Turbulent fronts of quantum detonation in molecular magnets

Dmitry A. Garanin
CUNY Lehman College

Recommended Citation

This Article is brought to you for free and open access by the Lehman College at CUNY Academic Works. It has been accepted for inclusion in Publications and Research by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
Dipolar-controlled quantum deflagration going over into quantum detonation in the elongated Mn$_{12}$ Ac molecular magnet in a strong transverse field has been considered within the full three-dimensional model. It is shown that within the dipolar window around tunneling resonances the deflagration front is nonflat. With increasing bias, dipolar instability makes the front turbulent, while its speed reaches sonic values, which is a signature of detonation.

DOI: 10.1103/PhysRevB.88.064413

PACS number(s): 75.50.Xx, 75.45.+j, 76.20.+q

Magnetic burning or deflagration, similar to the usual chemical burning, has been experimentally observed on elongated crystals of molecular magnet (MM) Mn$_{12}$ Ac in Refs. 1,2. Deflagration is controlled by the temperature rising as the result of the relaxation from the metastable to stable state of this bistable system (burning), accompanied by the heat conduction toward the cold unburned region. This leads to the formation of a flat burning front moving at a constant speed controlled by the energy release set by the bias magnetic field B_z applied along the easy axis of magnetic molecules. This discovery triggered theoretical3 and further experimental4,5 research. In these experiments no transverse field was applied and the front speed was as low as 1–15 m/s. Fast moving burning fronts in Mn$_{12}$ Ac initiated by a fast magnetic field sweep have been observed in Ref. 6. In this region, deflagration can go over into detonation with a speed comparable to the speed of sound.7 Crossover from relaxation to deflagration in Mn$_{12}$ Ac in a strong transverse field has been experimentally studied in Ref. 8.

Since MMs are famous exponents of the resonant spin tunneling8,9,10 (see Ref. 11 for a review), manifestations of tunneling were expected in magnetic deflagration. Indeed, maxima of the front speed at tunneling resonances were seen in Refs. 2,4. The simplest way to explain these maxima is to use, within the standard deflagration theory, the Arrhenius relaxation rate $\Gamma(B_z,T)$ having maxima at B_z corresponding to tunneling resonances.2,3

It was further suggested that in the case of a strong tunneling directly out of the metastable ground state, caused by a strong transverse magnetic field, fronts of nonthermal quantum or “cold” deflagration are possible.12,13 Here, instead of the temperature, tunneling is controlled by the dipolar field of the crystal that can block and unblock tunneling by setting magnetic molecules on or off resonance. Within the simplified one-dimensional (1D) approximation it was shown that the magnetization in the moving front is adjusting self-consistently, even in the presence of disorder,12 so that the dipolar field unblocks tunneling within the front core. The theory of quantum deflagration has been generalized14,15 to include both quantum and thermal effects via the relaxation rate $\Gamma(B_z,T)$ numerically calculated from the density-matrix equation.16 The main finding was a strong quantum acceleration of the front within the dipolar window around the resonance values of the external field $B_z = B_z^{(k)}$:

$$B_k - B_z^{(k)} \lesssim B_z \lesssim B_k + B_z^{(D)}.$$

where $B_z^{(D)} = 52.6 \, \text{mT}$ is the dipolar field produced by the fully magnetized long crystal and $B_z^{(k)} = 72.9 \, \text{mT}$. The front speed was supersonic and apparently diverging towards the right end of the dipolar window, see Fig. 15 of Ref. 15 and discussion therein. Indeed, as the dipole-dipole interaction (DDI) is instantaneous, there is no limitation on the front speed.

While fast quantum deflagration in MM is awaiting experimental confirmation, a theoretical problem remains. The 1D approximation assumes that the magnetization and dipolar field in the front depend only on the coordinate z along the sample (which coincides with the MM easy axis). This is a crude approximation, and there should be a dependence on x and y that renders the front nonflat. Moreover, dipolar-controlled front should be unstable at a small scale because portions of the front that are ahead of the neighbors create dipolar field on the latter that hampers their motion, while the lagging neighbors create a field that accelerates the leader (see Fig. 1). This instability reflects the fact that a long MM crystal tends to split up into domains parallel rather than perpendicular to the z axis.17 As the result, the front can become turbulent with a chaotic dipolar bias rendering many magnetic molecules inside the front core off resonance. The question is whether the front speed drops to that of the regular slow burning1,18 or remains fast. In the latter case one has to speak of quantum detonation rather than of quantum deflagration.

The purpose of this paper is to present a full 3D theory of fronts of tunneling in molecular magnets and clarify the role of the dipolar instability.

The system of equations describing deflagration with quantum effects in molecular magnets14 includes the rate equation describing relaxation of the metastable population n ($0 \leq n \leq 1$)

$$\dot{n}(t,\mathbf{r}) = -\Gamma[B_{\text{tot}}(t,\mathbf{r}),T(t,\mathbf{r})][n(t,\mathbf{r}) - n^{(eq)}].$$

Here the relaxation rate Γ depends on the total bias field $B_{\text{tot}}(t,\mathbf{r}) = B_z + B_z^{(D)}(t,\mathbf{r}) \equiv B_z + (Sg \mu_B / v_0) D_{zz}(t,\mathbf{r})$, (3) (external plus dipolar field) and the temperature at a given point, while $n^{(eq)}(T)$ is the equilibrium metastable population (set to zero below). Here $v_0 = a^2c$ is the unit-cell volume, a and c are lattice spacings, and $D_{zz}(\mathbf{r})$ is the reduced dipolar field. Another equation is the heat conduction equation that can be conveniently written in terms of the thermal energy \mathcal{E} per magnetic molecule

$$\dot{\mathcal{E}}(t,\mathbf{r}) = \nabla \cdot (\kappa \nabla \mathcal{E}(t,\mathbf{r}) - \Delta E \dot{n}(t,\mathbf{r})).$$

\(\mathrm{PHYSICAL\ REVIEW\ B 88, 064413 (2013)}\)
Here $\Delta E \cong 2S_0g_0 B_z$, in the source term of this equation is the released energy per molecule, k is thermal diffusivity (a crude estimate $k \simeq 10^{-5}$ m2/s$^{1.5}$), E and T are related via the measured19 heat capacity $C = dE/dT$.

While the Eqs. (2) and (4) are the same as the standard deflagration equations,3 the resonance form of the governing equations,3 the resonance form of $\sigma_{x}(\mathbf{r})$ makes a big difference. For the realistic model of Mn$_{12}$ Ac with the uniaxial part of the Hamiltonian of Ref.16, for the transverse field B_{x}, the most challenging part of the work is numerical solution, box-shape samples with dimensions $2L_x \times 2L_y \times 2L_z$ and $-L_z \leq x \leq L_z$, etc. one has21

$$D_{zz}(\mathbf{r}) = \frac{v}{v_0} \int d\mathbf{r}' \phi(\mathbf{r}' - \mathbf{r})\sigma_z(\mathbf{r}') + \sigma_z(\mathbf{r})\bar{D}_{zz}(\mathbf{r}) - k_D,$$

where $k_D \equiv 8\pi v/3 - \bar{D}_{zz}(\mathbf{r}) = 14.6$. $D_{zz}(\mathbf{r})$ is the reduced magnetostatic field given by an integral over the sample surface. For a rectangular sample with dimensions $2L_x \times 2L_y \times 2L_z$ and $-L_z \leq x \leq L_z$, etc. one has21

$$D_{zz}(\mathbf{r}) = \sum_{\eta_{x}, \eta_{y}, \eta_{z}} \arctan \frac{(L_x + \eta_{x})^{-1} (L_y + \eta_{y}) (L_z + \eta_{z})}{\sqrt{(L_x + \eta_{x})^2 + (L_y + \eta_{y})^2 + (L_z + \eta_{z})^2}}$$

$$(x \rightarrow y), \text{ in total 16 different arctan terms. Inside a uniformly magnetized long Mn}_{12}\text{ Ac crystal Eq. (8) yields }$$

$$D_{zz} = 10.53 \text{ that in real units corresponds to } B_{x}^{(D)} = 52.6 \text{ mT. The same value of the dipolar field follows from the experiment.}^{22}$$

For numerical solution, box-shape samples with dimensions $L_x \times L_y \times L_z$ and $0 \leq x \leq L_x$, etc. are considered, and the problem is discretized with a rectangular grid. This makes the integral in Eq. (8) a sum that can be calculated using the fast Fourier transform (FFT). In this work, numerical solution was implemented in WOLFRAM MATHEMATICA, whereas the dipolar sum was computed using FFT-based and very fast LISTCONVOLVE command. After discretization of the Laplace operator in Eq. (4) the system of equations for quantum deflagration becomes a system of nonlinear ordinary differential equations. It has been solved by the fixed-step compiled fourth-order Runge-Kutta method and, preferred, by somewhat more efficient fifth-order Butcher’s Runge-Kutta method making six evaluations per step. Instead of E, it is more convenient to use $E/\Delta E + n$ as one of unknown functions. The grid sizes were $64 \times 64 \times 300$, $100 \times 100 \times 200$, and $200 \times 100 \times 300$. To reduce the amount of calculations, symmetry conditions within xy planes have been imposed.

Deflagration was ignited in the uniformly magnetized state $n = 1$ at the left end of the crystal, $z = 0$, by a quick temperature rise at the boundary. At higher B_z, deeper into the dipolar window, the resonance condition is fulfilled at a surface close to the left end, so that quantum deflagration begins spontaneously there. The right end of the sample was protected from spontaneous ignition by adding a semi-infinite fictitious sample with a fixed down magnetization, $n = 1$. The sample

\[D_{zz}(\mathbf{r}) = \frac{v}{v_0} \int d\mathbf{r}' \phi(\mathbf{r}' - \mathbf{r})\sigma_z(\mathbf{r}') + \sigma_z(\mathbf{r})\bar{D}_{zz}(\mathbf{r}) - k_D, \]

where $k_D \equiv 8\pi v/3 - \bar{D}_{zz}(\mathbf{r}) = 14.6$. $D_{zz}(\mathbf{r})$ is the reduced magnetostatic field given by an integral over the sample surface. For a rectangular sample with dimensions $2L_x \times 2L_y \times 2L_z$ and $-L_z \leq x \leq L_z$, etc. one has21

\[D_{zz}(\mathbf{r}) = \sum_{\eta_{x}, \eta_{y}, \eta_{z}} \arctan \frac{(L_x + \eta_{x})^{-1} (L_y + \eta_{y}) (L_z + \eta_{z})}{\sqrt{(L_x + \eta_{x})^2 + (L_y + \eta_{y})^2 + (L_z + \eta_{z})^2}} \]

$$(x \rightarrow y), \text{ in total 16 different arctan terms. Inside a uniformly magnetized long Mn}_{12}\text{ Ac crystal Eq. (8) yields }$$

\[D_{zz} = 10.53 \text{ that in real units corresponds to } B_{x}^{(D)} = 52.6 \text{ mT. The same value of the dipolar field follows from the experiment.}^{22}$$

For numerical solution, box-shape samples with dimensions $L_x \times L_y \times L_z$ and $0 \leq x \leq L_x$, etc. are considered, and the problem is discretized with a rectangular grid. This makes the integral in Eq. (8) a sum that can be calculated using the fast Fourier transform (FFT). In this work, numerical solution was implemented in WOLFRAM MATHEMATICA, whereas the dipolar sum was computed using FFT-based and very fast LISTCONVOLVE command. After discretization of the Laplace operator in Eq. (4) the system of equations for quantum deflagration becomes a system of nonlinear ordinary differential equations. It has been solved by the fixed-step compiled fourth-order Runge-Kutta method and, preferred, by somewhat more efficient fifth-order Butcher’s Runge-Kutta method making six evaluations per step. Instead of E, it is more convenient to use $E/\Delta E + n$ as one of unknown functions. The grid sizes were $64 \times 64 \times 300$, $100 \times 100 \times 200$, and $200 \times 100 \times 300$. To reduce the amount of calculations, symmetry conditions within xy planes have been imposed.

Deflagration was ignited in the uniformly magnetized state $n = 1$ at the left end of the crystal, $z = 0$, by a quick temperature rise at the boundary. At higher B_z, deeper into the dipolar window, the resonance condition is fulfilled at a surface close to the left end, so that quantum deflagration begins spontaneously there. The right end of the sample was protected from spontaneous ignition by adding a semi-infinite fictitious sample with a fixed down magnetization, $n = 1$. The sample
was considered as thermally insulated, the initial temperature being almost zero. The front speed was determined from the time needed for the front to arrive at the right end or from the time dependence of the average metastable population. Computations were done for \(L_x = L_y = 0.2 \text{ mm (64\times64)}\) and 1 mm.\(^2\) One burning event required about one day computations on a workstation.

The results for the front speed in the vicinity of the first tunneling resonance (\(k = 1\)) are shown in Fig. 3. Beyond the dipolar window, \(B_z < 0.45 \text{T}\) and \(B_z > 0.573 \text{T}\), there is no tunneling and the usual temperature-driven deflagration with a smooth flat front and \(v \approx 50 \text{ m/s}\) takes place. Entering the dipolar window from the left leads to a gradual increase of the effect of tunneling. The front speed increases and reaches sonic values, diverging at the right end of the dipolar window \(B_z \approx 0.522 + 0.0526 = 0.573 \text{T}\), where \(B_z\) is the ground-state tunneling resonance and \(k = 1\). Although the front speed in the 3D model is lower than in the 1D model, qualitatively the results are similar (cf. Fig. 15 of Ref. 15). The front speed is higher in the thicker sample, which is not surprising as the speed scales with the sample thickness in the case of cold deflagration.\(^{12,13}\) There is no contribution of the excited-state tunneling resonance that within the 1D model leads to a front speed peak at \(B_z \approx 0.42 \text{T}\) in Fig. 15 of Ref. 15. The apparent reason is the dependence of the dipolar field on the transverse coordinates even in a flat front that leads to broadening of tunneling peaks.

The structure of the front of tunneling is shown in Figs. 4 and 5 and in the Supplemental Material.\(^{23}\) Here \(n\) is represented as a function of \(x\) and \(z\) at \(y = 0\). Color coding is blue for the cold unburned regions (\(n \approx 1\)) and red for hot burned regions (\(n \approx 0\)). Dipolar effect makes the front progressively nonflat, its central part leading as the speed is increasing, as seen in the upper image at \(B_z = 0.50 \text{T}\). Also with increasing \(B_z\), the front becomes gradually nonsmooth. However, thermal burning tends to smoothen the roughness created by the dipolar instability discussed above as large temperature gradients lead to increased heat conduction and equilibration along the front. Whereas in the absence of thermal effect (cold deflagration) there is a spatially irregular unburned metastable population behind the front,\(^{12,13}\) here a complete burning is achieved.

Closer to the right border of the dipolar window the front becomes turbulent and looks like precipitation, as seen in the lower image in Fig. 4 for \(B_z = 0.56 \text{T}\). Given its sonic speed, which cannot be provided by any thermal mechanism, one can speak of quantum detonation. The relaxation event in the figure began spontaneously on a surface near the left end where the resonance condition was satisfied. From there a regular slow-burning front is moving to the left and a quantum detonation front is going to the right.

Although in the quantum detonation front the dipolar bias is wildly changing in space so that the system does not stick to the resonance (which was the main argument in the 1D theory of fronts of tunneling\(^{12,13}\)), tunneling is still very strong to ensure sonic front speeds. This requires a closer investigation. Still, one can argue that dynamic crossing the resonance can facilitate transitions via Landau-Zener effect.

To summarize, a full three-dimensional theory of dipolar-controlled quantum deflagration with the temperature effect, going over into quantum detonation, has been proposed. The quantum front can reach sonic speeds near biased ground-state tunneling resonances and is nonflat and turbulent. To activate
quantum transitions out of the metastable ground state, a strong transverse field has to be applied. An experimental challenge is to prepare the initial state that has a limited life time.

This work has been supported by the NSF under Grant No. DMR-1161571. The author thanks E. M. Chudnovsky for valuable discussions.