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Abstract 

Examining Metacognitive Access to Low-Level Ensemble Representations 

by  

Vladimir Mudragel 

Advisor: Dr. Tatiana Emmanouil 

 Ensemble perception is a process that allows our sensory systems to rapidly extract 

summary information about the stimuli in the environment. For example, we are able to get a 

sense of the average number of items in a group of similar items (Burr & Ross, 2008; Halberda, 

Sires, & Feigenson, 2006) or the average size of a group of similar shapes of different sizes 

(Ariely, 2001). It is theorized that the qualitative result of ensemble perception is that it provides 

a gist impression of the current environment, which then enables attentional processes in the 

brain to determine which parts of the environment should next be attended to (Alvarez, 2011). 

Metacognition is a cognitive process in which thoughts, mental performance, or sensory 

representations are consciously accessed and analyzed. Because ensemble representations form 

so rapidly, it is not known whether they can be consciously accessed by metacognitive processes. 

Here, we explored whether or not ensemble representations can be metacognitively accessed by 

having participants report the average angle of an array of lines with semi-random angles (a low-

level visual ensemble) and then asking them to rate their levels of confidence in their answers. 

We then calculated the degree of correlation between their performance on the ensemble task and 

their reported confidence levels, along with some other measures, both at the individual and 

group levels. Although there were some weak correlations between some of the measures, we did 

not find that there was any correlation between task performance and confidence. 
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Part 1: Introduction 

 The human brain excels at converting raw electromagnetic radiation within a certain 

range of wavelengths (roughly 400 nm to 800 nm (Gegenfurtner & Kiper, 2003)) into distinct 

and temporally contiguous visual scenes. With over 50% of the brain’s cortical mass being 

dedicated to visual processing (Felleman & Van Essen, 1991), there is constantly a massive 

amount of activity occurring in the occipital, or visual, cortex. Information travels in a 

hierarchical fashion through, and within, a series of distinct cortical regions in the occipital 

cortex that represent that information with increasing complexity and scope. For example, cells 

in the primary visual cortex (V1) deal primarily with detecting particular wavelengths in the 

electromagnetic spectrum (Zeki, 1983); detecting the presence or absence, the length, and the 

orientation of a line or edge of a shape; the direction in which that line or edge is moving, if it’s 

moving across the receptive field; as well as collectively representing one half of the fields of 

view from both eyes in each hemisphere, arranged in V1 into ocular dominance columns (Hubel 

& Wiesel, 1977). Each cell in V1 that represents the fovea has a very small receptive field (~1˚, 

or 0.33 mm on the retina) (Hubel & Wiesel, 1977); while cells higher in the visual hierarchy, in 

regions like V3 and V4, encode information about whole shapes in the visual field and context-

independent color values of those shapes, respectively, over progressively larger receptive fields 

(1-20˚ (Rousselet, Thorpe, & Fabre-Thorpe, 2004)). Simultaneously, each processing region in 

this functional and neuroanatomical hierarchy sends information back down to the regions that 

feed into it, as well as to other regions of the brain, modulating them in turn. This feedback 

signaling maintains continuity between regions involved with processing fine details at the early 

stages of the visual processing pathways and regions involved with processing more abstract 

conceptual information higher up in the visual processing hierarchy. Concurrently, along with 
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the signaling pathways between the functional regions of the occipital lobe, there are also signals 

being sent back and forth between the occipital lobe and other brain regions devoted to other 

sensory processing modalities, memory, emotion, and executive functions. In this dizzying series 

of computational interactions between basic perceptual information, attention, and memory, our 

brains are able to convert that raw information into what we visually experience in every waking 

moment of every day of our lives.  

 All that raw sensory information is funneled through the mechanism of attention, which 

determines what part of the visual scene “stands out” to us at a given moment. Attention consists 

of a central focus of attention and a peripheral diffuse region (Alvarez, 2011). The focus of 

attention is where stimuli are most closely examined by neural sensory processing mechanisms, 

and therefore those stimuli are most accurately represented in the brain. The diffuse region 

surrounding the focus of attention also conveys information about the items within it to 

processing mechanisms, but with less and less accuracy the further they are located from the 

focus of attention. While it is typical for there to be one focus of attention at a time, it is possible 

for multiple items in a visual scene to be attended to in parallel (Howe et al., 2010; Cavanagh & 

Alvarez, 2005; Halberda, Sires, & Feigenson 2006; Friedman-Hill & Wolfe 1995; Chong & 

Treisman, 2005; Pylyshyn & Storm, 1988), producing multiple foci of attention, though the 

accuracy with which they are represented decreases as a function of how many are attended to at 

one time (Alvarez, 2011). On average, an individual can attend to 3 to 5 items at once (Pylyshyn 

& Storm, 1988) in a given visual scene, but that can vary based on several factors, such as the 

complexity of the stimulus (Horowitz et al., 2007), the depth of plane in which the stimulus can 

be found (Viswanathan & Mingolla, 2002), the speed with which a moving stimulus is moving 

(Alvarez & Franconeri, 2007), the speed the observer is moving in relation to the stimulus 



3 
 

(Thomas & Seiffert, 2010), and individual differences in the observers’ physiologies (Oksama & 

Hyona, 2004). The simpler, closer, or slower a given stimulus is, the easier it is to attend to and 

the more of it is represented, allowing for more items to be attended to at once with precision. 

Conversely, the more complex, far away, or mobile a stimulus is, the more difficult it is to attend 

to and the fewer items can be attended to at once under those conditions. For example, Alvarez 

and Franconeri (2007) found that subjects could attend to up to eight objects if they were 

travelling at low speeds, but only one of the objects if they travelled at high speeds. This 

relatively low limit on the number of items that can be simultaneously attended-to by attentional 

systems in the brain is surprising, but well-established. Surprising because it fails to explain how 

it is that we are able to see, not 3 to 5 disembodied semi-stationary items at a time, but a full 

visual scene. This suggests that there is some other process at work, besides attention, that 

creates that background scene, in effect populating that diffuse region surrounding the focus of 

attention. A possible candidate for this process is a more recently described mechanism, called 

“ensemble perception”.  

Ensemble Perception 

 Ensemble perception takes advantage of grouped, redundant stimuli in the visual field, or 

ensembles, and extracts summary information about them automatically and preattentively (Oriet 

& Brand, 2013; see also Treisman, 2006). Because the items are redundant, but rarely truly 

identical, this summarized ensemble representation represents all of the items in the ensemble 

more accurately than any one of them can (Alvarez 2011). The more items in an ensemble, the 

more accurately they are represented by that summary information. Everyday visual examples of 

these kinds of stimuli can be the leaves on a tree, a flock of birds, stones in a stone wall, berries 

on a bush, or a crowd of people. Ensemble perception was first described in 2001, by Dan 
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Ariely, who showed that people can accurately report the mean size of a set of circles of various 

sizes, presented simultaneously, even if the stimulus array was shown for less than 100 ms, and 

even when they could not report on the size of individual circles. Since then, many other 

attributes of sets of items have been shown to be encoded as ensemble representations, allowing 

for gist impressions of their variability to be calculated. Along with average size (Ariely, 2001; 

Chong & Treisman, 2003; Chong & Treisman, 2005) these include representations of elementary 

attributes, such as brightness (Bauer, 2009), orientation (Ariely, 2001; Haberman, Brady, & 

Alvarez, 2015; Parkes et al., 2001; Dakin & Watt, 1997), color (Haberman, Brady, & Alvarez, 

2015), the amount of items in an array (Burr & Ross, 2008; Halberda, Sires, & Feigenson, 2006), 

and the average location of objects in a scene (Alvarez & Olivia, 2008). Ensemble 

representations also have been shown to be encoded for intermediate attributes, like speed and 

direction of motion of items in an array (Sweeney, Haroz, & Whitney, 2012; Alvarez & Olivia, 

2008; Watamaniuk, Sekuler, & Williams, 1989; Watamaniuk & Duchon, 1992; Watamaniuk, 

1993), and estimation of the mean of a set of numbers (Smith & Price, 2010); and more complex 

attributes, such as higher-order spatial statistics (Alvarez & Olivia, 2008; Olivia & Torralba, 

2007; Im, Tiurina, & Utochkin, 2021; Utochkin, 2015), average face identity (de Fockert & 

Wolfenstein, 2009; Neumann, Schweinberger, & Burton, 2013; Haberman, Brady, & Alvarez, 

2015), average gender in a crowd of faces (Haberman & Whitney, 2007), average emotion in a 

crowd of faces (Fischer & Whitney, 2011; Haberman & Whitney, 2007; Haberman & Whitney, 

2009), and emotional variance in a crowd of faces (Haberman, Lee, & Whitney, 2015). Though 

much of the research into ensemble perception focuses on visual ensembles, these 

representations can also be found in other sensory modalities. Common auditory examples, also 

referred to as “sound textures”, include running water, a swarm of insects, a crackling fire, a 
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chorus of birds, an outdoor crowd, a rattlesnake’s rattle (McDermott, Schemitch, & Simoncelli, 

2013; Zhai et al., 2020), or simply a series of tones (Albrecht, Scholl, & Chun, 2012). In both 

auditory and visual sensory modalities, stimuli can go through ensemble processing both if they 

are encountered simultaneously or sequentially (Albrecht & Scholl, 2010; Smith & Price, 2010; 

Haberman, Harp, & Whitney, 2009; Piazza et al., 2013; McDermott, Schemitch, & Simoncelli, 

2013; Zhai et al., 2020) (For a discussion of these different kinds of visual and auditory 

representations, see Whitney & Yamanashi Leib, 2018).  

 In each of these instances the amounts of stimuli can, and usually do, far exceed the 

established limitations on attention. This suggests that there may be two types of sensory 

processing systems involved in processing incoming information: an attention-based system and 

a non-attention-based system. Surely, they must interact to produce our continuous and coherent 

experience of the world around us. How would that work? Could it be that all information first 

goes through some ensemble perception filter before moving on to higher-order processing 

(similar to Broadbent’s filter theory (Broadbent, 1958) and Treisman’s attenuation theory 

(Treisman, 1964))? Is each ensemble calculated as a separate entity, or are all ensembles present 

in the whole scene calculated together? How is this information incorporated in the brain’s 

calculations over the course of sensory processing? How does it influence other brain functions, 

such as cognition or memory? These are questions that were explored by several studies, 

including the current one. 

Ensemble Perception and Attention 

 The question of how attention is deployed when calculating ensemble statistics was 

explored by Oriet and Brand, in 2013. They conducted two experiments involving tasks that 

relied on attending to a target ensemble, interspersed with distractor ensembles. In the first 
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experiment, participants were randomly assigned to one of two groups: one that was told to focus 

on vertical lines of varying lengths or one that was told to focus on horizontal lines of varying 

lengths (for the vertical lines group, the distractor sets consisted of horizontal lines; while for the 

horizontal lines group, the distractor sets consisted of vertical lines). For each group, the task was 

to determine which side of the screen, left or right, contained a target group of lines with a 

greater average length, after seeing the array for 200 ms. The trials were separated into three 

different conditions: two control conditions and one experimental condition. In the “single set” 

control condition, only the target set was presented on both sides of the screen, without any 

distractors. This was done in order to account for the possibility of selection difficulty, arising 

from the participants having to navigate two sets of stimuli and two sets of distractors. In the 

“matched” control condition, the target set was presented, interspersed with the distractor set on 

both sides of the screen. In both of these control conditions, the sets were presented in random 

positions within fixed grids on both sides of the screen. However, both target sets had an 

identical average length. This was also the case for the distractor sets. Therefore, in the matched 

condition, the lines in all four sets had the same average length. The difference appeared in the 

experimental, or “mismatched”, condition. There, as in the matched condition, the average length 

of the left and right target groups was identical, however, the average length of the distractor 

group on the left of the screen was either -40%, -20%, 20% or 40% larger than the distractor 

group on the right side of the screen. The distractor group on the right side still had the same 

average length as the two target groups. The researchers predicted that the judgement of which 

side of the screen contained the larger target group would be biased by the degree that the 

distractor group was larger or smaller than the target group on the left side. This is indeed what 

happened. 
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 While differences between the two control groups were not significant, the experimental 

groups showed that when the distractor set on the left was smaller than the relevant set, 

participants were less likely to indicate that the target set on that side was larger, while the 

opposite was true when the distractor set was larger. The likelihood also varied according to the 

degree of difference the distractor set had with the other sets. Oriet and Brand reasoned that it 

was possible that the presentation time of 200 ms was too short to allow participants to 

differentiate between target and distractor sets. Therefore, they then repeated this procedure in a 

second experiment, but altered various parts of it to allow participants to spend an unlimited 

amount of time looking at each set. The second experiment also revealed that there was a 

significant effect based on an inflated or deflated average length in the left distractor ensemble, 

relative to the target ensemble, which influenced the participants’ judgement of the target group. 

This study showed that all items in the visual field are automatically averaged together, 

regardless of whether any item or ensemble is meant to be attended to or not, indicating that the 

whole process of ensemble perception is, itself, pretattentive (for a wider discussion of this, see 

also Treisman, 2006).  

 Oriet and Brand were also careful to distinguish this work from other similar studies that 

reported segregation of ensembles before averages were calculated, stating that those studies 

compared ensembles where multiple attributes, such as color and orientation, were tested at once. 

They countered these studies by citing Moutoussis and Zeki (1997), which said that awareness of 

color may occur roughly 60 ms sooner than awareness of orientation (Oriet & Brand, 2013). It 

follows, then, that this temporal difference can produce separate ensemble representations about 

the same set of stimuli, leading to that segregation.  

Ensemble Perception and Domain Specificity 
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 That potential segregation of ensembles was explored in another study, by Haberman, 

Brady, and Alvarez, in 2015. In this study, they wanted to explore the question of whether 

ensembles at different levels of complexity were built out of some general ensemble mechanism, 

or if ensemble mechanisms were domain-specific. They hypothesized that if there was a 

correlation in individual subjects’ performances between different kinds of ensembles, 

representing different processing domains, then that would suggest a global mechanism. 

However, if there was correlation in performance between different ensembles within the same 

domain, but not across different domains, then it may be the case that ensemble mechanisms are 

domain-specific. To test this, they measured the degree of correlation in performance using 

different kinds of visual stimuli over the course of eight experiments. In the first experiment, 

they compared a high-level ensemble (average face identity) to a low-level ensemble (average 

Gabor patch orientation), while also comparing individual low-level stimuli and individual high-

level stimuli (a single Gabor patch or a single face), in order to determine how individual 

representations relate to ensemble representations. In a trial where only one face or only one 

Gabor patch was cued, participants had to adjust a test face or a test Gabor, using a computer 

mouse, to match the cued stimulus. In a trial where the whole set of faces or Gabor patches was 

cued, participants had to adjust the test face or test Gabor patch to the average identity or 

orientation of the whole set. For the remaining seven experiments, they repeated Experiment 1, 

but using different kinds of ensembles and attributes in order to determine how performance 

varied across many different domains.  

 Because Experiment 1 compared both single items and ensembles, they needed to ensure 

that participants were actually looking at the center of the screen. For that reason, Experiment 1 

was conducted in the lab, where they could ensure fixation on the center of the screen using eye 
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tracking software. Since the rest of the experiments involved comparing two different kinds of 

ensembles, instead of an ensemble and a single item of the same kind, eye fixation wasn’t 

necessary, so they were performed online. Due to this, Experiment 2 was simply a replication of 

Experiment 1, but in an online environment, using only the ensemble tasks. Experiment 3 also 

repeated Experiment 1, but with different high-level and low-level ensembles as stimuli: average 

facial expression in a set consisting of the same face with varying facial expressions compared to 

the average color of a set of isosceles triangles. Experiment 4 compared two low-level statistics 

using ensembles consisting of the same kinds of objects: the average orientation of a set of 

isosceles triangles and the average color of a set of isosceles triangles. Experiment 5 compared 

two different kinds of low-level ensembles and statistics: the average orientation of a set of 

Gabor patches and the average color of a set of dots. Experiment 6 compared two different kinds 

of low-level ensembles, using the same statistic: the average orientation of a set of Gabor patches 

and the average orientation of a set of isosceles triangles. Experiment 7 compared two high-level 

ensembles: the average identity of a set of faces and the average emotional expression in a set of 

the same face with varying expressions. Experiment 8 was meant to establish a theoretical 

ceiling of correlation and a theoretical floor of correlation and was split into two parts. 

Experiment 8a compared the average orientation between two sets of Gabor patches, where one 

set of patches hat a high frequency of lines, while the other had a low frequency. Since these 

tasks shared both the type of stimulus and the type of statistic, they were expected to have the 

highest degree of correlation of any of the tasks, establishing a theoretical “ceiling” of 

correlation. Experiment 8b compared performance on the average orientation of a set of Gabor 

patches and an adaptive letter span memory task. The letter span task was chosen because it is a 

working memory task that requires minimal visual processing, and especially does not require 
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ensemble processing. As such, the degree of correlation between these two tasks was expected to 

be around that of chance, establishing a theoretical “floor” of correlation. 

 The results of all these experiments painted an interesting picture. In Experiment 1, they 

found a significant correlation between subjects’ performances on individual face identification 

tasks and average face identification tasks, as well as a significant correlation between individual 

Gabor patch orientation tasks and average Gabor orientation tasks. However, there was no 

correlation between the face identification tasks and the Gabor orientation tasks, individual or 

ensemble. This showed that performance in identifying individuals in a set predicted 

performance in identifying the average of a set made up of either high- or low-level stimuli, but 

performance in identifying either individual or the average of the whole set of low-level stimuli 

did not predict performance with high-level stimuli, and vice versa. This was verified in 

Experiment 2, which again showed a low level of correlation between the average face identity 

task and the average Gabor orientation task. There was also a low degree of correlation between 

the high- and low-level tasks in Experiment 3. There was, however, a high degree of correlation 

in the following four experiments, where the stimulus domains were either both high-level or 

both low-level. The specific statistic being calculated did not appear to make any difference. 

These results suggest that there is a functional separation between performance in calculating 

statistics about high-level visual ensembles and low-level visual ensembles. Rather than there 

being one overarching mechanism for calculating ensemble statistics, it appears that each type of 

ensemble is calculated locally, at the level where that kind of stimulus is encoded. Put another 

way, as neural representations from lower processing domains are combined as features in more 

complex neural representations in higher processing domains, ensemble representations are also 

calculated in parallel from that same information. 
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Functional Benefits of Ensemble Perception 

 As stated previously, ensemble processing is useful because it can create an impression of 

a set of relatively redundant stimuli that is more accurately represents the whole set than any 

individual member can. This is because the process of averaging automatically cancels out 

random deviations from the mean any individual in the group may have. One benefit of this is 

that it can allow the brain to rapidly categorize groups of items in a visual scene. The distribution 

of the individual items averaged in the ensemble along each feature dimension, or “feature 

distribution”, can serve to inform the visual system of the general layout of the scene. As 

described by Duncan and Humphreys (1989), in a visual search task, where a target stimulus 

needs to be found among distractor stimuli, it become more difficult to find the target stimulus if 

there is a high amount of heterogeneity among the distractors. However, Yurevich and Utochkin 

(2014) found that if there is a smooth feature distribution of distractors, rather than a sporadic 

one, it instead makes it easier to identify the target stimulus. Based on this observation, they 

proposed that there is some threshold of dissimilarity they referred to as “segmentability”. If the 

feature distribution of a set of features is closer together, they are more likely to be counted as 

one heterogeneous group by the visual system. However, if the feature distributions of groups of 

stimuli are far enough apart, they are then “segmentable”, and are considered by the visual 

system to belong to different groups. An example of this can be seen in berries growing on a 

bush: the ripe ones tend to be red, while the unripe ones tend to be green. As a feature 

distribution, the colors of the berries would be presented as clustering around two peaks instead 

of one, thus their segmentability allows for the recognition that they belong to two groups instead 

of one. Other feature distributions can be calculated along all the other dimensions mentioned in 

the introduction, across low, intermediate, and high processing levels. The closer a given item in 
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an ensemble is to the ensemble’s mean, in a given dimension, the more likely it is to be 

considered part of a group (Yurevich & Utochkin, 2014; Im, Tiurina, & Utochkin, 2021). 

Conversely, the further from the mean the value from an item is, the less likely it is to be 

considered part of the group (Khayat & Hochstein, 2018; 2019). 

 Besides implicit categorization, ensemble percepts can also facilitate change detection 

and outlier detection over the whole visual scene. Because they are not as well-represented as the 

items in the focus of attention, changes in individual items in an unattended ensemble tend not to 

be noticed by the visual system. This leads to the phenomena of change blindness (Simons & 

Levin, 1997) and inattentional blindness (Rock et al., 1992). However, if the change is such that 

it alters the summary statistic of the ensemble in one or more of its relevant dimensions, or its 

ensemble structure, then the change is noticed (Alvarez & Olivia, 2009), even though it occurs 

outside the focus of attention. This same property is what enables ensemble representations to 

facilitate outlier detection (Cavanaugh, 2001; Cohen, Dennett, & Kanwisher 2016). If an item is 

sufficiently different from the rest of the items around it, it is more likely to stand out in the 

scene. 

 By allowing the visual system to roughly group stimuli according to their feature 

distributions in a scene, as well as detect outliers and statistical changes in the features of a 

scene, all outside the focus of attention, ensemble perception allows for a representation of the 

general patterns that can be found in any given scene. These patterns can then guide the focus of 

attention in its visual search of the scene in an efficient and intuitive way. They can also provide 

the visual system with clues as to what kind of environment is being observed by combining 

low-level features and then using them to categorize the whole scene (Olivia & Schyns, 1997; 

Schyns & Olivia, 2004; Triesman, 2006; Cohen, Dennett, & Kanwisher, 2016). Without this 
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ready-made contextualization of the scene, attention would be “flying blind”, unable to orient the 

items it focuses on within the larger context of the scene. There would be no ability to detect 

outliers or changes in the scene (Noe & O’Reagan, 2000; O’Reagan, 1992; Alvarez, 2011), 

unless the observer happened to be focusing on them when they occurred. 

Ensemble Perception, Anatomy, Reverse Hierarchies, and Metacognition 

 There are several neuroanatomical sites potentially related to visual ensemble processing. 

Since neurons in regions lower in the visual processing hierarchy, such as V1 and V2, have the 

smallest receptive fields (Hubel & Wiesel, 1977, Reynolds & Chelazzi, 2004), it has been 

proposed that ensembles themselves are calculated by the pooling of incoming signals from 

those lower regions (Haberman & Whitney, 2012). That same pooling is also what allows for 

each of the cells in higher processing areas in the hierarchy to have larger receptive fields, 

representing a larger area of the visual scene (Rousselet, Thorpe, & Fabre-Thorpe, 2004). Some 

higher regions that have been implicated in ensemble perception include V3, which is involved 

in processing the orientations of groups of lines; the parahippocampal place area, which is 

responsible for identifying a given scene; the retrosplenial cortex, which recognizes how a scene 

is laid out; the occipital place area, which recognizes the navigability of a given scene; as well as 

the fusiform cortex, which is specialized to recognize faces and emotional information they 

convey (Tark et al., 2021; Cohen, Dennett, & Kanwisher, 2016).  

 Interestingly, Tark and colleagues (2021) were able to identify, in one of a series of fMRI 

studies, that while signals in the visual cortex travelled from V1, to V2 and V3, their activity 

would vary depending on task requirements. In this study, participants were briefly shown a set 

of 36 Gabor patches and were asked to either report the average of the whole set or to report the 

orientation of a single pre-cued Gabor patch among the other Gabor patches. These two different 
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kinds of trials were presented either in a task paradigm that was meant to prioritize mean 

orientation identification or in a paradigm that was meant to prioritize single orientation 

identification. In reality, both task paradigms had both tasks interspersed within them. The data 

were analyzed using Representational Fidelity, a measure that compared the angles being 

represented in a given brain region to a previously calculated encoding model, based on each 

voxel’s orientation selectivity. After analyzing the data, Tark and her colleagues found that 

during the mean orientation task, when the mean orientation was reported, there was a low 

amount of fidelity in V1, a moderate amount of fidelity in V2, and a high amount of fidelity in 

V3. However, when a single Gabor patch was pre-cued during the mean orientation task, there 

was very little fidelity in all three regions. Meanwhile, during the single orientation task, when 

the single Gabor patch was pre-cued, there was that same steady increase in fidelity from V1 to 

V3. The angles were being progressively more accurately represented as they travelled up the 

hierarchy. However, when the single Gabor patch was not pre-cued in the single orientation task, 

and the mean orientation had to be reported, there was still a moderate amount of fidelity in V1 

and V3, though not as much in V2. They reasoned that this was happening because the entire 

ensemble of lines was being represented in V3, regardless of its task relevance. This is similar to 

the conclusion reached by Oriet and Brand (2013) discussed above. The difference is that now 

this was demonstrated anatomically, using brain scanning technology.  

 A framework for how ensemble perception may fit into larger perceptual processes can 

be found in Reverse Hierarchy Theory (RHT). First proposed by Ahissar and Hochstein 

(Hochstein & Ahissar, 2002; Ahissar & Hochstein, 2004), just as in the classical view, RHT 

states that, while signals travel up the sensory processing hierarchy, all of their component parts 

are integrated, the representations of the stimuli becoming more complex and more integrated as 
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they travel up the hierarchy, with more and more of the visual field being represented by 

individual cells as the signals travel up the hierarchy. Conscious awareness of the visual scene 

does not occur until the signals arrive at the highest levels of the processing hierarchy. That is 

where the overall gist impression of the scene is first detected. This is where RHT diverges from 

other theories of consciousness, which have suggested that further processing of the scene that 

would allow for the perception of details would occur in higher regions or in the parietal cortex. 

Instead, Ahissar and Hochstein argue that in order to perceive the finer details of a scene, 

attention needs to be deployed to specific areas of the scene, directed, perhaps, by regions in the 

parietal cortex or the pulvinar (Hochstein & Ahissar, 2002), by selecting cells in the higher 

regions of the hierarchy and causing them fire back down into lower levels in the hierarchy. This, 

in turn, causes the lower-level cells to fire again, causing the impression of the area of the scene 

those cells represent to become more robust, making them stand out more from the background, 

in more detail. With enough iterations of this, the cells lower in the hierarchy become more 

likely to fire, through long-term potentiation, which adds even more weight to the signal coming 

from them. As attention shifts from one focus to the other, different parts of the visual field 

become attenuated in this way. With training, fast detection of details in a scene becomes easier 

and easier, but in different ways, depending on how far the stimulus can travel up the hierarchy 

and how much those higher regions can then influence the cells lower in the hierarchy that feed 

their projections into them. 

 In a series of experiments, Ahissar and Hochstein (2004) demonstrated, first, that when 

participants were presented with an array of lines at identical angles, they were able to detect a 

single line that was at a different angle from the rest of the lines. When they modulated the 

amount of time the stimulus array was presented before a mask was presented (stimulus-to-mask 
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onset asynchrony, or SOA), they found that the amount of time affected the flexibility with 

which participants could detect the line. When the SOA was long (more than 250 ms), 

participants could detect the line regardless of its location, orientation, or distance from the 

fixation point at the center of the array. On trials where the SOA was shorter than 250 ms, 

participants tended to only be able to detect it if it was in the same location from trial to trial, had 

the same orientation, and was closer to the fixation point. Ahissar and Hochstein reasoned that 

this was because the signal had not yet had time to travel all the way up the cortical hierarchy, so 

it did not get to have an opportunity to integrate with higher level objects and concepts. As the 

longer SOA’s allowed for that, the detection of the outlying stimulus could be generalized across 

the whole visual field. This was accomplished because higher-level neurons had enough time to 

bias lower processing levels in the hierarchy through their feedback projections and increase 

their sensitivity to the outlier stimulus.  

 This was supported in subsequent experiments where Ahissar and Hochstein trained 

participants further by presenting the array with long and short SOAs in an interleaved manner. 

Initially, detection was low in both conditions, but over time, a telling pattern emerged. At first, 

participants began to improve only on the longer, easier, SOA detection tasks. They only began 

to improve on the trials with shorter SOAs once their performance had significantly improved on 

the trials with long SOAs. What this showed is that information about the anomalous stimulus 

was first integrated at higher processing regions, which adapted to it in multiple dimensions, 

allowing them to deploy attention to that stimulus more flexibly. Once that was achieved, the 

attentional deployment to more and more regions of the visual field strengthened the signals 

coming from those regions and trained the neurons further and further down in the hierarchy to 

fire when they detected the outlier. Because the higher-level regions were increasing the weight 
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of incoming signals through their feedback projections, participants could soon detect the outlier 

stimulus after the short SOAs, as well as they could after the long SOAs, even though the signal 

still did not have the opportunity to travel all the way up the hierarchy. In this way, RHT 

explains how ensemble perception is calculated – as a bottom-up pooling of signals through 

consecutive processing regions, leading to a conscious overall undetailed impression of the scene 

– and how it serves to then direct attention to particular parts of the scene, scrutinizing them, 

allowing us to experience those parts in detail. That initial generalized entry into consciousness 

is characterized also by our subjective recognition that we are conscious of it. That recognition 

that we are conscious of something is a prime example of what is called “metacognition”. 

 Metacognition is our ability to consciously evaluate and make judgements about our own 

cognitive or perceptual performance (Nelson, 1996). Simply put, it is our ability to “think about 

thinking”. Whenever someone wonders how well they can remember some piece of information, 

assesses their strategy for computing a math problem in their heads, or realizes that their 

thoughts have drifted from what they meant to be thinking about, they are utilizing 

metacognition. If a person can make metacognitive judgements about a neurological operation, 

such as how well they remember something, or how well they can see something, that means that 

that information is accessible to consciousness and can be attended to. If they cannot, then the 

information is not accessible. For example, a person cannot assess how well the representation of 

line orientations used in constructing the overall representation of a three-dimensional object 

performed in its integration, independent of the other processing domains that constructed that 

final impression. Even though those elements had to be identified and integrated by the brain to 

create the final impression, our inward-facing metacognitive eye is blind to them. 
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 This process of self-referential conscious access can be measured in several ways, 

depending on what is being studied. Typically, the degree of metacognitive ability is determined 

by comparing objective performance to the subject’s evaluation of their performance. 

Metacognition in purely cognitive tasks, such as memory tasks, is probed by assessing the 

participant’s subjective Judgement of Learning (JOL) measure; while on perceptual tasks, it is 

the participant’s degree of confidence in how well they perceived a stimulus that speaks to how 

much they were able to consciously access the representation in question (Bonder & Gopher, 

2019). If they are more confident, that certainty is due to how well they were able to perceive the 

stimuli. This is the metric we employed in our current study.  

The Current Study: Metacognitive Access to Ensemble Representations 

 Because ensemble processing happens outside of our conscious awareness, it remains 

unknown whether ensemble representations themselves are accessible to metacognition. For 

instance, it could be the case that they are completely inaccessible, and only become indirectly 

apparent to cognitive processes because of how they bias the overall sensory input and 

subsequent cognitive operations based on it. On the other hand, if the ensemble representations 

can be accessed by metacognition, then discreet judgements could be made specifically about the 

summary information they provide.  

 Some work has been done to explore this type of relationship. In one study, it was shown 

that there can be metacognitive access to ensemble representations in higher levels of the visual 

processing hierarchy, like our ability to detect average faces (Ji & Hayward, 2021). However, 

they also found that this metacognitive access was conditional on whether or not participants 

were asked to identify the average face in a group of faces. When they were asked to identify the 

average face, confidence was high and the participants were able to report it. In conditions where 
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they were asked to recall if a particular face was present in a set of faces they were previously 

presented, their answers tended to be biased towards the average face, but their confidence was 

low. Ensemble perception persisted, preattentively, but without metacognitive access.  

 As for visual processing in regions lower in the processing hierarchy, which tend to 

encode simpler features, rather than entire objects, other researchers have probed other kinds of 

cognitive access into ensemble perception, like value associations (Dodgson & Raymond, 2020), 

but no one has yet investigated whether ensemble representations calculated lower in the visual 

hierarchy can be accessed through metacognition, when the task requires it, in the way ensemble 

representations higher in the hierarchy can. This is the focus of the present study. In order to 

determine whether visual ensemble perception can be accessed by metacognition, we measured 

the accuracy of participants’ estimates of the average angle of a rapidly presented set of lines 

with randomly assigned angles. We then probed their metacognitive access to the ensemble 

representation by asking them to rate their confidence in their answer after each array. Here, we 

define metacognition as the ability to access the output of the ensemble representation, rather 

than the steps involved in creating it. If, as we suspected, the participants’ confidence scores 

were correlated with the accuracy of their answers (that is, inversely correlated with their degree 

of absolute error), then low-level visual ensemble representations would be accessible to 

metacognition. If there was no correlation at all, then that would mean there is no metacognitive 

access to that lower-level ensemble. Our results demonstrated, that there was no correlation 

between participants’ accuracy and how confident they felt about their performance.  

Part 2. Methods 

Participants 
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 This experiment was made freely available to users on Prolific.co, an online platform for 

psychological experiments. There were 75 participants (37 men, 38 women, ages ranging from 

19 to 65), a number determined by a sample size power analysis. 7 participants were excluded 

because the confidence values they reported were less than one standard deviation away from the 

mean of all of the standard deviations for confidence values reported by each participant in the 

study. This meant that they were selecting the same or very similar confidence values for each 

trial, suggesting they were only selecting a value to move the experiment along, rather than 

reporting their actual confidence levels. Each participant was paid $4.50 once they completed the 

experiment.  

 We used Psychopy Builder v2021.2.0 to design the experiment, which we then uploaded 

to Pavlovia.org. Participants accessed and completed the experiment via a link to Pavlovia, 

posted on Prolific. In order to maintain anonymity, they were assigned numbers other than their 

Prolific IDs upon starting the experiment in Pavlovia. These were the only numbers we used to 

identify participants in our analysis. By design, Prolific prevents participants from participating 

in a study more than once. 

Stimuli 

 The stimuli consisted of a 4 x 4 array of 1-cm-long lines, with constituent angles having 

random orientations, ranging from 10° to 80°, in 5° increments, with 0° being a horizontal line. 

This range of angles was chosen in order to limit the difficulty of the task. The lines also had a 

randomized positional jitter in x and y directions of either 0, 25, or -25 pixels. Together, this 

ensured that no two arrays were identical, in terms of both the angle of each line and their 

positions in space. At a distance of roughly 57 cm from the screen, the visual angle of the arrays 

was 4° ± 1.3°. 
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Design and Procedure 

 Participants were first shown a consent form to read, which detailed the content of the 

experiment. If they consented, they were taken to the next screen. If they did not consent, they 

were instead taken to the end of the experiment. They were also asked whether their data can be 

used for future research by the current researchers and/or by future researchers. 

 Next, participants were instructed to adjust a picture of a credit card on their screen using 

the arrow keys on their keyboards at home, so that it would match the size of their own credit 

cards. This size adjustment was then applied to the size of the presented stimuli and to their 

spacing, so that they would remain constant across different monitor sizes. After that, the 

participants were shown a screen explaining to them the contents of the experiment and the two 

tasks they would have to complete in each trial. Then they were taken through 5 practice trials of 

the task to get accustomed to it.  

 Following the practice trials, participants started the actual experimental trials. Each trial 

consisted of three steps. First, participants were shown the stimulus array for 200 ms, preceded 

and followed by a blank screen lasting 1 second. This was followed by a probe, where each 

participant used the left and right arrow keys on their keyboards to rotate a single line so that it 

matched what they believed was the average orientation of the set of lines they were just shown. 

Next, they were asked to rate their confidence in their assessment on a scale of 1 to 100 (as seen 

in Pallier et al., 2002 and Bonder & Gopher, 2019). This was repeated 60 times per participant 

(see Figure 1).  

 Once the trials were finished, participants were asked demographic questions about their 

age, ethnicity, and gender. Then they were thanked for their participation and given a completion 
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code so that they could get paid for their time. Measures of confidence, estimated average angle, 

actual average angle, and response times for each stage of each trial were recorded by Prolific. 

The answers to the demographic questions, as well as the angles and jitter of each line in each 

presented array were also recorded. 

 Once the data were collected, the participants’ estimates of the average angle of each 

array were subtracted from the actual average angle of that array. The error of each participant 

was the absolute value of that difference; the higher the error, the further their answer was from 

the actual average angle. The key measure of this study was a correlation analysis between 

confidence and error. However, if there was not a correlation between those two particular 

measures, there could have been correlation between these measures and other aspects of the 

experiment. Therefore, along with this main measure, the correlation coefficients of confidence 

and probe adjustment reaction time; confidence and distance the probe was rotated; error and 

probe adjustment reaction time; and error and distance rotated were also calculated. Finally, in 

order to determine if the range of the angles presented in a given trial correlated with any of 

these measures, the correlation analyses were repeated for range and confidence; range and error; 

range and probe adjustment reaction time; and range and distance rotated. These analyses were 

performed at the individual level, and then averaged and performed at the group level. 
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Figure 1. A representation of the order in which stimuli, probe adjustment task, and confidence 

rating task were shown to participants in each trial (text enlarged for legibility).   

Part 3. Results 

  The question this study was designed to investigate was whether the output of early 

ensemble perception was accessible to metacognition. Therefore, the key measure was a Pearson 

correlation coefficient between reported confidence levels and the absolute error between 

estimated averages and actual averages of all lines in each array, for each trial. We computed 

correlation coefficients between absolute error and confidence for each participant and then 

transformed those to Fisher z values for subsequent statistical analyses. The average Fisher z 

value between absolute error and confidence was low (Fisher z = -.011) and a two-tailed t-test, 

comparing Fisher z scores to 0 was not statistically significant (t(67) = -.66, p = .509). This 

indicated that, overall, performance on this low-level ensemble task did not correlate with the 
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degree of metacognition exhibited by the participants, though there were individuals who 

showed a moderate level of correlation (see Figure 2), indicating a potential role for individual 

differences in either overall confidence or accuracy in reporting ensemble representations. 

 Because other aspects of participants’ performance were also measured, the analysis was 

extended to investigate whether or not any of them correlated at the group level. These included 

probe adjustment reaction time (PArt), the distance the probe was rotated (DR), and the range of 

angles presented in each trial. Fisher z scores were very low between all these measures as well 

(Confidence vs. DR (Fisher z = .006); Range of Angles vs. PArt (Fisher z = .016); Range of 

Angles vs. DR (Fisher z = .005); Confidence vs. PArt (Fisher z = -.103); Confidence vs. Range 

of Angles (Fisher z = -.047); Absolute Error vs. PArt (Fisher z = .049); Absolute Error vs. DR 

(Fisher z = .075); and Absolute Error v. Range of Angles (Fisher z = .048)). 

 However, when the two-tailed t-test was repeated on these comparisons, using Bonferroni 

adjusted alpha levels of .0056 per test (.05/9), only two of them yielded t-values that showed that 

they were significantly different than 0 (Confidence vs. PArt (t(67) = -4.18, p < .001) and 

Absolute Error vs. Range of Angles (t(67) = 3.03, p = .004)). The rest of the comparisons yielded 

t-values which indicated that they were not significantly different than zero at the group level 

(Confidence vs. DR (t(67) = .25, p = .804); Range of Angles vs. PArt (t(67) = 1.03, p = .309); 

Confidence vs. Range of Angles (t(67) = -2.64, p = .010); Absolute Error vs. PArt (t(67) = 2.06, 

p = .044); Absolute Error vs. DR: t(67) = 2.63, p = .011; and DR vs. Range of Angles (t(67) = 

.27, p = .788)).  

 Along with looking at the distribution of correlation coefficients from each participant 

across all the measurements mentioned above, we also looked at how the average values of those 

measurements correlated to one another across all participants, with a Bonferroni adjusted alpha 
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level of .0056 per test (.05/9). Of the nine different correlations, however, only absolute error vs. 

distance rotated (r(58) = .54, p < .001), showed significant correlation at the group level. The rest 

did not (Absolute error vs. PArt (r(58) = .26, p = .030); Confidence vs. Error (r(58) = .13, p = 

.284); Confidence vs. PART (r(58) = -.003, p = .981); Confidence vs. DR (r(58) = .19, p = .119); 

Confidence vs. Range (r(58)  = -.10, p = .433); Range vs. Error (r(58) = .14, p = .247); Range vs. 

PART (r(58) = .06, p = .625); Range vs. DR (r(58) = .15, p = .233)). This likely means that the 

further the probe was moved, the more it negatively affected performance.  
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Figure 2. Box and Whisker plots depicting the distribution of correlation coefficients for each 

participant within the nine different correlation analyses that were conducted. While each of 

these plots reflect the results across all participants in the study, in each analysis, there were both 

participants who showed significant, but weak, correlations and participants who showed 

significant, but weak, anti-correlations. 
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Part 4. Discussion 

 The data at the group level showed that there was no correlation between participants’ 

level of confidence in their performance and the absolute error between the actual average angle 

of the lines presented and the estimates the participants gave. Though they should be interpreted 

with caution, and further studies are needed to fully explore a potential relationship between 

ensemble perception and metacognition, these results do not support that there is a relationship 

between ensemble processing and metacognition, at least not at this early stage of visual 

processing. We were therefore unable to reject the null hypothesis. This result is indirectly 

supported by studies that show that ensemble representations at early stages of visual processing 

are preattentive (Oriet & Brand, 2012), and therefore it is unsurprising that they were not 

accessed by metacognitive mechanisms. However, it is still interesting that correlations have 

been found at later stages of visual processing between ensemble perception and metacognition, 

depending on the type of task, as mentioned previously (Ji & Hayward, 2021). 

 Other sets of data collected in this study were also checked for any correlations between 

them. Besides confidence and absolute error, probe adjustment reaction time, the distance the 

probe was rotated, and the range of angles presented in each trial were also included. All of these 

measures were compared to one another. Though all of them yielded rho values and Fisher z 

values that were close to 0, a two-tailed t-analysis showed that only two comparisons were 

significantly different than 0. The first of these was the comparison between confidence and 

probe adjustment reaction time. Therefore, it can be said that there was a very weak anti-

correlation at the individual level between those two measures. This means that, at a very small 

but significant rate, that either the more confident participants felt, the less time they took 

adjusting the probe; or the less time they spent adjusting the probe, the more confident they felt. 
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Second, the comparison between error and range of angles also had a t-value significantly 

different than 0, though the Fisher z value was still very low. This indicates that there was an 

extremely weak but significant correlation between those measures at the individual level, 

meaning that participants were very slightly more likely to make errors when the range of angles 

presented was wider. This result aligns well with previous literature suggesting decreased 

performance in ensemble perception tasks when the range of values along a feature dimension 

increases (Utochkin & Tiurina, 2014). 

 Normally, directionality cannot be established from a correlation coefficient. However, in 

the cases involving participants’ performance and their adjustment of the probes, as there was no 

relationship found between metacognitive access at this level of processing, it can be inferred 

that participants would have had no awareness of how well they were doing at a given trial. 

Since participants were given no feedback on their performance, this meant that their amount of 

error could not influence how much they manipulated the probe, but their manipulation of the 

probe could influence their amount of error. The directionality can also be established in the case 

involving the range of the angles presented because they were randomized every trial, and so 

could not determine participants’ levels of confidence.  

 While there was either no correlation, a very weak correlation, or a very weak anti-

correlation across all measures, it is interesting that there were individuals in several of the 

comparisons who differed significantly from the mean either in a positive direction or a negative 

one. This could mean that individual differences may play a role in how these measures correlate 

in at least a subset of the general population. These outliers were most noticeable in the 

distribution of correlation coefficients between levels of confidence and how much they engaged 

with the probe (both in terms of time and the distance moved); as well as between absolute error 
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and how much they engaged with the probe (again, both in terms of time and distance moved). 

However, because they differed in both positive and negative directions, it is difficult to 

characterize the nature of these individual correlations.  

 As mentioned in the Results section, we also calculated the correlation coefficients 

between the averages of each of the measurements taken, producing rho values that represented 

the entire group of participants. This differed from the initial measurements, which were based 

on correlation coefficients calculated from each value across all the runs for each participant. 

This produced a correlation coefficient for each participant, which we then converted to Fisher z 

scores in order to run further analyses on them. Conversely, the group correlation analysis was 

based on a dataset made up of a set of values that were the average values of each participant’s 

performance on each of the different measurements. This allowed us to answer questions with a 

wider reach than just the participants in our study, such as “On average, do people with low 

absolute error tend to have higher confidence?” or conversely, “On average, do people with 

higher confidence tend to have lower absolute error?”. 

 The correlation analysis at the group level showed, again, no correlation between 

confidence and performance at the group level. There was, however, a significant moderate 

correlation between absolute error and the distance the probe was rotated. This means that on 

average, performance tends to suffer if the probe is rotated further from its starting position 

during a given trial. Again, since there is no correlation between metacognitive judgements and 

performance on this task, it is likely that how much they interacted with the probe was not 

influenced by their performance on previous trials.  

 Because this experiment was carried out online, presumably on each participant’s home 

computer, we had no way of ensuring that participants were actually focusing on the center of 
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the screen before each trial, as trials within the lab could, by using eye-tracking mechanisms (as 

in Haberman, Brady, & Alvarez, 2015). Therefore, the lack of correlation could be explained by 

inconsistent attention between trials or distraction by other objects in their fields of view. It is 

also possible that the trial time of 200 ms was too short, although this is unlikely, since other 

studies (Chong & Treisman, 2003) have shown that accurate ensemble estimates can be extracted 

from stimuli being presented for as little as 50 ms without any pattern masks. However, contrary 

to that, Whiting and Oriet (2011) have shown that the average can be extracted from arrays 

presented for 200 ms with pattern masks, but no shorter. Pattern masks (Exner, 1868) are useful 

for blocking higher-level visual processing of stimuli in memory tasks, allowing the study of 

earlier visual processing. We did not use them here because they are usually used in studies 

where the stimuli are presented for shorter durations than 200 ms, however a repetition of this 

experiment with longer and shorter exposure times, with or without pattern masks, could perhaps 

yield illuminating results.  

 Another possible confound of the study was that the possibility that the 4 x 4 array of 

lines was too small or was composed of too few elements. Other studies (Ariely, 2001; Robitaille 

& Harris, 2011; Dodgson & Raymond, 2020) have shown that increasing the number of items of 

the same kind in an array improves performance. However, other studies have achieved positive 

results using an array of 16 lines arranged in a 4 x 4 grid (Im, Tiurina, & Utochkin, 2021). In 

order to better assess whether or not lower-level visual ensemble processing can be accessed by 

metacognition, this study should be repeated in a controlled lab environment, with eye-tracking 

to ensure fixation before each trial, with minimal distractions. Other manipulations that could be 

attempted include assessing performance with ensembles consisting of more and fewer items, 

ensembles with wider and narrower ranges of angles, or arrays consisting of the same amount of 
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items, but taking up more of the visual field, with either a corresponding increase in size of each 

of the elements in the array, or not.  

 Another potential future manipulation could be in regard to the metacognitive aspect of 

the study. For instance, performance could be compared between one group that had a 

confidence rating task and another that did not, in a counterbalanced fashion across participants. 

Other studies have shown that there may be a reactivity effect from probing metacognition 

(Rhodes & Tauber, 2011), though whether it has a positive or negative effect on performance 

tends to vary from study to study (as discussed in Bonder & Gopher, 2019). Other studies have 

also shown improvement in performance, relative to metacognition, after participants were given 

feedback on their performance (Bonder & Gopher, 2019). This can be incorporated in future 

iterations of this study. Another future approach can involve separating participants into groups 

based on assessments of their overall levels of confidence in their cognitive performance. The 

complexity of the stimuli in the ensembles can also be manipulated between groups, so that a 

comparison can be made between performance and metacognitive access across lower- (lines and 

different-colored shapes) and higher-level (faces and complex objects) visual stimuli. Finally, in 

line with RHT and studies regarding perceptual learning carried out by Ahissar and Hochstein, 

metacognition can also be probed with respect to adaptation to low-level stimuli over time, with 

difficult (short SOAs) conditions being bootstrapped by easy (long SOAs) conditions. 

Part 5. Conclusion 

 This study showed that there was no correlation between early ensemble perception and 

metacognition, suggesting that participants were not able to subjectively access the average 

orientation of all lines presented in an array to make judgements about their own performance. 

There were also no correlations or very weak correlations between other aspects of the 
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experiment. However, slightly stronger correlations were found at the group level that suggested 

that spending too much time adjusting the probe or adjusting the probe over a greater distance 

can have detrimental effects on performance. Perhaps repetitions of this experiment in the future, 

using a variety of different parameters, may serve to elaborate how cognitive processes and early 

perception interact with one another. However, at present, the relationship between 

metacognition and ensemble perception remains poorly defined. 
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