and GF I on the one



CHAPTER 2. FRIENDSHIP INDEX (F I) 23

Figure 2.2: Correlation coefficients between | log F I | and T-local assortativity for Erdős-Rényi graphs
with varying probability of connection 0< p < 1; Barabási-Albert graphs with varying edge density
2≤ m≤ 50.
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hand and assortativity on the other. Our experiments find assortativity values near 0 for most

values of n and p, which is consistent with Newman’s results in [Newman, 2002].

F I and Local Assortativity Through Correlation One way to explore the relationship

between F I and local assortativity is to explore a correlation between | log F I(v)| and rT (v).

A strong negative correlation would imply that low values of | log F I(v)| and high values of

rT (v) are capturing similar measures of strong degree-homophily. We use three correlation

measures, Pearson [Pearson, 1896], Spearman [Spearman, 1904], and Kendall-Tau [Kendall,

1938], to examine this relationship. The Pearson correlation, which is the basis of Newman’s

assortativity as discussed, is a measure of how well a set of (x , y) data points approximate a

line when plotted on a Cartesian plane. The Spearman correlation measures correlation the

same way but uses ranks instead of values, and Kendall-Tau is focused on the ordering, that

is it examines a correlation between the respective relationships between successive x values

and successive y values.

The plot in Figure 2.2 shows a strong negative correlation for most intermediate val-

ues of p. The correlation is not as strong for extremely low and extremely high values of p.

There is a similar trend in the FP itself as, using AF I and GF I as an indicator of the strength

of the paradox, we find the FP stronger in this intermediary range of p and weaker at the

extremes. We attribute the weakness of the correlation for extreme p values to the fact that

the values themselves are very low which overly accentuates smaller discrepancies

Barabási-Albert

Figure 2.3 give results for similar experiments on Barabási Albert random graphs, work-

ing with varying values for the parameters n and m. For a fixed m, both AF I and GF I in-

crease as n increases. The intuition for this is that increasing the number of vertices for a

fixed m strengthens the disparity between the high-degree vertices and low-degree vertices

in the graph. The effect is a milder version of the same effect in the star graph where AF I

increases as n increases. For a fixed n, increasing m decreases AF I and GF I as the mean
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Figure 2.3: Results on friendship indices and assortativity of Barabási-Albert graphs for varying
values of n and m. Results on AFI, GFI and assortativity of Barabási-Albert graphs shown for varying
values of 0< n< 10000 and m= 1, 2,3,4, 5. Local FI distribution shown through a heatplot for
varying 0< n< 10000 along the y-axis.

degree increases and the graph approaches a complete graph. The heatplot in the figure

shows a density at 1. This is not surprising because the majority of vertices in a BA graph are

low-degree vertices connected to other low-degree vertices [Bertotti and Modanese, 2019].

We find BA graphs tend towards an assortativity value of 0, again consistent with [New-

man, 2002]. This also highlights a difference between AF I and GF I versus assortativity.

Figure 2.2 shows that the negative correlation between | log F I(v)| and rT (v) is not as strong

as in ER graphs, but is still there, with the extreme values of m showing the effect more.

2.5.2 Real World Networks

Lastly, we perform similar experiments on real-world graphs to examine the same phe-

nomena in actual networks. We use samples from the Koblenz network collection [Kunegis,
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Metric Level Network Parameter Global Metric Local Metric
Network nodes edges r AFI GFI ρp ρs

Hamsterster (S) 2426 16631 -0.0847 12.6416 1.6430 -0.6360 -0.5942
Brightkite (S) 58228 214078 0.0108 24.6750 1.9888 -0.6046 -0.6464
Douban (S) 154908 327162 -0.1803 39.1273 3.3163 -0.5003 -0.7024
Gowalla (S) 196591 950327 -0.0293 235.496 2.4101 -0.7440 -0.7661
Hyves (S) 1402673 2777419 -0.0234 786.311 3.6955 -0.6591 -0.8775

Jazz musicians (HS) 198 2742 0.0202 2.7522 0.5199 -0.6578 -0.6745
Zachary (HS) 34 78 -0.4756 3.6701 0.8985 -0.9098 -0.8803

Hypertext (HC) 113 2196 -0.1226 2.4755 0.3643 -0.9319 -0.9339
Infectious (HC) 410 2765 0.2258 2.1345 0.4262 -0.6997 -0.6204
Route views (C) 6474 13895 -0.1818 176.460 3.7155 -0.8304 -0.9279

Internet topology (C) 34761 107720 -0.2149 303.464 4.3231 -0.7901 -0.8967
Power grid (I) 4941 6594 0.0035 2.1782 0.4792 -0.8315 -0.8030
Euroroad (I) 1174 1417 0.1267 1.4438 0.2289 -0.8256 -0.7721

Table 2.1: Assortativity and FIs on real networks and the correlations between their local measures

2013]. We work with five separate categories from the collection, Social (S) networks in-

cluding the Hamsterster, Brightkite, Douban, Gowalla, and Hyves datasets, Human Social

(HS) networks including the Jazz Musicians and Zachary Karate Club datasets, Human

Contact (HC) networks including the ACM Hypertext conference held in Turin and the In-

fectious:STAY AWAY exhibit at Dublin, both in 2009, Computer(C) networks including the

Route Views and Internet Topology datasets, and Infrastructure (I) networks including the

Power Grid and Euroroad datasets.

Results for Global Metrics Table 2.1 summarizes basic network statistics, assortativity,

and AF I and GF I for the analyzed networks. We also report on the Pearson correlation co-

efficient ρP and Spearman’s rank correlation coefficient ρs between the local FI measure in

absolute value, | log F I |, and local assortativity rT .

We observe that most of the social networks have negative assortativity, but all exhibit

the FP strongly. The human social and contact networks exhibit the FP very weakly, though

this is likely largely due to the small size of the network. Computer networks show negative

assortativity and a strong occurrence of the FP while infrastructure networks show positive
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Figure 2.4: Scatter plot between T-local assortativity and local FI for the hamsterer network

assortativity and a weak occurrence of the FP. We also find local assortativity to be strongly

negatively correlated to | log F I | for most considered networks. This again follows the in-

tuition that positive local assortativity causes F I ≈ 1, and | log F I | ≈ 0, and negative local

assortativity causes |F I − 1| to be large, and therefore | log F I | is also large.

Results for Local Metrics In RW graphs we again find the anticorrelation that suggests

F I captures degree-homophily on a local level. Two samples are shown in Figures 2.4 and

2.5. The scatter plot captures the rT values corresponding to log F I values. The concave

bell shape shows that, at the extreme F I values, we find disassortativity on the local level,

while the moderate F I values closer to 1 are more locally assortative. As a purer measure of

degree-homophily, we can use | log F I |. The second scatter plots shows this correlation with

rT decreasing as | log F I | increases.

2.6 Summary

We have introduced F I as a new metric and demonstrated its value in graph theory.

Through analysis and experimentation, we demonstrated the overlap between F I and local

assortativity, but we have also discovered places where F I seems to capture intuitive ho-

mophily information that local assortativity does not, such as in a star graph where a higher
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Figure 2.5: Scatter plot between T-local assortativity and local FI for the Euro Road network

discrepancy between the leaves and the hub actually increases assortativity but raises F I .

We have also extended F I to two aggregate measures that quantify the effect of the FP

on a graph as a whole. By proving lower bounds that are in line with the general implica-

tions of the paradox itself, we established these measures’ values for capturing information

about degree homophily because of the monotonically negative correlation between the two.

Using the example of the bipartite graph, we showed that these measures capture something

intuitive about degree homophily that is not captured by global assortativity which ignores

changes in discrepancy between low and high degree vertices. We have also shown exper-

imental results on real-world networks, demonstrating that F I ’s value as a graph metric

extends beyond theoretical models and into actual organic networks.
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CHAPTER 3

Random Neighbor Sampling (RN) and Fair Cost Comparisons

3.1 Introduction

The FP’s suggestion that ‘friends’ have higher average degrees than ‘individuals’ is the

inspiration for a well-known vertex sampling method where a randomly sampled vertex

is exchanged for one of its neighbors in order to sample a vertex of higher degree. While

the effectiveness of the method has been explored and verified, the computational costs it

introduces are ignored. We explore this sampling method’s costs to gain a more thorough

understanding of its actual value. We introduce different costs that may be associated with a

practical sampling process and discuss how they can be used to compare methods’ results in

a more fair manner. The analyses of different costs also suggest additional sampling methods

that may be more effective when certain costs are taken into account.

3.2 Random Neighbor Sampling (RN)

In a 2003 paper [Cohen et al., 2003], Cohen et al suggested harnessing the power

of the FP in order to sample vertices from a graph at random with a bias towards vertices

of higher degree. The original suggestion was presented in the context of attempting to

arrest the spread of an epidemic by administering a limited number of immunizations to

well-connected subjects. However, the idea of sampling high-degree vertices has obvious

appeal in many contexts and has been cited in studies related to information dissemination

[Han et al., 2014], network resilience [Cohen et al., 2001], and early contagion detection

[Christakis and Fowler, 2010], to name just a few.

If total knowledge of a network is available, one would be able to sort vertices and



CHAPTER 3. RANDOM NEIGHBOR SAMPLING (RN) AND FAIR COST COMPARISONS 30

isolate the highest degree vertices. There are two reasons why this is impractical in many

real world situations. One reason is that often total knowledge is not available. In an offline

human network, for example, we do not actually know all of the connections between peo-

ple. The other is the dynamic nature of networks. Consider a moderately sized online social

network as an example. It might be possible to sort the vertices if their connections were all

static, but as connections are constantly added and removed it becomes impractical or even

impossible to maintain a sorted structure that gives access to the higher-degree vertices in

the graph.

With this in mind, one would assume the only way to obtain a vertex from the graph

would be to naïvely sample a random vertex, with the expected degree of the vertex being

exactly the mean degree of the graph. We call this method Random Vertex, or RV .

Cohen et al suggest sampling a vertex from the graph at random, but then exchanging

it for a different vertex that is sampled at random from the first vertex’s neighbors. We call

this method Random Neighbor, or RN . The contention is that the expected degree of a ran-

domly selected neighbor will be greater than or equal to the degree of a randomly selected

vertex or E[RN] ≥ E[RV ]. A graph having AF I(G) ≥ 1, which we have proven true for all

graphs in Theorem 2.3.2, strongly implies this superiority for RN as a sampling method, an

observation also noted by Momeni and Rabbat [Momeni and Rabbat, 2018]. However, this

alone does not suffice to prove it. We have proven this though, and our proof also appears

in an unpublished paper by Kumar et al [Kumar et al., 2018] where it is further attributed to

a comment in an online article [Strogatz, 2012]. However, to our knowledge, this proof has

never appeared in a peer-reviewed publication, so we reproduce it here.

Theorem 3.2.1. For any graph, E[RN]≥ E[RV ].

Proof We can calculate E[RN] as

E[RN] =
1
n

∑

v∈V

∑

u∈N(v)

du

dv
(3.1)
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Similar to the observation we first noted in Equation 2.5, we observe that every edge

(u, v) contributes du/dv + dv/du to the outer summation which allows us to express E[RN] as

E[RN] =
1
n

∑

e(u,v)∈E

du

dv
+

dv

du
(3.2)

and alternatively

E[RN] =
1
n

∑

e(u,v)∈E

d2
u + d2

v

dudv
(3.3)

Using Equation 3.2, we claim

1
n

∑

e(u,v)∈E

du

dv
+

dv

du
≥

1
n

∑

v∈V

dv

∑

e(u,v)∈E

du

dv
+

dv

du
≥
∑

v∈V

dv (3.4)

The right side of the inequality is simply the sum of all degrees in the graph, or 2m

∑

e(u,v)∈E

du

dv
+

dv

du
≥ 2m (3.5)

The left side of the inequality contains m terms in the form of a
b +

b
a , and a

b +
b
a ≥ 2 for all

a, b, with a > 0, b > 0. ■

Corollary 3.2.2. In a graph with a at least one disassortative edge, E[RN]> E[RV ]

Proof a
b +

b
a > 2 for all a, b with a > 0, b > 0, and a ̸= b ■

We again note the parallel to the FP. In a graph where the majority of vertices are

relatively popular, the expected change in exchanging an already sampled vertex for one

of its neighbors is more likely to be negative than positive. Yet for the graph as a whole,

E[RN] ≥ E[RV ] with the inequality being strict as long as the graph contains a particular

asymmetric characteristic.
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E[RV ] E[RN] in ER E[RN] in BA
6 6.9952 19.54

10 10.9883 27.87
16 16.973 38.9
30 30.922 63.89
60 60.6866 113.3
129 129.5657 216.42

Table 3.1: E[RV ] and E[RN] for ER and BA Graphs with n= 6000

3.3 RN ’s Connection to Assortativity and Power-Law Distributions

From Theorem 3.2.1 we know that RN outperforms RV in almost all random graphs

as a perfectly assortative random graph is highly improbable. However, our experiments

demonstrate that the difference is extremely small in ER graphs while being larger in BA

graphs, Table 3.1 shows results for n = 6000. There is a connection between the power-law

distribution of degree that characterizes BA graphs and RN ’s performance which we explain

here.

The connection between degree-homophily and RN has been discussed in [Kumar

et al., 2021]. The authors argue for their own measure of degree homophily, inversity, but

we use the term assortativity to loosely refer to degree-homophily in general. Inversity cor-

relates strongly with assortativity and for our purposes an imprecise measure is adequate.

Intuitively, any difference between RN and RV clearly requires at least some amount of dis-

assortativity in order for the neighbor to differ from the vertex, and less assortativity in fact

increases this effect. Newman demonstrated that both ER and BA graphs tend towards zero

assortativity [Newman, 2002], neither positive or negative. But, as we mentioned previ-

ously, research has shown that this value in BA graphs is not reflective of a homogeneous

non-assortative nature across all edges [Bertotti and Modanese, 2019]. Rather, it is an aggre-

gate measure of two sharply contrasting types of edges. A number of low-degree vertices are

highly assortative, connected to other vertices of low degree like themselves. However, the

hubs connect to many of low-degree vertices as well, and these connections are extremely
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disassortative. This suggests an intuition for RN ’s strong performance in BA graphs. The

power-law distribution implies that a randomly sampled vertex is far more likely to be a low-

degree vertex than one of the hubs. However, exchanging it for one of its neighbors has a

reasonable probability of increasing the resulting degree because of the significant likelihood

that the vertex is disassortatively connected to a hub.

In truth though, the power-law distribution itself directly suggests the existence of the

disassortative edges. The famous Erdős Gallai [Erdös and Gallai, 1960] and Havel-Hakimi

[Havel, 1955][Hakimi, 1962] theorems are both in part predicated on a simple premise. If

a graphic degree sequence is partitioned into high-degree vertices and low-degree vertices,

any edge endpoints of the high-degree vertices that cannot be satisfied by connecting to

other hubs must be satisfied by connecting to low-degree vertices instead. This necessity

definitionally translates into some amount of disassortativity. While a comparatively large

amount of low-degree vertices does not necessarily imply that the hubs cannot be entirely

interconnected among themselves, a typical power-law distribution leads to the number of

hubs being far fewer than their accumulated degrees. Certainly the BA algorithm which has

vertices iteratively joining and connecting does not allow for the formation of a clique. This

connection to the power-law distribution explains why BA graphs in particular show a strong

performance for RN over RV .

3.3.1 RN ’s Weakness in Sampling Low-Degree Vertices

This understanding of the mechanics of RN ’s success in BA graphs explains another

important characteristic of RN which is its inferiority as a sampling method for selecting low-

degree vertices in a graph. While a single sampling of RV finds any vertex with probability

1/n, in order for RN to select some specific low-degree vertex it would have to find it via one

of its neighbors, a particularly poor strategy when the number of neighbors is small, even

worse when it neighbors a hub that neighbors so many other vertices.
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Hubs vs. Leaves in a Star Graph

As an example, consider the star graph of n vertices. The star graph can be used as an

exaggerated illustration of a power-law distribution as it has very few hubs (1) of very high-

degree (n−1), and very many leaves (n−1) of very low-degree (1). It is therefore often useful

to analyze a star graph in order to explore a feature of BA and other power-law graphs.

Let vi be the event of selecting vertex i, C be the event of selecting the center, l be the

event of selecting a leaf, SC be the number of samplings required to select the center and SL

be the number of samplings required to select all leaves. When sampling from the star graph

with RV , all vertices have an equal probability of being sampled, P(vi) =
1
n . E [SC] = n, and

E [SL] = n(Hn − 1) = Θ(n log n) per the coupon collector’s problem.

Contrast this with sampling using RN . P(C) = n−1
n , P(l) = 1

n . The expected number

of sampling iterations required to find the center approaches 1 at E [SC] =
n

(n−1) , but the

expected number of sampling iterations required to collect all leaves is

E [SL] =
n−1
∑

i=1

�

1
n

n− i
n− 1

�−1

= n(n− 1)
n−1
∑

i=1

1
n− i

= n(n− 1)
n−1
∑

i=1

1
i

= n(n− 1)Hn = Θ(n
2 log n) (3.6)

RN ’s Inferiority for Finding Low-Degree Vertices in BA and ER Graphs

We further demonstrate this phenomenon with an experiment. We repeatedly select

vertices with both RV and RN and track how many iterations of each sampling method are

required to select the top x% of the vertices ranked in descending order of degree. The ag-

gregate results for repeated experiments on sets of BA and ER graphs are shown in Figure

3.1. Because RV is naïve sampling, it finds the entire graph with Θ(n log n) samples per the

coupon collector’s problem. RN , on the hand, finds hubs very quickly, but struggles greatly to

complete the collection and find the lowest-degree vertices in the graph. The phenomenon is
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still true in ER graphs, but it is comparatively muted. This is because of the more assortative

nature of ER graphs compared to BA graphs as we discussed.

3.4 Fair Comparisons

The main thrust of our research in RN begins with a simple, obvious observation.

While it is true that E[RN] ≥ E[RV ], this benefit comes at a computational cost. Specifi-

cally, the number of vertices sampled from the graph when employing RN is twice as many

as when sampling with RV . This is perhaps best illustrated with a simple example. Suppose

our goal in collecting vertices was to maximize the highest-degree vertex in our collection.

If we collect k vertices with RN , a naïve view of RN would compare the maximum-degree

vertex in this collection to the maximum-degree vertex in a collection of k vertices collected

using RV . In reality though, it would be more fair to compare it to a collection of 2k vertices

collected by RV , as the collection of k vertices actually requires sampling 2k vertices when

RN is employed. We demonstrate this idea in Figure 3.2. We use BA graphs with n= 10000,

m= 20 for this experiment. We allocate a budget, b, which indicates how many vertices can

be sampled from the graph, and record the average of the maximum degree found over mul-

tiple repetitions of the experiment. The blue dots in the scatter plot represent the naïve view

of RN , where we assume a budget of b yields a collection of b vertices. The green dots repre-

sent sampling with RV , where the number of vertices collected is in fact equal to the budget.

The red dots represent the fair view of RN , where a budget of b yields a collection of only

b/2 vertices. As the plot indicates, RN is still a superior sampling method to RV . But this

does present a fairer comparison, somewhat lessening the gap between the two methods’ re-

spective values. In the context of the original paper, network disintegration by immunization,

the additional cost is negligible. However, as the sampling method has gained popularity and

been applied to many diverse situations, a full study of the benefits along with their costs is

a valuable pursuit. We note here that it would be reasonable to object and suggest the b/2

vertices that were initially sampled should be included in the collection. We address this
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Figure 3.1: Sampling iterations required to acquire the top x percent of vertices ranked by degree for
both RV and RN in BA and ER graphs
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Figure 3.2: Max-degree vertices in a collection for budget b

objection and the implied sampling method in Section 3.6.

3.5 Sampling Costs - Cv and Cn

The introductory example in the previous section considers the costs of sampling ver-

tices and neighbors. While in many contexts these costs would likely be equal, we suggest

that this may not always be the case. Sampling a neighbor may be less expensive as the set

from which the neighbor is sampled is smaller. Or, perhaps there is a privacy concern related

to learning connections that would apply only to sampling a neighbor which would make

sampling a neighbor more expensive. We therefore generalize the sampling costs to two

distinct costs, Cv, the cost of sampling a vertex, and Cn, the cost of sampling a neighbor.

3.5.1 Critical Cn

Let us fix Cv = 1 so that we are expressing both Cn and total cost in terms of Cv. We

seek a ‘critical Cn’ value (CCn), that is a value for Cn where RV and RN perform equally well
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Figure 4.6: Sampling expectations according to assortativity in rewired ER and BA graphs

RE.

The plots again indicate a strength in IRE over IRN , and while both weaken as assorta-

tivity increases, it appears that IRN decreases at a slightly faster rate.

4.4.3 Summary

In this chapter we have introduced an improvement to a sampling strategy and ana-

lyzed it. We have given an independent analysis on the two methods RN and RE, proving

significant bounds regarding the ratios of their expected degrees. We then gave our results

for the inclusive versions, again demonstrating significant bounds for the ratios and other

bounds on their performances. We explored the unique case of trees, proving that despite the

limitation on edge-count it is still at least possible for either inclusive method to be superior

in some graphs.

In our exploration of both synthetic and real-world network graphs, we found the

significant trend of IRE being the stronger sampling method of the inclusive versions, despite

RN often being the stronger method of the exclusive versions. As we noted, this suggests a

real application for our research. Most online networks do not track edges as an independent

collection, instead tracking them only along with the vertices they touch. This suffices for RN

sampling, and RE sampling is not typically strong enough to offer an incentive for tracking
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edges independently. However, as IRE does appear significantly stronger than IRN in many

networks, tracking edges offers an advantage where high-degree sampling is important.

We have also extended our previous discussion of the relationship between degree-

homophily and RN -derived sampling methods. Here too we find an advantage to IRE over

IRN as it suffers less attrition as a result of increasing assortativity. Knowledge of this rela-

tionship would of course assist in choosing the best sampling method when this characteris-

tic of the graph is known.

The suggestion of inclusivity, especially in light of our observation that determining in-

dividual degrees is often easily accomplished, offers a new approach to high-degree random

sampling. Our specific observations about IRE suggest potential for meaningful and practical

applications for our research. Along with our cost-analyses, we believe we have also intro-

duced new avenues of exploration for the topic of high-degree vertex sampling. We hope

our contribution to this area of research will not only enhance the current knowledge on this

topic, but also inspire greater findings and future research in these areas as well.
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