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Abstract

Higher Diffeology Theory

by

Emilio Minichiello

Advisor: Mahmoud Zeinalian

Finite dimensional smooth manifolds have been studied for hundreds of years, and a massive

theory has been built around them. However, modern mathematicians and physicists are

commonly dealing with objects outside the purview of classical differential geometry, such as

orbifolds and loop spaces. Diffeology is a new framework for dealing with such generalized

smooth spaces. This theory (whose development started in earnest in the 1980s) has started

to catch on amongst the wider mathematical community, thanks to its simplicity and power,

but it is not the only approach to dealing with generalized smooth spaces. Higher topos theory

is another such framework, considerably more abstract and based heavily on categorical and

homotopical techniques. In this dissertation, these two points of view are combined. We draw

a bridge between these frameworks by using a cofibrant replacement functor of Dugger’s to

embed diffeological spaces into simplicial presheaves in a homotopically correct way. From

this we prove that the theory of bundles between these two frameworks agree. We then

port over the powerful tools of higher topos theory, such as the shape operator, to obtain

new results in diffeology. As our main result, we obtain a short exact sequence exhibiting

the obstruction to the Cech-de Rham isomorphism for diffeological spaces in all dimensions,

building on an analogous result of Patrick Iglesias-Zemmour’s in dimension 1. This work

consists of the content of two papers [Min22] and [Min24], which make up Chapter 1 and

Chapter 2, respectively.
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Chapter 1

Diffeological Principal Bundles and

Principal Infinity Bundles

1.1 Introduction

Principal G-bundles and Čech cohomology are important tools in the study of smooth mani-

folds. However, in recent years, the desire to expand the typical objects of study in differential

geometry has led to various frameworks in which one can define a “generalized smooth space.”

In this paper, we construct a bridge between two such frameworks. One of them is diffeology,

as popularized in the textbook [Igl13]. A diffeological space consists of a set X, and a set

DX of functions Rn → X, for varying n ≥ 0, satisfying three simple conditions. While the

definition of a diffeological space is simple, a large number of interesting spaces outside the

purview of classical differential geometry can be given a diffeology. Every finite dimensional

smooth manifold inherits a canonical diffeology, as does the set C∞(X, Y ) of smooth maps

between any two diffeological spaces. In fact the category of diffeological spaces is complete,

cocomplete and cartesian closed. More precisely it is a quasi-topos [BH11]. This is of course

not the case for the category of finite dimensional smooth manifolds, and thus provides a

“better” category in which to work. Various important constructions in classical differential

1
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geometry have been defined for diffeological spaces, like differential forms, deRham cohomol-

ogy, fiber bundles, tangent spaces [CW15], and recently Čech cohomology [Igl20a] [KWW21]

[Ahm23].

The second framework is higher topos theory. Here the objects of interest are ∞-stacks

over the site Cart of cartesian spaces. Many constructions of classical differential geometry

can be extended to∞-stacks, with interesting applications. One such extension is the notion

of a principal ∞-bundle, as defined in [NSS14a] and [NSS14b]. Classical principal bundles

and non-abelian bundle gerbes are particular examples of principal∞-bundles. Principal∞-

bundles allow for a robust framework wherein one can study twisted, equivariant or differen-

tial refinements of generalized cohomology theories. For more on this theory we recommend

the texts [Bun22a], [Bun23], [FSS+12], [ADH21], [Sch13], [BNV16], [SS21]. In this paper,

we will use the presentation of this theory by simplicial presheaves. Thus, the reader does

not need to be comfortable with the language of ∞-categories in order to read this paper.

The first connection between these two framworks was made in [BH11], in which Baez

and Hoffnung proved that the category of diffeological spaces is equivalent to the category

ConSh(Open) of concrete sheaves on Open, the category of open subsets of cartesian spaces

and smooth maps, equipped with the coverage of open covers. This means that diffeological

spaces can be thought of as certain kinds of sheaves. This is a very powerful point of view,

especially with respect to studying the homotopy theory of diffeological spaces [Pav22b]. In

particular, the category of concrete sheaves on Cart embeds fully faithfully into the category

sPre(Cart) of simplicial presheaves on Cart, whose objects are functors X : Cartop → sSet.

Just as some presheaves of sets are sheaves, some simplicial presheaves are∞-stacks. Higher

topos theory can also be called homotopical sheaf theory, and∞-stacks are the main objects

of study. Sheaves of sets are discrete ∞-stacks, and stacks of groupoids are 1-truncated

∞-stacks, see Section 1.5 for a more detailed discussion.

Embedding the category of diffeological spaces into the category of simplicial

presheaves puts diffeological spaces into a homotopical framework that is both easy to work
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with and connects powerfully with the underlying homotopy theory of simplicial sets. One

such consequence of this connection is the following theorem, which is the main result of this

paper.

Theorem 1.6.8. Given a diffeological space X and a diffeological group G, there is a weak

homotopy equivalence,

NPrin∞G (X) ≃ NDiffPrinG(X).

where NDiffPrinG(X) is the nerve of the category of diffeological principal G-bundles on X

and NPrin∞G (X) is the nerve of the category of G-principal ∞-bundles on X.

Some explanations are in order. In the case where X is a finite dimensional smooth

manifold and G is a Lie group, the above result is well known, see [Sch13, Section 1.2.6]

and [FSS+12, Section 3.2.1]. The method of proof is as follows: For a finite dimensional

smooth manifold M , one chooses a good open cover U of M , and from this constructs a

simplicial presheaf Č(U) called the Čech nerve of U (see Example 1.5.7). Maps from Č(U)

to the∞-stack BG are precisely G-cocycles with respect to U, and these classify G-principal

bundles onM , see [Bry09, Chapter 2.1] and [Hus+07, Section 5.4] for example. The simplicial

presheaf Č(U) is projectively cofibrant, and using the machinery of Section 1.5 along with the

classification of principal bundles using cocycles on smooth manifolds, the above Theorem is

easily proven for the special case of smooth manifolds.

However the above method of proof does not carry over straightforwardly to diffeological

spaces. For one, there exist diffeological principal bundles that do not locally trivialize over

any open cover (with respect to the D-topology) of its base space [Igl13, Article 8.9]. Thus

one is forced to look for an analogue of Č(U) which does not use any notion of open cover.

This is accomplished by a cofibrant replacement construction of Dugger’s [Dug01, Lemma

2.7], which when applied to a diffeological spaces gives the following result.

Lemma 1.5.18. Given a diffeological space X, thought of as a discrete simplicial presheaf
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on Cart, the simplicial presheaf QX given by the following coend formula

QX =

∫ [n]∈∆
∆n
c ×

 ∐
Upn→···→Up0→X

yUpn

 (1.1)

where the coproduct is indexed by (NPlot(X))n, the set of n-many composable morphisms

in the category of plots over X, is a cofibrant replacement for X in the projective model

structure on simplicial presheaves over Cart,

This construction can be understood in a more concrete way as follows. Given a diffeo-

logical space X, let B =
∐

p0∈Plot(X) Up0 denote the diffeological space given as the disjoint

union of the domains of plots of X, and let QX1 =
∐

f0:Up1→Up0
Up1 denote the diffeological

space given as the disjoint union of domains of plots indexed by maps of plots of X. There

are maps s, t : QX1 → B and u : B → QX1 that make [QX1 ⇒ B] into a diffeological

category.

Proposition 1.5.20. If X is a diffeological space, then

QX ∼= N [QX1 ⇒ B], (1.2)

where N denotes the nerve construction.

Note that the construction of QX relies only on the plots of X, not on any choice of

open cover. Now all one needs to prove Theorem 1.6.8 is to establish an equivalence between

maps QX → BG and diffeological principal G-bundles over X. This is done in Section

1.3 by proving a bundle construction-type theorem, Theorem 1.3.15. The proof of Theorem

1.3.15 is mostly straightforward, but requires some technical care, since QX is the nerve of

a diffeological category rather than a diffeological groupoid, as in the case of the Čech nerve

Č(U) in the classical proof.

The embedding of diffeological spaces into simplicial presheaves immediately yields a

notion of cohomology on diffeological spaces, which we call ∞-stack cohomology. If X is
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a diffeological space, and A is an ∞-stack, whose k-fold delooping W
k
A exists (notions we

will explain in Section 1.5), then the∞-stack cohomology of X with coefficients in A is given

by the connected components of the derived mapping space

Ȟk
∞(X,A) = π0R(X,W

k
A) = π0sPre(Cart)(QX,W

k
A).

In Corollary 1.5.36 we construct an explicit cochain complex whose cohomology gives the

∞-stack cohomology of X with values in A when A is a diffeological abelian group.

There are two other examples of Čech cohomology of diffeological spaces in the literature

that we consider in this paper, the Krepski-Watts-Wollbert diffeological Čech cohomology

Ȟk
KWW of [KWW21] and the PIZ diffeological Čech cohomology Ȟk

PIZ of [Igl20a]. Inter-

estingly, each of these cohomologies is constructed by “resolving” a diffeological space X

with an appropriate diffeological category, the Čech groupoid Č(X) and the gauge monoid

B//M respectively. In Section 1.5 we compare these various notions of diffeological Čech

cohomologies and find that

Ȟ0
∞(X,A) ∼= Ȟ0

KWW (X,A) ∼= Ȟ0
PIZ(X,A), Ȟ1

∞(X,A) ∼= Ȟ1
KWW (X,A).

A full summary of known results about these cohomology theories is given after (1.48). It is

currently unknown if all three of these cohomology theories are isomorphic in all degrees.

Now if G is a diffeological group, the∞-stack cohomology of a diffeological space X with

values in BG is denoted Ȟ1
∞(X,G). An immediate consequence of Theorem 1.6.8 is the

following result.

Corollary 1.6.9. Given a diffeological space X and a diffeological group G, there is an

isomorphism of pointed sets

Ȟ1
∞(X,G) ∼= π0DiffPrinG(X),



CHAPTER 1. DIFFEOLOGICAL AND INFINITY BUNDLES 6

where π0DiffPrinG(X) denotes the set of isomorphism classes of diffeological principal G-

bundles on X, pointed at the isomorphism class of trivial bundles.

Thus ∞-stack cohomology of diffeological spaces also encompasses nonabelian cohomol-

ogy.

It is our view that by applying tools from higher topos theory can be beneficial to the still

young subject of diffeological spaces. In particular we believe that while the machinery of∞-

stack cohomology may come from an abstract framework, it can ultimately output important

and down-to-earth results. Furthermore, higher topos theory already has definitions for

higher principal bundles (called bundle gerbes) and connections on such objects inherently

built into it. Pulling these definitions over to diffeological spaces and analyzing the results

are the subject of future work.

The paper is organized as follows. In Section 1.2, we will give some background informa-

tion about diffeological spaces. In Section 1.3 we turn to diffeological principalG-bundles. We

define G-cocycles and prove a bundle construction-type theorem, Theorem 1.3.15. In Section

1.4, we give a brisk introduction to sheaf theory, and explain the Baez-Hoffnung Theorem

[BH11, Proposition 24]. In Section 1.7, we compare several categories of concrete sheaves on

various sites, and show that they are all equivalent, proving that the category of diffeological

spaces as given in Definition 2.2.2 is equivalent to the usual category of diffeological spaces

considered in the literature. In Section 1.5, we will review the Čech model structure on sim-

plicial presheaves over cartesian spaces. Proposition 1.5.20 provides a cofibrant replacement

of a diffeological space as the nerve of a diffeological category. We compare this diffeological

category to two other diffeological categories Č(X) and B//M , which have been introduced

in [KWW21] and [Igl20a], respectively. From these three diffeological categories, we obtain

three separate notions of Čech cohomology for diffeological spaces, and compare them in Sec-

tion 1.5.3. In Section 1.6, we turn to the main result of this paper, that if G is a diffeological

group and X is a diffeological space, then the nerve of the category of principal G-bundles

on X is weak homotopy equivalent to the nerve of the category of G-principal ∞-bundles
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over X.

1.2 Diffeological Spaces

In this section we give some background on diffeological spaces, all of which can be found in

the textbook [Igl13].

Definition 1.2.1. Let M be a finite dimensional smooth manifold1. We say a collection

of subsets U = {Ui ⊆ M}i∈I is an open cover if each Ui is an open subset of M , and⋃
i∈I Ui = M . If U is a finite dimensional smooth manifold diffeomorphic to Rn for some

n ∈ N, we call U a cartesian space. We call U = {Ui ⊆ M} a cartesian open cover

of a manifold M if it is an open cover of M and every Ui is a cartesian space. We say that

U is a good open cover if it is a cartesian open cover, and further every finite non-empty

intersection Ui0...ik = Ui0 ∩ · · · ∩ Uik is a cartesian space.

Let Man denote the category whose objects are finite dimensional smooth manifolds and

whose morphisms are smooth maps. Let Cart denote the full subcategory whose objects are

cartesian spaces. Given a set X, let Param(X) denote the set of parametrizations of X,

namely the collection of set functions p : U → X, where U ∈ Cart.

Definition 1.2.2. A diffeology on a set X, consists of a collection D of parametrizations

p : U → X satisfying the following three axioms:

1. D contains all points R0 → X,

2. If p : U → X belongs to D, and f : V → U is a smooth map, then pf : V → X belongs

to D, and

3. If {Ui ⊆ U}i∈I is a good open cover of a cartesian space U , and p : U → X is a

parametrization such that p|Ui
: Ui → X belongs to D for every i ∈ I, then p ∈ D.

1We will assume throughout this paper that manifolds are Hausdorff and paracompact.
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A set X equipped with a diffeology D is called a diffeological space. Parametrizations that

belong to a diffeology are called plots. We say a set function f : X → Y between diffeological

spaces is smooth if for every plot p : U → X in DX , the composition pf : U → Y belongs

to DY . We often denote the set of smooth maps from X to Y by C∞(X, Y ).

Remark 1.2.3. In what follows, when we say that f : X → Y is a map of diffeological

spaces or a smooth map, we mean that it is a smooth function in the above sense.

Denote the category whose objects are diffeological spaces and morphisms are smooth

maps between them by Diff. An isomorphism in this category is called a diffeomorphism.

Remark 1.2.4. Note that Definition 2.2.2 is not the exact definition of diffeological spaces

as usually given in the literature, such as [Igl13, Article 1.5]. However it is precisely the

definition of diffeological space as defined in [Pav22a, Definition 2.7] and [SS21, Notation

3.3.15], as we will prove in Theorem 1.4.16. We will call the diffeological spaces defined in

[Igl13, Article 1.5] classical diffeological spaces and denote their category by Diff ′.

In Section 1.4, leveraging [BH11], we will explain how to think of diffeological spaces as

concrete sheaves on the site (Cart, jgood), namely cartesian spaces with the coverage of good

open covers. Leveraging this perspective we show that Diff is equivalent to Diff ′ in Section

1.7.

However there are real advantages to using Diff over Diff ′, one of them being Lemma

1.3.6, which is false for Diff ′. There are other more technical advantages as well. In Section

1.5, we will consider Diff embedded into the category sPre(Cart), which can be given the Čech

model structure sP̌re(Cart). If one uses jopen instead of jgood on Cart, and U is an arbitrary

cartesian open cover of a cartesian space U , then there is no guarantee that Č(U) will be

projective cofibrant. Using good open covers ensures that it is projective cofibrant, which

is necessary for much of the theory to be developed. Using jgood also allows us to leverage

Theorem 1.5.17 and Theorem 1.5.30, which are vital to our results.

Example 1.2.5. If M is a finite dimensional smooth manifold, then the set of parametriza-

tions p : U → M that are smooth in the sense of classical differential geometry forms a
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diffeology [Igl13, Article 4.3]. We call this the manifold diffeology of the underlying set

of M . Further a map f : M → N of smooth manifolds is smooth in the classical sense

if and only if it is smooth as a map of diffeological spaces. This implies that the functor

DMan : Man → Diff that sends a manifold to its underlying set equipped with the manifold

diffeology is fully faithful.

Definition 1.2.6. We say that a map i : X → Y of diffeological spaces is an induction if

for every plot p : U → Y there exists a plot q : U → X such that p = iq.

Definition 1.2.7. We say that a map π : X → Y of diffeological spaces is a subduction if

it is surjective, and for every plot p : U → Y , there exists a good open cover {Ui ⊆ U}, and

plots pi : Ui → X making the following diagram commute

Ui X

U Y

π

pi

p

(1.3)

Lemma 1.2.8. Let X
π−→ Y be a subduction, then a function Y

f−→ Z is smooth if and only

if fπ is, and f is a subduction if and only if fπ is.

Lemma 1.2.9. If f : X → Y is a smooth map of diffeological spaces such that there exists

a section, i.e. a smooth map σ : Y → X such that fσ = 1Y , then f is a subduction.

Definition 1.2.10. Let (X,DX) be a diffeological space and A
i
↪−→ X a subset. Then consider

the collection DX
A of parametrizations p : U → A such that ip : U → X is a plot of X. It is

not hard to see that this collection is a diffeology, which we call the subspace diffeology

on A. Note that i is an induction when A is equipped with the subspace diffeology.

Definition 1.2.11. Let (X,DX) be a diffeological space and suppose that ∼ is an equiva-

lence relation on the underlying set X. Let X
π−→ X/∼ denote the quotient function taking

a point x ∈ X to its equivalence class [x] ∈ X/∼. Then consider the collection DX
∼ of
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parametrizations p : U → X/∼ such that there exists a good open cover {Ui ⊆ U} and plots

pi : Ui → X making the following diagram commute

Ui X

U X/∼

π

pi

p

(1.4)

It is not hard to see that this forms a diffeology, which we call the quotient diffeology on

X/∼. Note that π is a subduction when X/∼ is equipped with the quotient diffeology.

The category Diff of diffeological spaces is complete and cocomplete. Suppose F : J→ Diff

is a diagram of diffeological spaces. Then a parametrization p : U → limF , (where we are

taking limF to be the limit of the underlying sets of the Fj) is a plot if and only if the

composite U
p−→ limF → Fj is a plot for every j ∈ J.

Similarly a parametrization p : J→ colimF is a plot if and only if there exists a good open

cover {Ui → U} and plots Ui
pi−→ Fji for each i, such that the following diagram commutes:

Ui Fji

U colimF

π

pi

p

Definition 1.2.12. Given any two diffeological spaces X, Y , consider the set Diff(X, Y ) of

smooth maps f : X → Y . Let DX→Y denote the collection of parametrizations p : U →

C∞(X, Y ) such that the adjoint function p# : U ×X → Y , defined by p#(u, x) = p(u)(x) is

smooth. This collection is a diffeology, which we call the functional diffeology.

The functional diffeology makes Diff a Cartesian closed category. We will see in Section

1.4 that Diff is in fact a quasitopos.

To every diffeological space X, we can consider the category Plot(X), whose objects are

plots p0 : Up0 → X and whose morphisms f0 : p1 → p0 are smooth maps f0 : Up1 → Up0
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making the following diagram commute

Up1 Up0

X

f0

p1 p0
(1.5)

Lemma 1.2.13 ([CSW14, Proposition 2.7]). Given a diffeological space X, let q : Plot(X)→

Diff denote the functor that sends a plot p : U → X to the cartesian space U considered as

a diffeological space with its manifold diffeology. Then X ∼= colim q.

1.3 Diffeological Principal Bundles

In this section we introduce diffeological principalG-bundles, and prove a bundle construction-

type theorem (Theorem 1.3.15) that gives an equivalence between the groupoid of G-cocycles

and the groupoid of diffeological principal G-bundles over a diffeological space X. This de-

velopment will be needed in Section 1.6. One does not need to know anything about model

categories or homotopy theory to understand this section.

Definition 1.3.1. A diffeological group is a group G equipped with a diffeology DG such

that the multiplication map m : G×G→ G, and inverse map i : G→ G are smooth.

Definition 1.3.2. A right diffeological group action of a diffeological group G on a

diffeological space X is a smooth map ρ : X × G → X such that ρ(x, eG) = x, and

ρ(ρ(x, g), h) = ρ(x, gh), where eG denotes the identity element of G. We will often keep

ρ implicit and denote such an action by x · g.

Definition 1.3.3. Let G be a diffeological group, and P be a diffeological right G-space. A

map π : P → X of diffeological spaces is a diffeological principal G-bundle if:

1. the map π : P → X is a subduction, and

2. the map act : P ×G→ P ×X P defined by (p, g) 7→ (p, p · g), which we call the action

map is a diffeomorphism.
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A map of diffeological principal G-bundles P → P ′ over X is a diagram

P P ′

X
π′π

f

where f is a G-equivariant smooth map. A diffeological principal G-bundle P is said to

be trivial if there exists an isomorphism φ : X × G → P , called a trivialization, where

pr1 : X×G→ X is the product bundle. Let DiffPrinG(X) denote the category of diffeological

principal G-bundles over a diffeological space X. The following properties of diffeological

principal G-bundles are not hard to prove, see [Igl13, Chapter 8].

Lemma 1.3.4. Let G be a diffeological group and π : P → X a diffeological principal

G-bundle, then we have the following:

1. if f : Y → X is a smooth map, then the pullback f ∗P → Y is a diffeological principal

G-bundle,

2. if there is a section s : X → P , namely π ◦ s = 1X , then P is trivial,

3. if f : P → P ′ is a map of diffeological principal G-bundles over a diffeological space X,

then it is an isomorphism.

By Lemma 1.3.4.(3), the category DiffPrinG(X) is a groupoid for every diffeological group

G and every diffeological space X.

Proposition 1.3.5 ([Igl13, Article 8.19]). Given a diffeological group G and a diffeological

principal G-bundle π : P → U , where U is a cartesian space, there exists a trivialization

φ : U ×G→ P .

Lemma 1.3.6. Given a diffeological group G and a diffeological right G-space P , a map

π : P → X is a diffeological principal G-bundle if and only if for every plot p0 : Up0 → X,

the pullback p∗0P is trivial, and the map act : P ×G→ P ×X P defined by (p, g) 7→ (p, p · g)

is a diffeomorphism.
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Proof. (⇒) If π : P → X is a diffeological principal G-bundle, and p0 : Up0 → X is a plot,

then by Lemma 1.3.4 p∗0P is a diffeological principal G-bundle over Up0 . Since Up0 is cartesian,

by Proposition 1.3.5, p∗0P is trivial, with trivialization φp0 : Up0 ×G→ p∗0P .

(⇐) If p∗0P is trivial for every plot p0 : Up0 → X, then there exists a trivialization

φp0 : Up0 ×G→ p∗0P , and thus we obtain the following commutative diagram

Up0 ×G p∗0P P

Up0 Xp0

π

ψp0φp0

1U×eG

Since this is true for every plot p0 : Up0 → X, then by taking Up0 as a good cover of itself, pi

can be seen to be a subduction.

Lemma 1.3.7. Condition (2) of Definition 1.3.3 is equivalent to the condition that G acts

on the fibers of π freely and transitively.

Proof. If act : P ×G→ P ×X P is a diffeomorphism, then G clearly acts on the fibers of π

freely and transitively. Now suppose G acts on the fibers of π freely and transitively. The

map act : P × G → P ×X P is smooth. Since the action is free and transitive it means

also that the map act is a bijection. We need then only to show that the inverse function is

smooth. Namely if ⟨q, q′⟩ : U → P ×X P is a plot, where q, q′ : U → P are plots, then we wish

to show that the composite function act−1⟨q, q′⟩ is a plot of P ×G. Now this is the set map

u 7→ (q(u), diff(q(u), q′(u))), where diff : P ×X P → G is the composite map proj2act
−1. This

is a plot of P × G if it is a plot in both factors. Obviously it is a plot of the first factor, so

we need only show that it is a plot of the second factor. This is the map that we will denote

by τ , namely τ(u) = diff(q(u), q′(u)). Now, let r = πq = πq′ denote the plot r : U → X. We
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have the following commutative cube

U U ×G

(U ×G)×U (U ×G) P

P ×X P U

U ×G X

P

π

π

φq′

r

φq

k
⟨q,1U ⟩

⟨1U ,q′⟩

h

(1.6)

and (U ×G)×U (U ×G) ∼= U ×G×G. Note that ⟨q, q′⟩ : U → P ×X P factors as kh, where

k is the map U ×G×G→ P ×X P induced by the plotwise trivializations of P along q and

q′. Now we can see that τ factors as

U P ×X P P ×G G

U ×G×G U ×G

⟨q,q′⟩ act−1 proj2

τ

h

k

n

proj2

where n : U × G × G → U × G is the smooth map (u, g, g′) 7→ (u, (g′)−1g). Thus τ is a

composite of smooth maps, and therefore is a plot.

Diffeological principal G-bundles are a true generalization of classical principal G-bundles

in the following sense. If M is a finite dimensional smooth manifold, G is a Lie group, and

π : P → M is a classical principal G-bundle on M , then we can consider the map of

diffeological space DMan(π) : DMan(P )→ DMan(M), given by the functor DMan : Man→ Diff

from Example 1.2.5. It turns out that this map of diffeological spaces is a diffeological

principal DMan(G)-bundle, in fact more is true.

Proposition 1.3.8 ([Wal12, Theorem 3.1.7]). If M is a finite dimensional smooth manifold,
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G is a Lie group, and PrinG(M) denotes the groupoid of classical principal G-bundles over

M , then the functor

DM : PrinG(M)→ DiffPrinG(M) (1.7)

that assigns to a classical principal G-bundle π the corresponding diffeological principal

DMan(G)-bundle, is an equivalence of groupoids.

Remark 1.3.9. In what follows we will not use the notationDMan(M) to distinguish between

a manifold and its corresponding diffeological space, but will instead rely on context.

Classically, principal G-bundles over a smooth manifold M are classified up to isomor-

phism by homotopy classes of maps from M to a classifying space BG. There has been

some work [CW21], [MW17] extending this result to diffeology. Since diffeological spaces are

so much more general than smooth manifolds, one must only consider numerable principal

G-bundles to classify them in this sense as in the above references.

However, there is another way of classifying principal G-bundles over a smooth manifold

M , that produces the whole groupoid of principal G-bundles, rather than just the isomor-

phism classes, see Example 1.5.13. One goal of this paper is to extend this idea to diffeological

principal G-bundles. This will be achieved in Section 1.6. In order to classify diffeological

principal G-bundles in this way, we must understand how to construct bundles from their

cocycles and vice versa.

Definition 1.3.10. Given a diffeological spaceX and a diffeological group G, call a collection

g = {gf0} of smooth maps gf0 : Up1 → G indexed by maps of plots f0 : Up1 → Up0 of X a

G-cocycle if for every pair of composable plot maps of X

Up2
f1−→ Up1

f0−→ Up0

it follows that

gf0f1 = (gf0 ◦ f1) · gf1 . (1.8)
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We call (2.9) the diffeological G-cocycle condition.

Given two G-cocycles, g, g′, we say a collection h = {hp0} of smooth maps hp0 : Up0 → G

indexed by plots of X is a morphism of G-cocycles h : g → g′ if for every map f0 : Up1 →

Up0 of plots of X, it follows that

g′f0 · hp1 = (hp0 ◦ f0) · gf0 . (1.9)

Remark 1.3.11. The definition of diffeological G-cocycles is reminiscent of classical G-

cocycles (usually written gij for some cover U = {Ui ⊆M} of a manifold), but also seems to

have come from nowhere. In Section 1.6 we will see how one comes to this definition purely

from the framework of higher topos theory.

Let Coc(X,G) denote the category whose objects are cocycles of X with values in G and

whose morphisms are morphisms of cocycles. Composition is defined as follows. If h : g → g′

and h′ : g′ → g′′ are morphisms of cocycles, then let (h′ ◦h) denote the morphism of cocycles

defined plotwise by (h′ ◦ h)p0 = h′p0 · hp0 for a plot p0 : Up0 → X. Let us show that (h′ ◦ h)

is actually a morphism of cocycles. A morphism of cocycles h : g → g′ implies that if

f0 : Up1 → Up0 is a map of plots, then

g′f0hp1 = (hp0 ◦ f0)gf0

and h′ : g′ → g′′ implies that

g′′f0h
′
p1

= (h′p1 ◦ f0)g
′
f0
.

Thus

g′′f0h
′
p1

= (h′p0 ◦ f0)(hp0 ◦ f0)gf0h
−1
p1
.

and therefore

g′′f0(h
′
p1
· hp1) = ((h′p0 · hp0) ◦ f0)gf0
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This proves that (h′ ◦ h) is a morphism of cocycles. Note that Coc(X,G) is a groupoid by

taking (h−1)p = h−1
p .

Given a diffeological space X and a G-cocycle g on X, we wish to construct a diffeological

principal G-bundle π : P → X, such that we can recover the G-cocycle g by looking at

plotwise trivializations of P . We will do this as follows. Consider the diffeological space

P̂ =
∐

p0∈Plot(X)

Up0 ×G. (1.10)

We label the elements of P̂ by (xp0 , k0), where p0 : Up0 → X is a plot, xp0 ∈ Up0 , and

k0 ∈ G. We write (xp1 , k1) ∼ (xp0 , k0) if there exists a map f0 : Up1 → Up0 of plots such

that f0(xp1) = xp0 and k0 = gf0(xp1) · k1. This relation is reflexive and transitive, but

not symmetric, so abuse notation by letting ∼ also denote the smallest equivalence relation

containing ∼. In other words we say that (xp1 , k1) ∼ (xp0 , k0) if and only if there exists a

finite zig-zag of plot maps

(xp1 , k1)
f0−→ (xq0 , h0)

f1←− (xq1 , h1)
f2−→ . . .

fn←− (xqn , hn)
fn+1−−→ (xp0 , k0), (1.11)

such that f0(xp1) = xq0 , h0 = gf0(xp1)·k1, f1(xq1) = xq0 , h0 = gf1(xq1)·h1, . . . , fn+1(xqn) = xp0 ,

and k0 = gfn+1(xqn) · hn. By setting f0 or fn+1 equal to the identity one can obtain any kind

of zig-zag from one of the form above.

Let P = P̂ / ∼, and denote its elements by [xp0 , k0]. There is a smooth map π : P → X

given by π[xp0 , k0] = p0(xp0). This map is well-defined, because if (xp1 , k1) ∼ (xp0 , k0), then

there is a finite zig-zag of plot maps connecting them as above, so

p1(xp1) = q0(f0(xp1)) = q0(xq0) = q0(f1(xq1)) = q1(xq1) = · · · = qn(xqn) = qn(fn+1(xqn)) = p0(xp0).

(1.12)

Thus π : P → X is well defined. We let π = Cons(g), short for construction.

As sets, we can think of P̂ as the objects of a category, and a morphism in this category
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looks like

(xp0 , k0)
f0−→ (xp1 , k1)

where f0 : Up1 → Up0 is a plot map such that f0(xp1) = xp0 and k1 = gf0(xp1) · k0. Then

P ∼= π0P̂ . This might be a helpful way to think about this construction, and we will say

more about this observation in Section 1.6.

Proposition 1.3.12. Given a diffeological group G, a diffeological space X and a G-cocycle

g on X, the map π : P → X where π = Cons(g) is a diffeological principal G-bundle.

Proof. First let us show that there is an action of G on P . Let the action be defined by

[xp0 , k0] · g = [xp0 , k0 · g]. This action is well defined, as suppose a zig-zag of the form (1.11)

identifies (xp1 , k1) with (xp0 , k0). Then the same zig-zag with hi replaced with hi · g will

identify (xp1 , k1 · g) with (xp0 , k0 · g).

Now let us show that if p1 : Up1 → X is a plot, then there exists a G-equivariant

diffeomorphism φp1 : Up1 ×G→ p∗1P . First note that

p∗1P = {(xp1 , [xp0 , k0]) ∈ Up1 × P : p1(xp1) = π[xp0 , k0]}

So given a point (xp1 , [xp0 , k0]) ∈ p∗1P , we have a commutative diagram

∗ Up0

Up1 Xp1

p0xp1

xp0

x

where ∗ denotes the plot ∗ ∼= R0 x−→ X. We can think of this diagram as a zig-zag

(xp1 , gxp1 (∗)g
−1
xp0

(∗)k0)
xp1←−− (∗, g−1

xp0
(∗)k0)

xp0−−→ (xp0 , k0).

Thus we can identify

[xp1 , gxp1 (∗)g
−1
xp0

(∗)k0] = [xp0 , k0].



CHAPTER 1. DIFFEOLOGICAL AND INFINITY BUNDLES 19

Now let us define a map φp1 : p
∗
1P → Up1×G by φ(xp1 , [xp0 , k0]) = (xp1 , gxp1 (∗)g

−1
xp0

(∗)k0).

Let us show that this is well defined. First suppose that (xq0 , l0) ∼ (xp0 , k0) is identified by

a single morphism, i.e. there exists a plot map f0 : Uq0 → Up0 such that f0(xq0) = xp0 and

k0 = gf0(xq0) · l0, then the following diagram commutes

∗ Up0

Uq0 Xq0

p0xq0

xp0

f0

However, we can also think of xp0 and xq0 as maps of plots. Thus from the cocycle condition

(2.9), we have

g(f0◦xq0 )(∗) = (gf0 ◦ xq0)(∗) · gxq0 (∗).

Now let us abuse notation for the rest of this proof by writing gxp0 for gxp0 (∗). Thus we have

gxp0 = gf0(xq0) · gxq0 . (1.13)

Therefore

φ(xp1 , [xp0 , k0]) = (xp1 , gxp1g
−1
xp0
k0) = (xp1 , gxp1g

−1
xp0
gf0(xq0)l0) = (xp1 , gxp1g

−1
xq0
l0) = φ(xp1 , [xq0 , l0]).

Now if (xq0 , l0) and (xp0 , k0) are connected by an arbitrary finite zig-zag, then using the

above argument on every morphism in the zig-zag shows that φ(xp1 , [xq0 , l0]) = φ(xp1 , [xp0 , k0]).

So φ is well defined. It is also G-equivariant, as φ(xp1 , [xp0 , k0] · g) = φ(xp1 , [xp0 , k0g]) =

(xp1 , gxp1g
−1
xp0
k0g) = (xp1 , gxp1g

−1
xp0
k0) · g.

We define an inverse φ−1
p1

: Up1 × G → p∗1P by (xp1 , g) 7→ (xp1 , [xp1 , g]). This is clearly

G-equivariant, and it is easy to see that φp1 ◦φ−1
p1

= 1Up1×G and φ−1
p1
◦φp1 = 1p∗1P . Thus P is

plotwise trivial.

Now let us show that G acts on the fibers of π freely and transitively. However this is
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immediate, as a fiber of π is in particular a pullback:

π−1(x) P

∗ Xx

π
⌟

and every constant map ∗ → X is a plot, and we’ve already shown that for any plot this

pullback is trivial, and thus π−1(x) ∼= ∗ × G ∼= G, which acts freely and transitively on

itself by right multiplication. Thus by Lemma 1.3.7, the action map P ×G→ P ×X P is a

diffeomorphism. Thus by Lemma 1.3.6, P
π−→ X is a diffeological principal G-bundle.

Remark 1.3.13. As it is convenient for the rest of this section, we rename the plotwise

trivialization φ−1
p0

: Up0 ×G→ p∗0Cons(g) to φp0 .

Proposition 1.3.14. Given a diffeological space X, a diffeological group G, G-cocycles g, g′

on X, with corresponding diffeological principal G-bundles P = Cons(g) and P ′ = Cons(g′)

and a morphism h : g → g′ ofG-cocycles, there is an induced morphism h̃ = Cons(h) : P → P ′

of diffeological principal G-bundles. Furthermore, for every plot p0 : Up0 → X, if h̃ : P → P ′

is a morphism of diffeological principal G-bundles, then we obtain a commutative diagram

Up0 ×G Up0 ×G

p∗0P p∗0P
′

P P ′

X

ψp0

φp0

h̃p0

ĥp0

π

φ′
p0

ψ′
p0

π′

h̃

(1.14)

where h̃p0(xp0 , k0) = (xp0 , hp0(xp0) · k0).

Proof. Define a map h̃ = Cons(h) : P → P ′ as follows. Given a point [xp0 , k0] in P , let

h̃([xp0 , k0]) = [xp0 , hp0(xp0) · k0]. Let us show that this map is well defined. Suppose that
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[xp1 , k1] = [xp0 , k0], we want to show that [xp1 , hp1(xp1)k1] = [xp0 , hp0(xp0)k0]. Suppose that

(xp1 , k1) and (xp0 , k0) are connected by a single morphism, i.e. there exists a plot map

f0 : Up1 → Up0 such that f0(xp1) = xp0 and k0 = gf0(xp1)k1. Then as elements of P ′, we have

h̃([xp0 , k0]) = [xp0 , hp0(xp0)k0]

= [xp0 , hp0(f0(xp1))gf0(xp1)k1]

= [xp0 , g
′
f0
(xp1)hp1(xp1)k1]

= [xp1 , hp1(xp1)k1]

= h̃([xp1 , k1]),

(1.15)

where the third equality follows from (2.10). Thus if (xp1 , k1) and (xp0 , k0) are connected by

an arbitrary finite zig-zag, then using the above argument on every morphism in the zig-zag

shows that h̃([xp1 , k1]) = h̃([xp0 , k0]). Thus h̃ is well-defined, and clearly smooth. It is also

G-equivariant, as

h̃([xp0 , k0] · g) = h̃([xp0 , k0g])

= [xp0 , hp0(xp0)k0g]

= [xp0 , hp0(xp0)k0] · g

= h̃([xp0 , k0]) · g.

(1.16)

Thus h̃ is a morphism of diffeological principal G-bundles over X.

Now given a plot p0 : Up0 → X, we obtain the commutative diagram (1.14) by pulling

back h̃ along p0 and the plotwise trivialization φ. We need only show that h̃p0(xp0 , k0) =

(xp0 , hp0(xp0) · k0). Since h̃p0 = (φ′
p0
)−1ĥp0φp0 we have

h̃p0(xp0 , k0) = (φ′
p0
)−1ĥp0φp0(xp0 , k0)

= (φ′
p0
)−1ĥp0(xp0 , [xp0 , k0])

= (φ′
p0
)−1(xp0 , [xp0 , hp0(xp0) · k0])

= (xp0 , hp0(xp0) · k0),

(1.17)
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where we have used the plotwise trivialization from the proof of Proposition 1.3.12 and the

convention of Remark 1.3.13.

The content of Propositions 1.3.12 and 1.3.14 can be summarized by saying that we have

a functor Cons : Coc(X,G)→ DiffPrinG(X). Our goal now is to show that this functor is an

equivalence, namely that it is fully faithful and essentially surjective.

Let us first show essential surjectivity. Suppose that π : P → X is a diffeological principal

G-bundle. Suppose that for every plot p0 : Up0 → X we choose a trivialization φp0 : Up0×G→

p∗0P , which is a G-equivariant diffeomorphism. Let f0 : Up1 → Up0 be a map of plots. Then

we obtain the following commutative diagram

Up1 ×G Up0 ×G

p∗1P p∗0P

Up1 Up0

P

X

p1 p0

ψp1 ψp0

φp1

f̃0

f̂0

f0

φp0

(1.18)

where f̂0 is obtained from f0 by pullback (taking pullbacks is functorial), and f̃0 is defined

as f̃0 = φ−1
p0
f̂0φp1 . Given (xp1 , k) ∈ Up1 ×G, it follows that

f̃0(xp1 , k) = (f0(xp1), gf0(xp1) · k) (1.19)

for some map gf0 : Up1 → G. This is because both f̂0 and f̃0 are maps of diffeological principal

G-bundles, and therefore G-equivariant.
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If furthermore we have a pair of composable plot maps Up2
f1−→ Up1

f0−→ Up0 , then

(f̃0f1)(xp2 , k) = ((f0f1)(xp2), gf0f1(xp2)·k) = ((f0f1)(xp2), gf0(f1(xp2)·gf1(xp2)·k) = f̃0f̃1(xp2 , k).

(1.20)

From this we obtain the cocycle condition (2.9).

Thus given a pair of a diffeological principal G-bundle π : P → X, and a choice φ of

plotwise trivializations, we obtain a G-cocycle g. Denote this cocycle by g = Ext(P, φ) for

extracting the cocycle from the principal bundle. We wish to show that there exists an

isomorphism τ : Cons(Ext(P, φ))→ P of diffeological principal G-bundles.

Let Q = Cons(Ext(P, φ)) and let Q̃ =
∐

p0∈Plot(X) Up0 × G. Let q : Q̃ → Q denote the

quotient map. Let us define a set function τ : Q→ P as follows. Given a point [xp1 , k1] ∈ Q,

let τ([xp1 , k1]) be ψp1φp1(xp1 , k1), where ψp1 and φp1 are the maps given in (1.18). Let us

show that this function is well defined. Suppose that [xp1 , k1] = [xp0 , k0] are connected by a

single plot map f0, i.e. that f0(xp1) = xp0 and k0 = gf0(xp1) · k1. Then by (1.18) and (1.19)

we have

τ([xp0 , k0]) = ψp0φp0(xp0 , k0)

= ψp0φp0(f0(xp1), gf0(xp1) · k1)

= ψp0φp0 f̃0(xp1 , k1)

= ψp1φp1(xp1 , k1)

= τ([xp1 , k1]).

(1.21)

Thus if (xp1 , k1) and (xp0 , k0) are connected by an arbitrary finite zig-zag, then using the

above argument on every morphism in the zig-zag shows that τ is well defined. To see that

it is smooth, since q is a submersion, by Lemma 1.2.8 it is enough to show that τq = τ̃ is

smooth. But this is just the map τ̃ :
∐

p0
Up0 × G → P that sends (xp0 , k0) to ψp0φp0(xp0)

and these are smooth maps, thus τ̃ is smooth and therefore τ is smooth. Since ψp0 and

φp0 are G-equivariant, it is easy to see that τ is as well. Thus τ is a map of diffeological

principal G-bundles, so by Lemma 1.3.4, it is an isomorphism. Therefore the functor Cons :
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Coc(X,G)→ DiffPrinG(X) is essentially surjective.

Now let us show that Cons is fully faithful. Suppose that h and h′ are maps of cocycles

h, h′ : g → g′, and let h̃ = Cons(h) and h̃′ = Cons(h′). Suppose that h̃ = h̃′. Then using

the canonical plotwise trivialization φ of P = Cons(g) and P ′ = Cons(g′) we obtain two

copies of (1.14) for h̃ and h̃′. Since they are equal as maps, this implies that for every plot

p0 : Up0 → X, h̃p0 = h̃′p0 . But by Proposition 1.3.14, h̃p0 determines hp0 and h̃′p0 determines

h′p0 . Thus h = h′. Thus Cons is a faithful functor.

Now suppose that P = Cons(g) and P ′ = Cons(g′) and h̃ : P → P ′ is a map of diffeological

principal G-bundles. We wish to construct a map h : g → g′ of cocycles such that Cons(h) =

h̃. We obtain such a morphism h of cocycles by pulling h̃ along the canonical plotwise

trivialization φ of Cons(g) as in (1.14), so that for every plot p0 of X, we have h̃p0(xp0 , k) =

(xp0 , hp0(xp0) · k0). One can check that h is a morphism of G-cocycles by chasing around the

left hand square in the following commutative diagram

P

Up0 ×G P ′

Up1 ×G Up0 ×G

Up1 ×G

f̃0

ψp0φp0 h̃

h̃p0
ψ′
p0
φ′
p0

h̃p1 f̃ ′0

(1.22)

Now we wish to show that Cons(h) = h̃. Let x ∈ X, and consider the plot x : ∗ → X

that sends the point to x. If we let p0 = x in (1.14), then Up0 × G ∼= G. Let p = ψxφx(eG).

Then h̃(p) = ψ′
xφ

′
xh̃x(eG) = ψ′

xφ
′
x(hx(eG)). However Cons(h)(p) is also determined plotwise

by hx, i.e. Cons(h)(p) = ψ′
xφ

′
x(hx(eG)) = h̃p. Since h̃ and Cons(h) are G-equivariant, and the

action of G on π−1(x) is transitive, this implies that h̃ and Cons(h) agree on π−1(x). Since

x was arbitrary, this implies that h̃ = Cons(h). Thus Cons is a full functor. In summary we

have proven the following.
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Theorem 1.3.15. Given a diffeological space X and a diffeological group G, the functor

Cons : Coc(X,G)→ DiffPrinG(X) (1.23)

is an equivalence of groupoids.

Remark 1.3.16. Any choice of plotwise trivialization φ with φp0 : Up0 × G ∼= p∗0P gives a

quasi-inverse to the functor Cons above.

Remark 1.3.17. Weaker, but somewhat similar results to Theorem 1.3.15 have been proven

in [WW14] and [Ahm23]. But notice in these papers that the correspondence was only proven

on the level of isomorphism classes, with different notions of diffeological Čech cohomology,

and they only establish a bijection of sets. We say more about the other notions of diffeological

Čech cohomology in the literature in Section 1.5.3.

1.4 Diffeological Spaces as Concrete Sheaves

A major development in the theory of diffeological spaces was made in [BH11], which showed

that the category of diffeological spaces is equivalent to the category of concrete sheaves

on the site of open subsets of cartesian spaces. Here we introduce the theory necessary to

understand this result, and to prepare the ground for Section 1.5. In Section 1.7, we will

show that the category of concrete sheaves on several various sites of interest are equivalent,

giving a justification for Definition 2.2.2. Nothing in this section is new, but it may be helpful

to those less familiar with topos theory.

Definition 1.4.1. Let C be a category, and U ∈ C. A family of morphisms over U is a

set of morphisms r = {ri : Ui → U}i∈I in C with codomain U .

A refinement of a family of morphisms t = {tj : Vj → U}j∈J over U consists of a

family of morphisms r = {ri : Ui → U}i∈I , a function α : I → J and for each i ∈ I a map



CHAPTER 1. DIFFEOLOGICAL AND INFINITY BUNDLES 26

fi : Ui → Vα(i) making the following diagram commute:

Ui Vα(i)

U

fi

ri tα(i)

(1.24)

If r is a refinement of t, with maps fi : Ui → Vα(i), then we write f : r → t.

We wish to consider added structure to a category that generalizes the notion of a topol-

ogy. We will use families of morphisms as a generalized notion of ”open cover.”

Definition 1.4.2. A collection of families j on a category C consists of a set j(U) for

each U ∈ C, whose elements {ri : Ui → U} ∈ j(U) are families of morphisms over U .

We call a collection of families j on C a coverage if it satisfies the following property:

for every {ri : Ui → U} ∈ j(U), and every map g : V → U in C, then there exists a family

{tj : Vj → V } ∈ j(V ) such that gtj factors through some ri. Namely for every tj there exists

some i and some map sj : Vj → Ui making the following diagram commute:

Vj Ui

V U

tj

sj

ri

g

(1.25)

The families {ri : Ui → U} ∈ j(U) are called covering families over U . If a map ri : Ui → U

belongs to a covering family r ∈ j(U), then we say that ri is a covering map.

If C is a category, and j is a coverage on C, then we call the pair (C, j) a site.

Example 1.4.3. Let X be a topological space and let O(X) denote the partially ordered

set of open subsets of X. Let jX denote the collection of familes on O(X) such that jX(U)

is the set of all open covers of U , namely {Ui ⊆ U} ∈ jX(U) if
⋃
i Ui = U .

This collection of families is a coverage, for suppose we have fixed an open cover {Ui ⊆ U}

and an open subset V ⊆ U . Then {V ∩Ui ⊆ V } is an open cover of V , and V ∩Ui ⊆ Ui. We

call jX the open cover coverage of X.
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Example 1.4.4. Define a collection of families jopen on Man as follows: For M ∈ Man, let

jopen(M) denote the collection of open covers of M . Then jopen is a coverage. Indeed if

{Ui ⊆ M} is an open cover and f : N → M is a smooth map, then {f−1(Ui) ⊆ N} is an

open cover of N satisfying (2.13).

Now consider the following full subcategories

Cart ↪→ Open ↪→ Man.

Where Cart is the full subcategory whose objects are cartesian spaces and Open is the full

subcategory whose objects are diffeomorphic to open subsets of a cartesian space. The

collection of families jopen can be restricted to Open and is clearly a coverage there as well.

Notice however that if we restrict jopen to Cart, and U is a cartesian space, then an open

cover {Ui ⊆ U} is a covering family for jopen if and only if it is a cartesian open cover,

otherwise it could not be a collection of morphisms in Cart. For Man and Open any open

cover will do. However if {Ui ⊆ U} is a cartesian open cover and f : V → U is a smooth

map, there is no reason that {f−1(Ui) ⊆ V } will be a cartesian open cover. However as we

will see in Example 1.4.5, every open cover can be refined by a cartesian open cover, and

thus jopen is indeed a coverage on Cart.

Example 1.4.5. Define a collection of families jgood on Man as follows: For M ∈ Man, let

jgood(M) denote the collection of good open covers as in Definition 2.2.1 of M . Let us show

that the good covers form a coverage. If {Ui ⊆M} is a good cover and g : N →M a smooth

map, then {g−1(Ui) ⊆ N} is an open cover, but not necessarily good. By [BT+82, Corollary

5.2], this open cover can be refined by a good open cover {Wk ⊆ N} so that for every Wk

in the good open cover, there exists a Ui such that Wk ⊆ g−1(Ui), and thus the following

diagram commutes:

Wk g−1(Ui) Ui

N Mg

g|g−1(Ui)
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Thus jgood is a coverage on Man. Similarly it defines a coverage on Cart and Open.

Definition 1.4.6. Let Smooth denote a site of the form (C, j) with C ∈ {Cart,Open,Man}

and j ∈ {jopen, jgood}. We will call any such site a smooth site.

Example 1.4.7. We note here that the collection of families jsub of subductions on the

category Diff of diffeological spaces is a coverage, because the pullback of a subduction is a

subduction. We will not use this observation in this section, but it will come up in Section

1.5.2 when we talk about diffeological categories.

Coverages are those collections of families with the least amount of structure with which

we can define sheaves on C.

Definition 1.4.8. A presheaf on a category C is a functor F : Cop → Set. An element

x ∈ F (U) for an object U ∈ C is called a section over U . If f : U → V is a map in C, and

x ∈ F (V ), then we sometimes denote F (f)(x) by x|U . If {ri : Ui → U}i∈I is a covering family,

then a matching family is a collection {xi}i∈I , xi ∈ F (Ui), such that given a diagram in C

of the form
V Uj

Ui Uri

rjf

g

then F (f)(xi) = F (g)(xj) for all i, j ∈ I. An amalgamation x for a matching family {xi}

is a section x ∈ F (U) such that xi|U = x for all i.

Definition 1.4.9. Given a family of morphisms r = {ri : Ui → U} in a category C, we say

that a presheaf F : Cop → Set is a sheaf on r if every matching family {si} of F over r has

a unique amalgamation. If j is a coverage on a category C, we call F a sheaf on (C, j) if it

is a sheaf on every covering family of j. Let Sh(C, j) denote the full subcategory of Pre(C)

whose objects are sheaves on (C, j).

Remark 1.4.10. If (C, j) is a site that has pullbacks, then we can equivalently express the

condition for F being a sheaf as requiring that for every U ∈ C and every covering family
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{Ui → U} ∈ j(U), the diagram:

F (U)
∏

i F (Ui)
∏

i,j F (Ui ×U Uj) (1.26)

is an equalizer. This is how the sheaf condition is often presented in the literature.

Example 1.4.11. Given a smooth manifold M , the presheaf

U 7→ C∞(U,M)

which we denote by either M or just M , is a sheaf on Smooth. Another important example

of a sheaf is

U 7→ Ωk(U)

for any k ≥ 0. If V is a cartesian space, we will denote its image under the Yoneda embedding

by yV . This is the presheaf

U 7→ C∞(U, V )

and as above is a sheaf. We call a site (C, j) where every representable presheaf is a sheaf

subcanonical. It is not hard to see that Smooth is a subcanonical site.

We wish to single out those sheaves that are in some sense a set with extra structure.

Definition 1.4.12. A site (C, j) is concrete if:

1. it is subcanonical,

2. it has a terminal object ∗,

3. the functor C(∗,−) : C→ Set is faithful, and

4. for every covering family {Ui → U}, the family of maps C(∗, Ui) → C(∗, U) is jointly

surjective, namely the map
∐

i C(∗, Ui)→ C(∗, U) is surjective.



CHAPTER 1. DIFFEOLOGICAL AND INFINITY BUNDLES 30

It is not hard to show that all of the smooth sites are concrete.

Definition 1.4.13. If (C, j) is a concrete site and F is a presheaf, then we call F (∗) its

underlying set, and for any U ∈ C there always exists a map

ϕU : F (U)→ Set(C(∗, U), F (∗))

defined by ϕU(x) = (u 7→ F (u)(x)). We say a sheaf F is concrete if for every object U ∈ C,

the function ϕU is injective. Let ConSh(C, j) denote the full subcategory of concrete sheaves

on a concrete site (C, j).

Example 1.4.14. For any smooth manifold M , the sheaf M on Smooth is concrete. This is

equivalent to saying that for every U ∈ Smooth the function

ϕU : C∞(U,M)→ Set(U(∗),M(∗))

is injective, which is the same thing as saying that the set of smooth maps from U to M is

a subset of all set functions from U to M .

Note that the sheaf Ωk is not concrete on Smooth. Indeed if U ∈ Smooth, then ϕU takes

the form

ϕU : Ωk(U)→ Set(U(∗),Ωk(∗))

but Ωk(∗) = {0} is the zero vector space, thus Set(U(∗), {0}) = ∗ is the singleton set. Since

in general Ωk(U) is nontrivial, this shows that Ωk is not concrete.

Theorem 1.4.15 ([BH11, Proposition 24]). The category Diff ′ of classical diffeological spaces

is equivalent to the category of concrete sheaves on Open with the open cover coverage,

Diff ′ ≃ ConSh(Open, jopen).

However, the proof of [BH11, Proposition 24] can be applied nearly word for word to
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prove the following.

Theorem 1.4.16. The category Diff of diffeological spaces as defined in Definition 2.2.2 is

equivalent to the category of concrete sheaves on Cart with the good open cover coverage

Diff ≃ ConSh(Cart, jgood).

Remark 1.4.17. In Section 1.7 we will prove Diff ≃ Diff ′ by showing that ConSh(Cart, jgood) ≃

ConSh(Open, jopen).

Theorem 1.4.16 allows us to make a perspective shift. Constructions made in Diff can be

compared with already defined notions of sheaves. For example a differential k-form ω on a

diffeological space X [Igl13, Article 6.28], is precisely a map

X
ω−→ Ωk

of sheaves on Cart. This viewpoint on diffeological spaces, namely as concrete sheaves on

Cart, will also be the starting point for Section 1.5, where we consider the fully faithful

embedding of presheaves into simplicial presheaves. Since concrete sheaves are in particular

presheaves, this means that there is a fully faithful embedding of diffeological spaces into

simplicial presheaves, where we have a powerful homotopy theory to leverage.

1.5 Smooth Higher Stacks

1.5.1 Model Structures on Simplicial Presheaves

For this section, we assume the reader is comfortable with simplicial homotopy theory as in

[GJ12] and model categories as in [Hir09].

Definition 1.5.1. Let sSet denote the category of simplicial sets, and sPre(Cart) the category
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whose objects are functors X : Cartop → sSet and whose morphisms are natural transforma-

tions. We call such functors simplicial presheaves.

There is a fully faithful embedding Set ↪→ sSet, which we denote by S 7→ cS, where

(cS)n = S for all n ≥ 0, and all of the face and degeneracy maps are the identity on

S. Similarly there is a fully faithful embedding Pre(Cart) ↪→ sPre(Cart), which we also

denote by F 7→ cF , such that (cF ) (U) = cF (U) for all U ∈ Cart. We call simplicial

presheaves of this form discrete simplicial presheaves. This functor has a left adjoint

π0 : sPre(Cart)→ Pre(Cart), defined objectwise by

(π0X)(U) = coeq
(
X(U)0 X(U)1

)
,

and a right adjoint (−)0 : sPre(Cart) → Pre(Cart) defined objectwise by X0(U) = X(U)0.

Note that limits and colimits in sPre(Cart) are computed objectwise.

There is also a functor (−)c : sSet → sPre(Cart) defined objectwise by Xc(U) = X for

every U ∈ Cart. We call simplicial presheaves of this form constant simplicial presheaves.

The category of simplicial presheaves on Cart is simplicially enriched. Let X and Y be

simplicial presheaves, then let sPre(Cart)(X, Y ) denote the simplicially-enriched Hom, defined

degreewise by

sPre(Cart)(X, Y )n = sPre(Cart)(X ×∆n
c , Y ).

Compare this with the simplicial mapping space for simplicial sets, namely if X and

Y are simplicial sets, then let sSet(X, Y ) denote the simplicial set defined degreewise by

sSet(X, Y )n = sSet(X ×∆n, Y ).

If K is a simplicial set and X is a simplicial presheaf, then let XK denote the simplicial

presheaf which is defined objectwise by (XK)(U) = sSet(K,X(U)). Then sPre(Cart) is

tensored and cotensored over sSet in the sense that for simplicial presheaves X and Y and
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simplicial set K, there is the following natural isomorphism

sPre(Cart)(X ×Kc, Y ) ∼= sPre(Cart)(X, Y K).

The category sPre(Cart) admits many model structures. Here we will discuss two of

them. Say a map f : X → Y of simplicial presheaves is an objectwise weak equivalence

if f : X(U) → Y (U) is a weak equivalence of simplicial sets for every U ∈ Cart. Similarly a

objectwise fibration is a map f : X → Y of simplicial presheaves such that f : X(U) →

Y (U) is a Kan fibration of simplicial sets for every U ∈ Cart.

Theorem 1.5.2 ([BK72, Page 314]). There is a cofibrantly generated, simplicial model struc-

ture, which we call the projective model structure or Bousfield-Kan model structure

on sPre(Cart), whose weak equivalences are the objectwise weak equivalences, and whose

fibrations are the objectwise fibrations.

Remark 1.5.3. In fact, the projective model structure makes sPre(Cart) a combinatorial

model category, see [Lur09, Section A.2.6].

Remark 1.5.4. There is a Quillen equivalent model structure on simplicial presheaves where

the cofibrations and weak equivalences are objectwise, which is called the injective or Heller

model structure. See [Bla01] for an overview of the different model structures on simplicial

presheaves.

As is often the case with model structures, while the descriptions of weak equivalences and

fibrations in the projective model structure are convenient, the cofibrations of the projective

model structure are less simple to describe. However, the following result gives a sufficient

condition for a simplicial presheaf to be cofibrant.

Theorem 1.5.5 ([Dug01, Corollary 9.4]). A simplicial presheaf X is cofibrant in the projec-

tive model structure on simplicial presheaves if

1. X is degreewise a coproduct of representables, i.e. Xn =
∐

i∈I yUi for every n ≥ 0,
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2. X is split, in the sense that as a functor X : Cop → sSet it factors through the cate-

gory sSetnd whose objects are simplicial sets and whose morphisms are those maps of

simplicial sets that map non-degenerate simplices to non-degenerate simplices.

We say that X is a projective cofibrant simplicial presheaf.

Corollary 1.5.6. If U ∈ Cart, then cyU is a projective cofibrant simplicial presheaf on Cart.

Example 1.5.7. If M is a finite dimensional smooth manifold, and U = {Ui}i∈I is a good

open cover, then consider the simplicial presheaf Č(U) defined in degree n by

Č(U)n =
∏

i0,...,in

y (Ui0 ∩ · · · ∩ Uin) ,

with face and degeneracy maps given by inclusions of open sets. Since U is a good open

cover, Č(U) is a projective cofibrant simplicial presheaf. We call it the Čech nerve on U.

There is a canonical map

Č(U)
π−→ cM,

of simplicial presheaves on Cart. However this map is not an objectwise weak equivalence in

general.

If U ∈ Cart, and U = {Ui}i∈I is a good open cover of U , then we can consider the

canonical map

Č(U)
π−→ cyU.

Let Č denote the class of such maps as U varies over Cart and U varies over good open covers

of U .

Definition 1.5.8. Let sP̌re(Cart) denote the left Bousfield localization of the projective model

structure on sPre(Cart) at the class of maps Č. We call this the Čech model structure on

sPre(Cart).
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The Čech model structure is described in greater detail in [DHI04, Appendix A]. Since

sP̌re(Cart) is a left Bousfield localization of the projective model structure, it inherits the

same cofibrations, and therefore cofibrant objects. We call its weak equivalences the Čech

weak equivalences. Note that any objectwise weak equivalence of simplicial presheaves will

be a Čech weak equivalence.

We call the fibrant objects of this model structure ∞-stacks on Cart. They can be

characterized as follows.

Proposition 1.5.9. A simplicial presheaf X on Cart is an ∞-stack on Cart if and only if it

is projective fibrant (objectwise a Kan complex), and if for every U ∈ Cart and good open

cover U of U , the map

sPre(Cart)(yU,X)→ sPre(Cart)(Č(U), X), (1.27)

is a weak equivalence of simplicial sets. We say that X satisfies Čech descent.

Proof. This follows from the definition of left Bousfield localization.

By a simplicially-enriched version of the Yoneda Lemma, sPre(Cart)(yU,X) ∼= X(U).

We wish to better understand the right hand side of (1.27). To do this we will exploit the

following result.

Lemma 1.5.10. Let X be a simplicial presheaf. Then

X ∼=
∫ [n]∈∆op

∆n
c × cXn,

where the colimit is taken in the category of simplicial presheaves, ∆n
c is the constant sim-

plicial presheaf on ∆n and cXn is the discrete simplicial presheaf on the presheaf Xn.

Proof. This follows from the corresponding fact for simplicial sets [GJ12, Lemma I.2.1].
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Thus we have

Č(U) ∼=
∫ [n]∈∆op

∆n
c ×

∐
i0...in

yUi0...in .

This implies that

sPre(Cart)(Č(U), X) ∼=
∫
[n]

sPre(Cart)(∆n
c ×

∐
i0...in

yUi0...in , X)

∼=
∫
[n]

∏
i0...in

sPre(Cart)
(
yUi0...in , X

∆n)
∼=
∫
[n]

∏
i0...in

sSet (∆n, X(Ui0...in))

∼=
∫
[n]

sSet

(
∆n,

∏
i0...in

X(Ui0...in)

)
.

(1.28)

This kind of limit is special enough to have its own name.

Definition 1.5.11. Let F be a cosimplicial simplicial set, namely a functor F : ∆ → sSet.

Then let Tot(F ) denote the simplicial set given by the end

Tot(F ) =

∫
[n]∈∆

sSet(∆n, F n),

where sSet(X, Y ) denotes the simplicial mapping space between two simplicial sets X and Y ,

namely sSet(X, Y )n = sSet(X ×∆n, Y ). For a cosimplicial simplicial set F , Tot(F ) is often

called the total object or totalization of F .

A more convenient way of looking at Tot(F ) is as the simplicial mapping space csSet(∆, F ),

where ∆ denotes the cosimplicial simplicial set [m] 7→ ∆m. In other words, an n-simplex of

the simplicial set Tot(F ) is a map of cosimplicial simplicial sets ∆×∆n → F . The full data

of such a map is a commutative diagram of the form

∆n ∆1 ×∆n ∆2 ×∆n . . .

F 0 F 1 F 2 . . .
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where each arrow is a map of simplicial sets, and we’ve hidden the codegeneracy maps for

clarity in the diagram.

Thus X is an ∞-stack if and only if X is projective fibrant, and the canonical map

X(U)→ Tot
(
X(Č(U))

)
(1.29)

is a weak equivalence of simplicial sets, where X(Č(U)) is the cosimplicial simplicial set

defined degreewise byX(Č(U))n =
∏

i0...in
X(Ui0...in). This concrete description has a pleasing

abstract description as well.

Proposition 1.5.12. If X is a projective fibrant (objectwise Kan) simplicial presheaf, U ∈

Cart and U is a good cover of U , then

Tot
(
X(Č(U))

)
≃ holim[n]∈∆X(Č(U))n (1.30)

where the right hand side is the homotopy limit of the cosimpicial diagram of simplicial sets

X(Č(U))n taken in the Quillen model structure on simplicial sets.

Proof. By [Hir09, Theorem 18.7.4], Tot
(
X(Č(U))

)
→ holimnX(Č(U))n is a weak equiva-

lence if X(Č(U)) is a Reedy fibrant cosimplicial simplicial set. By [Gla+22, Lemma C.5], if

X is projective fibrant, then X(Č(U)) is Reedy fibrant.

Thus by Proposition 1.5.12, if X is a projective fibrant simplicial presheaf, then it is an

∞-stack if and only if the canonical map

X(U)→ holim∆

( ∏
iX(Ui)

∏
i,j X(Uij)

∏
i,j,kX(Uijk) ...

)
(1.31)

is a weak equivalence of simplicial sets.
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If X = cF is a presheaf of sets, then sPre(Cart)(yU, cF ) ∼= F (U), and

sPre(Cart)(Č(U), cF ) ∼= Pre(Cart)(π0Č(U), F ) ∼= eq

(∏
i

F (Ui) ⇒
∏
i,j

F (Uij)

)
.

The right hand side is the usual equalizer one sees in the definition of a sheaf of sets. Note

that if f : cX → cY is a map of discrete simplicial sets, then f is a weak equivalence if and

only if it is an isomorphism of sets. Thus cF is an ∞-stack if and only if the canonical map

F (U)→ eq

(∏
i

F (Ui) ⇒
∏
i,j

F (Uij)

)
,

is an isomorphism of sets for every U ∈ Cart and good open cover U. In other words, for

discrete simplicial presheaves, being an ∞-stack is equivalent to being a sheaf.

Suppose that G : Cartop → Gpd is a (strict) presheaf of groupoids, then it is well known

that G is a stack, in the classical sense, if and only if the map

G(U)→ holim

( ∏
iG(Ui)

∏
i,j G(Uij)

∏
i,j,kG(Uijk)

)
,

is an equivalence of groupoids, where the right hand side is a homotopy limit of groupoids

as described in [Car11, Section I.1.7]. Now consider the nerve functor N : Cat → sSet.

Then NG is a simplicial presheaf that will be projective fibrant, and it will be an ∞-stack

if and only if G is a stack in the classical sense. Thus the notion of ∞-stack simultaneously

generalizes the notion of sheaf and stack, and provides all of the power the homotopy theory

of simplicial sets has to offer.

The main example of (∞-)stack we will consider in this paper is the following.

Example 1.5.13. Suppose G is a group object in Sh(Cart), which we will call a sheaf of

groups. Consider the presheaf of groupoids on Cart that sends a U ∈ Cart to the groupoid

BG(U) := [G(U) ⇒ ∗],
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where both source and target maps are the unique map to the singleton set. Thus there is

a single object in this groupoid, and for every s ∈ G(U), there is an isomorphism from the

unique object to itself. We visualize morphisms in BG(U) with diagrams like the following

∗ g−→ ∗

We define composition in this groupoid using the opposite of multiplication in G. In other

words we have

∗ g−→ ∗ h−→ ∗ = ∗ hg−→ ∗

This convention might seem strange, but we have chosen it to agree with [Sch13, Section

1.2.5.1], which was consulted often in the formulation of this paper. Note that in other

conventions [FSS+12] we must simply swap G with Gop, the opposite of the presheaf of

groupoids, or the presheaf of groupoids with one object and morphisms the sheaf of groups

with multiplication defined by g ·op h = hg. It is important to note that the key equations

(2.9) and (2.10) of Section 1.3 will be altered by changing this convention.

Now if G is in particular a Lie group, then we can consider it as a sheaf of groups on

Cart. Then BG(U) will be the groupoid [C∞(U,G) ⇒ ∗]. Now since all principal G-bundles

are trivial on Cartesian spaces, it is easy to see that there is an objectwise equivalence of

groupoids

[C∞(U,G) ⇒ ∗] ≃ PrinG(U),

where PrinG(U) denotes the groupoid of principalG-bundles on U . Indeed, every object of the

right hand groupoid is isomorphic to the trivial bundle U ×G→ U , and the automorphisms

of a trivial bundle are in bijection with maps U → G. In [Car11, Section I.2] it is proven

that PrinG is a stack (in the classical sense) on Man and Cart. The argument above proves

that BG is also a stack (in the classical sense) on Cart. However BG is not a stack on Man.

If we take the nerves of these presheaves of groupoids NBG and NPrinG, then since they

are nerves of classical stacks on Cart, they will be ∞-stacks on Cart, and they are objectwise
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weak equivalent as simplicial presheaves. See [FSS+12, Section 3.2] for more details.

We often drop the nerve N from the notation of our ∞-stacks, and we call BG the

delooping stack of G.

Remark 1.5.14. Note that in the above example, strictly speaking PrinG is a not a presheaf

of groupoids, because if U
f−→ V

g−→ W is a pair of composable morphisms in Cart, then

we obtain functors PrinG(W )
g∗−→ PrinG(V )

f∗−→ PrinG(U) given by pulling back the principal

bundles. However if P ∈ PrinG(W ), then (gf)∗P ̸= f ∗g∗P , but there is an isomorphism

(gf)∗P ∼= f ∗g∗P . Thus PrinG is called a pseudofunctor PrinG : Cartop → Gpd, where Gpd is

the 2-category of groupoids. There is an elegant theory [JY20, Chapter 10] relating pseudo-

functors with categories fibered in groupoids, both of which can be used to develop the theory

of stacks of groupoids [Vis07]. However, the homotopy theory of presheaves of groupoids,

pseudofunctors, and categories fibered in groupoids are all equivalent in the sense of [Hol08,

Corollary 4.3]. Furthermore, the notion of being a 1-stack is independent across the three

models. Thus in what follows we elect to use presheaves of groupoids, as they are the simplest

to connect with the theory of simplicial presheaves by applying the nerve functor objectwise.

One of the most useful aspects of simplicial model categories is being able to define

homotopically invariant mapping spaces.

Definition 1.5.15. If X and A are simplicial presheaves, then define

R(X,A) := sPre(Cart)(QX,RA) (1.32)

where QX is a cofibrant replacement for X and RA is a fibrant replacement of A in the Čech

model structure. We call R(X,A) the derived mapping space of X and A.

A key property of derived mapping spaces is their invariance under weak equivalence.

Indeed suppose there is a Čech weak equivalence f : X → X ′, then the canonical map

R(f, A) : R(X ′, A)→ R(X,A)
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is a weak equivalence of simplicial sets, similarly for a Čech weak equivalence g : A → A′,

see [Hir09, Chapter 17].

Proposition 1.5.16 ([FSS+12, Page 23]). Given a Lie group G, and a finite dimensional

smooth manifold M , there is a weak equivalence of simplicial sets

NPrinG(M) ≃ R(M,BG), (1.33)

where NPrinG(M) denotes nerve of the groupoid of principal G-bundles on M .

Now if G is a diffeological group, and X is a diffeological space, we can consider them both

as simplicial presheaves on Cart, and compute R(X,BG). It would be hoped that this would in

some way reproduce diffeological principal G-bundles, in analogy to Proposition 1.5.16. One

main goal of this paper is to prove that this is indeed the case. But first we must investigate

R(X,BG). If X was cofibrant, and BG were fibrant in the Čech model structure, then

R(X,BG) would be computable. However diffeological spaces are not projective cofibrant

in general (though cartesian spaces are). Thus we must find a projective cofibrant simplicial

presheaf QX which is Čech weak equivalent to X. This will be the subject of Section 1.5.2.

However, it is indeed the case that BG is fibrant, thanks to the following wonderful

theorem.

Theorem 1.5.17 ([SS21, Lemma 3.3.29], [Pav22a, Proposition 4.13]). Let G be a sheaf of

groups on Cart. Then BG is an ∞-stack on Cart.

Thus if G is a diffeological group, then it is in particular a sheaf of groups on Cart, and

therefore BG is an ∞-stack.

1.5.2 Resolutions of Diffeological Spaces

Here we discuss three ways of ”resolving” a diffeological space into a diffeological category.

One of which, QX comes forth immediately from the projective model structure on simpli-

cial presheaves. The other two, which we denote Č(X) and B//M , appear in [KWW21] and
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[Igl20a] respectively, and are interesting in their own right. We compare these three reso-

lutions as diffeological categories, and examine their resulting notions of diffeological Čech

cohomology in Section 1.5.3.

Let us start by describing the resolution QX for a diffeological space X. Since sP̌re(Cart)

is a combinatorial model category, a cofibrant replacement functor Q exists. However, we

are in the lucky situation that there is a cofibrant replacement functor Q with a relatively

simple form.

Lemma 1.5.18 ([Dug01, Lemma 2.7]). Given a diffeological spaceX, thought of as a discrete

simplicial presheaf on Cart, its cofibrant replacement QX is given by the simplicial presheaf

QX =

∫ [n]∈∆
∆n
c ×

 ∐
Upn→···→Up0→X

yUpn

 (1.34)

Let us examine this coend formula in more detail. In degree k, we have

(QX)k ∼=
∐

(fk−1,...,f0):Upk
→···→Up0

yUpk (1.35)

where the coproduct is taken over the set (NPlot(X))k, namely the set of k composable

morphisms in the category of plots over X. We will let Nk := (NPlot(X))k.

The face maps are given as follows:

di(xpk , fk−1, fk−2, . . . , f0) =


(fk−1(xpk), fk−2, . . . , f0) i = 0

(xpk , fk−1, . . . , fk−i−1fk−i, . . . , f0) 0 < i < k

(xpk , fk−1, . . . , f1) i = k.

(1.36)

Degeneracies insert identity maps.
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For convenience, we will denote the coproduct over all plots as

B := (QX)0 =
∐

p0∈Plot(X)

Up0 .

Notice that there is a canonical map

B
π−→ X

given by π(p0, xp0) = p0(xp0).

This map induces a map π : QX → cX of simplicial presheaves and [Dug01, Lemma 2.7]

proves that this is an objectwise weak equivalence, and thus a Čech weak equivalence. By

construction we also have the following isomorphism of presheaves on Cart.

Lemma 1.5.19. If X is a diffeological space, then the map π : QX → cX induces an

isomorphism of presheaves on Cart

π0QX ∼= X, (1.37)

where π0 : sPre(Cart)→ Pre(Cart) is defined in Section 1.5.

Proof. This follows from the fact that every presheaf is a colimit of representables, see the

discussion above [Dug01, Lemma 2.7].

In low degrees, this simplicial presheaf/simplicial diffeological space looks like:

B =
∐

p0∈Plot(X) Up0
∐

f0:Up1→Up0
Up1

∐
Up2

f1−→Up1

f0−→Up0

Up2 . . .

where the maps fi : Upi+1
→ Upi are understood to be morphisms in the plot category

Plot(X).

In fact, QX is completely determined by QX1 and QX0 in the following sense. Let

N : DiffCat→ sDiff denote the nerve functor from diffeological categories (categories internal

to the category of diffeological spaces) to the category of simplicial diffeological spaces, defined
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degreewise by

NCk = C1 ×t,C0,s C1 ×t,C0,s · · · ×t,C0,s C1,

where the iterated pullback is taken k-times, where each C1 ×t,C0,s C1 denotes the pullback

with respect to the target and source maps respectively.

For a diffeological space X, the first two spaces and maps between them in QX, namely

[QX1 ⇒ B] forms a diffeological category. It also is a presheaf of categories. The source,

target and unit maps are defined by the simplicial structure, but we recall their definitions

here. The source map s : QX1 → B is defined by s(xp1 , f0) = xp1 and its target map t :

QX1 → B is defined by t(xp1 , f0) = f0(xp1). The unit map u : B → QX1 is defined by u(xp) =

(xp, 1Up). The composition map c : QX1×B QX1 → QX1 is defined by c([xp2 , f1], [xp1 , f0]) =

(xp2 , f0 ◦ f1). With this structure it is not hard to see that [QX1 ⇒ B] is a diffeological

category/presheaf of categories. In fact QX is completely determined by this diffeological

category in the following sense.

Proposition 1.5.20. If X is a diffeological space, then

QX ∼= N [QX1 ⇒ QX0], (1.38)

where we are thinking of QX as a simplicial diffeological space or a simplicial presheaf.

Proof. Let φ : QXk → QX1 ×B QX1 ×B · · · ×B QX1 be the map defined as follows. Sup-

pose that (xpk , fk−1, . . . , f0) ∈ QXk. By induction, define xpk−1
= fk−1(xpk) and xpk−n

=

fk−n(xpk−n+1
) for 1 < n ≤ k. Then set

φ(xpk , fk−1, . . . , f0) = ([xpk , fk−1], [xpk−1
, fk−2], . . . , [xp1 , f0]).

This map is smooth, as it is built out of projection maps. Now define ψ : QX1 ×B QX1 ×B

· · · ×B QX1 → QXk as follows. A point of QX1 ×B QX1 ×B · · · ×B QX1 is a collection of



CHAPTER 1. DIFFEOLOGICAL AND INFINITY BUNDLES 45

pairs {[xpn , fn−1]}1≤n≤k such that fn−1(xpn) = xpn−1 . Thus set

ψ([xpk , fk−1], [xpk−1
, fk−2], . . . , [xp1 , f0]) = (xpk , fk−1, . . . , f0).

It is not hard to see that this map is smooth, and that φ and ψ are two-sided inverses for

each other.

Lemma 1.5.21. If X is a diffeological space, then we can consider the coequalizer in Diff of

[QX1 ⇒ QX0] and this is isomorphic to X, namely

X ∼= coeq

 ∐
Up1

f0−→Up0

Up1 ⇒
∐

p0∈Plot(X)

Up0

 . (1.39)

Proof. This is just a restatement of Lemma 1.2.13.

Remark 1.5.22. Note that the coequalizer given in (1.37) is taken in the category Pre(Cart),

which has different colimits than ConSh(Cart). Therefore it does not immediately imply

Lemma 1.5.21. However, by combining the two results we have proven that π0QX is isomor-

phic to the coequalizer of QX1 ⇒ QX0 in the category of diffeological spaces.

Now as discussed in Section 1.5.1, if X is a diffeological space and G is a diffeological

group, then we can consider the simplicial set R(X,BG). By Theorem 1.5.17, we know that

BG is fibrant, thus

R(X,BG) = sPre(Cart)(QX,BG) ∼= sPre(Cart)(N [QX1 ⇒ B], N [C∞(−, G) ⇒ ∗]).

In Section 1.6 we will show that this simplicial set is weak equivalent to the nerve of the

groupoid of diffeological principal G-bundles on X.

The fact that QX is the nerve of a diffeological category is interesting, as it allows us to

compare it with other diffeological categories using the homotopy theory developed in [Rob12]

for categories internal to a site. The site in this instance is the category Diff of diffeological
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spaces with the coverage of subductions, see Example 1.4.7. This homotopy theory provides

us with a notion of weak equivalence f : X → Y of diffeological categories, see [Rob12,

Definition 4.14], which if both X and Y are diffeological groupoids, coincides with the notion

of weak equivalence of diffeological groupoids considered in [Wat22] and [Sch20].

If we consider X as a diffeological category [X = X] with all structure maps being the

identity, then the canonical map [QX1 ⇒ QX0]→ [X = X] of diffeological categories is not

a weak equivalence, as it is not fully faithful.

However, there is another diffeological groupoid we can consider. Given a diffeological

space X, we can consider the canonical map π : B → X as mentioned above. This can be

made into a diffeological groupoid Č(X) by setting Č(X)0 = B and Č(X)1 = B ×X B, with

the source and target maps being the obvious projection maps. We will call this the Čech

resolution of X, as a diffeological groupoid. It is not hard then to check that the canonical

map Č(X)→ [X = X] of diffeological groupoids is indeed a weak equivalence.

If we then take the nerve of Č(X), we obtain a simplicial diffeological space, which we

can also consider as a simplicial presheaf.

Proposition 1.5.23. The natural map Č(X)→ cX of simplicial presheaves is a Čech weak

equivalence.

Proof. It is easily checked that the map π : B → X is a local epimorphism, as it is objectwise

a surjection. Thus [DHI04, Corollary A.3] proves that Č(X)→ cX is a weak equivalence in

the Čech model structure on simplicial presheaves.

Therefore we have a zig-zag of Čech weak equivalences of simplicial presheaves

Č(X)→ cX ← QX.

However Č(X) will not be cofibrant in the projective model structure on simplicial

presheaves in general. Thus for our purposes, QX is the preferable resolution of X, while for
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the purposes of those interested in diffeological groupoid theory, Č(X) might be the more

preferable resolution.

The final resolution we will discuss is that of the gauge monoid that appears in [Igl20a].

Given a diffeological space X, its nebula B =
∐

p∈Plot(X) Up is a diffeological space, and we

can consider the set of smooth maps f : B → B such that the following diagram commutes:

B B

X

π π

f

It inherits the subspace diffeology from the functional diffeology on C∞(B,B). Notice that

M acts on B by B ×M ρ−→ B, where ρ(b,m) = m(b).

We can therefore consider the diffeological category B//M := [B ×M ⇒ B], where the

source map s : B ×M → M is given by s(b,m) = b, and the target map t : B ×M → M is

given by t(b,m) = m(b).

There is a map δ : QX → B//M defined as the identity on objects and on morphisms by

δ(xp1 , f0) = (xp1 , δf0) where δf0 denotes the map δf0 : B → B that is the identity on every

component Up except for p = p1, in which case δf0|Up1
= f0. It is not hard to check that this

defines a map of diffeological categories.

In the reverse direction, there is a map res : B//M → QX defined to be the identity on

objects and on morphisms by

res(xp,m) = (xp,m|Up).

It is not hard to see that the composition QX
δ−→ B//M

res−→ QX is the identity, namely that

QX is a retract of B//M .

There is a map q : B//M → Č(X) described in [KWW21, Page 26] which is the identity

on objects and on morphisms is defined by q(xp,m) = (xp,m(xp)). This defines a map of

diffeological categories. It is also easy to see that qδres = q.

To summarize, we have the following diagram of maps of diffeological categories, all of
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which are the identity on objects, but none of which are fully faithful.

QX B//M

Č(X)

δ
res

q
q◦δ

(1.40)

The diffeological categories Č(X) and B//M are used to construct Čech cohomology

groups for diffeological spaces in [KWW21] and [Igl20a].

1.5.3 Diffeological Čech Cohomologies

Here we will describe three notions of Čech cohomology for diffeological spaces that results

from the material in Section 1.5.2.

Remark 1.5.24. In what follows we will always consider chain complexes and cochain com-

plexes to be non-negatively graded, with differentials going down and up respectively.

Let A denote a diffeological abelian group. In [Igl20a], Čech cohomology of a diffeological

space X is defined2 as follows. First consider N(B//M), the simplicial diffeological space

defined as the nerve of the diffeological category defined in section 1.5.2. Then

AN(B//M)k = AB×M×k

= C∞(B ×M×k, A)

is precisely the diffeological space of smooth maps B ×M×k → A. If we forget the smooth

structure, then C∞(N(B//M)k, A) is an abelian group by pointwise addition. Thus we obtain

a cosimplicial abelian group

AB AB×M AB×M×M . . .

2Modulo some details, Iglesias-Zemmour defines diffeological spaces with open subsets of cartesian spaces
and uses a generating family of open balls, but they are clearly equivalent constructions. He also only restricts
to discrete abelian diffeological groups.
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and from this one can obtain a cochain complex as follows.

If K is a cosimplicial abelian group, then we can define a cochain complex CcoK called

the associated cochain complex by

(CcoK)n = Kn, d : (CcoK)n → (CcoK)n+1, d =
n∑
i=0

(−1)idi.

This definition extends to a functor Cco : cAb → CoCh, where cAb denotes the category of

cosimplicial abelian groups and CoCh is the category of cochain complexes. Further there is

a functorial direct sum decomposition as cochain complexes CcoK ∼= N coK ⊕DcoK, where

DcoK is the subcomplex consisting of degenerate simplices, and the inclusion N coK → CcoK

is a cochain homotopy equivalence of cochain complexes. We call N coK ∼= CcoK/DcoK the

normalized cochain complex of K. This is a dual version of what is called the Dold-Kan

correspondence, which is an adjoint equivalence

N : sAb ⇄ Ch : Γ,

where N is the normalized chain complex functor and if V is a chain complex, then ΓV is

defined degreewise by

Γ(V )n =
⊕

[n]↠[k]

Vk,

where the index is over all surjections φ : [n]→ [k] in ∆. See [Wei95, Section 8.4] and [GJ12,

Section III] for details.

The Iglesias-Zemmour Čech cohomology of X is then defined as the cohomology of this

cochain complex:

Ȟk
PIZ(X,A) = Ȟk

(
N co

[
AB//M

]) ∼= Ȟk
(
Cco

[
AB//M

])
.

Similarly, let NČ(X) denote the nerve of the Čech groupoid defined in Section 1.5.2. If

A is an abelian diffeological group, then as above we can map NČ(X) into A to form a
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cosimplicial abelian group, and taking the cohomology of the associated cochain complex

gives us the Krepski-Watts-Wolbert Čech cohomology [KWW21] of X with values in A:

Ȟk
KWW (X,A) = Ȟk

(
N co

[
AČ(X)

])
∼= Ȟk

(
Cco

[
AČ(X)

])
.

We will now construct a cochain complex using the cofibrant replacement QX of a dif-

feological space X. Given an abelian group A and a non-negative integer n, there exists a

simplicial set K(A, n), called the nth Eilenberg-Maclane space, which has trivial homo-

topy groups in all degrees except for n, which has πn(K(A, n)) = A. One can construct this

simplicial set using the Dold-Kan correspondence. Namely consider the chain complex A[k],

defined by

(A[k])n =


A if n = k

0 if n ̸= k

, d = 0.

Since Γ(A[k]) is a simplicial group, it will be a Kan complex, equipped with basepoint ∗ such

that

πn(Γ(A[k]), ∗) =


A if n = k

0 if n ̸= k.

Remark 1.5.25. For future reference, if V is a chain complex, then let V [k] denote the

chain complex such that V [k]n = Vn−k, so that we identify an abelian group A with the chain

complex A[0], and then (A[0])[k] = A[k].

Now we will define ∞-stack cohomology for simplicial presheaves. This theory, which we

call∞-stack cohomology, is very well developed, and generalizes many examples of cohomol-

ogy found throughout mathematics, see [Sch13], [Lur09], [BNV16].

Definition 1.5.26. Let X be a projective cofibrant simplicial presheaf and A an ∞-stack.

Then the zeroth ∞-stack cohomology of X with values in A is given by

Ȟ0
∞(X,A) := π0R(X,A) ∼= π0sPre(Cart)(X,A). (1.41)
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Note that in the above definition, A is an arbitrary ∞-stack. Thus Ȟ0
∞(X,A) is an

example of nonabelian cohomology. However, in order to define Ȟ1
∞, we must ask for more

structure on A, namely that it be an∞-stack, and that A also be a group object in sPre(Cart),

namely that A(U) be a simplicial group for each U ∈ Cart and given a smooth map f : U → V ,

the map A(f) : A(V ) → A(U) is a map of simplicial groups. We call group objects of

sPre(Cart) presheaves of simplicial groups.

Definition 1.5.27. Given a simplicial group G, let WG denote the simplicial set with

WG0 = ∗

WGn = Gn−1 ×Gn−2 × · · · ×G0

(1.42)

with face and degeneracy maps given by

di(gn−1, . . . , g0) =


(gn−2, . . . , g0), if i = 0

(di−1(gn−1), . . . , d1(gn−i+1), gn−i−1 · d0(gn−i), gn−i−2, . . . , g0)), if 1 ≤ i ≤ n

si(gn−1, . . . , g0) =


(1, gn−1, . . . , g0), if i = 0

(si−1(gn−1), . . . , s0(gn−i), 1, gn−i−1, . . . , g0), if 1 ≤ i ≤ n.

Simplicial sets of the form WG classify what are called principal twisted cartesian prod-

ucts or PTCPs in [May92]. The combinatorial structure of WG may look complicated, but

it has other equivalent descriptions that are more motivated, see [GJ12, Chapter V] and

[Ste12].

Lemma 1.5.28 ([GJ12, Corollary 6.8]). If G is a simplicial group, then WG is a Kan

complex.

If cG a discrete simplicial group, i.e. a group, then W cG ∼= N [G ⇒ ∗], the nerve of

G thought of as a groupoid with one object. Thus |W cG|, the geometric realization of the

delooping, is weak homotopy equivalent to the classifying space BG.
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Now if A is a presheaf of simplicial groups, then we can apply W objectwise, and we

obtain a functor W : sPre(Cart, sGrp) → sPre(Cart), where sPre(Cart, sGrp) denotes the full

subcategory of presheaves of simplicial groups. Further, by Lemma 1.5.28, WA is projective

fibrant, i.e. objectwise a Kan complex.

Lemma 1.5.29. Let G be a sheaf of groups on Cart. Then the delooping stack of Example

1.5.13 is isomorphic to its delooping as a presheaf of simplicial groups

BG ∼= W cG.

So suppose that A is an ∞-stack on Cart, and further, that it is a presheaf of simplicial

groups. Then we get a new simplicial presheafWA, and it is projective fibrant. We therefore

define the first ∞-stack cohomology group of a simplicial presheaf X with values in A to be

Ȟ1
∞(X,A) ∼= π0R(X,WA).

In order to be able to compute this, it would be convenient to know that WA is fibrant in

the Čech model structure, i.e. is an ∞-stack. This follows thanks to the following wonderful

theorem.

Theorem 1.5.30 ([SS21, Proposition 3.3.30], [Pav22a, Proposition 4.13]). If A is an∞-stack

on Cart that is also a presheaf of simplicial groups, then WA is an ∞-stack on Cart.

Thus if A is an ∞-stack, then for any simplicial presheaf X, Ȟ0
∞(X,A) is well defined,

and if A is also a presheaf of simplicial groups, then Ȟ1
∞(X,A) is also well defined. To obtain

higher cohomology groups, we must ask for higher deloopings of A to exist.

Definition 1.5.31. Let A be an∞-stack that is also a presheaf of simplicial groups. IfW
k
A

is a presheaf of simplicial groups for all 1 ≤ k ≤ n− 1, and X is a simplicial presheaf, then

let

Ȟn
∞(X,A) = π0R(X,W

n
A) (1.43)
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denote the nth ∞-stack cohomology of X with values in A.

It is thus important to know under what conditions will these higher deloopings W
n
A

exist.

Lemma 1.5.32. If A is a simplicial abelian group, namely A is a simplicial group and Ak

is an abelian group for all k, then WA will be a simplicial group, and further it will be an

abelian simplicial group.

Proof. It follows from the isomorphismWA ∼= TNA of [Ste12, Lemma 5.2] and the discussion

of T in [AM66, Section III] that WA is a simplicial group, and that it is abelian is clear from

the formula (1.42).

Thus if A is a simplicial abelian group, W
k
A exists for all k.

Lemma 1.5.33 ([Jar97, Section 4.6]). Let A be a simplicial abelian group. Then there is

an isomorphism of chain complexes

NWA ∼= (NA)[1]

where (NA)[1] is the chain complex NA shifted up by 1, i.e. (NA[1])k = (NA)k−1.

Lemma 1.5.34. If A is an abelian group, thought of as a discrete simplicial abelian group

cA, then W
k
A exists for every k ≥ 0, and there exists an isomorphism

W
kcA ∼= Γ(A[k])

Proof. We proceed by induction. For the base case, we have

NW cA ∼= (N cA)([1]).
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But N cA ∼= A[0] as is easily checked, and (A[0])[1] = A[1], so NW cA ∼= A[1], thus

ΓNW cA ∼= W cA ∼= ΓA[1].

Now suppose W
k−1cA ∼= ΓA[k − 1]. Then by Lemma 1.5.33

NW
(
W

k−1cA
)
∼= (NΓA[k − 1]) [1]

but NΓA[k − 1] ∼= A[k − 1] since N and Γ form an adjoint equivalence, thus:

NW
(
W

k−1cA
)
∼= NW

kcA ∼= A[k − 1]([1]) = A[k]

taking the adjoint gives

W
kcA ∼= ΓA[k].

Now if A is an abelian diffeological group, then it is an∞-stack on Cart, since it is a sheaf

on Cart, and therefore a discrete presheaf of simplicial groups. Thus by 1.5.34 and 1.5.30,

W
n
A exists, and the nth ∞-stack cohomology of a diffeological space X with values in A is

given by

Ȟn
∞(X,A) = π0sPre(Cart)(QX,W

n
A) ∼= π0Tot(W

n
[A(QX)]), (1.44)

where Tot is the totalization of Definition 1.5.11, A(QX) is the cosimplicial abelian group

which in degree k is given by C∞(QXk, A), and W
n
[A(QX)] is W

n
applied to A(QX) de-

greewise. Now W
n
[A(QX)] ∼= Γ[A(QX)[n]] by Lemma 1.5.34.

Proposition 1.5.35 ([Jar16, Lemma 19]). If A is a cosimplicial abelian group, then

π0Tot(ΓA[k]) ∼= Ȟk(N coA) (1.45)
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where ΓA[k] denotes the cosimplicial simplicial abelian group obtained by considering the

abelian group Ai as a simplicial abelian group Γ(Ai[k]).

So substituting for the cosimplicial abelian group A(QX) in Proposition 1.5.35 we have

the main result of this section, which provides a concrete way of computing the ∞-stack

cohomology of a diffeological space with values in an abelian diffeological group.

Corollary 1.5.36. If X is a diffeological space, and A is an abelian diffeological group, and

we consider the cochain complex

Cco[A(QX)] = AB
d−→ AQX1 d−→ AQX2 d−→ . . .

then the nth ∞-stack cohomology of X with values in A can be computed by Cco[A(QX)],

namely

Ȟn
∞(X,A) ∼= Ȟn

∞(N co[A(QX)]) ∼= Ȟn
∞(Cco[A(QX)]).

This explicit description of ∞-sheaf cohomology will be useful in comparing the various

Čech cohomologies.

Proposition 1.5.37. For a diffeological space X, and a diffeological abelian group A, the

∞-sheaf cohomology and Iglesias-Zemmour cohomology agree in degree 0:

Ȟ0
PIZ(X,A) = Ȟ0

∞(X,A).

Proof. The set of 0-cocycles in ∞-sheaf cohomology is the set

Ȟ0
∞(X,A) = {τ : B → A | if f : Up → Uq is a map of plots then τ ◦ δf = τ} ,

where δf denotes the map δf : B → B that is the identity on every component except

for Up, where it is f . Equivalently it is the set of smooth maps τ : B → A such that

if (xp1 , f0) ∈ QX1, then τ(f0(xp1)) = τ(xp1). The set of 0-cocycles in Iglesias-Zemmour
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cohomology is

Ȟ0
PIZ(X,A) = {σ : B → A | if m ∈M, then σ ◦m = σ} .

Equivalently it is the set of smooth maps σ : B → A such that if (xp1 ,m) ∈ B ×M , then

σ(m(xp1)) = σ(xp1). Notice that Ȟ0
PIZ(X,A) ⊆ Ȟ0

∞(X,A), since every δf is an element of

M . Now if τ ∈ Ȟ0
∞(X,A), and (xp1 ,m) ∈ B×M , then τ(m(xp1)) = τ(xp1), because m|Up1

is

a map of plots. Thus Ȟ0
∞(X,A) ⊆ Ȟ0

PIZ(X,A).

Note that

π0sPre(Cart)(QX,
cA) ∼= Pre(Cart)(π0QX,A) ∼= Pre(Cart)(X,A) ∼= Diff(X,A), (1.46)

where the first isomorphism follows from the adjunction described in Section 1.5, and the

second isomorphism follows from Remark 1.5.22.

Corollary 1.5.38. If X is a diffeological space, and A a diffeological abelian group, then

Ȟ0
∞(X,A) ∼= Ȟ0

PIZ(X,A)
∼= Ȟ0

KWW (X,A) ∼= Diff(X,A). (1.47)

Proof. This follows from (1.46), Proposition 1.5.37 and [KWW21, Proposition 4.6].

Now recall the map q ◦ δ : QX → Č(X) from (1.40). This induces a map on cohomology

which we will denote by (qδ)∗ = φ : Ȟ•
KWW (X,A) → Ȟ•

∞(X,A). In degree 1, φ has the

following explicit description on cocycles. Namely if τ : Č(X)1 → A is a cocycle, then

(φτ)(xp1 , f0) = τ(xp1 , f0(xp1)).

Proposition 1.5.39. For any diffeological space X and abelian diffeological group A, the

map φ : Ȟ1
KWW (X,A)→ Ȟ1

∞(X,A) is an isomorphism.

Proof. Let us show that φ is surjective. Suppose that σ is a 1-cocycle for the cochain complex
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AQX . This means that if f1, f0 are composable maps of plots, then

σ(f1(xp2), f0) = σ(xp2 , f0f1)− σ(xp2 , f1).

Now if (xp1 , f0) ∈ QX1, then notice we have the following commutative diagram of plot maps

∗

Up1 Up0

X

p1 p0

xp1 f0(xp1 )

f0

which implies that if σ is a 1-cocycle that σ(xp1 , f0) = σ(∗, f0(xp1)) − σ(∗, xp1). So consider

the map τ : Č(X)1 → A defined as follows. If (xp, yq) ∈ Č(X)1, then let τ(xp, yq) =

σ(∗, yq)− σ(∗, xp). Then (φτ)(xp1 , f0) = σ(xp1 , f0) for every (xp1 , f0) ∈ QX1.

Now we wish to show that φ is injective. Suppose τ, τ ′ : Č(X)1 → A are 1-cocycles such

that there exists some α : B → A such that for every (xp1 , f0) ∈ QX1,

τ(xp1 , f0(xp1))− τ ′(xp1 , f0(xp1)) = α(f0(xp1))− α(xp1).

Then if (xp, yq) ∈ Č(X)1, we have the following commutative diagram of plot maps

∗

Up Vq

X

p q

xp yq

z

where z = p(xp) = q(yq), and we use z to refer to the point ∗ in the plot z : ∗ → X. Now

since τ and τ ′ are 1-cocycles, it follows that

τ(xp, yq) = τ(z, yq)− τ(z, xp), τ ′(xp, yq) = τ(z, yq)− τ(z, xp).
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Therefore

τ(xp, yq)− τ ′(xp, yq) = (τ(z, yq)− τ(z, xp))− (τ ′(z, yq)− τ ′(z, xp))

= (τ(z, yq)− τ ′(z, yq))− (τ(z, xp)− τ ′(z, xp))

= (α(yq)− α(z))− (α(xp)− α(z))

= α(yq)− α(xp).

which means that τ and τ ′ differ by a coboundary in AČ(X), so φ is injective.

From (1.40) we obtain the following diagram of abelian groups for every k ≥ 0

Ȟk
∞(X,A) Ȟk

PIZ(X,A)

Ȟk
KWW (X,A)

(qδ)∗

res∗

δ∗

q∗
(1.48)

We summarize everything we know about this diagram

1. In degree 0, all of the above maps are the identity by Corollary 1.5.38,

2. In degree 1, the map (qδ)∗ is an isomorphism by Proposition 1.5.39,

3. The map δ∗ is a retraction, namely δ∗res∗ = 1Ȟk
∞(X,A), so res∗ is injective and δ∗ is

surjective for all k ≥ 0,

4. We have res∗δ∗q∗ = q∗ for all k ≥ 0, thus the above diagram actually commutes

5. The map q∗ is injective for k = 1 by [KWW21, Lemma 6.9]. Notice that this can also

be seen by noting that since (qδ)∗ is an isomorphism for k = 1, and res∗ is injective,

and since res∗δ∗q∗ = res∗(qδ)∗ = q∗, then q∗ is injective for k = 1.

It is not currently known if any of the above maps are isomorphisms for all k ≥ 0.
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1.6 Principal Diffeological Bundles as Principal Infinity

Bundles

Principal Infinity Bundles were defined in [NSS14a] and [NSS14b]. In this section, we compare

this abstract notion to diffeological principal bundles.

Remark 1.6.1. The following two definitions are needed only for Definition 1.6.4 and are

not used elsewhere in this paper.

Definition 1.6.2 ([DHI04, Section 3]). A map f : X → Y of simplicial presheaves on Cart

is a local fibration if for every U ∈ Cart, there exists a good open cover {Ui ⊆ U} such that

for every element Ui of the good open cover, there is a lift in every commutative diagram of

the following form.

Λnk X(U) X(Ui)

∆n Y (U) Y (Ui)

f (1.49)

Note that an objectwise fibration of simplicial presheaves is a local fibration. We say that

a simplicial presheaf X is locally fibrant if the unique map X → ∗ is a local fibration.

Definition 1.6.3 ([DI04, Theorem 6.15]). A map f : X → Y of simplicial presheaves on

Cart is a local weak equivalence if for every U ∈ Cart, there exists a good open cover

{Ui ⊆ U} such that for every element Ui of the good open cover, there is a dotted arrow in

every commutative diagram of the following form,

∂∆n RX(U) RX(Ui)

∆n RY (U) RY (Ui)

Rf (1.50)

where R is a fibrant replacement functor for sSet and the top left triangle commutes strictly,

while the bottom right triangle commutes up to a homotopy relative to ∂∆n ↪→ ∆n.
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Note that an objectwise weak equivalence is a local weak equivalence, and [DHI04] proves

that Čech weak equivalences are local weak equivalences.

Definition 1.6.4 ([NSS14b, Definition 3.79]). Let G be a presheaf of simplicial groups acting

on a simplicial presheaf P by ρ : P × G → P . Then a map π : P → X is a G-Principal

∞-bundle3 if:

1. π is a local fibration,

2. The action of G on P is fiberwise, namely ρ(g,−) sends fibers to fibers, and

3. the map

P ×G→ P ×X P

given by

(p, g) 7→ (p, ρ(p, g))

is a local weak equivalence.

A map P
f−→ P ′ ofG-principal∞-bundles overX is a map that isG-equivariant and commutes

with the bundle projections. Namely, it is a map fitting into the following commutative

diagram:

P ×G P ′ ×G

P P ′

X

f

π π′

ρ ρ′

f×1G

Let Prin∞G (X) denote the category of G-principal ∞-bundles on X.

It is clear that if π : P → X is a diffeological principal G-bundle, then it is a G-principal

∞-bundle, when we think of X, G and P as discrete simplicial presheaves. This is because all

3In [NSS14b], what we call principal∞-bundles are known as weakly principal G-bundles. Also, they only
define this for simplicial sheaves, but there are no problems extending the definition and all of the theorems
in that paper to simplicial presheaves.
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maps between discrete simplicial presheaves are local fibrations, and all diffeomorphisms be-

tween diffeological spaces are local weak equivalences. Note that DiffPrinG(X) is a groupoid,

while in general Prin∞G (X) is not a groupoid. So while these categories are not equivalent, we

will prove that their nerves are weak homotopy equivalent.

Proposition 1.6.5. Let X be a locally fibrant simplicial presheaf and G a presheaf of

simplicial groups. Then, there is a weak homotopy equivalence of simplicial sets

R(X,BG) ≃ NPrin∞G (X). (1.51)

Proof. First if X and Y are locally fibrant simplicial presheaves, then combining [Low15,

Lemma 6.4] with [Low15, Theorem 3.12] and [DK80, Corollary 4.7] proves that

R(X, Y ) ≃ NCocycle(X, Y )

where Cocycle(X, Y ) is the cocycle category as defined in [Low15, Definition 3.1]. Then

[NSS14b, Theorem 3.95] proves that

NCocycle(X,BG) ≃ NPrin∞G (X).

Since all presheaves of simplicial groups are locally fibrant, combining these gives the desired

result.

Since all diffeological spaces are locally fibrant, if X is a diffeological space and G is a

diffeological group, to prove that NDiffPrinG(X) is weak equivalent to NPrin∞G (X), it suffices

to show that NDiffPrinG(X) is weak homotopy equivalent to R(X,BG). Let us examine

R(X,BG) more deeply. In Section 1.5.2 we saw that this is equal to the simplicial set

sPre(Cart)(QX,BG). Now, if we consider the definition of QX given in Lemma 1.5.18, then
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by the same computation as (1.28), we have

sPre(Cart)(QX,BG) ∼= Tot(BG(QX)). (1.52)

A k-simplex of Tot(BG(QX)) contains a huge amount of information, but in this case,

since BG is objectwise the nerve of a groupoid, most of this information will be redundant.

Let us describe what a vertex of this simplicial set is. It is a map of cosimplicial simplicial

sets ∆• → BG(QX). This means it is a commutative diagram of the form4:

∆0 ∆1 ∆2 . . .

∏
Plot(X) BG(Up0)

∏
N1

BG(Up1)
∏

N2
BG(Up2) . . .

g1 g2g0

Let us unravel what this means. Firstly, g0 contributes no information, as BG(Up0)0 =

C∞(Up0 , ∗) = ∗. However, g1 is the data of maps g1(f0) := gf0 : Up1 → G for every map of

plots f0 : Up1 → Up0 . Now g2 is the data of a map g2(f1, f0) := gf1,f0 : Up2 → G×G for every

pair of composable maps of plots Up2
f1−→ Up1

f0−→ Up0 . Let g
2(f1, f0) = (h, k). The data of the

above cosimplicial map insists that

(d0g1)(f1, f0) = g1(f0) ◦ f1 = (g2d0)(f1, f0) = d0(g
2(f1, f0)) = d0(h, k) = k

(d1g1)(f1, f0) = g1(f0f1) = (g2d1)(f1, f0) = d1(g
2(f1, f0)) = d1(h, k) = kh5

(d2g1)(f1, f0) = g1(f1) = (g2d2)(f1, f0) = d2(g
2(f1, f0)) = d2(h, k) = h.

In other words

gf0f1 = (gf0 ◦ f1) · gf1 .
4Where we exclude the codegeneracy maps from the notation for clarity.
5If this seems strange, see Example 1.5.13.
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This is precisely the diffeologicalG-cocycle condition (2.9). We can visualize this as a triangle:

•

• •gf0f1

gf1 gf0◦f1
g2(f1,f0)

which is filled in if the cocycle condition (2.9) holds. In other words, a map QX → BG is

precisely the same information as a G-cocycle g on X.

Now here’s an important point: g3 will provide no further data. We will explain why

using the notion of coskeleton.

Definition 1.6.6. A simplicial set X is k-coskeletal if for every boundary ∂∆n → X, there

exists a unique n-simplex ∆n → X making the following diagram commute:

∂∆n X

∆n

for all n > k.

For any k, let sSet≤k denote the category of k-truncated simplicial sets, namely presheaves

on the full subcategory ∆≤k of ∆ whose objects are partial orders [n] for n ≤ k. There is a

functor τk : sSet→ sSet≤k just given by forgetting the higher simplices of the simplicial set.

This functor has a fully faithful left adjoint skk and a fully faithful right adjoint coskk. A

simplicial set X is k-coskeletal if the unit of the adjunction X → coskk(X) is an isomorphism.

For more details see [GJ12, Section VII.1].

If X = N(C) is the nerve of a category C, then X is 2-coskeletal [GJ12, Lemma I.3.5].

In our case BG(QX) is a cosimplicial simplicial set such that BG(QXn) is the nerve of

a groupoid and therefore 2-coskeletal for every n. Now as we’ve seen, the 3-simplex g3 ∈

BG(QX3) is required to satisfy that ∂g3 = (d0g1, d1g1, d2g1, d3g1). But that means we’ve just

specified a 3-boundary in a 2-coskeletal simplicial set. Thus there exists a unique filler g3.

This of course continues, so that a vertex g ∈ Tot(BG(QX))0 determines and is completely
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determined by g1 and g2.

Let us repeat the above analysis for a 1-simplex in Tot(BG(QX)). This is the data of a

commutative diagram:

∆0 ×∆1 ∆1 ×∆1 ∆2 ×∆1 . . .

∏
N0

BG(Up0)
∏

N1
BG(Up1)

∏
N2

BG(Up2) . . .

h0 h1 h2

Now unravelling this diagram, skipping some similar details, such a 1-simplex consists of the

following data. If g and g′ are 0-simplices in Tot(BG(QX)) consisting of collections of maps

{gf} and {g′f}, then a 1-simplex is a collection of maps {hp0 : Up0 → G} indexed by plots

p0 : Up0 → X such that if f0 : Up1 → Up0 is a map of plots, then

g′f0 · hp1 = (hp0 ◦ f0) · gf0 ,

and this is precisely a morphism of diffeological G-cocycles (2.10). By the same reasoning

as before, the rest of the diagram provides no further conditions on this data, as the maps

∆k×∆1 → BG(QXk) will consist of (k+1)-simplices, and BG(QXk) is 2-coskeletal, so that

h depends only on h0 and h1. Namely given h0 and h1, the hk for k > 1 are fully determined.

A 2-simplex in Tot(BG(QX)) will similarly be completely determined by its boundary.

Similar reasoning also proves that there are no additional conditions coming from higher

k-simplices of Tot(BG(QX)). In other words, Tot(BG(QX)) is 2-coskeletal. Further, since

sP̌re(Cart) is a simplicial model category and R(X,BG) ∼= Tot(BG(QX)), this implies that

Tot(BG(QX)) is a Kan complex. This combined with the fact that it is 2-coskeletal implies

that for any basepoint g, πk(Tot(BG(QX)), g) = 0 for k > 1.

Now that we have an explicit description of Tot(BG(QX)) it is clear that this is noth-

ing more than a diffeological version of the cocycle construction from classical differential

geometry. Let us formalize this now.

We want to construct a map Φ : Tot(BG(QX))→ NCoc(X,G). Consider the left adjoint
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h : sSet → Cat to the nerve functor N , that sends a simplicial set to its homotopy category

[Rie14, Example 1.5.5], namely if X is a simplicial set, then hX is the category whose

objects are the vertices of X, morphisms are freely generated by the 1-simplices of X and

then quotiented by the 2-simplices, in the sense that if σ is a 2-simplex in X with d0τ =

x, d1τ = y, d2τ = z, then x ◦ z = y in hX. Note that by unravelling the above definitions,

the composition of two morphisms h′ ◦ h in hTot(BG(QX)) is given by multiplication h′ · h

as in Definition 2.2.6.

Let Φ : hTot(BG(QX)) → Coc(X,G) denote the functor that sends an object g =

(g0, g1, . . . ) to the cocycle it defines {gf0}, and a morphism h = (h0, h1, . . . ) to the morphism

of cocycles it defines {hp}. By the above discussion it is evident that this functor defines

(one half of) an isomorphism of categories. In summary we have proved the following.

Lemma 1.6.7. There is an isomorphism of simplicial sets

NCoc(X,G) ∼= Tot(BG(QX)). (1.53)

We are now in a position to prove the main theorem of this paper.

Theorem 1.6.8. The nerve of the category of diffeological principal G-bundles on X and

the nerve of the category of G-principal ∞-bundles on X are weak homotopy equivalent

NPrin∞G (X) ≃ NDiffPrinG(X). (1.54)

Proof. Since the nerve functor sends equivalences of categories to homotopy equivalences of

simplicial sets, Theorem 1.3.15 implies that there is a homotopy equivalence of simplicial

sets NCoc(X,G) ≃ NDiffPrinG(X). Combining this with Proposition 1.6.5 and Lemma 1.6.7

gives the result.

Corollary 1.6.9. Given a diffeological space X and a diffeological group G, there is an
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isomorphism of pointed sets

Ȟ1
∞(X,G) ∼= π0DiffPrinG(X), (1.55)

where π0DiffPrinG(X) denotes the set of isomorphism classes of diffeological principal G-

bundles on X, pointed at the isomorphism class of trivial bundles.

We can still say more about the correspondence of Theorem 1.6.8. As in the paper

[NSS14b], it is useful to see how one can obtain an actual diffeological principal G-bundle

π : P → X from a G-cocycle QX → BG using simplicial presheaves. It is basically a

reformulation of Theorem 1.3.15.

Given a diffeological group G, consider the diffeological groupoid

G×G
pr1
⇒
m
G

where the source map is the first projection and the target map is the map m(g, h) = hg6.

We can visualize morphisms in this groupoid by

g
(g,h)−−→ hg

(hg,k)−−−→ khg = g
(g,kh)−−−→ khg.

This defines a presheaf of groupoids on Cart by

[U 7→ (C∞(U,G×G) ⇒ C∞(U,G))] .

Applying the nerve functor objectwise gives a simplicial presheaf which we denote by EG.

There is a canonical map of simplicial presheaves EG → BG induced by the corresponding

6If this seems strange, see Example 1.5.13
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map of diffeological groupoids/presheaves of groupoids:

G×G G

G ∗

pr1

m
pr2

This functor can be visualized as

g hg

∗ ∗

(g,h)

h

Furthermore this map is an objectwise Kan fibration, and therefore a projective fibration of

simplicial presheaves.

Remark 1.6.10. The simplicial presheaf EG and the map EG → BG described above are

well known in the literature in the form WG → WG, which can be defined when G is any

presheaf of simplicial groups, see [Ste12] or [NSS14b]. In this case we are using the same

convention as [GJ12] where WG = Dec0WG and the map WG → WG is given degreewise

by dWG
0 : G×k+1 → G×k.

Now with such a map g : QX → BG, we can consider the following pullback in the

category of simplicial presheaves.

P̃ EG

QX BG
g

⌟
(1.56)

Remark 1.6.11. In the situation above, P̃ is a G-principal ∞-bundle, and the construction

of taking this pullback is precisely the map Rec described in [NSS14b, Definition 3.93].
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Thus P̃ is a simplicial presheaf, or equivalently a simplicial diffeological space such that

P̃1 =
∐

Up1

f0−→Up0

Up1 ×G (G×G), P̃0 =
∐

p0∈Plot(X)

Up0 ×G.

In other words, P̃0 is precisely the diffeological space P̂ from Section 1.3, and the coequalizer

of the face maps P̃1 ⇒ P̃0, which is precisely the presheaf obtained by taking π0P̃ , is precisely

the diffeological space P = Cons(g) constructed in Section 1.3.

Now let us show that the canonical map q : P̃ → P is an objectwise weak equivalence.

First we notice that QX, BG, and EG are nerves of presheaves of categories. Since the nerve

functor is a right adjoint, we have that

P̃ ∼= N [QX1 ⇒ B]×N [G⇒∗] N [G×G⇒ G] ∼= N([QX1 ⇒ B]×[G⇒∗] [G×G⇒ G]).

Thus P̃ as a simplicial presheaf is the nerve of a diffeological category/presheaf of categories,

a morphism of which we can visualize in the same way as in Section 1.3

(xp1 , k1)
f0−→ (xp0 , k0),

where f0(xp1) = xp0 and k0 = gf0(xp1) · k1.

Now think of P as a presheaf of discrete categories with objects equivalence classes

[xp0 , k0]. The map q : P̃ → P can be seen as the nerve of the functor

(xp1 , k1) (xp0 , k0)

[xp1 , k1] [xp0 , k0]

f0

Now consider the map f : P → P̃ defined as follows. If [xp0 , k0] is an object in P , then let

x = p0(xp0). Then consider the pair (∗x, eG), where x : ∗ → X is the plot sending ∗ to the
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point x ∈ X. There is a unique morphism

(∗x, g−1
f0
(xp0) · k0)

xp0−−→ (xp0 , k0),

given by the map of plots

∗ Up0

X

x p0

xp0

So set f [xp0 , k0] = (∗x, g−1
f0
(xp0) · k0). Then

P̃ (f [xp1 , k1], (xp0 , k0)) = P̃ ((∗x, g−1
f0
(xp0) · k0), (xp0 , k0))

∼= P ([∗x, g−1
f0
(xp0) · k0], [xp0 , k0]),

(1.57)

where the second isomorphism holds because the map (∗x, g−1
f0
(xp0) · k0)

xp0−−→ (xp0 , k0) is the

unique map between the source and target, and the existence of such a map means that

[∗x, g−1
f0
(xp0) · k0] = [xp0 , k0]. Thus

P̃ ((∗x, g−1
f0
(xp0) · k0), (xp0 , k0)) ∼= P ([∗x, g−1

f0
(xp0) · k0], [xp0 , k0]) ∼= ∗.

Therefore f is an objectwise left adjoint to q. Since the nerve functor takes adjoint functors

to homotopy equivalences of simplicial sets, we have proven the following.

Lemma 1.6.12. The map q : P̃ → P of simplicial presheaves is an objectwise homotopy

equivalence and therefore a Čech weak equivalence.

Now notice that EG is objectwise contractible, indeed, for every U the groupoid [G(U)×

G(U) ⇒ G(U)] has an initial object given by the constant map at the identity element eG.

Thus EG → ∗ is an objectwise weak equivalence. The map BG → DiffPrinG is also an

objectwise weak equivalence, see Example 1.5.13 and Proposition 1.3.5. Thus there is a map
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of diagrams, where each component is an objectwise weak equivalence of simplicial presheaves

EG

P̃ BG ∗

QX P DiffPrinG

X

Thus we have proven the following result.

Corollary 1.6.13. Given a diffeological space X, diffeological group G, and diffeological

principal G-bundle π : P → X, the commutative diagram of ∞-stacks

P ∗

X DiffPrinG
g

π (1.58)

where g : X → DiffPrinG sends a plot p0 : Up0 → X to the diffeological principal G-bundle

p∗0P , is a homotopy pullback square in the Čech model structure on sPre(Cart).

Proof. Since f is an objectwise weak equivalence of simplicial presheaves, and since P̃ is the

actual pullback of a projective fibration, it is a homotopy pullback in the projective model

structure on simplicial presheaves on Cart. By Proposition [Rez10, Proposition 11.2], it is

also a homotopy pullback in the Čech model structure.

1.7 Comparison of Site Structures

Here we will prove that the definition of diffeological spaces as given in Definition 2.2.2 is

equivalent to that usually presented in the literature, such as [Igl13, Article 1.5], in the

sense that their categories are equivalent. Further we will show other possible alternative
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definitions that have not appeared in the literature have equivalent categories as well. An

example of this is [WW14, Lemma 2.9]. The results of this section include this result.

Everything in this section is well-known and similar statements can be found in [SŠ10,

Section 6.2], [Sch13] and [FSS+12, Appendix], but we felt that having the details of these

results spelled out would be helpful to those less familiar with topos theory.

We will prove these results by exploiting Theorem 1.4.16, and studying concrete sheaves

over the smooth sites. Now coverages are those collections of families with the least amount

of structure with which we can define sheaves on C. There could be many different coverages

which give rise to equivalent categories of sheaves. It can therefore be difficult to see directly

when coverages give rise to the same sheaves. We will define a more restricted kind of

coverage, known as a Grothendieck coverage or Grothendieck topology, which will make such

comparison easier.

Definition 1.7.1. A sieve R is a family of morphisms that is closed under precomposition,

namely if V
g−→ Ui is a map in C, and Ui

ri−→ X ∈ R, then V rig−→ X ∈ R.

Given a category C and an object U ∈ C, there is a bijection between sieves on X

and subfunctors R ↪→ yU , where yU = (V 7→ C(V, U)) denotes the Yoneda embedding on U .

Indeed, given a sieve R, we can define a subfunctor R̃ ↪→ yU by setting R̃(V ) = {f : V → U :

f ∈ R} and noting that being a sieve implies that R̃ is functorial under precomposition, and

conversely if R̃ ↪→ yU is a subfunctor, then we can define a sieve R by setting R =
⋃
V ∈C R̃(V ).

Thus for the rest of this section a sieve will mean both a kind of family of morphisms and a

subfunctor of the Yoneda embedding. If U ∈ C is an object, then we call yU the maximal

sieve. This is equivalently the family of all morphisms with codomain U .

For any family of morphisms r = {ri : Ui → U} over U , we can construct the smallest

sieve R = r containing it as follows. Let R be the set of morphisms f : V → U such that f

factors as:

V U

Ui

f

g ri
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where ri : Ui → U ∈ r, and g is a morphism in C. In this case we say that r generates the

sieve R.

Lemma 1.7.2 ([Joh02, C2.1 Lemma 2.1.3]). Suppose that j is a coverage on a category C.

Then a presheaf F is a sheaf on a family of morphisms r = {Ui → U} if and only if it is a

sheaf on the sieve R = r it generates.

Definition 1.7.3. We say that a collection of families j is sifted if every r ∈ j(U) is a sieve.

If j is further a coverage, we call it a sifted coverage. We call covering families of sifted

coverages covering sieves.

Lemma 1.7.4. Let R be a sieve over an object U in a category C and F a presheaf on C. A

collection {sf ∈ F (V )}f∈R of sections for every f : V → U in R is a matching family if and

only if F (g)(sf ) = sfg for every morphism g : W → V in C.

Proof. (⇒) Suppose {sf} is a matching family, then consider the commutative diagram:

W W

V U

g

f

gf

this implies that F (g)(sf ) = sfg.

(⇐) Suppose we have a commutative diagram:

A V ′

V U

h

g

f

f ′

where f, f ′ ∈ R. Then F (g)(sf ) = sfg = sf ′h = F (h)(sf ′), thus {sf} is a matching family.

If j is a coverage, then let j denote the collection of families where R ∈ j(U) if R = r for

some r ∈ j(U). We call j the sifted closure of j.

Lemma 1.7.5. The collection of families j is a sifted coverage of C.
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Proof. Clearly j is sifted. We wish to show it is a coverage. Suppose we have a covering family

R ∈ j(U), and a map g : V → U . We wish to show that there is a covering family R′ ∈ j(V )

such that for every map k ∈ R′, gk factors through some l ∈ R. Since R = r, we know

that since j is a coverage, there exists some covering family t ∈ j(V ) with the corresponding

property. In other words, for every map k ∈ R′ there is a commutative diagram:

W

Vj Ui

V U

kj

tj

g

ri

sj
k

but then l = risjkj is a morphism in R = r. Thus gk factors through l as it is equal to it.

Corollary 1.7.6. Given a coverage j on a category C, a presheaf F is a sheaf on (C, j) if

and only if it is a sheaf on (C, j). In other words Sh(C, j) = Sh(C, j).

Proof. This follows from Lemma 1.7.2 and Lemma 1.7.5.

Now if R ↪→ yU is a sieve, and f : V → U is a morphism in C, then let f ∗R denote the set

of morphisms g : W → V such that fg ∈ R. This is equivalently the subfunctor f ∗R ↪→ yV

given by the pullback in Pre(C)

f ∗R R

yV yU
f

⌟

Definition 1.7.7. A Grothendieck coverage is a sifted collection of families J on a cate-

gory C satisfying the following conditions:

(C) J is a coverage,

(M) for any object U ∈ C, the maximal sieve yU ∈ J(U), and

(L) if R ∈ J(U) and S is another sieve on U such that for each f : V → U ∈ R, the sieve

f ∗(S) belongs to J(V ).
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If (C, J) is a Grothendieck coverage, then we call its sieves R ∈ J(U) covering sieves.

Remark 1.7.8. Grothendieck coverages are usually referred to as Grothendieck topologies

in the literature, but are typically presented with the following condition (C’): If R ∈ J(U)

and f : V → U any morphism in C, then f ∗R ∈ J(V ), instead of the condition (C). It is not

hard to show that these are equivalent definitions, see [Joh02, C2.1 Page 541].

Lemma 1.7.9. Let C be a category and R ↪→ yU a sieve. If g : V → U is a map in R, then

g∗R = yV .

Proof. If R is a sieve on U , then g∗R = {f : W → V : gf ∈ R}. But R is a sieve and g ∈ R,

so every map f : W → V has this property, since R is closed under precomposition.

Lemma 1.7.10. Let (C, J) be a site with a Grothendieck coverage. Then if R,R′ are sieves

on U , R ⊆ R′ and R is a covering sieve, then R′ is a covering sieve.

Proof. Let g : V → U ∈ R ⊆ R′, then by Lemma 1.7.9, we know that g∗R = g∗R′ = yV ,

which is a covering sieve of V by (M). Since this is true for all g ∈ R, R′ is a covering sieve

by (L).

Given a set {Jα : α ∈ A} of Grothendieck coverages, it is not hard to check that

the collection of families J :=
⋂
α∈A Jα defined by J(U) =

⋂
α∈A Jα(U) is a Grothendieck

coverage. Thus if j is a coverage on C, we can consider j, its sifted closure. By Lemma 1.7.2,

we can then take the intersection of the set of Grothendieck coverages that contain all of

the covering sieves of j, which we denote by τ(j). This will be the smallest Grothendieck

coverage containing j and we will call it the Grothendieck coverage generated by j.

Lemma 1.7.11 ([Joh02, C2.1 Proposition 2.1.9]). Given a site (C, j), a presheaf F will be a

sheaf on (C, j) if and only if it is a sheaf on (C, τ(j) ).

Now we are in a position to compare different coverages on the same category. Suppose

that j, j′ are coverages on a category C such that if r′ is a covering family in j′(U), then
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there exists a covering family r ∈ j(U) and a refinement f : r → r′. We will say that j′ is

subordinate to j and write j′ ≤ j.

Proposition 1.7.12. Suppose that j, j′ are coverages on a category C such that j ≤ j′ and

j′ ≤ j, then Sh(C, j) = Sh(C, j′).

Proof. Suppose that j′ ≤ j. Then every covering family r′ ∈ j′(U) can be refined by a

covering family r ∈ j(U). Therefore r ⊆ r′, since sieves are closed under precomposition.

Now note that r ∈ τ(j)(U), and thus by Lemma 1.7.10, r′ ∈ τ(j)(U). Thus if r′ is a covering

family of j′, then r′ is a covering sieve of τ(j). Thus if F is a sheaf on j, then by Lemma

1.7.11, it will be a sheaf on τ(j), so it will then be a sheaf on r′, and thus by Lemma 1.7.2

it will be a sheaf on r′. Since r′ was arbitrary, F is therefore a sheaf on all of j′. Thus

if F is a sheaf on (C, j), then it will be a sheaf on (C, j′). Conversely j ≤ j′ proves that

Sh(C, j) = Sh(C, j′).

Proposition 1.7.13. Let jgood denote the good cover coverage on Man defined in Example

1.4.5, and jopen denote the open cover coverage on Man defined in Example 1.4.4. Then

Sh(Man, jgood) = Sh(Man, jopen). This similarly holds for Cart and Open.

Proof. By [BT+82, Corollary 5.2], we have that jopen ≤ jgood. Now jgood ≤ jopen, since every

good open cover is in particular an open cover.

Corollary 1.7.14. The categories of concrete sheaves on Man with the open and good open

coverages agree:

ConSh(Man, jgood) = ConSh(Man, jopen).

This result remains true if we replace Man with Open or Cart.

Now we wish to compare sites whose underlying categories differ. Let C be a category

and C′ ↪→ C a full subcategory. Then a sieve R ↪→ yU on C is said to be a C′-sieve if it is

generated by a family of morphisms all of whose domains are objects in C′.
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Definition 1.7.15. Let (C, J) be a category with a Grothendieck coverage, and C′ ↪→ C a

full subcategory. We say that C′ is J-dense in C if every object U ∈ C has a covering sieve

R ∈ J(U) that is a C′-sieve.

If (C, j) is a site where j is not necessarily a Grothendieck coverage, then we say that a

full subcategory C′ ↪→ C is j-dense if it is τ(j)-dense in (C, τ(j)).

By [BT+82, Theorem 5.1], every finite dimensional smooth manifold has a good open

cover. Thus if U = {Ui ⊆M} denotes a good open cover of M , then U is a covering sieve of

(Man, τ(jopen)) and it is a Cart-sieve. Since this is true for any manifold M , it follows that

Cart is jopen-dense in (Man, jopen). By the same argument Cart is also dense in (Man, jgood).

This also implies that Open is dense in (Man, j) for j ∈ {jopen, jgood}.

Now suppose (C, J) is a site with a Grothendieck coverage. If C′ ↪→ C is a full subcategory,

define a collection of families J ′ on C′ by defining J ′(U) to be the collection of those covering

sieves R ∈ J(U) that are also C′-sieves. It is not hard to show that this is also a Grothendieck

coverage, called the induced coverage on C′, and denoted J |C′ .

The following result is well-known in the literature as the Comparison Lemma.

Theorem 1.7.16 ([Joh02, Theorem 2.2.3]). Let (C, J) be a site with a Grothendieck coverage

and C′ ↪→ C a J-dense full subcategory. Then the restriction functor res : Pre(C) → Pre(C′)

itself restricts to a functor res : Sh(C, J)→ Sh(C′, J |C′), and this functor is an equivalence of

categories.

Note that τ(jCartopen) = τ(jMan
open)|Cart. This can be seen by simply noting that every sieve in

τ(jMan
open)|Cart is generated by a open cover by cartesian spaces, and contains every such sieve.

A similar argument proves the same for jCartgood and jOpen
good , j

Open
open .

Corollary 1.7.17. All categories of the form ConSh(C, j) for C ∈ {Cart,Open,Man} and

j ∈ {jopen, jgood} are equivalent.

Proof. Theorem 1.7.16 implies that the categories Sh(C, j) for C ∈ {Cart,Open,Man} and j ∈

{jopen, jgood} are all equivalent. Further, using the same argument as in the proof of [WW14,
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Lemma 2.9], the above equivalences restrict to equivalences of all the full subcategories

ConSh(C, j) of concrete sheaves.

Thus by Theorem 1.4.15, we have that Diff ′ ≃ ConSh(Open, jopen), and by Corollary

1.7.17, we have that ConSh(Open, jopen) ≃ ConSh(Cart, jgood) ≃ Diff. Thus we have proved

the main proposition of this section.

Proposition 1.7.18. The category of classical diffeological spaces Diff ′ is equivalent to the

category of diffeological spaces Diff introduced in Definition 2.2.2.



Chapter 2

The Diffeological Čech-de Rham

Obstruction

2.1 Introduction

Classical differential geometry involves the study of finite dimensional smooth manifolds.

As a theory, it has many achievements. One of its most celebrated is the Čech-de Rham

Theorem, more commonly known as the de Rham Theorem1. The Čech-de Rham Theorem,

proven in 1931 by de Rham [deR31], states that ifM is a finite dimensional smooth manifold,

then there is an isomorphism

Hk
dR(M) ∼= Ȟk(M,Rδ), (2.1)

where Hk
dR(M) denotes the de Rham cohomology of M , and Ȟk(M,Rδ) denotes the Čech

cohomology ofM with values in Rδ, the constant sheaf on the discrete group of real numbers.

There are many good textbook accounts of the Čech-de Rham Theorem, such as [BT+82,

Chapter II] and [GQ22, Chapter 9]. The de Rham cohomology of a finite dimensional smooth

manifoldM is constructed using its smooth structure, but the Čech-de Rham Theorem shows

that the de Rham cohomology of M is independent of this smooth structure and depends

1We call it the Čech-de Rham Theorem because some authors use “the de Rham Theorem” to refer to
the isomorphism between de Rham cohomology and singular cohomology.

78
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only on the topology of M .

Diffeology is a modern framework for differential geometry whose main objects of study

are diffeological spaces, encompassing smooth manifolds, orbifolds, and mapping spaces.

The category of diffeological spaces is better behaved than the category of finite dimensional

smooth manifolds, indeed the category of diffeological spaces is complete, cocomplete and

cartesian closed [Igl13]. This makes diffeological spaces attractive to geometers who study

spaces that are not finite dimensional smooth manifolds. However, this generalization comes

at the cost of losing many of the theorems and constructions of classical differential geom-

etry2. Much contemporary work has gone into extending these constructions and theorems

to diffeological spaces. The textbook [Igl13] by Iglesias-Zemmour has in particular pushed

the theory quite far, defining differential forms, de Rham cohomology, singular cohomol-

ogy, fiber bundles, and smooth homotopy groups of diffeological spaces amongst many other

contributions.

In [Igl88], Patrick Iglesias-Zemmour proved that the Čech-de Rham Theorem does not

hold in general for diffeological spaces. Interestingly, this result was written as a preprint in

French in the late 80s and was only recently published in English as [Igl23]. Furthermore

Iglesias-Zemmour obtained an exact sequence

0→ H1
dR(X)→ Ȟ1

PIZ(X,Rδ)→ dE1,0
2 (X)

c1−→ H2
dR(X)→ Ȟ2

PIZ(X,Rδ)

which is a receptacle for the obstruction to the Čech-de Rham Theorem. The group dE1,0
2 (X)

is the subgroup of the group of isomorphism classes of diffeological principal R-bundles that

admit a connection. If this group is trivial, as it is for all finite dimensional smooth manifolds,

then H1
dR(X) ∼= Ȟ1

PIZ(X). However, the situation for higher degrees is not addressed in

[Igl23]. Iglesias-Zemmour writes “We must acknowledge that the geometrical natures of the

higher obstructions of the De Rham theorem still remain uninterpreted. It would be certainly

2Many of these theorems are lost because not all diffeological spaces have partitions of unity, a crucial
ingredient to many theorems in differential geometry.
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interesting to pursue this matter further” [Igl23, Page 2]. In this paper, we obtain such an

interpretation of the higher obstructions.

In Section 1.5.3, we introduced a generalization of Čech cohomology for diffeological spaces

that we call ∞-stack cohomology. If X is a diffeological space and A is a diffeological

abelian group, then Ȟk
∞(X,A) denotes the kth ∞-stack cohomology of X with values in A.

Currently, there are four definitions of Čech cohomology for diffeological spaces in the liter-

ature. They are Iglesias-Zemmour’s cohomology from [Igl23], which we call PIZ cohomology,

there is ∞-stack cohomology (Section 1.5.3), there is Krepski-Watts-Wolbert cohomology

[KWW21] and there is Ahmadi’s cohomology [Ahm23]. In Section 1.5.3, the first three Čech

cohomologies were compared, and some relationships deduced, but it is currently unknown

if any of the above cohomology theories agree in general.

This paper is a sequel to Section 1.6, where we explored the connection between diffeo-

logical spaces and higher topos theory to study diffeological principal G-bundles. When G is

a diffeological group, not necessarily abelian, it is still possible to define∞-stack cohomology

in degree 1, Ȟ1
∞(X,G). We proved that degree 1 ∞-stack cohomology is in bijection with

isomorphism classes of diffeological principal G-bundles over X. In fact, we obtained a much

stronger result (Theorem 1.6.8), by showing that the nerve of the groupoid of diffeological

principal G-bundles is weak equivalent to the nerve of the category of G-principal∞-bundles

on X.

In this paper, we study two cases where the tools of higher topos theory help us better

understand diffeological spaces. The first case is studying the ∞-stack cohomology of the

irrational torus. The irrational torus was the first example of a nontrivial diffeological space

with trivial underlying topology, see [Igl20b]. In [Igl23], Iglesias-Zemmour proved that if

K ⊂ R is a diffeologically discrete subgroup, then the PIZ cohomology of the irrational torus

TK = R/K is isomorphic to the group cohomology of K with values in R. However, his proof

of this, [Igl23, Section II], is computational. In Section 2.4, we prove
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Theorem 2.4.4. There is an isomorphism

Ȟn
∞(TK ,Rδ) ∼= Hn

grp(K,Rδ)

of abelian groups, for every n ≥ 0, where Rδ denotes the discrete group of real numbers, and

where Hn
grp(K,Rδ) denotes the group cohomology of K with coefficients in Rδ.

Theorem 2.4.4 supports the conjecture that PIZ cohomology and ∞-stack cohomology

agree. The proof of Theorem 2.4.4 is short and conceptual. It uses the shape functor
∫
,

much beloved by higher differential geometers [BBP22], [Bun22b], [Sch13], [Clo23], [Car15],

in a crucial way, reducing the ∞-stack cohomology of TK to the singular cohomology of the

classifying space BK. This demonstrates the advantage of using ∞-stack cohomology to

study diffeological spaces.

The second case, which makes up the bulk of the paper, is to use ∞-stack cohomology,

and more generally the framework of higher topos theory, to study the diffeological Čech-de

Rham obstruction. First we obtain a homotopy pullback diagram of ∞-stacks.

Theorem 2.7.1. For every k ≥ 1, there exists a commutative diagram of ∞-stacks of the

following form

∗ BkRδ ∗ ∗

∗ Bk
∇R Ωk+1

cl Ωk+1

BkR BkΩ1
cl Ω1≤•≤k+1

∗ Bk+1Rδ Bk+1
∇ R

(2.2)

furthermore every commutative square in this diagram is a homotopy pullback square in the

Čech model structure on simplicial presheaves over Cart.

Such diagrams are often used in higher category-theoretic treatments of differential coho-

mology, see [Sch13], [ADH21], [Jaz21]. One can think of an ∞-stack as a classifying object
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for a mathematical structure, such as diffeological principal G-bundles. Thus the above di-

agrams can be thought of as tight relationships between the corresponding mathematical

structures.

Of particular interest is the ∞-stack Bk
∇R. This is the ∞-stack which classifies dif-

feological R-bundle (k − 1)-gerbes with connection. Cohomology with values in this

∞-stack is called the kth pure differential cohomology in [Jaz21]. From Theorem 2.7.1 we

are immediately able to obtain the following result.

Corollary 2.7.2. For every diffeological space X, there is an exact sequence of vector spaces

0→ Ȟk
∞(X,Rδ)→ Ȟk

∞,∇(X,R)→ Ωk+1
cl (X)→ Ȟk+1

∞ (X,Rδ). (2.3)

Near the completion of this paper, we learned that an analogous exact sequence was

also obtained in [Jaz21, Page 27] using completely different methods in the framework of

homotopy type theory. The above exact sequence allows us to compute the pure differential

cohomology of the irrational torus.

Theorem 2.7.3. Let Tα denote the irrational torus, then

Ȟk
∞,∇(Tα, R)

∼=


R2, k = 1,

R, k = 2,

0, k > 2.

(2.4)

While Corollary 2.7.2 is useful for computations with the irrational torus, it is desirable

to have an exact sequence including de Rham cohomology rather than closed forms. This is

obtained in the following result.

Theorem 2.7.5. Given a diffeological space X and k ≥ 1, the sequence of vector spaces

Ȟk
∞(X,Rδ)→ Ȟk

conn(X,R)→ Hk+1
dR (X)→ Ȟk+1

∞ (X,Rδ)
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is exact.

When k = 1, we obtain an additional piece to this exact sequence.

Theorem 2.7.7. Given a diffeological space X, the sequence of vector spaces

0→ H1
dR(X)→ Ȟ1

∞(X,Rδ)→ Ȟ1
conn(X,R)→ H2

dR(X)→ Ȟ2
∞(X,Rδ) (2.5)

is exact.

The above exact sequence is exactly analogous to the exact sequence obtained by Iglesias-

Zemmour in [Igl23].

In Section 2.8 we turn to the study of connections for diffeological principal bundles. This

theory is still in its infancy, and there are a few references that give varying definitions of

diffeological connections [Igl13, Section 8.32], [Wal12, Section 3], [MW17, Section 4]. The

theory of∞-stacks provides another definition. LetG be a Lie group, and U a cartesian space.

Then let Ω1(U, g)//G denote the groupoid whose objects are differential 1-forms ω ∈ Ω1(U, g),

where g denotes the Lie algebra of G, and where there is a morphism g : ω → ω′ if there

exists a smooth map g : U → G such that

ω′ = Ad−1
g (ω) + g∗mc(G)

where mc(G) denotes the Maurer-Cartan form of G. Taking the nerve of this groupoid, and

letting U vary defines an ∞-stack Ω1(−, g)//G, which amongst others has been studied in

[FSS+12], [FH13]. We connect this notion of connection to that given in [Wal12, Definition

3.2.1] in the following result.

Theorem 2.8.3. Given a diffeological space X and a Lie group G, the functor

Cons∇ : Coc∇(X,G)→ WalG(X), (2.6)



CHAPTER 2. THE DIFFEOLOGICAL ČECH-DE RHAM OBSTRUCTION 84

is an equivalence of groupoids, where Coc∇(X,G) is the groupoid whose objects are maps

QX → Ω1(−, g)//G, where QX is a cofibrant replacement of X in the projective model

structure on simplicial presheaves, and WalG(X) is the groupoid of diffeological principal

G-bundles with connection as defined in [Wal12, Definition 3.2.1].

To compute ∞-stack cohomology, one needs a workable model of the derived mapping

space RHom(X,A), when X is a diffeological space and A is a presheaf of chain complexes.

In Section 2.9, we obtain such a model, which reduces many computations with ∞-stacks to

manipulations with double complexes. As a corollary, we obtain a simple and direct proof of

the following well known folklore result.

Proposition 2.9.4. Let C be a cosimplicial chain complex, then

holimn∈∆C
n ≃ totC, (2.7)

where we are computing the homotopy limit in the category of chain complexes equipped

with the projective model structure, and totC denotes the total complex of C.

The paper is organized as follows. In Section 2.2, we introduce diffeological spaces and

place them in the context of sheaf theory. In Section 2.3, we introduce simplicial presheaves,

show how diffeological spaces embed into simplicial presheaves, and introduce the shape

functor. In Section 2.4, we prove that the ∞-stack cohomology of the irrational torus TK is

isomorphic to the group cohomology of K with values in R. In Section 2.5, we introduce the

Dold-Kan correspondence, which is a core tool we use for the rest of the paper. In Section 2.6,

we introduce the main∞-stacks that will be used in the paper, and compute various examples

of ∞-stack cohomology. In Section 2.7, we prove the main results of this paper, Theorem

2.7.5 and Theorem 2.7.7. In Section 2.8, we prove that our notion of diffeological principal

G-bundles with connection using ∞-stacks agrees with Waldorf’s [Wal12]. In Section 2.9,

we prove a technical result allowing us to easily compute ∞-stack cohomology when the

coefficient ∞-stack comes from a presheaf of chain complexes. In Section 2.10 we prove
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Theorem 2.7.1.

2.2 Smooth Sheaves and Diffeological Spaces

In this section we briefly describe diffeological spaces and their connection to sheaves on Cart.

Definition 2.2.1. Let M be a finite dimensional smooth manifold3. We say a collection

of subsets U = {Ui ⊆ M}i∈I is an open cover if each Ui is an open subset of M , and⋃
i∈I Ui = M . If U is a finite dimensional smooth manifold diffeomorphic to Rn for some

n ∈ N, we call U a cartesian space. We call U = {Ui ⊆ M} a cartesian open cover

of a manifold M if it is an open cover of M and every Ui is a cartesian space. We say that

U is a good open cover if it is a cartesian open cover, and further every finite non-empty

intersection Ui0...ik = Ui0 ∩ · · · ∩ Uik is a cartesian space.

Let Man denote the category whose objects are finite dimensional smooth manifolds and

whose morphisms are smooth maps. Let Cart denote the full subcategory whose objects are

cartesian spaces. Given a set X, let Param(X) denote the set of parametrizations of X,

namely the collection of set functions p : U → X, where U ∈ Cart.

Definition 2.2.2. A diffeology on a set X, consists of a collection D of parametrizations

p : U → X satisfying the following three axioms:

1. D contains all points R0 → X,

2. If p : U → X belongs to D, and f : V → U is a smooth map, then pf : V → X belongs

to D, and

3. If {Ui ⊆ U}i∈I is a good open cover of a cartesian space U , and p : U → X is a

parametrization such that p|Ui
: Ui → X belongs to D for every i ∈ I, then p ∈ D.

A set X equipped with a diffeology D is called a diffeological space. Parametrizations that

belong to a diffeology are called plots. We say a set function f : X → Y between diffeological

3We will assume throughout this paper that manifolds are Hausdorff and paracompact.
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spaces is smooth if for every plot p : U → X in DX , the composition pf : U → Y belongs

to DY . We often denote the set of smooth maps from X to Y by C∞(X, Y ). Let Diff denote

the category of diffeological spaces.

Every manifoldM is canonically a diffeological space by considering the set of parametriza-

tions p : U →M that are smooth in the classical sense. This gives a diffeology on M , called

the manifold diffeology. One can show [Igl13, Chapter 4] that the manifold diffeology

defines a fully faithful functor Man ↪→ Diff.

Diffeology extends many constructions and concepts from classical differential geometry

to diffeological spaces, such as the theory of bundles.

Definition 2.2.3. We say that a map π : X → Y of diffeological spaces is a subduction if

it is surjective, and for every plot p : U → Y , there exists a good open cover {Ui ⊆ U}, and

plots pi : Ui → X making the following diagram commute

Ui X

U Y

π

pi

p

(2.8)

Definition 2.2.4. A diffeological group is a group G equipped with a diffeology such that

the multiplication map m : G × G → G, and inverse map i : G → G are smooth. A right

diffeological group action of a diffeological group G on a diffeological space X is a smooth

map ρ : X × G → X such that ρ(x, eG) = x, and ρ(ρ(x, g), h) = ρ(x, gh), where eG denotes

the identity element of G.

Definition 2.2.5. Let G be a diffeological group, and P be a diffeological right G-space. A

map π : P → X of diffeological spaces is a diffeological principal G-bundle if:

1. the map π : P → X is a subduction, and

2. the map act : P ×G→ P ×X P defined by (p, g) 7→ (p, p · g), which we call the action

map is a diffeomorphism.
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A map of diffeological principal G-bundles P → P ′ over X is a diagram

P P ′

X
π′π

f

where f is a G-equivariant smooth map. A diffeological principal G-bundle P is said to

be trivial if there exists an isomorphism φ : X × G → P , called a trivialization, where

pr1 : X×G→ X is the product bundle. Let DiffPrinG(X) denote the category of diffeological

principal G-bundles over a diffeological space X.

In Section 1.3, we proved that diffeological principal bundles can be classified using co-

cycles in a way reminiscent of classical differential geometry. However, rather than using

cocycles defined over an open cover, we use cocycles defined on plots. Let Plot(X) denote

the category whose objects are plots p : U → X of X and whose morphisms f : p → p′ are

smooth maps f : U → U ′ such that p′f = p.

Definition 2.2.6. Given a diffeological space X and a diffeological group G, call a collection

g = {gf0} of smooth maps gf0 : Up1 → G indexed by maps of plots f0 : Up1 → Up0 of X a

G-cocycle if for every pair of composable plot maps of X

Up2
f1−→ Up1

f0−→ Up0

it follows that

gf0f1 = (gf0 ◦ f1) · gf1 . (2.9)

We call (2.9) the diffeological G-cocycle condition.

Given two G-cocycles, g, g′, we say a collection h = {hp0} of smooth maps hp0 : Up0 → G

indexed by plots of X is a morphism of G-cocycles h : g → g′ if for every map f0 : Up1 →
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Up0 of plots of X, it follows that

g′f0 · hp1 = (hp0 ◦ f0) · gf0 . (2.10)

Given a diffeological space X and a G-cocycle g on X, we can construct a diffeological

principal G-bundle π : P → X, by taking the quotient

P =

 ∐
p0∈Plot(X)

Up0 ×G

 /∼ (2.11)

where ∼ is the smallest equivalence relation such that (xp1 , k1) ∼ (xp0 , k0) if there exists

a map f0 : Up1 → Up0 of plots such that f0(xp1) = xp0 and k0 = gf0(xp1) · k1. We let

π = Cons(g), short for construction. In fact, this construction defines a functor from the

category Coc(X,G) of G-cocycles on X to the category of diffeological principal G-bundles.

We proved the following result as Theorem 1.3.15.

Theorem 2.2.7. Given a diffeological space X and a diffeological group G, the functor

Cons : Coc(X,G)→ DiffPrinG(X) (2.12)

is an equivalence of groupoids.

While extending the classical theory, there are constructions one can do with diffeological

spaces that are not available to smooth manifolds:

1. Given a diffeological space X, and a subset A
i
↪−→ X a subset. Then consider the set of

parametrizations p : U → A such that ip : U → X is a plot of X. This collection is a

diffeology, called the subspace diffeology on A,

2. Given a diffeological space X and an equivalence relation ∼ on X, let π : X → X/∼

denote the resulting quotient function on sets. Consider the set of parametrizations
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p : U → X/∼ such that there exists a good open cover {Ui ⊆ U} and plots pi : Ui → X

making the following diagram commute

Ui X

U X/∼

π

pi

p

This forms a diffeology on X/∼, called the quotient diffeology,

3. Given a pair X and Y of diffeological spaces, the set of parametrizations p : U → X×Y

such that the composites π1 ◦ p and π2 ◦ p are plots of X and Y respectively, forms a

diffeology, called the product diffeology,

4. Given diffeological spaces X and Y , the set of parametrizations p : U → C∞(X, Y )

such that the transposed function p# : U × X → Y is a smooth map is a diffeology,

called the functional diffeology.

These constructions make the category of diffeological spaces considerably better than

the category of finite dimensional smooth manifolds, as shown in Corollary 2.2.10.

Diffeological spaces inherit this nice structure from the category of smooth sheaves.

Definition 2.2.8. We briefly recall the relevant definitions for sheaf theory.

• A collection of families j on a category C consists of a set j(U) for each U ∈ C,

whose elements {ri : Ui → U} ∈ j(U) are families of morphisms over U . We call a

collection of families j on C a coverage if it satisfies the following property: for every

{ri : Ui → U} ∈ j(U), and every map g : V → U in C, then there exists a family

{tj : Vj → V } ∈ j(V ) such that gtj factors through some ri. Namely for every tj there

exists some i and some map sj : Vj → Ui making the following diagram commute:

Vj Ui

V U

tj

sj

ri

g

(2.13)



CHAPTER 2. THE DIFFEOLOGICAL ČECH-DE RHAM OBSTRUCTION 90

The families {ri : Ui → U} ∈ j(U) are called covering families over U . If a map

ri : Ui → U belongs to a covering family r ∈ j(U), then we say that ri is a covering

map. If C is a category, and j is a coverage on C, then we call the pair (C, j) a site.

• A presheaf on a category C is a functor F : Cop → Set. A morphism of presheaves is a

natural transformation. An element x ∈ F (U) for an object U ∈ C is called a section

over U . If f : U → V is a map in C, and x ∈ F (V ), then we sometimes denote F (f)(x)

by x|U . Let Pre(C) denote the category of presheaves on C.

• If {ri : Ui → U}i∈I is a covering family, then a matching family is a collection {xi}i∈I ,

xi ∈ F (Ui), such that given a diagram in C of the form

V Uj

Ui Uri

rjf

g

then F (f)(xi) = F (g)(xj) for all i, j ∈ I. An amalgamation x for a matching family

{xi} is a section x ∈ F (U) such that xi|U = x for all i.

• Given a family of morphisms r = {ri : Ui → U} in a category C, we say that a presheaf

F : Cop → Set is a sheaf on r if every matching family {si} of F over r has a unique

amalgamation. If j is a coverage on a category C, we call F a sheaf on (C, j) if it is

a sheaf on every covering family of j. Let Sh(C) denote the full subcategory of Pre(C)

whose objects are sheaves on (C, j).

One can put a site structure on Cart using the coverage of good open covers. We call

sheaves on Cart smooth sheaves. There are many interesting examples of smooth sheaves.

Every cartesian space defines a representable sheaf yU . Every manifold M defines a sheaf

by U 7→ C∞(U,M). There are also Ωn and Ωn
cl for every n ≥ 0, the sheaves of differential

n-forms and closed differential n-forms respectively. The category Sh(Cart) of smooth sheaves

is “extremely nice”, being a Grothendieck topos [MM12].
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A sheaf X on Cart is concrete if X(U) is a subset of the set functions U → X(∗) where

∗ is the terminal object in Cart. The representable sheaves yU and the sheaves induced by

manifolds M are concrete, but Ωn and Ωn
cl are not.

The full subcategory ConSh(C) ↪→ Sh(C) of concrete sheaves on a concrete site forms a

quasitopos, which while not being a Grothendieck topos, is still a very “nice” category [BH11,

Theorem 52].

Theorem 2.2.9 ([BH11, Prop 24]). Let Cart denote the site of cartesian spaces with the

coverage of good open covers. Then there is an equivalence of categories

Diff ≃ ConSh(Cart), (2.14)

where ConSh(Cart) denotes the category of concrete sheaves on Cart.

Corollary 2.2.10. The category Diff is a quasitopos. This implies that it is a complete,

cocomplete and cartesian closed category.

We refer to Theorem 2.2.9 as the Baez-Hoffnung Theorem4. It is the starting point

of the interaction of sheaf theory and diffeology. Many aspects of the study of diffeological

spaces can be restated using sheaf theory, for example a differential n-form ω on a diffeological

space X as defined in [Igl13, Article 6.28] is equivalently a morphism X → Ωn of sheaves.

In Section 1.5 we took advantage of the Baez-Hoffnung Theorem to embed the category

of diffeological spaces into the category of simplicial presheaves on Cart. We will delve into

this idea in the next section. Once inside the category of simplicial presheaves, we can then

take advantage of many homotopical tools. This in effect provides a way of obtaining a very

powerful and expressive homotopy theory for diffeological spaces that subsumes the usual

homotopy theory for diffeological spaces as considered in [Igl13, Chapter 5].

4Strictly speaking, the Baez-Hoffnung theorem gives an equivalence between the category of what we call
classical diffeological spaces and the category of concrete sheaves on the site of open subsets of cartesian
spaces with open covers, see Section 1.7
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2.3 Simplicial Presheaves

In this section we detail the model categorical notions we will need for the remainder of the

paper. We assume the reader is comfortable with model categories and simplicial homotopy

theory, and recommend the following standard sources [Hir09], [Hov07], [GJ12], [GS06] for

good references on the topics.

Definition 2.3.1. Let sPre(Cart) denote the category whose objects are functors Cartop →

sSet, which we call simplicial presheaves, and whose morphisms are natural transforma-

tions.

Note that sPre(Cart) is complete and cocomplete, with limits and colimits computed

objectwise. There are two pairs of adjoint triples that give structure to sPre(Cart).

sPre(Cart) sSet(−)c

colimCartop

limCartop

⊣
⊣

, sPre(Cart) Pre(Cart)c(−)

π0

(−)0

⊣
⊣

(2.15)

where (−)c is the functor induced by restricting along the unique functor Cart→ ∗ and c(−)

is the functor that sends a presheaf to the corresponding simplicial presheaf where all the

simplicial face and degeneracy maps are the identity. We often don’t use the notation c(−)

explicitly, especially for representable presheaves, as it should be clear from context. The

functors π0 and (−)0 are defined objectwise. For every U ∈ Cart, and simplicial presheaf X on

Cart, π0X(U) = π0(X(U)), the set of connected components of X(U), and (X)0(U) = X(U)0,

the set of vertices of X(U).

Remark 2.3.2. The above adjoint triples exist for any essentially small category C in place

of Cart.

The category sPre(Cart) is tensored, cotensored and enriched over sSet. Indeed, if K is a

simplicial set and X is a simplicial presheaf, then
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• X ⊗K is the simplicial presheaf defined objectwise by

(X ⊗K)(U) = (X ×Kc)(U) = X(U)×K.

• XK is the simplicial presheaf defined objectwise by

(XK)(U) = X(U)K ,

where for simplicial sets K and L, KL denotes the simplicial function complex.

• for any two simplicial presheaves X and Y , let sPre(Cart)(X, Y ) denote the simplicial

set defined levelwise by

sPre(Cart)(X, Y )n = sPre(Cart)(X ⊗∆n, Y ).

This structure is compatible in the sense of the following natural isomorphisms of simplicial

sets

sPre(Cart)(X ⊗K,Y ) ∼= sPre(Cart)(X, Y K). (2.16)

The category sPre(Cart) inherits several model structures from sSet. We say a map

f : X → Y is a projective weak equivalence if it is an objectwise weak equivalence

of simplicial sets, a projective fibration if it is an objectwise fibration, and a projective

cofibration if it left lifts against all maps that are both projective weak equivalences and

projective fibrations.

Theorem 2.3.3 ([BK72, Page 314], [Lur09, Section A.2.6]). The projective weak equiva-

lences, fibrations and cofibrations define a proper, combinatorial, simplicial model category

structure on sPre(Cart), called the projective model structure on simplicial presheaves.

Let H denote the category of simplicial presheaves equipped with the projective model

structure. Note that [Dug01, Corollary 9.4] describes a sufficient condition on simplicial
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presheaves to be projective cofibrant, and it implies that all representable presheaves, denoted

yU for a cartesian space U , are projective cofibrant.

Given a cartesian space U and a good cover U = {Ui ⊆ U} of U , we can form the

simplicial presheaf Č(U) defined levelwise by

Č(U)n =
∐
i0...in

y(Ui0 ∩ · · · ∩ Uin).

We call Č(U) the Čech nerve of U. There is a canonical map π : Č(U) → yU . Let Č

denote the class of morphisms π : Č(U)→ yU where U ranges over the cartesian spaces and

U ranges over the good open covers for U .

Theorem 2.3.4 ([DHI04, Theorem A.6]). The left Bousfield localization of H at Č exists.

We call the resulting model structure the Čech model structure on sPre(Cart), and denote

it by Ȟ. It is similarly a proper, combinatorial and simplicial model category.5

The fibrant objects in Ȟ are called∞-stacks. They are those projective fibrant simplicial

presheaves X such that the canonical map

sPre(Cart)(yU,X)→ sPre(Cart)(Č(U), X), (2.17)

is a weak equivalence of simplicial sets, for every cartesian space U and good cover U of U .

Every sheaf and classical stack of groupoids on Cart, thought of as simplicial presheaves on

Cart, is an ∞-stack.

The identity functors define a Quillen adjunction between the projective and Čech model

structure on simplicial presheaves.

H Ȟ
1sPre(Cart)

1sPre(Cart)

⊣ (2.18)

5It is important to note that the projective/objectwise weak equivalences between simplicial presheaves
are still weak equivalences in the Čech model structure. Furthermore, all Čech weak equivalences between
∞-stacks are objectwise weak equivalences.
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Crucially, the (easy to compute) finite homotopy limits in H are preserved as homotopy limits

in Ȟ, thanks to the following result.

Proposition 2.3.5 ([Rez10, Proposition 11.2]). The left Quillen functor 1sPre(Cart) : H → Ȟ

preserves finite homotopy limits.

Given simplicial presheaves X and Y on Cart, let Q and R denote cofibrant and fibrant

replacement functors for Ȟ respectively, then let

RȞ(X, Y ) = sPre(Cart)(QX,RY ). (2.19)

We call RȞ(X, Y ) the derived mapping space of X and Y . If X is already cofibrant, then

we can take Q = 1sPre(Cart) and if Y is already fibrant, we can take R = 1sPre(Cart).

If X and A are simplicial presheaves, then let

Ȟ0
∞(X,A) = π0RȞ(X,A).

We call this the 0th ∞-stack cohomology of X with values in A.

If A is a simplicial presheaf that is objectwise a simplicial group, then we let

Ȟ1
∞(X,A) = π0RȞ(X,WA),

where W is the delooping functor.

If A is a simplicial presheaf such that W
k
A, which we call its k-fold delooping, exists for

k ≥ 1, then we say that A is k-deloopable, and we let

Ȟk
∞(X,A) = π0RȞ(X,W

k
A).

We call this the kth ∞-stack cohomology of X with coefficients in A. If the k-fold delooping

of a simplicial presheaf A exists and is an ∞-stack, then we denote it by BkA := W
k
A. The
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following result is well known.

Lemma 2.3.6. If A is a presheaf of simplicial abelian groups, then A is k-deloopable for all

k ≥ 1.

There is a convenient cofibrant replacement functor for Ȟ, given (in the notation of

[Rie14, Section 4.2]) for a simplicial presheaf X by the bar construction B(X,Cart, y), where

y denotes the Yoneda embedding y : Cart ↪→ sPre(Cart).

If X is a diffeological space, then by the Baez-Hoffnung Theorem (Theorem 2.2.9), we

can consider it as a sheaf on Cart. Then cX is a simplicial presheaf6. If we apply Q to cX

then this formula reduces to the simplicial presheaf given levelwise by

QXn =
∐

(fn−1,...,f0)∈N(Plot(X))n

yUpn ⊗∆n. (2.20)

Using the above cofibrant replacement functor for a diffeological spaceX, if A is a∞-stack

that is also objectwise a simplicial abelian group, then we can obtain an explicit description

of its kth∞-stack cohomology with values in A, given by the kth cohomology of the cochain

complex obtained by taking the dual Dold-Kan correspondence functor applied to the cosim-

plicial abelian group

A(QX0) A(QX1) A(QX2) . . . . (2.21)

Example 2.3.7. Let G be a diffeological group, and consider the (strict) functor BG :

Cartop → Gpd that sends a cartesian space U to the groupoid

[C∞(U,G) ⇒ ∗] (2.22)

Postcomposing with the nerve functor gives us a simplicial presheaf NBG, which we will

6We will often not use the notation cX for diffeological spaces in what follows, as it should be apparent
from context what category we are considering X in.
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often just denote byBG. By Theorem 1.5.17, (referencing [SS21, Lemma 3.3.29] and [Pav22a,

Proposition 4.13]), BG is an ∞-stack.

This ∞-stack takes a central role in the theory of diffeological principal G-bundles. For

every cartesian space U , there is a canonical map of groupoids

BG(U)→ DiffPrinG(U), (2.23)

that sends the point to the trivial diffeological principal G-bundle, and sends a map to G

to the corresponding automorphism of the trivial bundle. This map is an equivalence of

groupoids.

Furthermore, if X is a diffeological space and QX is its cofibrant replacement, then G-

cocycles on X are equivalent to maps of ∞-stacks QX → BG. In other words, for every

diffeological space X, there is a weak equivalence

RȞ(X,BG) ≃ NDiffPrinG(X). (2.24)

Thus we say that BG classifies diffeological principal G-bundles. This implies that

Ȟ1
∞(X,G) ∼= π0DiffPrinG(X), (2.25)

where π0DiffPrinG(X) denotes the set of isomorphism classes of diffeological principal G-

bundles on X.

Let us now examine the left hand side of (2.15). If K is a simplicial set, then Kc is

the constant simplicial presheaf on K, namely Kc(U) = K for all U ∈ Cart. The functors

making up (2.15) are important enough to warrant renaming. Notice that since R0 = ∗ is

the terminal object in Cart, it is the initial object in Cartop, thus limU∈Cartop X(U) ∼= X(∗).



CHAPTER 2. THE DIFFEOLOGICAL ČECH-DE RHAM OBSTRUCTION 98

For K ∈ sSet and X ∈ sPre(Cart), we set

Disc(K) = Kc, Γ(X) = lim
U∈Cartop

X(U) ∼= X(∗), Π∞(X) = colim
U∈Cartop

X(U). (2.26)

It turns out that Γ has a further right adjoint, CoDisc : sSet→ sPre(Cart) defined objectwise

by

CoDisc(K)(U) = KΓ(yU).

We say that Disc(K) is the discrete simplicial presheaf onK, Γ(X) is the global sections

of X, Π∞(X) is the fundamental ∞-groupoid or shape of X, and that CoDisc(K) is the

codiscrete simplicial presheaf on K. In fact, all of these adjunctions are simplicially

enriched adjunctions.

Thus we obtain the following triple of simplicially enriched adjunctions

sPre(Cart) sSet

Π∞

CoDisc

Disc

Γ⊣
⊣

⊣

(2.27)

Proposition 2.3.8 ([Sch13, Prop 4.1.30 and 4.1.32]). Each adjunction in (2.27) is a simplicial

Quillen adjunction, where sPre(Cart) is given the Čech model structure Ȟ, and sSet is given

the Kan-Quillen model structure.

In [Sch13], Schreiber defines the three following endofunctors on the category of simplicial

presheaves on Cart: ∫
= Disc ◦ Π∞

♭ = Disc ◦ Γ

♯ = CoDisc ◦ Γ

(2.28)

called shape, flat and sharp respectively.

Remark 2.3.9. Using the name shape functor for both Π∞ and
∫
is justified by remembering
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that Disc : sSet→ Ȟ is fully faithful.

They give another pair of simplicial Quillen adjunctions

Ȟ Ȟ

∫

♯

♭

⊣
⊣

(2.29)

Let us focus further on the shape functor Π∞. Let ∆k
a denote the cartesian space defined

by

∆k
a =

{
(x0, . . . , xk) ∈ Rk+1 :

k∑
i=0

xi = 1

}
. (2.30)

We call these affine simplices.

Let Sing∞ : sPre(Cart)→ sSet be the functor defined objectwise by

Sing∞(X) = hocolim∆op

(
X(∆0

a) X(∆1
a) X(∆2

a) . . .
)
, (2.31)

where if we wish to be concrete, we can use the model of the homotopy colimit given by taking

the diagonal of the above bisimplicial set. We call this the smooth singular complex

functor.

Lemma 2.3.10. The functor Sing∞ sends objectwise weak equivalences of simplicial presheaves

to weak equivalences.

Proof. This follows from [GJ12, Proposition 1.9] and taking the diagonal to model the ho-

motopy colimit.

Proposition 2.3.11. There are natural weak equivalences between the functors

Sing∞ ≃ Sing∞ ◦Q ≃ Π∞ ◦Q (2.32)

where Q denotes a cofibrant replacement functor for Ȟ.
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Proof. We mirror the proof given in [Bun22b, Remark 4.12], and since the left hand weak

equivalence is shown there, we only prove the middle weak equivalence. If we restrict the

smooth singular complex functor along the Yoneda embedding Cart ↪→ sPre(Cart), then we

obtain a functor Sing∞ : Cart → sSet, and there is a natural weak equivalence of functors

Sing∞
∼−→ ∗, where ∗ : Cart → sSet is the constant functor on a point ∗ = ∆0, this follows

from [Bun22b, Proposition 3.11]. Since all simplicial sets are cofibrant in the Quillen model

structure on sSet, [Rie14, Corollary 5.2.5] implies that this induces a natural weak equivalence

B(X,Cart, Sing∞)
∼−→ B(X,Cart, ∗) (2.33)

of simplicial presheaves for everyX ∈ sPre(Cart). ButB(X,Cart, ∗) ∼= colimCartopB(X,Cart, y) ∼=

colimCartopQX ∼= Π∞QX. This follows from the fact that B(X,Cart, y) ∼= QX, which is just

repackaging the definition of QX. Since Sing∞ is a left adjoint, we have

B(X,Cart, Sing∞) ∼= Sing∞B(X,Cart, y) ∼= Sing∞QX.

This gives the second natural weak equivalence above.

By Proposition 2.3.11, we will often refer to Sing∞(X) as the shape of X as well. The

shape functor has many wonderful properties. While we will not need all of the following

results on the shape functor for this paper, we provide a concise listing of them here as such

results are scattered throughout the literature.

Remark 2.3.12. Since
∫
is just applying the shape functor and then treating the resulting

simplicial set as a constant simplicial presheaf, along with the fact that
∫
≃ Disc ◦ Sing∞,

we will blur the distinction between Π∞, Sing∞ and
∫
. We will use

∫
when we wish to be

ambiguous about which particular model of the shape functor we wish to use.

Theorem 2.3.13 ([Bun21b, Theorem 4.15]). LetM be a finite dimensional smooth manifold,
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thought of as a simplicial presheaf on Cart, then

∫
M ≃ Sing(M top) (2.34)

where M top is the underlying topological space of M and Sing : Top → sSet is the classical

singular complex. In other words, the shape of M is its underlying homotopy type.

Remark 2.3.14. It should be noted that Theorem 2.3.13 is really a consequence of a classical

result known as the nerve theorem [Bor48].

Proposition 2.3.15 ([Pav22b, Example 14.1]). Let Ωn
cl denote the sheaf on Cart of closed

differential n-forms. Its shape is ∫
Ωn

cl ≃ BnRδ. (2.35)

Lemma 2.3.16. Let K be a simplicial set, then the counit

εK : (Π∞ ◦Disc)(K)→ K. (2.36)

is an isomorphism. In other words, for discrete simplicial presheaves Kc, we have

∫
Kc
∼= K.

Proof. This follows from the fact that Disc is fully faithful, and the unit of an adjunction

where the right adjoint is fully faithful is an isomorphism.

Proposition 2.3.17 ([Car15, Theorem 3.4]). Let M denote a simplicial manifold. Let M

denote the simplicial presheaf on Cart defined degreewise by

M(U)k = C∞(U,Mk).
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Then the shape of M is ∫
M ≃ ||M || (2.37)

where ||M || denotes the homotopy type of the “fat” geometric realization of M , see [Car15,

Section 3.2].

Remark 2.3.18. The above result is especially interesting when M is the nerve of a Lie

groupoid, as this says that the shape of a Lie groupoid (thought of as a simplicial presheaf)

is weak equivalent to the homotopy type of the Lie groupoid’s classifying space [Car15,

Section 2.2].

Remark 2.3.19. We should also mention that the shape functor has been used to great

effect in what is now called the Smooth Oka Principle. See the following references [BBP22],

[SS21], [Clo23], [Pav22a, Section 10].

Let SingD : Diff → sSet be the functor defined levelwise by

SingD(X)n = Diff(∆n
a , X). (2.38)

We call this the diffeological singular complex. Note that by using the diagonal as a

model for the homotopy colimit, for a diffeological space X (actually any sheaf of sets on

Cart), we have

SingD(X) ∼= Sing∞(X). (2.39)

Proposition 2.3.20. Let X be a diffeological space, then

Π∞(QX) ≃ SingD(X) ≃ NPlot(X) (2.40)

where NPlot(X) is the nerve of the category of plots of X.

Proof. We will only prove the second weak equivalence, as the first holds by the previous

discussion. It is shown in [Bun22b, Proposition 3.6] that Sing∞ has a left and right adjoint
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(though only the right adjoint forms a Quillen adjunction), therefore we have

Π∞(QX) = Π∞

∫ n∈∆ ∐
NPlot(X)n

yUpn ⊗∆n


∼=
∫ n∈∆ ∐

NPlot(X)n

Π∞(yUpn)× (Π∞ ◦Disc)(∆n)

≃
∫ n∈∆ ∐

NPlot(X)n

∗ ×∆n

∼= NPlot(X).

(2.41)

where the weak equivalence is given by Theorem 2.3.13 and Lemma 2.3.16.

2.4 The Irrational Torus

In this section, we will show that if K ⊂ R is a diffeologically discrete subgroup of the

real numbers, then the infinity stack cohomology of the irrational torus TK = Rn/K (for any

n ≥ 1) with values in Rδ, is isomorphic to the group cohomology of K with values in Rδ. This

was first proved by Iglesias-Zemmour [Igl23, Page 15] with his own version of diffeological

Čech cohomology, which we will refer to as PIZ cohomology. In Section 1.5.3 we found maps

between ∞-stack cohomology and PIZ cohomology, and showed that one of these maps is a

retract, but it is still an open question as to whether these two cohomologies are isomorphic.

The motivation for this section is two-fold. One is to support the conjecture that∞-stack

cohomology is isomorphic to PIZ cohomology. We do this by showing that they agree on one

of the most important class of examples of diffeological spaces, the irrational tori. The second

motivation is to show the power of ∞-topos theory and in particular ∞-stack cohomology

through the use of the shape operation. The proof of Theorem 2.4.4 is completely different

than that in [Igl23], and it is conceptually more straightforward.

Definition 2.4.1. Suppose that K ⊂ Rn is a subgroup, and furthermore, when K is given

the subset diffeology of R, it coincides with the discrete diffeology, so that every plot is
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constant. We call its quotient TK = Rn/K the n-dimensional K-irrational torus7.

We define the quotient map π : Rn → TK of diffeological spaces. This map is a diffeological

principal K-bundle [Igl13, Article 8.15], where K is given the discrete diffeology. By the

discussion in Example 2.3.7, the bundle π is classified by a map of ∞-stacks gK : TK →

NDiffPrinK . Furthermore, by Corollary 1.6.13, we obtain the following cube, where the front

face and back face are homotopy pullback squares and the maps going from the back face to

the front face are all objectwise weak equivalences

R̃n EK

Rn ∗

QTK BK

TK NDiffPrinK

π

gK

(2.42)

Now if we apply the shape functor to this cube, the back face remains a homotopy pullback

by the following result.

Proposition 2.4.2 ([SS21, Proposition 3.3.8]). Let K be a simplicial set, and let f : X →

Disc(K) and g : Y → Disc(K) be maps of simplicial presheaves on Cart. Then there is a

Čech weak equivalence

(∫ X)×hDisc(K) (∫ Y ) ≃ ∫
(
X ×hDisc(K) Y

)
(2.43)

between the homotopy pullbacks of the maps
∫
f and

∫
g and the shape of the homotopy

pullback of the maps f and g.

Remark 2.4.3. For a model-category theoretic proof of Proposition 2.4.2, use the argument

7The word irrational comes from the example where n = 1, and K = Z+αZ with α an irrational number.
This is the most studied example of an irrational torus in diffeology. Interestingly, Z + αZ ⊂ R with the
subset topology is dense in R, hence not discrete, however the subset diffeology is discrete.
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of [Sch13, Theorem 4.1.34], and mirror the argument of [Sch13, Proposition 4.1.35] model

categorically.

Therefore the front face must also be a homotopy pullback square. Now by Lemma 2.3.10,

Lemma 2.3.16, and Theorem 2.3.13 it follows that

∫ R̃n ≃ ∫ Rn ≃ ∗, ∫ QTK ≃ ∫ TK , ∫ EK ≃ ∫ ∗ ∼= ∗, BK ∼= ∫ BK ≃ ∫ DiffPrinK .

(2.44)

From this we obtain the main result of this section.

Theorem 2.4.4. There is an isomorphism

Ȟn
∞(TK ,Rδ) ∼= Hn

grp(K,Rδ) (2.45)

of abelian groups, for every n ≥ 0, where Rδ denotes the discrete group of real numbers, and

where Hn
grp(K,Rδ) denotes the group cohomology of K with coefficients in Rδ.

Proof. First we note that since Rδ is discrete, Rδ ∼= ♭Rδ. Similarly, BnRδ ∼= ♭BnRδ for all

n ≥ 0. Thus

RȞ(TK ,B
nRδ) ∼= RȞ(TK , ♭B

nRδ) ∼= RȞ(∫ TK ,BnRδ). (2.46)

Now from Proposition 2.3.11, there is a weak equivalence SingD(TK) →
∫
TK of simplicial

sets, and by [CW14, Proposition 4.30], SingD(TK) is a Kan complex. Now
∫
NDiffPrinK is

a Kan complex since it is a simplicial abelian group. Furthermore since TK is diffeologically

connected [Igl23, Section II], SingD(TK) is connected. Thus the composite map SingD(TK)→∫
NDiffPrinK is a map of connected Kan complexes whose homotopy fiber is contractible.

Therefore by the long exact sequence of homotopy groups [Cis19, Theorem 3.8.12], it is a

weak equivalence, which implies that
∫
gK is a weak equivalence. Therefore we have

RȞ(∫ TK ,BnRδ) ≃ RȞ(∫ NDiffPrinK ,B
nRδ) ≃ RȞ(BK,BnRδ). (2.47)
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Which implies that

Ȟn
∞(TK ,Rδ) = π0RȞ(∫ TK ,BnRδ) ∼= π0RȞ(BK,BnRδ) = Ȟn

∞(BK,Rδ). (2.48)

However since BK and BnRδ are discrete, Disc is fully faithful and BnRδ is a Kan complex,

we have

RȞ(BK,BnRδ) ≃ sSet(BK,BnRδ),

where sSet(BK,BnRδ) is the usual simplicial set function complex. It is then well known

(see [Wei95, Example 8.2.3] for instance) that

π0sSet(BK,B
nRδ) ∼= Hn

grp(K,Rδ). (2.49)

This proves the theorem.

2.5 The Dold-Kan Correspondence

In this section, we discuss the Dold-Kan correspondence, which is central to Section 2.7.

Remark 2.5.1. For the remainder of this paper, by a vector space, we mean a real vector

space, not necessarily of finite dimension. By a chain complex we mean a non-negatively

graded chain complex of vector spaces. Let Ch denote the category of chain complexes.

Definition 2.5.2. Let Vect denote the category whose objects are vector spaces and whose

morphisms are linear maps. Let sVect := Vect∆
op

denote the category of simplicial vector

spaces.

Proposition 2.5.3 ([GS06, Proposition 4.2 and Theorem 4.13], [Jar03, Section 1]). The

category sVect admits a proper, combinatorial, simplicial model category structure where a

morphism f : X → Y is a

1. weak equivalence if it is a weak homotopy equivalence of the underlying simplicial sets,
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2. fibration if it is a Kan fibration of the underlying simplicial sets,

3. cofibration if it is degreewise a monomorphsim.

We call this the Kan-Quillen model structure8 on sVect.

Proposition 2.5.4 ([GS06, Theorem 1.5], [Jar03, Section 1]). The category Ch admits a

proper, combinatorial, simplicial model category structure where a morphism f : C → D is

a

1. weak equivalence if it is a quasi-isomorphism of chain complexes, and

2. fibration if fk : Ck → Dk is surjective in degrees k ≥ 1.

3. cofibration if it is degreewise a monomorphism9.

We call this the projective model structure10 on chain complexes.

There is an adjoint pair of functors,

Ch sVect

DK

N

⊣ (2.50)

which by the Dold-Kan correspondence [GS06, Theorem 4.1] form an adjoint equivalence11.

Lemma 2.5.5 ([SS03, Section 4.1]). The adjunction N ⊣ DK is a Quillen adjunction ([Hir09,

Definition 8.5.2]) between the model category structures on Ch and sVect. Furthermore, the

functors form a Quillen equivalence ([Hir09, Definition 8.5.20]). In fact, since N and DK form

an adjoint equivalence, it follows that DK ⊣ N is also an adjoint equivalence. Furthermore

N and DK are both left and right Quillen functors.

8Note that every object in sVect is fibrant and cofibrant.
9For the projective model structure on chain complexes of R-modules for a general commutative ring

R, we require these to be degreewise monomorphisms with projective cokernel. Since all vector spaces are
projective as R-modules, this condition is always satisfied.

10Note that every object in Ch is fibrant and cofibrant.
11This result actually holds for chain complexes and simplicial objects taking values in any idempotent

complete, additive category, see [Lur17, Theorem 1.2.3.7].
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If we consider the category of simplicial sets sSet with its usual Kan-Quillen model struc-

ture [GS06, Theorem 1.22], there is a simplicial Quillen adjunction

sSet sVect

R[−]

U

⊣ (2.51)

where U denotes the forgetful functor, and R[−] denotes the functor that sends a simplicial

set X to the free simplicial vector space RX, defined degreewise by RXn = R(Xn), where

R(Xn) is the free vector space on the set Xn. Thus we obtain a Quillen adjunction

sSet Ch

NR[−]

UDK

⊣ (2.52)

which is furthermore a simplicial Quillen adjunction12.

Note that the Dold-Kan correspondence also provides a simplicial enrichment of Ch.

Indeed, suppose C and D are chain complexes, then let Ch(C,D) denote the simplicial vector

space defined degreewise by

Ch(C,D)k = Ch(NR∆k ⊗ C,D). (2.53)

This makes the Dold-Kan correspondence an enriched adjoint equivalence. This is also the

simplicial enrichment mentioned in Proposition 2.5.4.

This also supplies Ch with tensoring and cotensoring over sSet. Namely ifK is a simplicial

set and C is a chain complex then C ⊗ K is the chain complex C ⊗ NRK, and CK =

NRCh(NRK,C).

Now the category of chain complexes Ch is also enriched over itself. Indeed, if C and

D are chain complexes, then let MapCh(C,D) denote the chain complex defined as follows.

12We will often omit the functor U in our notation.
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First let us define the unbounded chain complex MapCh
Z(C,D) defined in degree k ∈ Z by

MapCh
Z(C,D)k =

∏
i≥0

Vect(Ci, Di+k), (2.54)

with d : MapCh
Z(C,D)k → MapCh

Z(C,D)k−1 defined for a map f by

df = dDf − (−1)kfdC .

We call an element of degree k in MapCh
Z(C,D) a degree k map from C to D.

Definition 2.5.6. If C is an unbounded (Z-graded) chain complex, then let τ≥0C denote

the chain complex defined degreewise by (τ≥0C)k = Ck for k > 0, and (τ≥0C)0 = Z0C, the

set of 0-cycles of C, i.e. those x ∈ C0 such that dx = 0, the differential on τ≥0C is induced

by the differential on C. We call τ≥0C the smart truncation of C.

Now given chain complexes C and D, let

MapCh(C,D) = τ≥0MapCh
Z(C,D), (2.55)

denote the smart truncation applied to MapCh
Z(C,D). This means that MapCh(C,D)k =

MapCh
Z(C,D) for k > 0, and MapCh(C,D)0 ∼= Ch(C,D). We refer to MapCh(C,D) as the

mapping chain complex between C and D.

Lemma 2.5.7 ([Opa21, Example 4.3.2]). Let C and D be chain complexes, then we have an

isomorphism of simplicial vector spaces

DKMapCh(C,D) ∼= Ch(C,D). (2.56)

Further, this provides an isomorphism

MapCh(C,D) ∼= NCh(C,D). (2.57)
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An explicit description for the path space of a chain complex C, equivalently the coten-

soring C∆1
, is given in Section 2.10.

Definition 2.5.8. Let C be a small category. Then let ChPre(C) denote the category whose

objects are functors Cop → Ch, and whose morphisms are natural transformations. We call

such functors presheaves of chain complexes.

Proposition 2.5.9 ([Hir09, Section 11.6]). The category ChPre(C) admits a proper, combi-

natorial, simplicial model category structure where a morphism f : C → D is a

1. weak equivalence if it objectwise a weak equivalence in the projective model structure

on chain complexes, and

2. fibration if it is objectwise a fibration in the projective model structure on chain com-

plexes.

We refer to this as the (global) projective model structure on presheaves of chain com-

plexes.

Thus we obtain a similar simplicial Quillen pair

sPre(C) ChPre(C)

NR[−]

UDK

⊣ (2.58)

where sPre(C) is equipped with the projective model structure. In Section 2.10, we will use

(2.58), along with Proposition 2.3.5, to compute homotopy pullbacks in Ȟ.

2.6 Examples of ∞-stacks

In this section we detail the ∞-stacks involved in this paper, and examine the ∞-stack

cohomology of a diffeological space with coefficients in some of these example ∞-stacks.
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Example 2.6.1. Given a finite dimensional smooth manifoldM , the functor U 7→ C∞(U,M)

defines a sheaf on Cart, and therefore an ∞-stack. The same goes for diffeological spaces.

Given a diffeological space X, let Xδ denote the diffeological space with the same underlying

set, but equipped with the discrete diffeology. As sheaves we have Xδ ∼= Disc(X(∗)) = ♭X.

Example 2.6.2. The presheaf of differential k-forms Ωk and the presheaf of closed differential

k-forms Ωk
cl are sheaves of vector spaces on Cart for every k ≥ 0. Thus they are ∞-stacks.

The de Rham differential defines a map of ∞-stacks d : Ωk → Ωk+1 for all k ≥ 0.

There is a canonical map

mc(R) : R→ Ω1 (2.59)

of ∞-stacks, defined by the Yoneda Lemma as follows. Notice that R ∈ Cart, so by the

Yoneda lemma, a map ω : yR → Ω1 is equivalent to an element ω ∈ Ω1(R). There is a

canonical element of the set of 1-forms on R, called the Maurer-Cartan form of R. For a

general Lie group G, we let mc(G) denote its Maurer-Cartan form. If we label the coordinate

of R by t, then the Maurer-Cartan form is simply given by mc(R) = dt. Thus for a cartesian

space U , the function mc(R)(U) : R(U) → Ω1(U) acts by taking a smooth map f : U → R

and pulling back the Maurer-Cartan form f ∗mc(R) ∈ Ω1(U). Note that this is the same

thing as df . In other words as maps of ∞-stacks, we have mc(R) = d.

Example 2.6.3. Let G be a diffeological group. As discussed in Example 2.3.7 the presheaf

of groupoids BG given by

U 7→ [C∞(U,G) ⇒ ∗]

is a stack, and is objectwise weak equivalent to the stack of diffeological principal G-bundles.

We abuse notation and also let BG denote the corresponding simplicial presheaf, which is an

∞-stack. Given a diffeological space X, a G-cocycle on X as in Definition 2.2.6 is precisely a

map QX → BG of simplicial presheaves. Theorem 1.3.15 shows that the resulting groupoid

of G-cocycles on X is equivalent to the groupoid of diffeological principal G-bundles on X.

Thus Ȟ1
∞(X,G) := Ȟ0

∞(X,BG) is the set of isomorphism classes of G-cocycles, which is
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isomorphic to the set of isomorphism classes of diffeological principal G-bundles.

Example 2.6.4. If G is a Lie group with Lie algebra g, then let Ω1(−, g)//G denote the

presheaf of groupoids

U 7→ [Ω1(U, g)× C∞(U,G)
t

⇒
s
Ω1(U, g)]

where t(ω, g) = ω and s(ω, g) = Ad−1
g (ω)+ g∗mc(G). The nerve of this presheaf of groupoids

is an ∞-stack [FSS+12, Proposition 3.2.5]13. This is the ∞-stack that classifies principal G-

bundles with connection. We will often abuse notation and write Ω1(−, g)//G to refer to the

presheaf of groupoids and the simplicial presheaf obtained by taking the nerve construction.

Note that a map QX → Ω1(−, g)//G is equivalent to the data of a G-cocycle gf0 : Up1 → G

and a collection {Ap0}p0∈Plot(X) of 1-forms Ap0 ∈ Ω1(Up0 , g) such that for every map f0 :

Up1 → Up0 of plots we have

Ap1 = Ad−1
gf0

(f ∗
0Ap0) + g∗f0mc(G). (2.60)

Let us call this collection of data (g, A) = ({gf0}, {Ap0}) a G-cocycle with connection.

We show that this definition of connection is equivalent to the one given in [Wal12, Definition

3.2.1] in Section 2.8.

Remark 2.6.5. The following examples of simplicial presheaves can be checked to be ∞-

stacks by using [Pav22a, Corollary 6.2]. One simply needs to notice that the examples that

follow are presheaves of bounded chain complexes, and can thus be thought of equivalently

as presheaves of cochain complexes, and that the homotopy descent condition for presheaves

of cochain complexes is equivalent to the condition of Dold-Kan applied to the presheaves of

chain complexes to be ∞-stacks.

Example 2.6.6. Given a sheaf A of abelian groups on Cart, with k ≥ 1, the simplicial

presheaf BkA is obtained by taking Dold-Kan of the presheaf of chain complexes [A→ 0→
13Notice that the definition above is precisely the opposite of the corresponding ∞-stack considered in

[FSS+12, Section 3]. This is because of the convention we use in 2.3.7. However this makes no difference on
the theory as we show in Section 2.8.
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· · · → 0]. When A is an abelian diffeological group, then BA is the ∞-stack that classifies

diffeological principal A-bundles.

In this paper we will consider the example BkR. Given a diffeological space X, a map

QX → BkR consists of a g ∈ R(QXk) such that δg = 0, see Section 2.9. We call these

R-bundle (k − 1)-gerbes. Thus a diffeological principal R-bundle is precisely a R-bundle

0-gerbe.

There is a vast literature on bundle gerbes in differential geometry such as [Mur96],

[Bun21a], [Ste04]. Typically bundle gerbes are defined as geometric objects, and then shown

to define cohomology classes through cocycles such as above. However, giving descriptions

of bundle k-gerbes as geometric objects becomes difficult and tedious as k grows. Their

description as cocycles is much more economical, and is all we need for this paper. There

should be no difficulty in translating between the geometric description of diffeological bundle

1-gerbes, such as in [Wal12] and the cocycle description we give here, but we leave this to

future work.

Example 2.6.7. For k ≥ 1, let Bk
∇R14 denote the simplicial presheaf obtained by applying

Dold-Kan to the following presheaf of chain complexes15

[R d−→ Ω1 d−→ Ω2 → · · · → Ωk]. (2.61)

This complex is often referred to as the Deligne complex when R is replaced with U(1)

and d : R → Ω1 is replaced with d log : U(1) → Ω1. For k ≥ 2, Bk
∇R classifies R-bundle

(k− 1)-gerbes with connection, and ∞-stack cohomology with values in Bk
∇R is called pure

differential cohomology16 in [Jaz21, Definition 3.2.10]. Thus we call Bk
∇R the pure k-

Deligne complex.

Given a diffeological space X, we will denote∞-stack cohomology with values in the pure

14Note that the Bk in Bk
∇R is just notation, it is not actually the delooping of anything.

15Note that the way this chain complex is written, Ωk is in degree 0.
16We also recommend [Jaz21, Section 3.2] for a discussion of how pure differential cohomology fits into the

hexagon diagram of differential cohomology.
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k-Deligne complex by

Ȟk
∞,∇(X,R) := Ȟ0

∞(X,Bk
∇R).

Let us also note that when k = 1, we have an objectwise weak equivalence of ∞-stacks

B∇R ≃ (Ω1(−)//R)op.

To see this, note that both of the simplicial presheaves are identical in simplicial degrees 0 and

1. This is because R is abelian, so t(ω, g) = Ad−1
g (ω) + g∗mc(R) = ω + dg in (Ω1(−)//R)op,

which is precisely the face map d0 : B∇R1 → B∇R0. Since (Ω1(−)//R)op is the nerve of a

presheaf of groupoids, it is 2-coskeletal, and therefore its k-homotopy groups are trivial for

k ≥ 2. The objectwise homotopy groups of B∇R are given by the objectwise homology of

the chain complex by the Dold-Kan correspondence, and thus are also trivial for k ≥ 2, thus

they are objectwise weak equivalent. The distinction between Ω1(−)//R and (Ω1(−)//R)op

is because of Example 2.3.7, so technically B∇R classifies diffeological principal Rop-bundles

with opposite connection, but this distinction is immaterial to the theory and we sweep it

under the rug, and we say that the above classifies diffeological principal R-bundles with

connection.

IfX is a diffeological space, then as we will see in Example 2.6.13, a R-bundle (k−1)-gerbe

with connection on X is given by the data

(ωk, ωk−1, . . . , ω1, g) ∈ Ωk(QX0)⊕ Ωk−1(QX1)⊕ · · · ⊕ Ω1(QXk−1)⊕ R(QXk), (2.62)

suchD(ωk, . . . , g) = 0 in the double complex Ωi(QXj), see Section 2.9. We will let [ωk, . . . , g]

denote the isomorphism class it represents in Ȟk
∞,∇(X,R).

Example 2.6.8. For k ≥ 1, consider the∞-stack BkRδ. This∞-stack classifies diffeological
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principal Rδ-bundles. However, note that there is a map of presheaves of chain complexes

[Rδ → 0→ · · · → 0]→ [R d−→ Ω1 d−→ · · · d−→ Ωk
cl] (2.63)

given by the inclusion Rδ ↪→ R. Furthermore, this map is an objectwise quasi-isomorphism,

by the Poincare lemma. Thus we will take the right hand side of (2.63) to be the model of

BkRδ we will use for the rest of this paper. From this presentation, it is easy to see that BkRδ

is equivalently the∞-stack that classifies diffeological principal R-bundle (k−1)-gerbes with

flat connection.

Example 2.6.9. For k ≥ 1, consider the ∞-stack BkΩ1
cl. There is a map of presheaves of

chain complexes

[Ω1
cl → 0→ · · · → 0]→ [Ω1 d−→ Ω2 d−→ . . .

d−→ Ωk
cl] (2.64)

and this map is an objectwise quasi-isomorphism again by the Poincare lemma. We take the

right hand side to be the model we will use for BkΩ1
cl for the rest of the paper.

Example 2.6.10. For k ≥ 1, let Ω1≤•≤k denote the simplicial presheaf obtained by applying

Dold-Kan to the following presheaf of chain complexes

[Ω1 d−→ Ω2 → · · · → Ωk]. (2.65)

If X is a diffeological space and A is a k-deloopable ∞-stack, recall that its ∞-stack

cohomology is given by

Ȟk
∞(X,A) = RȞ(X,BkA).

Let us compute an example of ∞-stack cohomology for a diffeological space X with values

in the ∞-stack BΩ1, as it will be emblematic of how we compute ∞-stack cohomology for

all of the relevant examples presented in this section. In Section 2.9 we go into detail on how

to compute such examples.
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Example 2.6.11. Let A′ = BΩ1 = [Ω1 → 0] and A = DKA′. Let us compute H0(X,A) for

a diffeological space X using Proposition 2.9.3. Consider the double complex A′(QX),

Ω1(QX0) Ω1(QX1) Ω1(QX2) . . .

0 0 0 . . .

δ −δ

(2.66)

so that totA′(QX) is the chain complex

totA′(QX) = [Ω1(QX0)
D−→ ker(−δ : Ω1(QX1)→ Ω1(QX2))] (2.67)

Thus a 0-cycle in totA′(QX) consists of a collection {ωf0 ∈ Ω1(Up1)}f0:Up1→Up0
of 1-forms for

every map of plots of X such that −δω = 0, which is equivalent to the condition that for

every pair of composable plot maps Up2
f1−→ Up1

f0−→ Up0 we have

(δω)(f1,f0) = f ∗
1ωf0 − ωf0f1 + ωf1 = 0.

Two such 0-cocycles are cohomologous ω ∼ ω′ if there exists a collection {λp0 ∈ Ω1(Up0)}p0∈Plot(X)

of 1-forms for every plot of X such that

(Dλ)f0 = (δλ)f0 = ω′
f0
− ωf0

for every map f0 : Up1 → Up0 of plots of X. Thus Ȟ0
∞(X,BΩ1) = Ȟ1

∞(X,Ω1) is precisely

analogous to the term H1,1
δ in [Igl23, Section 4.4].

Example 2.6.12. Let us compute Ȟ1
∞,∇(X,R) := Ȟ0

∞(X,B∇R) for a diffeological space X.

Consider the double complex

R(QX0) R(QX1) R(QX2) . . .

Ω1(QX0) Ω1(QX1) Ω1(QX2) . . .

d

δ −δ

−δ

d d

δ

(2.68)
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where R(QXi) = C∞(QXi,R). A 0-cocycle is the data of a map g : QX1 → R and a 1-form

A ∈ Ω1(QX0) such that −δg = 0 and −δA = dg. The condition −δg = δg = 0 is equivalent to

the condition gf0f1 = f ∗
1 gf0 + gf1 for every pair of composable plot maps Up2

f1−→ Up1
f0−→ Up0 ,

which is precisely the condition for g to be a cocycle defining a diffeological principal R-

bundle on X. The condition δA = dg is equivalent to the condition that for every map

of plots f0 : Up1 → Up0 we have Ap1 − f ∗
0Ap0 = dgf0 , which is precisely the equation for a

connection on a diffeological principal R-bundle, see Section 2.8. Given two 0-cocycles (A, g)

and (A′, g′), a 1-coboundary consists of an element h ∈ R(QX0) such that δh = g′ − g and

dh = A′ − A. This is precisely the definition of a morphism of G-cocycles with connection,

see Definition 2.8.1. Thus an element of Ȟ1
∞,∇(X,R) is an isomorphism class of a diffeological

principal R-bundle on X with connection.

Example 2.6.13. Let us compute Ȟ2
∞,∇(X,R) for a diffeological space X. Consider the

double complex

R(QX0) R(QX1) R(QX2) . . .

Ω1(QX0) Ω1(QX1) Ω1(QX2) . . .

Ω2(QX0) Ω2(QX1) Ω2(QX2) . . .

d

−δ δ

δ

d d

−δ

d

−δ

d

δ

d

(2.69)

Then a 0-cycle in totB2
∇R(QX) is an element (ω,A, g) ∈ Ω2(QX0) ⊕ Ω1(QX1) ⊕ R(QX2)

such that D(ω,A, g) = 0. This is equivalent to the equations −δω = dA, −δA = dg and

−δg = 0. The equation −δg = δg = 0 is equivalent to the condition that for every triple of

composable maps of plots (f2, f1, f0) of X, we have

(δg)(f2,f1,f0) = f ∗
2 g(f1,f0) − g(f1f2,f0) + g(f2,f0f1) − g(f2,f1) = 0. (2.70)

This is the diffeological analogue of the cocycle data of a R-bundle gerbe on X. The other

two equations −δω = dA and −δA = dg are the diffeological analogue of the cocycle data of
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a connection on a R-bundle gerbe. Thus Ȟ2
∞,∇(X,R) = Ȟ0

∞(X,B2
∇R) can be taken as the

definition of the abelian group of isomorphism classes of diffeological R-bundle 1-gerbes with

connection on X. The story for k ≥ 2 is exactly analogous, and thus we take our definition

of the abelian group of isomorphism classes of diffeological R-bundle (k − 1)-gerbes with

connection to be Ȟk
∞,∇(X,R) = Ȟ0

∞(X,Bk
∇R).

2.7 The Čech de Rham Obstruction

In this section, we obtain a diffeological Čech-de Rham obstruction exact sequence in every

degree from a homotopy pullback diagram of ∞-stacks. In degree 1, our exact sequence is

analogous to [Igl23].

Let X be a diffeological space. In [Igl23], Iglesias-Zemmour constructs the following exact

sequence of vector spaces

0→ H1
dR(X)→ Ȟ1

PIZ(X,Rδ)→ dE1,0
2 (X)

c1−→ H2
dR(X)→ Ȟ2

PIZ(X,Rδ) (2.71)

using the five term exact sequence coming from a diffeological version of the Čech-de Rham

bicomplex spectral sequence. The vector space dE1,0
2 (X) is the subspace of isomorphism

classes of diffeological principal R-bundles on X that admit a connection, and the vector

spaces Ȟk
PIZ(X,Rδ) are Iglesias-Zemmour’s version of diffeological Čech cohomology, which

we refer to as PIZ cohomology. The relationship between PIZ cohomology and ∞-stack

cohomology is only partially understood.

The exact sequence (2.71) demonstrates the obstruction to the Čech-de Rham Theo-

rem holding for diffeological spaces. For finite dimensional smooth manifolds, all principal

R-bundles are trivial, as they have contractible fiber, and thus the obstruction vanishes.

However, there are diffeological spaces (the irrational torus for example) that have nontrivial

principal R-bundles that admit connections [Igl13, Article 8.39].

We construct and geometrically interpret the obstruction to the Čech-de Rham isomor-
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phism in each degree k ≥ 1 via ∞-stacks.

Theorem 2.7.1. For every k ≥ 1, there exists a commutative diagram of ∞-stacks of the

following form

∗ BkRδ ∗ ∗

∗ Bk
∇R Ωk+1

cl Ωk+1

BkR BkΩ1
cl Ω1≤•≤k+1

∗ Bk+1Rδ Bk+1
∇ R

(2.72)

furthermore every commutative square in this diagram is a homotopy pullback square in Ȟ.

We prove Theorem 2.7.1 in Section 2.10.

Corollary 2.7.2. For every diffeological spaceX, there is an exact sequence of vector spaces17

0→ Ȟk
∞(X,Rδ)→ Ȟk

∞,∇(X,R)→ Ωk+1
cl (X)→ Ȟk+1

∞ (X,Rδ). (2.73)

Proof. This follows from Theorem 2.7.1 and Lemma 2.10.6.

Let us explore the consequences of Corollary 2.7.2 in the case where X is the irrational

torus. Let K = Z+ αZ be the subgroup of R consisting of those x ∈ R of the form n+ αm

where n,m are integers and α is an irrational number. Let Tα = R/Z + αZ. We can fully

compute the de Rham and∞-stack cohomology of Tα. Every differential form on Tα is closed

[Igl13, Exercise 119] so Ωk(Tα) = Ωk
cl(Tα) = Hk

dR(Tα), and furthermore Ωk
cl(Tα)

∼= ΛkR by

[Igl13, Exercise 105]. Therefore we have

Ωk
cl(Tα) = Hk

dR(Tα)
∼=


R, k = 0, 1

0, k > 1.

(2.74)

17Near the completion of this paper, we learned that an analogous exact sequence was also obtained in
[Jaz21, Page 27] using completely different methods in the framework of homotopy type theory.
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Now by Theorem 2.4.4, we have

Ȟk
∞(Tα,Rδ) ∼= Ȟ0

∞(B(Z+ αZ),BkRδ) ∼= Ȟ0
∞(BZ2,BkRδ) ∼= Ȟk

∞(T 2,Rδ) ∼=


R, k = 0, 2

R2, k = 1

0, k > 2,

(2.75)

where T 2 denotes the usual 2-dimensional torus.

From Corollary 2.7.2, setting k = 1, we obtain the exact sequence

0→ Ȟ1
∞(Tα,Rδ)→ Ȟ1

∞,∇(Tα,R)→ Ω2
cl(Tα)→ Ȟ2

∞(Tα,Rδ). (2.76)

Since Ω2
cl(Tα) = 0, this implies that Ȟ1

∞,∇(Tα,R) ∼= Ȟ1
∞(Tα,Rδ) ∼= R2.

From Corollary 2.7.2, setting k = 2, we obtain the exact sequence

0→ Ȟ2
∞(Tα,Rδ)→ Ȟ2

∞,∇(Tα,R)→ Ω3
cl(Tα)→ Ȟ3

∞(Tα,Rδ), (2.77)

but Ω3
cl(Tα)

∼= H3
dR(Tα)

∼= 0 ∼= Ȟ3
∞(Tα,Rδ), thus Ȟ2

∞,∇(Tα,R) ∼= R. Similar reasoning proves

that Ȟk
∞,∇(Tα,R) ∼= 0 for k > 2. Thus we have proven the following.

Theorem 2.7.3. Let Tα denote the irrational torus, then

Ȟk
∞,∇(Tα, R)

∼=


R2, k = 1,

R, k = 2,

0, k > 2.

(2.78)

The reader should note that the above computations only work because the irrational

torus has the property that its deRham cohomology is equal to its closed forms. This is not

the case for general diffeological spaces, and therefore Corollary 2.7.2 is not generally helpful

for computations. Therefore we desire an exact sequence which uses the deRham cohomology
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of a diffeological space rather than its closed forms.

Definition 2.7.4. Given a diffeological space X and k ≥ 1, let Ȟk
conn(X,R) denote the

subspace of Hk
dR(X) ⊕ Ȟk

∞(X,R) generated by the subset of pairs ([F ], [g]) where F is

the curvature form F = dωk of a diffeological R-bundle (k − 1)-gerbe with connection

(ωk, ωk−1, . . . , ω1, g).

The vector space Ȟk
conn(X,R) sits in an exact sequence

0→ Ȟk
∞,triv(X,Rδ)→ Ȟk

∞,∇(X,R)→ Ȟk
conn(X,R)→ 0, (2.79)

where Ȟk
∞,triv(X,Rδ) ⊂ Ȟk

∞(X,Rδ) is the subspace of isomorphism classes of trivial R-bundle

(k − 1)-gerbes with flat connection.

Let us now define a new sequence of vector spaces

Ȟk
∞(X,Rδ)

α−→ Ȟk
conn(X,R)

β−→ Hk+1
dR (X)

γ−→ Ȟk+1
∞ (X,Rδ).

The map α takes an isomorphism class of an R-bundle k-gerbe with flat connection [ωk, . . . , ω1, g]

and gives (0, [g]). The map β sends ([F ], [g]) 7→ [F ]. Finally, γ sends [ω] to the isomorphism

class of the R-bundle k-gerbe with connection (ω, 0, . . . , 0). This map is well defined, because

if ω′ − ω = dτ for some τ ∈ Ωk(X), then (ω′ − ω, 0, . . . , 0) = D(τ, 0, . . . , 0).

Theorem 2.7.5. Given a diffeological space X and k ≥ 1, the sequence of vector spaces

Ȟk
∞(X,Rδ)

α−→ Ȟk
conn(X,R)

β−→ Hk+1
dR (X)

γ−→ Ȟk+1
∞ (X,Rδ) (2.80)

is exact.

Proof. Note that βα = 0. Suppose ([F ], [g]) ∈ Ȟk
conn(X,R) and consider γβ([F ], [g]) =

[F, 0, . . . , 0]. Since ([F ], [g]) ∈ Ȟk
conn(X,R), there exists a R-bundle (k − 1)-gerbe with con-
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nection (ωk, . . . , ω0, g) such that

D(ωk, . . . , ω0, g) = (F, 0, . . . , 0).

Therefore [F, 0, . . . , 0] = 0. In fact, γβ([F ], [g]) = 0 if and only if there exists an R-bundle

(k− 1)-gerbe with connection such that the above equation holds. This implies that ker γ =

im β.

Now suppose that β([F ], [g]) = [F ] = 0. Then there exists a global k-form τ such that

dτ = F . Since ([F ], [g]) ∈ Ȟk
conn(X,R), there exists an R-bundle (k − 1)-gerbe (ωk, . . . , g)

such that dωk = F . Then ωk− τ ∈ Ωk(QX0), d(ω
k− τ) = 0 and δ(ωk− τ) = δωk− δτ = δωk.

Therefore (ωk − τ, ωk−1, . . . , ω0, g) defines an R-bundle k-gerbe with flat connection. Thus

([F ], [g]) = (0, [g]) ∈ imα.

We will refer to the exact sequence (2.80) as the degree k PIZ exact sequence. When

k = 1, there is an interesting additional phenomenon.

Lemma 2.7.6. Let (A, g) and (A′, g) be R-bundle 0-gerbes/diffeological principal R-bundles

with connection on a diffeological spaceX with the same underlying R-cocycle g, then dA and

dA′ are global closed 2-forms on X and their de Rham cohomology classes agree [dA] = [dA′].

Proof. Since (A, g) and (A′, g) are both R-bundle 0-gerbes with connection on X, this implies

that for every map of plots f0, we have

−(δA)f0 = dgf0 = −(δA′)f0 .

Now consider the form A′−A ∈ Ω1(QX0), defined plotwise by (A′−A)p0 = A′
p0
−Ap0 . This

is a global 1-form, because for every plot map f0 we have

(δ(A′ − A))f0 = (δA′)f0 − (δA)f0 = 0.

Thus A′−A ∈ Ω1(X). Similarly dA′ and dA are also global 2-forms on X. Now d(A′−A) ∈
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Ω2(X) is an exact form, and dA′− dA = d(A′−A). Thus dA′ and dA represent the same de

Rham cohomology class.

Lemma 2.7.6 implies that Ȟ1
conn(X,R) is isomorphic to the subspace of Ȟ1

∞(X,R) gen-

erated by the subset of those diffeological principal R-bundles that admit a connection, as

every connection produces a unique cohomology class. Thus we see that Ȟ1
conn(X,R) is

exactly analogous to the term dE1,0
2 (X) in (2.71).

Now the degree k PIZ exact sequence (2.80) seems to be missing two terms compared to

(2.71). These two terms reappear when k = 1, as we shall now prove.

Theorem 2.7.7. Given a diffeological space X, there exists a map θ : H1
dR(X)→ Ȟ1

∞(X,Rδ)

such that the sequence of vector spaces

0→ H1
dR(X)

θ−→ Ȟ1
∞(X,Rδ)

α−→ Ȟ1
conn(X,R)

β−→ H2
dR(X)

γ−→ Ȟ2
∞(X,Rδ) (2.81)

is exact.

Proof. The sequence is exact everywhere except for H1
dR(X) and Ȟ1

∞(X,Rδ) by Theorem

2.7.5. Now recall the isomorphism φ : Ȟ0
∞(X, [Rδ → 0]) → Ȟ0

∞(X, [R → Ω1
cl]) induced

by the map of presheaves of chain complexes described in Example 2.6.8 for k = 1. The

map φ takes an isomorphism class of a diffeological principal Rδ-bundle cocycle [g] and gives

the isomorphism class of the R-bundle 0-gerbe with connection [0, g]. Let θ : H1
dR(X) →

Ȟ0
∞(X, [Rδ → 0]) denote the map defined as follows. Let [A] ∈ H1

dR(X) denote a cohomology

class, and suppose that A is a global closed 1-form representing this class. Since it is closed,

there exists an a ∈ R(QX0) such that da = A. Then δa defines an Rδ cocycle, as dδa = δA =

0. Let θ([A]) = [δa]. This map is well defined, as suppose that a, a′ ∈ R(QX0) such that

da = da′ = A. Then a− a′ is a Rδ-coboundary between δa and δa′ as d(a− a′) = A−A = 0

and δa− δa′ = δ(a− a′), so [δa] = [δa′].
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We have a commutative diagram

H1
dR(X) Ȟ0

∞(X, [Rδ → 0]) Ȟ1
conn(X,R)

Ȟ0
∞(X, [R→ Ω1

cl])

φ

θ

θ′

α

(2.82)

where α takes a Rδ-cocycle and considers it as a R-cocycle, and θ′([A]) = [−A, 0]. Now

φθ = θ′ because φθ([A]) = [0, δa], θ′([A]) = [−A, 0], and (−A, 0) − (0, δa) = (−A,−δa) =

(−da,−δa) = D(−a).

Clearly αθ = 0. Let us show that im θ = kerα. Suppose that [g] is the isomorphism

class of a diffeological principal Rδ-bundle such that it is trivial as a diffeological principal

R-bundle. Then there exists a λ ∈ R(QX0) such that g = δλ. Then θ([dλ]) = [g]. Now let

us show that θ is injective. It is enough to show that θ′ is injective, as φ is an isomorphism.

Suppose that [A] and [B] are cohomology classes such that θ′([A]) = [−A, 0] = [−B, 0] =

θ′([B]). Then there exists a τ ∈ R(QX0) such that (−A−(−B), 0) = (B−A, 0) = Dτ , which

implies that δτ = 0, so that τ is a global 0-form and dτ = B − A. Thus [A] = [B]. Thus we

have proven that θ is injective. Now abuse notation and let Ȟ1
∞(X,Rδ) = Ȟ0

∞(X, [Rδ → 0]).

This proves that the above sequence is exact everywhere.

Considering again the case where X = Tα is the irrational torus, from (2.74), (2.75) and

(2.81), we obtain that

Ȟ1
conn(Tα,R) ∼= R, (2.83)

which agrees with [Igl23]. From (2.79) and Theorem 2.7.3 we then obtain an isomorphism

Ȟ1
∞,triv(Tα,Rδ) ∼= R. (2.84)

Similarly, from (2.80) we obtain an exact sequence

R→ Ȟ2
conn(Tα,R)→ 0
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so that Ȟ2
conn(Tα,R) is either 0 or R.

2.8 Diffeological Principal Bundles with Connection

In this section we show that the notion of diffeological principal G-bundle with connection

introduced in Example 2.6.4 is equivalent to Waldorf’s, given in [Wal12, Definition 3.2.1].

Given a diffeological space X, and a Lie group G, recall the definition of the ∞-stack

Ω1(−, g)//G from Example 2.6.4. The data of a map QX → Ω1(−, g)//G is equivalent to a

G-cocycle g and a collection A = {Ap0} of 1-forms Ap0 ∈ Ω1(Up0 , g) satisfying

Ap1 = Ad−1
gf0

(f ∗
0Ap0) + g∗f0mc(G).

for every plot p0 : Up0 → X. We refer to such a map QX → Ω1(−, g)//G as a G-cocycle

with connection.

Definition 2.8.1. Let Coc∇(X,G) denote the category whose objects are G-cocycles with

connection on X, and whose morphisms h : (A, g) → (A′, g′) are collections h = {hp0} of

maps hp0 : Up0 → G such that h is a morphism of G-cocycles in the sense of Definition 2.2.6

and Ap0 = Ad−1
hp0

(A′
p0
) + h∗p0mc(G) for every plot p0 of X. It is easy to see that this category

is a groupoid.

Definition 2.8.2. Let π : P → X be a diffeological principal G-bundle where G is a Lie

group. A Waldorf connection on P is a 1-form ω ∈ Ω1(P, g) such that

ρ∗ω = Ad−1
g (pr∗ω) + g∗mc(G) (2.85)

where ρ : P × G → P is the action map, and g : P × G → G and pr : P × G → P are the

corresponding projection maps.

A morphism f : (ω, P )→ (ω′, P ′) of diffeological principal G-bundles on X with Waldorf

connections is a morphism of diffeological principalG-bundles f : P → P ′ such that f ∗ω′ = ω.
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Such morphisms are isomorphisms. Given a diffeological space X, let WalG(X) denote the

groupoid of diffeological principal G-bundles on X equipped with a Waldorf connection.

In Section 1.3, we showed there is a functor Cons : Coc(X,G)→ DiffPrinG(X) that takes

a G-cocycle g and constructs a diffeological principal G-bundle Cons(g) = π : P → X on

X. Furthermore, by Theorem 1.3.15, this functor is an equivalence. Thus we need only

understand how to construct a Waldorf connection from the collection A = {Ap0} of 1-forms

and vice versa.

So let g = {gf0} be a fixed G-cocycle representing a diffeological principal G-bundle

Cons(g) = π : P → X. We wish to construct a 1-form ω on P from a G-cocycle with

connection A on X. The diffeological principal G-bundle Cons(g) has a canonical plotwise

trivialization φp0 : Up0 × G → p∗0P such that if f0 : Up1 → Up0 is a map of plots, then the

induced map f̃0 : Up1 × G → Up0 × G is given by f̃0(xp1 , h) = (f0(xp1), gf0(xp1) · h), where

gf0 : Up1 → G is the component of the G-cocycle on f0.

Now let q0 : Uq0 → P be a plot. We obtain a commutative diagram

Uq0

Uq0 ×G p∗0P P

Uq0 X

π

p0

⌟

φp0

kq0

q0

1Uq0

(2.86)

where p0 = πq0 and kq0 : Uq0 → Uq0 × G is the unique map given by the universal property

of the pullback Uq0 ×G ∼= p∗0P . Since this map is over Uq0 , we have kq0(xq0) = (xq0 , gq0(xq0))

for a unique map gq0 : Uq0 → G.
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Now if f0 : Up1 → Up0 is a map of plots, we obtain a commutative diagram

Uq1 Uq0

Uq1 ×G Uq0 ×G

P

kq1

f̃0

kq0

f0

(2.87)

which implies that if xq1 ∈ Uq1 , then

f̃0kq1(xq1) = f̃0(xq1 , gq1(xq1)) = (f0(xq1), gf0(xq1)·gq1(xq1)) = (f0(xq1), gq0(f0(xq1)) = kq0f0(xq1).

From this we obtain the equation

gf0 · gq1 = (gq0 ◦ f0). (2.88)

Now suppose that A = {Ap0} is a G-cocycle with connection for the fixed cocycle g. We wish

to obtain a 1-form on P . Since P is a diffeological space, we can define it plotwise. Given a

plot q0 : Uq0 → P , we obtain a plot p0 : Uq0 → X of the base X by setting p0 = πq0. Thus

there is a 1-form Ap0 ∈ Ω1(Uq0 , g) from the G-cocycle with connection. Now let

Bq0 = Ad−1
gq0

(Ap0) + g∗q0mc(G). (2.89)

Thus Bq0 ∈ Ω1(Uq0 , g). We wish to show that this defines a 1-form on P , namely we need to

check that if f0 : Uq1 → Uq0 is a map of plots of P , then

f ∗
0Bq0 = Bq1 . (2.90)
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So let f0 : Uq1 → Uq0 be such a map of plots. Then we have

f ∗
0Bq0 = f ∗

0

(
Ad−1

gq0
(Ap0) + g∗q0mc(G)

)
= Ad−1

(gq0◦f0)
(f ∗

0Ap0) + (gq0 ◦ f0)∗mc(G)

= Ad−1
gq1

Ad−1
gf0

(f ∗
0Ap0) + (gf0 · gq1)∗mc(G)

= Ad−1
gq1

Ad−1
gf0

(f ∗
0Ap0) + Ad−1

gq1
(g∗f0mc(G)) + g∗q1mc(G)

= Ad−1
gq1

(
Ad−1

gf0
(f ∗

0Ap0) + g∗f0mc(G)
)
+ g∗q1mc(G)

= Ad−1
gq1

(Ap1) + g∗q1mc(G)

= Bq1 .

(2.91)

We have used the product rule for the Maurer-Cartan form

(g · h)∗mc(G) = Ad−1
h (g∗mc(G)) + h∗mc(G), (2.92)

on the fourth line above, which can easily be verified using the description of mc(G) as g−1dg.

Thus the collection {Bq0} defines a 1-form ω ∈ Ω1(P, g) with ωq0 = Bq0 . We must still

show that ω is a Waldorf connection.

We will check the equation (2.85) plotwise on P ×G. A plot of P ×G is a pair of plots

q0 : Uq0 → P and h0 : Uq0 → G, which we shall pair to form the plot ⟨q0, h0⟩ : Uq0 → P ×G.

Let us examine (ρ∗ω)⟨q0,h0⟩. This is the 1-form ωρ⟨q0,h0⟩, where ρ : P × G → P is the action

map. We can thus write ρ⟨q0, h0⟩ = q0 · h0, where · is the action of G on P . Thus we wish to

compute ωq0·h0 . Looking plotwise, it is easy to see that

gq0·h0 = gq0 · h0. (2.93)
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Thus we have

ωq0·h0 = Bq0·h0

= Ad−1
gq0·h0

(Ap0) + g∗q0·h0mc(G)

= Ad−1
h0
Ad−1

gq0
(Ap0) + (gq0 · h0)∗mc(G)

= Ad−1
h0
Ad−1

gq0
(Ap0) + Ad−1

h0
g∗q0mc(G) + h∗0mc(G)

= Ad−1
h0
(Bq0) + h∗0mc(G).

(2.94)

Pulling back to P ×G gives precisely the equation (2.85). So given a G-cocycle with connec-

tion (A, g), let Cons∇(A, g) = (ω, P ) denote the diffeological principal G-bundle P = Cons(g)

equipped with Waldorf connection ω.

Now suppose that h : (A, g) → (A′, g′) is a morphism of G-cocycles with connection on

X. We wish to obtain a morphism of diffeological principal G-bundles that preserve the

Waldorf connection. By Section 1.3 we know that Cons(h) : Cons(g)→ Cons(g′) is a map of

the respective diffeological principal G-bundles. We need only show that Cons(h) preserves

the Waldorf connection. Let (ω, P ) = Cons∇(A, g) and (ω′, P ′) = Cons∇(A
′, g′), and let

h̃ = Cons(h) denote the corresponding morphism given by the morphism h of G-cocycles.

For every plot q0 : Uq0 → P we obtain the following commutative diagram

Uq0

Uq0 ×G Uq0 ×G

P P ′
h̃

kq0
k′
h̃q0

lq0
l′
h̃q0

h̃q0
(2.95)

where h̃q0(xq0 , g) = (xq0 , hq0(xq0) · g) for hq0 : Uq0 → G the component of the morphism h of

cocycles. The above diagram also implies that

k′
h̃ q0

(xq0) = (xq0 , g
′
h̃q0

(xq0)) = (xq0 , hp0(xq0) · gq0(xq0)) = h̃q0kq0(xq0), (2.96)
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and thus we have

g′
h̃ q0

= hq0 · gq0 . (2.97)

We wish to show that h̃∗ω′ = ω. It is therefore equivalent to show that

(h̃∗ω′)q0 = ω′
h̃q0

= B′
h̃q0

= Bq0 = ωq0 . (2.98)

Now we have

B′
h̃q0

= Ad−1
g
h̃q0

(A′
p0
) + g′

∗
h̃q0

mc(G)

= Ad−1
gq0

Ad−1
hp0

(A′
p0
) + (hp0 · gq0)∗mc(G)

= Ad−1
gq0

Ad−1
hp0

(A′
p0
) + Ad−1

gq0
(h∗p0mc(G)) + g∗q0mc(G)

= Ad−1
gq0

(Ad−1
hp0

(A′
p0
) + h∗p0mc(G)) + g∗q0mc(G)

= Ad−1
gq0

(Ap0) + g∗q0mc(G)

= Bq0 .

(2.99)

Thus h̃ : P → P ′ preserves the Waldorf connections. In summary, we have constructed

a functor Cons∇ : Coc(X,G) → WalG(X). Now we wish to show that this functor is an

equivalence of groupoids.

Now let us show that if we have a Waldorf connection ω on P , we can obtain an G-cocycle

with connection. Suppose that π : P → X is a diffeological principal G-bundle, and choose a

fixed plotwise trivialization φ. From this we obtain a G-cocycle g. Suppose that ω ∈ Ω1(P, g)

is a Waldorf connection, and let p0 : Up0 → X be a plot. We obtain the commutative diagram

Up0 ×G p∗0P P

Up0 X

π

p0

ψp0

⌟

φp0

σp0

where φp0 is the fixed trivialization, which is a G-equivariant diffeomorphism over Up0 , and

σp0 : Up0 → Up0 ×G is the canonical section σp0(xp0) = (xp0 , eG). Let q0 : Up0 → P be given
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by q0 = ψp0φp0σp0 . Suppose that f0 : Up1 → Up0 is a map of plots of X. Then we obtain a

diagram

Up1 Up0

Up1 ×G Up0 ×G

p∗1P p∗0P

P

σp1

f̃0

σp0

f0

φp1 φp0

ψp1 ψp0

f̂0

Notice that the middle square and the bottom triangle commute, but the top square does

not commute, as f̃0σp1(xp1) = (f0(xp1), gf0(xp1)) while σp0(f0(xp1)) = (f0(xp1), eG). Thus we

have

q1(xp1) = (ψp1φp1σp1)(xp1)

= ψp0φp0 f̃0σp1(xp1)

= ψp0φp0(f0(xp1), gf0(xp1))

= (ψp0φp0) [(f0(xp1), eG) · gf0(xp1)]

= (ψp0φp0σp0f0)(xp1) · gf0(xp1)

= (q0 ◦ f0)(xp1) · gf0(xp1).

(2.100)

where on the fourth line we used the fact that φp0 and ψp0 are G-equivariant.

Thus we have obtained the equation

q1 = (q0 ◦ f0) · gf0 . (2.101)

Now let Ap0 = ωq0 . Note that f ∗
0Ap0 ̸= Ap1 since f0 is not a map of plots from q1 and q0,

i.e. (q0 ◦ f0) ̸= q1. Consider the equation (2.85) at the plot ⟨(q0 ◦ f0), gf0⟩ : Uq1 → P × G.

Note that

(ρ∗ω)⟨(q0◦f0),gf0 ⟩ = ωρ⟨(q0◦f0),gf0 ⟩ = ω(q0◦f0)·gf0 = ωq1 = Ap1 , (2.102)
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and

Ad−1
gf0

((pr∗ω)⟨(q0◦f0),gf0 ⟩) + g∗f0mc(G) = Ad−1
gf0

(ω(q0◦f0)) + g∗f0mc(G). (2.103)

Now f ∗
0Ap0 = f ∗

0ωq0 = ω(q0◦f0) because f0 is a plot map from q0 to (q0 ◦ f0) trivially, and

ω is a 1-form on P . Thus we obtain equation (2.60), so the collection A = {Ap0} defines a

G-cocycle with connection on X.

Now if h̃ : (ω, P ) → (ω′, P ′) is a map of diffeological principal G-bundles with Waldorf

connection, we want to show that it induces a map of G-cocycle with connection. We know

that h̃ induces a map h of the G-cocycles g and g′ representing P and P ′ respectively, and

we wish to show that Ap0 = Ad−1
hp0

(A′
p0
) + h∗p0mc(G) for every plot p0 : Up0 → X. We know

that h̃∗ω′ = ω, which is equivalent to asking that B′
h̃q0

= Bq0 . So if p0 is a plot of X, then

we obtain a plot q0 : Up0 → P in the same way as above. We obtain

Ap0 = Adgq0 (Bq0 − g∗q0mc(G))

= Adgq0 (B
′
h̃q0
− g∗q0mc(G))

= Adgq0 [Adgh̃q0
(A′

p0
) + g∗

h̃q0
mc(G)− g∗q0mc(G)]

= Adgq0Ad
−1
gq0

Ad−1
hp0

(A′
p0
) + Adgq0Ad

−1
gq0

(h∗p0mc(G))

+ Adgq0 (g
∗
q0
mc(G))− Adgq0 (g

∗
q0
mc(G))

= Ad−1
hp0

(A′
p0
) + h∗p0mc(G),

(2.104)

where we have basically done the computation of (2.99) in reverse. Thus h is a morphism of

G-cocycles with connection.

Theorem 2.8.3. Given a diffeological space X and a Lie group G, the functor

Cons∇ : Coc∇(X,G)→ WalG(X), (2.105)

is an equivalence of groupoids.

Proof. This follows from combining Theorem 1.3.15 with the above constructions.
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Remark 2.8.4. It should be said that when G = R or G = S1, one can check that a Waldorf

connection reduces to a connection 1-form in the sense of [Igl23, Section 5.3], thus we have an

equivalence between all three definitions of diffeological principal G-bundle with connection

in these cases.

Remark 2.8.5. There is nothing stopping one from extending the above definition to the

case when G is a diffeological group. In this case then g should be the internal tangent space

[CW15] to the diffeological group G at the identity. Nothing in this Section depended on G

being a Lie group, so the whole previous discussion extends to this case. It is an interesting

question to see how far one can go with this analogy. For instance, does this extended

definition agree with that given in [Igl13, Article 8.32]? We leave this question for future

work.

2.9 Totalization

Given a presheaf of chain complexes A and a diffeological space X, we wish to compute the

∞-stack cohomology of X with values in A. This is defined as the abelian group

Ȟ0
∞(X,A) := π0RȞ(X,A). (2.106)

We will use the Dold-Kan correspondence to get an amenable model for the homotopy

type of RȞ(X,A).

Let C be a cosimplicial chain complex, whose cosimplicial degree is denoted by the chain

complex Cp. The qth degree of the chain complex Cp is denoted Cp,q, with differential

d : Cp,q → Cp,q−1. From a cosimplicial chain complex we can obtain a (mixed) double

complex by applying the dual of the Dold-Kan correspondence to C• to obtain a Z≥0×Z≥0-

graded vector space with two operators d : Cp,q → Cp,q−1 given by the differential of each Cp

and δ : Cp,q → Cp+1,q defined as the alternating sum
∑p

i=0(−1)idi of the coface maps of C,

with the property that dδ = δd. From this we can obtain an unbounded (Z-graded) chain
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complex K = tot ZC, with

(tot ZC)k =
∏
q−p=k

Cp,q (2.107)

and differential D = (d − (−1)q−pδ). In order to obtain a non-negatively graded chain

complex, we apply smart truncation to obtain totC = τ≥0tot
ZC.

Proposition 2.9.1. Given a cosimplicial chain complex C, we have the following isomor-

phism of chain complexes,

∫
n∈∆

MapCh(NR[∆n], Cn) ∼= totC, (2.108)

where MapCh(NR[∆n], Cn) is the mapping chain complex defined by (2.55).

Proof. For the rest of this proof only, let ∆n = NR∆n. The chain complexE :=
∫
n∈∆MapCh

Z(∆n, Cn)

is isomorphic to the equalizer

eq

∏
[n]∈∆

MapCh
Z(∆n, Cn) ⇒

∏
f :[m]→[n]

MapCh
Z(∆m, Cn)

 . (2.109)

It is equipped with the usual differential of mapping chain complexes, namely dE : Ek → Ek−1

is the map

dE(φ) = dC• ◦ φ− (−1)kφ ◦ d∆• . (2.110)

Thus for k ∈ Z, an element φ ∈ Ek consists of a family of degree k maps φn : ∆n → Cn,

such that for every map f : [m]→ [n] the following diagram commutes

∆m Cm

∆n Cn

f

φm

φn

Cf (2.111)

and this makes sense, as pre or post-composing a degree k map of chain complexes with a

chain map is a degree k map. This is equivalent to having a commutative diagram of the
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form

∆0 ∆1 ∆2 . . .

C0 C1 C2 . . .

φ0 φ1 φ2 (2.112)

where we have hidden the codegeneracy maps for clarity. For each n ≥ 0, a degree k map

φn : ∆n → Cn is equivalently the data of an element xn in degree k+n in Cn, corresponding

to the top non-degenerate n-simplex ιn ∈ (∆n)n, along with an element xn◦f in degree k+m

for every map f : [m]→ [n]. However, the diagram commuting implies that xn ◦ f = Cfxm.

In other words, the data of the {xn}n≥0 completely determine the whole diagram. Thus for

k ∈ Z, there is a bijection Ek ∼=
(
tot ZC

)
k
∼=
∏

q−p=k C
p,q. Furthermore their differentials

agree, thus defining an isomorphism E ∼= tot ZC. Since
∫
n∈∆MapCh(NR[∆n], Cn) = τ≥0E

and totC = τ≥0tot
ZC, they are isomorphic.

Remark 2.9.2. Let dMap and dv denote the differentials
∏

q−p=k C
p,q →

∏
q−p=k−1C

p,q de-

fined componentwise by

dMap = (d− (−1)q−pδ), dv = (d+ (−1)qδ).

The differential dv is more commonly seen for total complexes in the literature. There is

an isomorphism (totC, dMap) ∼= (totC, dv) given as follows. We wish to find isomorphisms

ψk : (totC)k → (totC)k making the following diagrams commute for all k ≥ 0

∏
q−p=k C

p,q
∏

q−p=k C
p,q

∏
q−p=k−1C

p,q
∏

q−p=k−1C
p,q

dMap

ψk

ψk−1

dv

namely we want an isomorphism of chain complexes. Let us define maps σp,q : C
p,q → Cp,q
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by

σp,q =


id if p ≡ 0, 3 (mod 4)

−id if p ≡ 1, 2 (mod 4).

Then set ψk =
∏

q−p=k σp,q. This gives the desired isomorphism18.

Let us now examine how Proposition 2.9.1 helps us compute ∞-stack cohomology for

diffeological spaces. Suppose that A′ is a presheaf of chain complexes such that A = DKA′

is an ∞-stack, and X is a diffeological space. Then the 0th ∞-stack cohomology of X with

values in A is given by π0Ȟ(X,A). Let us compute Ȟ(X,A).

Ȟ(X,A) = sPre(Cart)(QX,DKA′)

∼= sPre(Cart)

∫ n ∐
(fn−1,...,f0)

yUpn ×∆n,DKA′


∼=
∫
n

∏
(fn−1,...,f0)

sSet(∆n, sPre(Cart)(yUpn ,DKA
′))

∼=
∫
n

∏
(fn−1,...,f0)

sSet(∆n, [DKA′](Upn))

∼=
∫
n

∏
(fn−1,...,f0)

Ch(NR∆n, A′(Upn))

∼=
∫
n

∏
(fn−1,...,f0)

DKMapCh(NR∆n, A′(Upn))

∼= DK

∫
n

MapCh(NR∆n,
∏

(fn−1,...,f0)

A′(Upn))

∼= DK totA′(QX),

(2.113)

where the last isomorphism follows from Proposition 2.9.1, and the third to last isomorphism

follows from Lemma 2.5.7. Thus we have proven the following.

Proposition 2.9.3. Given a presheaf of chain complexes A′ such that A = DKA′ is an

∞-stack, and X a diffeological space, the 0th ∞-stack cohomology of X with values in A is

18We obtained the maps σp,q by carefully following the procedure outlined in [Ric].
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given by

Ȟ0
∞(X,A) ∼= H0(totA

′(QX)).

Propositon 2.9.3 allows us to get a component level description of ∞-stack cohomology

of diffeological spaces with values in the∞-stacks of interest, see Section 2.6. Let us now use

Proposition 2.9.1 to prove the following well-known folklore result.

Proposition 2.9.4. Let C be a cosimplicial chain complex, then

holimn∈∆C
n ≃ totC, (2.114)

where we are computing the homotopy limit in the category of chain complexes equipped

with the projective model structure.

Proof. First let us show that every cosimplicial chain complex C is Reedy fibrant. For more

information about Reedy categories, see [Rie14, Section 14]. We wish to show that the

matching map Cn → MnC is a projective fibration. To do so, it will be sufficient to show

that if A is a cosimplicial vector space, then the canonical map s : An → MnA, defined by

the same limit above, is surjective. This is sufficient because limits of chain complexes are

computed degreewise, and a map is a projective fibration if and only if it is surjective in

all positive degrees. We follow the proof19 given in [Jar, Lemma 21.1]. Let Dn denote the

category whose objects are surjective maps [n]
σ−→ [k] where k = n − 1 or k = n − 2, and

whose morphisms are either identities or coface maps sj : [n− 1]→ [n− 2]

[n]

[n− 1] [n− 2]sj

si sjsi

19Note that the proof given in that note has several typographical errors, which is why we chose to reproduce
a full proof here.



CHAPTER 2. THE DIFFEOLOGICAL ČECH-DE RHAM OBSTRUCTION 138

Then by [Hir09, Proposition 15.2.6],

MnA ∼= lim
σ:[n]↠[k]

Ak. (2.115)

Now let us label every object of Dn by either si : [n]→ [n− 1] or σ : [n]→ [n− 2], and every

non-identity morphism by a pair (si, sj). Since sjsi = sisj+1 for every i ≤ j, the objects

sjsi : [n] → [n − 2] and sisj+1 : [n] → [n − 2] are the same, but the morphisms (si, sj) and

(sj+1, si) are not. We can write the above limit as the equalizer (where we are not denoting

the identity maps)

MnA ∼= eq

∏
si

An−1 ×
∏
σ

An−2
α

⇒
β

∏
(si,sj)

An−2

 , (2.116)

where α is defined in component (si, sj) by α(a, a′) = sjai, and β is defined in component

(si, sj) by β(a, a′) = a′sjsi . Since β in component (si, sj) and in component (sj+1, si) are equal

a′sjsi = a′sisj+1 for i ≤ j, this equalizer will be isomorphic to the subspace of (An−1)n of those

tuples a = (a0, . . . , an−1) where s
jai = siaj+1 for i ≥ j. The matching map s : An →MnA is

then given by s(a0, . . . , an−1) = (s0a0, . . . , s
n−1an−1).

Now let us prove by induction that s is surjective. In the base case, note that (0, . . . , 0) =

s(0, . . . , 0). Now suppose that every element b ∈MnA of the form b = (b0, . . . , bj−1, 0, . . . , 0) is

in the image of s. We wish to show that every element of the form a = (a0, . . . , aj−1, aj, 0, . . . , 0)

is in the image of s.

First note that for i ≤ j, we have sjai = siaj+1 = si0 = 0. Thus sjdiai = disj−1ai = 0 for

i < j and sjdjaj = aj. Thus

a− s(djaj) = (a0 − s0djaj, . . . , aj−1 − sj−1djaj, 0, . . . , 0).

By the induction hypothesis, there exists a c ∈ An such that s(c) = a − s(djaj). Therefore

a = s(c+ djaj).
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So we have shown that s : An →MnA is surjective. This implies that s : Cn →MnC is a

projective fibration for all cosimplicial chain complexes C. This implies that all cosimplicial

chain complexes are Reedy fibrant.

Since C is Reedy fibrant, [Hir09, Theorem 19.8.7] implies that the totalization of C

computes the homotopy limit, i.e. holim∆C ≃
∫
n∈∆MapCh(NR[∆n], Cn). Thus Proposition

2.9.1 proves that holim∆C ≃ totC.

Remark 2.9.5. During the writing of this paper, the preprint [Ara23] came out, which also

proves Proposition 2.9.4 in greater generality. However since the scope of our argument is

much smaller, we believe our proof of Proposition 2.9.4 is simpler and more direct.

2.10 Proof of Theorem 2.7.1

In this section we prove Theorem 2.7.1. We will need several technical preliminary results.

Given a chain complex C, consider the chain complex C∆1 ∼= MapCh(NR∆1, C). This is

the chain complex with C∆1

n = Cn ⊕ Cn ⊕ Cn+1 for n > 0, and with differential

dn : Cn ⊕ Cn ⊕ Cn+1 → Cn−1 ⊕ Cn−1 ⊕ Cn

given by dn(x, y, z) = (dx, dy, dz − (−1)n[−x+ y]).

This means that for k = 0, we have

C∆1

0
∼= ker

(
C0 ⊕ C0 ⊕ C1

d0−→ 0⊕ 0⊕ C0

)

where d0(x, y, z) = (0, 0, dz + x− y). There is an isomorphism C∆1

0
∼= C0 ⊕ C1 given by the

maps

σ : C∆1

0 → C0 ⊕ C1, σ(x, y, z) = (x, z)

τ : C0 ⊕ C1 → C∆1

0 , τ(x, z) = (x, x+ dz, z).
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Thus the differential d : C∆1

1 → C∆1

0 is isomorphic to the map α = σ ◦ d1,

α : C1⊕C1⊕C2 → C0⊕C1, α(x, y, z) = σd1(x, y, z) = σ(dx, dy, dz−x+y) = (dx, dz−x+y).

The map π : C∆1 → C ⊕ C is given in degree k > 0 by

πk : Ck ⊕ Ck ⊕ Ck+1 → Ck ⊕ Ck, πk(x, y, z) = (x, y). (2.117)

It is given in degree k = 0 by

π0 : C0 ⊕ C1 → C0 ⊕ C0, π0(x, z) = (x, x+ dz). (2.118)

Let us now state a few model categorical results that we will need for the proof of Theorem

2.7.1.

Lemma 2.10.1 ([Hir09, Corollary 13.3.8]). Let C be a right proper model category and let

A B

C Dg

f
⌟

be a pullback square in C such that at least one of maps f or g is a fibration. Then the above

square is a homotopy pullback square.

Lemma 2.10.2 ([Hir09, Proposition 13.3.15]). Let C be a right proper model category, and

suppose we have a commutative diagram of the form

A B C

D E F

(2.119)

and suppose that the right hand square is a homotopy pullback square. Then the left hand

square is a homotopy pullback square if and only if the outer rectangle is a homotopy pullback
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square.

Lemma 2.10.3 ([Sch13, Corollary 2.3.10]). Let C be a model category, and suppose X, Y, Z

are fibrant objects in C and f : X → Z and g : Y → Z are maps between them. Then the

homotopy pullback of f and g is naturally weak equivalent to the actual pullback

X ×hZ Y ZI

X × Y Z × Z
f×g

⌟ (2.120)

where ZI → Z × Z is a path object for Z.

Lemma 2.10.4 ([Hir09, Proposition 3.3.16]). Suppose f : X → Y is a map of ∞-stacks on

Cart that is an projective fibration. Then it is a fibration in the Čech model structure.

Definition 2.10.5. If X, Y, Z are ∞-stacks on Cart, and the commutative diagram

X Y

∗ Zz

f

is a homotopy pullback square, where ∗ := ∆0, then we say that the sequence of maps

X → Y → Z

is a homotopy fiber sequence, and we call X the homotopy fiber of f at z, which we

sometimes denote by hofib(f).

Lemma 2.10.6. Let X → Y → Z be a homotopy fiber sequence of pointed ∞-stacks on

Cart, and where the morphisms preserve the points. Then the resulting sequence

Ȟ0
∞(W,X)

f−→ Ȟ0
∞(W,Y )

g−→ Ȟ0
∞(W,Z),
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is exact.20

Proof. This follows from the fact that RȞ(−,−) preserves homotopy pullbacks in its second

factor, so a homotopy fiber sequence of ∞-stacks produces a homotopy fiber sequence of

spaces

RȞ(W,X)→ RȞ(W,Y )→ RȞ(W,Z)

and the long exact sequence of homotopy groups gives exactness for π0.

Proposition 2.10.7. Suppose that we have a commutative square

A B

C D

g

f

h

k (2.121)

of presheaves of chain complexes over Cart such that

DKA DKB

DKC DKD

DKg

DKf

DKh

DKh (2.122)

is a commutative diagram of ∞-stacks. If (2.121) is a homotopy pullback square in the

projective model structure on ChPre(Cart), then (2.122) is a homotopy pullback square in Ȟ.

Proof. If (2.121) is a homotopy pullback diagram, then A is weak equivalent to the actual

pullback C ×hD B of Lemma 2.10.3. Since both of these presheaves of chain complexes are

projective fibrant, and DK is right Quillen, then DKA is weak equivalent to DK(C ×hD B) ∼=

DKC×hDKDDKB. Therefore DKA is a homotopy pullback of (2.122) inH. Then by Proposition

2.3.5, it is a homotopy pullback in Ȟ.

Now that we have all the technical tools we need, we restate Theorem 2.7.1 for the

convenience of the reader.

20Exact in the sense that each set Ȟ0
∞(W,A) is pointed by the constant map ∗ to the point of A, and the

image of f is equal to the set of x ∈ Ȟ0
∞(W,Y ) such that g(x) = ∗, which we call the kernel of g.
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Theorem 2.7.1. For every k ≥ 1, there exists a commutative diagram of ∞-stacks of the

following form

∗ BkRδ ∗ ∗

∗ Bk
∇R Ωk+1

cl Ωk+1

BkR BkΩ1
cl Ω1≤•≤k+1

∗ Bk+1Rδ Bk+1
∇ R

1 2

4

3

5

6 7

(2.123)

furthermore every commutative square in this diagram is a homotopy pullback square in Ȟ.

Lemma 2.10.8. The pasted square [4|5], given as follows

Bk
∇R Ωk+1

BkR Ω1≤•≤k+1

(2.124)

is a homotopy pullback square in Ȟ.

Proof. Let us analyze this part of the diagram as presheaves of chain complexes.

[R→ Ω1 → Ω2 → · · · → Ωk] [0→ 0→ · · · → Ωk+1
cl ] [0→ 0→ 0→ · · · → Ωk+1]

[R→ 0→ 0→ · · · → 0] [Ω1 → Ω2 → · · · → Ωk+1
cl ] [Ω1 → Ω2 → · · · → Ωk → Ωk+1]

(2.125)

where the upper horizontal left hand map is 0 except in degree 0 where it applies the

differential d. The lower horizontal left hand map is d in degree k + 1 and 0 elsewhere. The

rest of the maps are either degreewise inclusions or identity maps.

Let us show that the outer rectangle is a homotopy pullback diagram. Note that neither

the bottom map nor the right hand map is objectwise surjective in positive degree, namely

they are not fibrations in ChPre(Cart). However we can use Lemma 2.10.3 to compute the

homotopy pullback ofBkR→ Ω1≤•≤k+1 ← Ωk+1. Namely it is given as the actual (objectwise)
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pullback of the diagram

(Ω1≤•≤k+1)∆
1

BkR⊕ Ωk+1 Ω1≤•≤k+1 ⊕ Ω1≤•≤k+1

(2.126)

Now (Ω1≤•≤k+1)∆
1
is given by the presheaf of chain complexes

[Ω1 ⊕ Ω1 → Ω2 ⊕ Ω2 ⊕ Ω1 → · · · → Ωk ⊕ Ωk ⊕ Ωk−1 → Ωk+1 ⊕ Ωk]

which projects to Ω1≤•≤k+1 ⊕ Ω1≤•≤k+1. From this we obtain the following diagram the

following diagram of presheaves of chain complexes

[R→ Ω1 → Ω2 → · · · → Ωk] [Ω1 ⊕ Ω1 → Ω2 ⊕ Ω2 ⊕ Ω1 → · · · → Ωk ⊕ Ωk ⊕ Ωk−1 → Ωk+1 ⊕ Ωk]

[R→ 0→ · · · → 0→ Ωk+1] [Ω1 ⊕ Ω1 → Ω2 ⊕ Ω2 → · · · → Ωk ⊕ Ωk → Ωk+1 ⊕ Ωk+1]

π

(2.127)

and this is an actual pullback square. To see this, note that pullbacks of chain complexes

are computed degreewise. For degrees k > 0, it is clearly a pullback. In degree 0 we are

trying to show that Ωk is isomorphic to the pullback of

Ωk+1 ⊕ Ωk

0⊕ Ωk+1 Ωk+1 ⊕ Ωk+1

π0

0⊕1
Ωk+1

(2.128)

but from (2.118), we know that π0(x, z) = (x, x + dz). For every cartesian space U , the

pullback is the set of triples (w, x, z) ∈ Ωk+1(U) ⊕ Ωk+1(U) ⊕ Ωk(U) such that x = 0 and

w = dz. This set is of course in bijection with Ωk(U). Thus [4|5] is a homotopy pullback

square.
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Lemma 2.10.9. The square [5], given by

Ωk+1
cl Ωk+1

BkΩ1
cl Ω1≤•≤k+1

(2.129)

is a homotopy pullback square.

Proof. Consider the commutative diagram of presheaves of chain complexes

[0→ 0→ · · · → Ωk+1
cl ] [0→ 0→ · · · → Ωk+1]

[Ω1 d−→ Ω2 → · · · → Ωk+1
cl ] [Ω1 d−→ Ω2 → · · · → Ωk → Ωk+1]

(2.130)

Now the above diagram is an actual pullback, and the bottom map is objectwise a surjection

in positive degrees, thus it is a fibration of presheaves of chain complexes, and therefore by

Lemma 2.10.1 the diagram (2.130) is a homotopy pullback.

Corollary 2.10.10. The square [4] is a homotopy pullback square.

Proof. By Lemma 2.10.8, [4|5] is a homotopy pullback square. By Lemma 2.10.9, [5] is a

homotopy pullback square. Thus by Lemma 2.10.2, [4] is a homotopy pullback square.

Lemma 2.10.11. The square [6]

BkR BkΩ1
cl

∗ Bk+1Rδ

(2.131)

is a homotopy pullback square.

Proof. This proof is very similar as the proof of Lemma 2.10.8. We take the actual pullback



CHAPTER 2. THE DIFFEOLOGICAL ČECH-DE RHAM OBSTRUCTION 146

of the diagram

(Bk+1Rδ)∆
1

0⊕BkΩ1
cl (Bk+1Rδ ⊕Bk+1Rδ)

(2.132)

which by similar reasoning to the paragraph after (2.128) is precisely

[0→ Ω1 ⊕ R d1−→ Ω2 ⊕ Ω1 d2−→ . . .
dk−2−−−→ Ωk−1 ⊕ Ωk−2 α−→ Ωk−1] [R⊕ R→ Ω1 ⊕ Ω1 ⊕ R→ · · · → Ωkcl ⊕ Ωk−1]

[0→ Ω1 → · · · → Ωkcl] [R⊕ R→ Ω1 ⊕ Ω1 → · · · → Ωkcl ⊕ Ωkcl]

π

(2.133)

where di(a, b) = (da, db− (−1)ia) for 1 ≤ i ≤ k − 2, and α(a, b) = db + a. Now there is an

obvious map

[0→ R→ · · · → 0]→ [0→ Ω1 ⊕ R d1−→ Ω2 ⊕ Ω1 d2−→ . . .
dk−2−−→ Ωk−1 ⊕ Ωk−2 α−→ Ωk−1] (2.134)

that is an isomorphism on cohomology. Indeed α is surjective, and the kernel of di : Ω
i ⊕

Ωi−1 → Ωi+1 ⊕ Ωi is the set of pairs (a, b) where a = (−1)idb, and these are all in the image

of di−1.

Lemma 2.10.12. The square [7]

BkΩ1
cl Ω1≤•≤k+1

Bk+1Rδ Bk+1
∇ R

(2.135)

is a homotopy pullback square.

Proof. As presheaves of chain complexes we have

[0→ Ω1 → Ω2 → · · · → Ωk+1
cl ] [0→ Ω1 → Ω2 → · · · → Ωk → Ωk+1]

[R→ Ω1 → Ω2 → · · · → Ωk+1
cl ] [R→ Ω1 → Ω2 → · · · → Ωk → Ωk+1]

(2.136)
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which is an actual pullback, and the bottom horizontal map is a fibration, thus by Lemma

2.10.1, [7] is a homotopy pullback.

Lemma 2.10.13. The pasted square [2
4
],

BkRδ ∗

BkR BkΩ1
cl

(2.137)

is a homotopy pullback square.

Proof. We use the same proof technique as in Lemma 2.10.8, namely we will compute the

actual pullback of the diagram

(BkΩ1
cl)

∆1

BkR⊕ 0 BkΩ1
cl ⊕BkΩ1

cl

(2.138)

The actual pullback we obtain is given by

[R→ Ω1 → Ω2 → · · · → Ωkcl] [Ω1 ⊕ Ω1 → Ω2 ⊕ Ω2 ⊕ Ω1 → · · · → Ωkcl ⊕ Ωkcl ⊕ Ωk−1 → 0⊕ Ωkcl]

[R→ 0→ · · · → 0→ 0] [Ω1 ⊕ Ω1 → Ω2 ⊕ Ω2 → · · · → Ωkcl ⊕ Ωkcl → 0]

π

(2.139)

which is similar to the computation (2.127). Thus [2
4
] is a homotopy pullback square.

Corollary 2.10.14. The square [2] is a homotopy pullback square.

Proof. By Corollary 2.10.10, Lemma 2.10.13 and Lemma 2.10.2.

Lemma 2.10.15. The square [3] is a homotopy pullback square.
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Proof. As a diagram of presheaves of chain complexes

[0→ Ω1 → · · · → Ωk] [R→ Ω1 → · · · → Ωk]

[0→ 0→ · · · → 0] [R→ 0→ · · · → 0]

(2.140)

it is an actual pullback, and the right hand map is a fibration.

Lemma 2.10.16. The square [1] is a homotopy pullback square.

Proof. As a diagram of presheaves of chain complexes

[0→ · · · → 0] [R→ · · · → Ωk
cl]

[0→ · · · → 0] [R→ · · · → Ωk]

(2.141)

it is an actual pullback, and the right hand map is a fibration.

Thus we have proven Theorem 2.7.1.



Bibliography

[ADH21] Araminta Amabel, Arun Debray, and Peter J. Haine. Differential Cohomology:

Categories, Characteristic Classes, and Connections. 2021. arXiv: 2109.12250

[math.AT].
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ferential characteristic classes: an ∞-Lie theoretic construction”. Adv. Theor.

Math. Phys 16.1 (2012), pp. 149–250.

[GJ12] Paul G Goerss and John F Jardine. Simplicial Homotopy Theory. Vol. 174.
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