Spring 5-16-2016

Facial Expressions in Generalized Anxiety Disorder

Lauren Noble

Hunter College

How does access to this work benefit you? Let us know!

Follow this and additional works at: http://academicworks.cuny.edu/hc_sas_etds

Part of the Other Psychology Commons

Recommended Citation

This Thesis is brought to you for free and open access by the Hunter College at CUNY Academic Works. It has been accepted for inclusion in School of Arts & Sciences Theses by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
Facial Expressions in Generalized Anxiety Disorder

by

Lauren Noble

Submitted in partial fulfillment of the requirements for the degree of Master of Arts in Psychology, Hunter College The City University of New York

2016

Thesis Sponsor:

5/17/2016

Date

Douglas Mennin

Signature

5/17/2016

Date

Tracy Dennis

Signature of Second Reader
Abstract

This study examines facial expressions during the viewing of emotion-eliciting videos (Rottenberg, Ray & Gross, 2007). Each participant watched negative emotion videos (fear and sadness) and a neutral video (Aldao, Mennin & McLaughlin, 2013). Facial expressivity was coded with the Emotional Expressive Behavior (EEB) Coding System (Gross & Levenson, 1993) to determine potential differences between individuals with GAD and healthy controls. I hypothesize that those with GAD will show more avoidance and thus less facial expressivity during emotion-eliciting films compared to controls. Findings suggest that greater displays of sad facial expressions and more body movement are associated with higher self-reported anxiety-related symptoms in those with GAD. In the control group, lower scores on rumination and worry scales was found to be associated with more facial expressions of fear during the fear video. No significant differences in facial expressivity between groups were found.

Keywords: emotionally expressive behavior, emotional suppression, anxiety, facial expressions, generalized anxiety disorder
Facial Expressions in generalized anxiety disorder

Generalized anxiety disorder (GAD) is defined by the Diagnostic and Statistical Manual, 4th edition (DSM-IV-TR; American Psychiatric Association, 2000) as excessive anxiety and worry on more days than not for a period of at least six months. The anxiety and worry cause distress and functional impairment, and are accompanied by at least three of the following symptoms: restlessness or feeling keyed up or on edge, fatigue, difficulty concentrating or mind going blank, irritability, muscle tension and disturbed sleep (difficulty falling or staying asleep, or unsatisfied sleep). In addition to these symptoms, the individual experiences difficulty trying to control their worry. GAD is also associated with heightened emotional intensity (frequently strong negative affect) and difficulties in emotion regulation, or the ability to control, experience and express one’s own emotions (Gross, 1998; Mennin, Heimberg, Turk & Fresco, 2005). Emotional avoidance may also play an important role in GAD (Amstadter, 2008; Buhr & Dugas, 2012; Cooper, Miranda & Mennin, 2013).

Previous research has indicated that GAD is difficult to both understand and treat, but is also largely focused on cognitive behavioral treatment (CBT) studies where end-state functioning of anxious individuals is varied (Dugas & Ladouceur, 2000; Newman et al., 2013). Emotion regulation has been largely underemphasized in the treatment of GAD until more recently (Mennin, Fresco, Ritter & Heimberg, 2015). There are many indices of emotion dysregulation in GAD (Behar, DiMarco, Hekler, Mohlman, & Staples, 2009). Worry, for example, is a maladaptive coping mechanism used by those with GAD and become negatively reinforced through avoidance of perceived aversive stimuli (Behar et al., 2009; Borkovec, Alcaine & Behar, 2004; Newman, Llera, Erickson, Przeworski, & Castonguay, 2013). More broadly, the Emotion Dysregulation Model (EDM; Mennin & Fresco, 2013) suggests that
individuals with GAD struggle to regulate emotional conflict, and fail to engage in effective emotion regulation strategies. Mennin and colleagues (2005) found that those with GAD report greater deficits in understanding and experiencing their emotions, and greater negative reactivity to their emotions, compared to non-anxious controls. Both reappraisal (changing one’s cognition about a situation; Gross, 2002) and suppression (decreasing expressive behavior; Gross, 2002) are also examples of emotion regulation strategies that differ among anxious and non-anxious individuals (Aldao & Mennin, 2012). Reappraisal and suppression have been shown to be effective strategies in reducing emotionally expressive behavior in non-anxious individuals with reappraisal correlating with lower subjective reports of negative emotions (Gross, 1998). The opposite is true for anxious individuals. For example, suppression can be conceptualized as an avoidance strategy utilized often by anxious individuals that has been shown to be accompanied by emotional distress, subjective anxiety and physiological arousal (Amstadter, 2008). GAD symptom severity and diagnoses have both been found to be associated with difficulties in emotion regulation strategies (Aldao & Mennin, 2012; Roemer, Lee, Salters-Pedneault, Erisman, Orsillo & Mennin, 2009). These deficits may be particularly heightened in GAD, compared to other anxiety disorders (Mennin, Heimberg, Turk & Fresco, 2002).

A number of studies have shown deficits in emotion and emotion dysregulation in those with GAD (McLaughlin, Mennin & Farach, 2007; Mennin et al., 2005; Turk, Heimberg, Luterek, Mennin & Fresco, 2005). This has been demonstrated utilizing subjective indices (e.g., self-report questionnaires; Aldao, Mennin & McLaughlin, 2013; Aldao & Mennin, 2012) but has also been demonstrated using physiological indices. Heart rate variability (HRV) is an example of a physiological measure that has been used to compare differences between anxious and non-anxious individuals (Aldao et al., 2013; Aldao & Mennin, 2012). HRV is defined as the
variation in the time interval between heartbeats (Khazan, 2013). Increases in HRV are reflective of greater flexibility in meeting situational demands, such as changes in emotional states (Appelhans & Lueken, 2006). Since people with GAD have more difficulty understanding and experiencing emotions than healthy controls and often engage in emotion suppression, their heart rate will likely increase, and HRV will likely decrease (Amstadter, 2008). Aldao and Mennin (2012) found that when instructed to engage in various emotion regulation strategies, people with GAD demonstrated reduced HRV compared to when they were not instructed to engage in these strategies. This index of difficulty implementing these strategies was found to contrast with control individuals whose HRV was lower when implementing these strategies than when not. Trait worry, more broadly defined within a specific diagnosis of GAD, has also been found to be associated with increased sympathetic nervous system activity (i.e. skin conductance, cardiac activity; Newman et al., 2013).

Non-verbal or behaviorally expressions of emotion are also important aspects of emotional responding (Gross & John, 1997) and dysregulation, but have been studied less within the context of GAD. Social anxiety has been found to be linked with lower emotional expressivity (Kashdan & Breen, 2008), and more rigidness and fidgeting (Gilboa-Schechtman & Shachar-Lavie, 2013) compared to non-socially anxious individuals. Higher self-reported emotional suppression and difficulty in emotional responding in social anxiety (Spokas, Luterek & Heimberg, 2009), which are also found in GAD, may be linked to behavioral suppression. Other research has posited that “environment scanning” behaviors, such as eyes shifting around the room (away from a stimulus), are indicators of anxiety (Perkins, Inchley-Mort, Pickering, Corr & Burgess, 2012). More recently, Cooper and colleagues (2013) found a link between high
levels of subjective worry and behavioral avoidance (e.g., disengagement from a stimulus) in those with GAD.

Less well examined in GAD and other anxiety and mood disorders are the role of facial expressivity as an indicator of emotion dysregulation. Facial expressions are another component of emotion, and a way to express our own emotions as well as interpret emotions from others (Adolphs, 2002; Ekman, 1999). In psychopathology, however, there may be deficits in understanding this type of emotional expression (Demenescu, Kortekaas, den Boer, & Aleman, 2010; Heuer, Lange, Isaac, Rinck, & Becker, 2010). Though research points to facial expressions being universally understood and generalizable across cultures (Ekman, 1999; Ekman, 1989; Ekman & Friesen, 1971), there may be differences between people with psychological disorders versus those without. Socially anxious children, for example, show reduced facial activity, and are better at expressing disgust, anxiety and sadness compared to non-anxious children (Melfsen, Osterlow, & Florin, 2000). Keltner et al (1995) also found that anxious-depressed adolescent boys displayed more fear expressions than their non-anxious peers.

Within adult populations, Cooper and colleagues (2013) found that individuals with GAD displayed fewer fearful facial expressions while viewing aversive stimuli when primed with an anxiety-eliciting video, compared to individuals with GAD primed with a neutral video. Those with GAD who were primed with an anxiety-eliciting video and showed behavioral avoidance when viewing an aversive stimulus (diminished facial expressivity or disengagement from the stimulus) reported greater worry than those who engaged in the aversive stimulus. Llera and Newman (2011) found that those with GAD report that coping with the emotional experience of viewing disgusting images is easier after being inducted to worry (compared to relaxing or
neutral inductions), such that being in a sustained negative emotional state is easier than experiencing a sharp neutral state to negative state change (Newman et al., 2013).

Taken together, these results suggest that those with GAD may be less facially expressive than healthy controls due to their heightened reliance on behavioral avoidance. They may hide or suppress their emotions (i.e. not show their true emotions on their faces). Emotional suppression may occur due to the tension and uncertainty in expressing emotions associated with anxiety broadly (Spokas et al., 2009). The opposite has been found to be true for participants who have no symptoms of psychopathology, as they demonstrate concordance between subjective reports of emotion and facial expressions (Ekman, Friesen & Ancoli, 1980; Rosenberg & Ekman, 1994).

One question that remains is whether facial expressiveness reflects an emotion regulation deficit such that it relates to other modalities of emotion including subjective (e.g., Mennin et al., 2005; Newman et al., 2013) and physiological indices (Aldao et al., 2013; Aldao & Mennin, 2012) that have been shown to be dysregulated in GAD. This congruence between components of the emotional cascade including subjective, expressive/behavioral, and physiological indices has been discussed as coherence. Past research presents the need to determine whether or not there is a relationship between trait- and state-level measures of emotion dysregulation and facial expressions. There is a particular need to establish if those with GAD accurately report their emotional expressions. Rosenberg and Ekman (1994) discovered a link between self-report of emotions and facial expressions, though their sample was lacking in terms of people with elevated levels of psychopathology. Those with GAD tend to have difficulty identifying and understanding their emotions, and therefore discrepancies may exist between what they report versus what is seen on their faces (McLaughlin, Mennin & Farach, 2007).
The current study aims to determine whether or not there is a difference in facial expressivity between individuals with GAD and non-anxious controls during the presentation of multiple emotional inductions as opposed to only disgust, which was the focus of Cooper et al. (2013). Also important is the extent to which diminished displays of facial expression in those with GAD reflect a regulatory deficit that is convergent with other subjective and physiological indices. As such, the first aim of this study is to demonstrate that individuals with GAD will be less facially expressive than non-anxious controls during target emotional films. The second aim is to determine whether or not there is a correlation between trait-level self-reports of anxiety and facial expressions. It is hypothesized that there will be a negative correlation between self-reported anxiety, depression, worry, and emotion regulation symptoms and expressivity in the GAD group. The third aim is to determine whether or not there is a correlation between state-level subjective measures and facial expressions. It is hypothesized that there will be a negative correlation between state-level subjective measures and facial expressions in the GAD group, such that higher scores on state-level subjective measures will be associated with lower facial expressions. Finally, the last aim is to examine concordance of facial expressivity with physiological responding (i.e., HRV), which is hypothesized to be positively correlated with facial expressions in the GAD group to a greater extent than healthy controls.

Method

Participants

Eligible participants were required to be between the ages of 18 and 65, and were required to have the ability to read and understand English. Participants in the GAD group (N = 26) were required to meet a primary diagnosis of GAD with or without other comorbid anxiety disorders and major depressive disorder (MDD) according to the Diagnostic and Statistical

Participants in both groups were also required to be free of current or past heart conditions or diabetes, current substance abuse, and were not permitted to be on medications that directly affect cardiac functioning (e.g., beta blockers). Participants in both groups were recruited via flyers in an urban community in the northeastern United States as part of a larger study.

Diagnostic procedures

Each participant completed the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders (SCID; First, Spitzer, Gibbon & Williams, 2002) with trained research staff to assess the presence of mood and anxiety disorders. Following the interview, a clinical severity rating (CSR) of zero to eight was assigned to each disorder for which participants met criteria (DiNardo, Brown, & Barlow, 1994). A CSR of four indicates that criteria are met for a clinical diagnosis of a given disorder, with higher scores indicating greater severity, based on number and frequency of symptoms and levels of distress and impairment. CSR ratings were assigned by the interviewer and confirmed by the principal investigator of the study.

Facial coding

Facial coding was measured using the Emotional Expressive Behavior (EEB) coding system (Gross & Levenson, 1993). This system measures eight emotions (anger, confusion, disgust, fear, happiness, interest, sadness, and surprise) and four movements (body movement, face movement, face touching, and mouth movement) on a zero to six scale. A zero on the scale is equal to no emotion, and each consecutive number has a combined intensity and duration value. Odd-numbered values denote a short occurrence (lasting less than five seconds, or...
occurring on two or less occasions), and even-numbered values denote a long occurrence (lasting five seconds or more, or occurring on three or more occasions). Values 1 and 2 are considered slight, values 3 and 4 moderate, and 5 and 6 strong. Therefore, a code of “2” would denote a slight and long occurrence. Body, face, and mouth movements are also measured on a zero to six scale, indicating the same intensity and duration scaling above. Emotional valence is measured on a zero to four scale, where a 0 equals negative affect, a 2 is equal to a neutral affect, and a 4 is equal to very pleasant affect. Arousal is measured on a zero to six scale, where a 0 is equal to no emotionally expressive behavior and a 6 means the subject is extremely emotionally expressive. Frequency variables were also measured (number of yawns, smiles, obscuring vision, and blinks). Obscuring vision is defined as breaking one’s line of vision to the computer monitor by looking away, shutting his or her eyes for longer than a blink (more than one second), or using objects to cover one’s vision (Gross & Levenson, 1993). These measures were coded simply by counting the number of times the behavior occurred. In the current study, we used only negative target emotions for analysis (i.e. fear and sadness) as well as body movement (procedures described below).

Coders were two undergraduate students, receiving credit for independent study for their work in the lab. They trained extensively under the supervision of a senior research assistant (and former coder) and a graduate student. Coders were first assigned the Emotional Expressive Behavior (EEB) Coding System manual and the EEB Coding System Quick Reference readings (Gross & Levenson, 1993). Then, using the standard protocol, were assigned practice videos initially with supervision and then independently. Each week of training (8 weeks total) corresponded to a different set of practice videos. Each practice video assigned was discussed in weekly group meetings until coder agreement was reached (i.e. coders agreed between
themselves and one of the two trainers). Coders were provided with a link from Google forms (https://docs.google.com/forms) to an online input form where codes were recorded.

Trait-level self-report measures

The Penn State Worry Questionnaire (PSWQ). The PSWQ (Meyer, Miller, Metzger, & Borkovec, 1990) is a 16-item measure of trait worry. It assesses generality, excessiveness and uncontrollability of worry. Individuals who score a 65 or above are likely to show chronic and severe worry, similar to what would be characteristic of a diagnosis of GAD. The PSWQ has been shown to have strong reliability and validity and therefore often used to assess pathological worry in research studies (Brown, Antony, & Barlow, 1992).

Beck Depression Inventory – 2nd edition (BDI-II). The BDI-II (Beck, Steer & Brown, 1996) is a 21-item measure of the severity of depression in adolescents and adults. Scores are rated on a four-point scale for each item, ranging from 0 to 3. Severity of depression is indicated by higher overall scores. A total score of 0-13 is considered minimal severity, 14-19 is mild, 20-28 is moderate, and 29-63 is severe.

The Mood and Anxiety Symptom Questionnaire (MASQ). The MASQ (Watson & Clark, 1991), short form version, is a 64-item measure of anxious and depressive symptoms, consisting of four subscales. It is used to determine both shared and distinct symptoms experienced by anxious and depressed individuals, aiming to validate the three part model of anxiety and depression. It is a Likert-style scale requiring subjects to respond from 1 (“Not At All”) to 5 (“Extremely”). Higher scores indicate more severe symptoms. We used two subscales to measure general anxiety and depressive symptoms. The MASQ-GDA (General Distress Anxiety) subscale is an 11-item measure of general anxiety symptoms. The MASQ-GDD (General Distress Depression) subscale is a 12-item measure of general depressive symptoms.
Affect Intensity Measure (AIM). The AIM (Larsen, 1984) is a 40-item questionnaire designed to measure the characteristic strength or weakness with which one experiences emotion, using typical life events as examples. Participants are required to respond on a Likert-style six-point scale, with 1 being “Never,” to 6 being “Almost Always.” Higher scores on the AIM indicate stronger emotional responses. This study used the AIM negative intensity subscale as it is believed to be closely related to distress tolerance (Weinfurt, Bryant & Yarnold, 1994).

Difficulties in Emotion Regulation Scale (DERS). The DERS (Gratz & Roemer, 2004) is a 36-item self-report questionnaire designed to assess emotion dysregulation. Items are rated on a five-point scale ranging from 1 (“Almost Never”) to 5 (“Almost Always”). A total score is obtained ranging from 36-180, as well as scores from six sub-scales. The six subscales include non-acceptance of emotional responses (Non-acceptance), difficulty engaging in goal-directed behavior (Goals), difficulty in impulse control (Impulse), lack of emotional awareness (Awareness), difficulty engaging in emotion regulation strategies (Strategies), and lack of emotional clarity (Clarity). Higher scores indicate greater difficulties in regulating emotion. The current study used the total DERS score, indicated as an overall measure of emotion dysregulation.

Emotion Regulation Questionnaire (ERQ). The ERQ (Gross & John, 2003) is a 10-item measure designed to assess individual differences in the use of two emotion regulation strategies: cognitive reappraisal (items 1, 3, 5, 7, 8 and 10) and expressive suppression (items 2, 4, 6 and 9). The ERQ uses a Likert-style seven-point scale that ranges from 1 “Strongly Disagree,” to 7 “Strongly Agree,” with a 4 being “Neutral.” Higher mean scores on each subscale indicate a greater ability to engage in the target strategy (i.e. greater ability to reappraise; increased likelihood to suppress).
State-level subjective and physiological measures

Rumination Visual Analogue Scale (RVAS). The RVAS (Wichelns, Renna & Mennin, in press) is a 0-100 scale that determines anchors of the degree of rumination in personal contexts for the participant. Rumination is operationally defined as extensively pondering things that have already happened. The RVAS includes an anchor sheet as well as score sheets. Anchor sheets allow the participant to describe five situations in which they experience rumination in real life situations. The anchors are 0, 25, 50, 75, and 100 where 0 indicates “no rumination at all” and 100 indicates “extreme rumination.” Under the anchor of “0” for example, the participant would describe a situation about which he or she would never ruminate. Score sheets then allow the participant to rate their current state feelings in comparison to their established anchors.

Worry Visual Analogue Scale (WVAS). The WVAS (Wichelns et al, in press) is a 0-100 scale that determines anchors of the degree of worry for certain personal topics. It is structurally identical to the RVAS (described above), only that worry replaces rumination. Worry is operationally defined as an extensive concern for future events. The anchors are 0, 25, 50, 75, and 100 where 0 indicates “no worry at all” and 100 indicates “extreme worry.”

Subjective rating of emotions. State-level subjective ratings of emotions were assessed prior to and after the emotion films using a modified Positive and Negative Affect Schedule (PANAS; Watson, Clark & Tellegen, 1988) that consisted of dimensional ratings of discrete emotions on a 9-point scale (0 = not at all; 8 = extremely). For each discrete emotion, participants rated three different words that were averaged into a composite score. For suspense, they rated anxiety, fear and nervousness; for sadness, they rated dejection, sadness and unhappiness; and for disgust, they rated aversion, disgust and repulsion. We were interested in
target subjective ratings of emotions (i.e. sadness and fear) in relation to our intensity emotion videos (sad and fear).

Physiological measures. Physiological measures were obtained in a subset of participants with Biopac ECG100C amplifier, part of the MP150 system (Biopac Systems Inc, Santa Barbara, CA, USA). We were interested specifically in HRV measures that were taken during target emotion videos. We used the mean absolute successive inter-beat interval difference (MSD) variable as a time-domain measure of HRV which reflects respiratory-linked changes in heart rate. MSD has been shown to be an indicator of parasympathetic nervous system influences on cardiac functioning (Allen, Chambers & Towers, 2007).

Procedures

Participants completed informed consent prior to engaging in the experiment. They were compensated $30 upon completion of the study procedures. Prior to beginning the experimental session, participants completed a battery of trait-level self-report measures (described above). Following completion of the self-reports, participants were placed in front of a computer screen with two pre-gelled Ag-AgCl 1 cm disposable electrodes in a modified Lead II configuration for HRV measurement. This was assessed with the ECF100C amplifier (Biopac Systems Inc, Santa Barbara, CA, USA). Baseline measures were taken for five minutes prior to the first video, where nothing was displayed on the screen. Participants then watched a series of neutral and emotion eliciting film clips, all of which have been used in previous research (Rottenberg, Ray & Gross, 2007). At the start of the video task, participants were prompted to watch the film clips as they normally would, via on-screen instructions. Before each neutral or emotion-eliciting clip was presented, participants were provided with the following additional instruction: “Please watch this film carefully.” Films were selected based on past research in order to elicit distinct
emotional states: neutral (Color Bars; Rottenberg et al. 2007), fear (Silence of the Lambs), and sadness (Return to Me). The neutral clip was shown first, followed by emotion videos that were presented in a counterbalanced order using Superlab (Version 4.0.7, Cedrus, Inc. San Pedro, CA, USA). After the baseline recording, in addition to after each film clip, participants completed a small battery of state-level subjective measures. These procedures were approved by the Institutional Review Board at the corresponding university where the study took place.

Results

Demographic Information

The mean age of controls was 27.3 (SD = 6.93) and the mean age of the GAD group was 33.3 (SD = 12.7). The control group consisted of 54.5% female (n = 12), and 45.5% male (n = 10). 71.4% of participants in the control group were identified as white/non-Hispanic (n = 15), 9.5% black (n = 2), 4.7% American Indian (n=1), 9.5% Asian/Pacific Islander (n = 2), and 4.7% other (n = 1). The GAD group consisted of 84.6% female (n = 22) and 15.4% male (n = 4). Self-reported race was 69.2% white/non-Hispanic (n = 18), 7.7% black (n = 2), 15.4% Asian/Pacific Islander (n = 4), and 7.7% other (n = 2). Chi-square analyses revealed there was a significant difference in gender $\chi^2 (1, N = 48) = 5.215, p = .022$, but no significant differences in race $\chi^2 (4, N = 47) = 1.761, p = .78$ or ethnicity $\chi^2 (1, N = 48) = .015, p = .904$ between the two groups. An independent samples t-test revealed no significant differences in age between the two groups $t(36.74)=-2.00, p = .052, d = -.66$.

Inter-rater Agreement

Percentage of agreement was calculated between raters for target emotions (74% for sadness, and 74% for fear.) We were interested in the percentage of codes between raters that were in 100% agreement as a stringent measurement of concordance between the two coders.
Both coders coded the same amount of videos, but coder 1 was considered the primary coder, as coder 2 was used exclusively as a reliability check for calculating percentage of agreement. Percentages of agreement for non-target emotions are presented in Table 1.

Group differences

An independent samples t-test was run to determine if there were differences in target facial expressions and body movement between groups. No significant differences were found. Results are shown in Table 2.

An independent samples t-test was run to determine if there were differences between groups during baseline measurements. Significant differences were found between groups for state-level subjective reports of fear (t(22)=-2.35, \(p = .028 \)), WVAS (t(29)=-3.23, \(p = .003 \)), AIM (t(23.15)=-3.42, \(p = .002 \)), BDI-II (t(40.11)=-7.86, \(p < .001 \)), DERS (t(23.01)=-3.09, \(p = .005 \)), MASQ-GDA (t(23.07)=-3.39, \(p = .003 \)), MASQ-GDD (t(23.13)=-3.19, \(p = .004 \)), PSWQ (t(41)=-6.06, \(p < .001 \)), ERQ-Reappraisal (t(23.53)=-2.28, \(p = .032 \)), and ERQ-Suppression (t(28.91)=-2.85, \(p = .008 \)). There were trending differences found between GADs and controls for the RVAS (t(28.89)=1.80, \(p = .082 \)), and for the subjective state-level reports of sadness (t(18)=-1.93, \(p = .069 \)). Baseline t-tests between groups are presented in Table 3.

Relationship between trait-level self-reports and facial expressions

Bivariate correlations were computed to assess the relationship between trait self-report measures of anxiety and depression, emotion dysregulation, and negative affect and facial expressions. In the GAD group, the MASQ-GDA, MASQ-GDD, AIM Neg Int, DERS, and ERQ-SUPP were significantly associated with sad facial expressions and body movement. The BDI-II was found to be trending with fearful facial expressions (\(p = .075 \)), disgust facial expressions (\(p = .070 \)) and sad facial expressions (\(p = .058 \)). The ERQ-REAP was found to be
trending with body movement \((p = .060)\). There were no significant correlations between trait-level self-report measures and facial expressions of emotion in the control group. A test of independent correlations was used to assess whether or not there were significant differences in correlations between groups by converting Pearson’s \(r\) to Fisher’s \(z\). Significant independent correlations were found between groups for DERS and sad facial expressions \((z = 2.05, p = .04)\), ERQ-SUPP and sad facial expressions \((z = 2.44, p = .01)\), ERQ-SUPP and body movement \((z = 2.15, p = .03)\), and BDI-II and disgust facial expressions \((z = -2.22, p = .03)\). Correlations for self reports are presented in Table 4. Scatter plots demonstrate the relationship between MASQ-GDD scores and sad facial expressions in both the GAD and control group (see: Figures 1 and 2). In the GAD group, as scores on the depression subscale of the MASQ get higher, so do expressions of sad facial expressions. In the control group, there is no significant correlation between the two.

Relationship between state-level subjective and physiological measures and facial expressions

Partial correlations were run to assess the relationship between state-level subjective measures and physiological measures and target facial expressions by video type, controlling for baseline ratings. State-level subjective measures and physiological measures were taken during a five-minute resting period during which no emotional stimuli were shown, which served as the baseline period. These measurements were also taken after the emotion videos. In the GAD group, no significant results were found between target facial expressions of emotion and HRV, nor target facial expressions of emotion and state-level subjective ratings of emotion. In the control group, fearful facial expressions were significantly correlated with the RVAS \((r = -.688, p = .028, z = .829)\) and the WVAS \((r = -.678, p = .031, z = .811)\) during the fear video. Scatter
plots demonstrate correlations between the RVAS and fearful facial expressions for both groups (see: Figures 3 and 4). A test of independent correlations revealed significance between group effects for the WVAS and sad facial expressions during the sad video ($z = 2.67, p = .01$), the RVAS and fearful facial expressions during the fear video ($z = 2.86, p = .004$), the WVAS and fearful facial expressions during the fear video ($z = 2.26, p = .04$). Correlations between state-level subjective measures and the target expressions of sadness and fear are presented in Tables 5 and 6, respectively.

Discussion

The current study examined differences in facial expressions during the viewing of emotion-eliciting film clips between individuals with GAD and non-anxious controls. We first hypothesized that during target films (i.e. fear and sadness), those with GAD would be less facially expressive than non-anxious controls. We also hypothesized that in the GAD group there would be negative correlations between trait-level self-reports of anxiety and depression with facial expressivity; negative correlations between subjective state-level measures and facial expressivity; and positive correlations between heart rate variability and facial expressivity. Our first hypothesis was not supported. Individuals diagnosed with GAD did not show less facial expressivity than controls during target films. Our second hypothesis was also not supported. In the GAD group, we found a positive (rather than negative) correlation between trait-level self reports of anxiety and behavioral expressivity (facial expressions and body movement). Our third hypothesis was not supported. In the GAD group, there were no significant correlations between state-level subjective measures and facial expressivity. There were, however, significant negative correlations between the RVAS and WVAS and fearful facial expressions in
the control group. Finally, our last hypothesis was not supported. We found no significant
correlations between HRV and facial expressivity in either group.

An interesting finding from our study is the positive correlation found between trait-level
self-report measures and body movement. Body movement is defined by Gross (1996) as overall
body movement, including the head, hands, and shoulders - but most strongly recorded by
movement of the torso. A body movement that is coded as being “strongly intense” based off of
our coding criteria would include adjusting one’s position, or moving one’s torso quickly in any
direction. “Fidgeting” is also defined in this way, characterized by increased movement due to
high arousal, and has been shown to be correlated with high trait anxiety (Harrigan, Wilson &
Rosenthal, 2004; Mehrabian & Friedman, 1986). We found body movement to be positively
correlated with emotion dysregulation, trait anxiety, trait depression, and negative affect in the
GAD group, but not in the control group. Interestingly in the GAD group, the same self-report
measures that were correlated with body movement (mentioned above) were also positively
correlated with sad facial expressions. Though we had anticipated that higher self-reports of
anxiety-related symptoms would be associated with less facial expressivity, we found that they
were associated with more instances of negative facial expressivity. One reason this might have
been is that those with GAD may be better at expressing negative emotions (versus positive or
neutral emotions), compared to non-anxious individuals (Mennin, Heimberg, Turk & Fresco,
2005). Negative affect biases have been found in probe detection tasks, where emotionally-
eliciting or neutral stimuli are presented for a number of seconds, and then replaced with a probe
(e.g., a dot). Participants then have to indicate where the target stimulus was. During a probe
detection task, those with high-trait anxiety or a number of anxiety diagnoses including GAD are
closer at detecting probes that replace “threat” stimuli (i.e. an angry face; or a threat word
“worthless”) compared to neutral stimuli (Waechter & Stolz, 2015; Mogg & Bradley, 1999; McLeod, Mathews & Tata, 1986; Roberts, Hart & Eastwood, 2010). For those with GAD, this may reflect the desire for the maintenance of negative affect and emotional states (Newman et al., 2013). Another interpretation of these findings is that GAD symptom severity is related to heightened negative emotional reactivity (Mennin et al., 2005; Sloan, 2004). Those in the GAD group scored significantly higher on all anxiety-related symptom questionnaires compared to the control group (see: Table 3). Sad facial expressions and body movement may be behavioral expressions of emotional reactivity due to higher symptom severity.

In the control group, lower scores on both the RVAS and WVAS indicated more facial expressions of fear during the fear video. Congruent with Borkovec’s avoidance theory, (Borkovec et al., 2004) those who worry less are more likely to show facial expressivity, thus this finding is not that surprising. Compared to those with GAD, non-anxious individuals are better able to understand and regulate their emotions (Aldao & Mennin, 2012; Borkovec et al., 2004) and are likely to show more facial expressivity (Cooper et al., 2013).

Interestingly, we found no differences between groups in target facial expressions during films. We suspected that individuals with GAD might engage more in emotional suppression and thus be less facially expressive than non-anxious controls (Amstadter, 2008; Cooper et al., 2013). In other studies like this one, researchers found that those with GAD displayed less facial expressivity (while viewing aversive stimuli) when primed with an anxiety-eliciting video compared to a neutral video (Cooper et al., 2013). In the current study each participant viewed a neutral video prior to subsequent emotion videos, which may have yielded similar results (i.e. no diminished facial expressivity after a neutral prime). Since target emotions and expressions were the focus, we only examined negative emotional films.
This study had several limitations. It was primarily limited by its small sample size, which may have impacted statistical power and the ability to determine effects. The sample was also largely homogenous with very little racial and ethnic diversity, which may not be generalizable or representative of the population. Relatedly, there was an unequal distribution of men and women in the GAD group in the current study. Although this is likely due to a higher rate of GAD diagnosis among women compared to men (Newman et al., 2013), future research should attempt to replicate these findings in groups that are more equally gender distributed. In terms of study methodology, blink rates were not included in our data collection, though research has linked higher blink rates with anxiety and emotional suppression (Gross & Levenson, 1993; Weiner & Concepcion, 1975). Blink rates may be an important marker of heightened anxiety and emotional suppression, and should be further researched. Finally, the coders for this study were lab members, and although blind to the hypotheses of the current study and ideally, completely naïve to experimental conditions, this may not have always been the case. Coders were involved in other projects of the lab, and could have gained information about the study. This may have resulted in a potential degree of bias in their coding of facial expressions, and future research should aim to control for this potential bias. Our study may have benefited from using coders not affiliated with the lab.

Future research related to this study should explore nonverbal emotional expressivity in clinical (treatment-seeking) samples of GAD as this group may differ in terms of symptom severity (Newman et al., 2013). Possible gender differences in emotional expressivity in GAD should also be explored, as women may be more facially expressive than men (Buck, Baron & Barrette, 1982). Higher self-reported anxiety-related symptoms may be associated with
increased negative facial expressions (compared to positive or neutral facial expressions), but further studies are needed to explore this.

Though this study has a few limitations, the implications of our findings are important to the study of concordance in GAD. Concordance is the coordination of three components of the anxiety response: subjective, behavioral and physiological (Calvo & Miguel-Tobal, 1998). Trait-level self-report measures of emotion dysregulation (anxiety, depression, emotion regulation difficulties and negative affect) were shown to be correlated with facial expressions of emotion in anxious individuals, which may have been due to higher levels of GAD symptom severity. Past research of comparisons between self-reported measures of emotion dysregulation and emotional expressivity is lacking. The emotion regulation approach may be important for future treatment of GAD, and more specifically for treatment-resistant individuals. CBT studies have shown differing results for treatment outcomes involving anxious individuals (Newman et al., 2013). CBT does not focus specifically on emotions, emotion regulation difficulties or heightened negative emotional responding, which are highly representative of GAD compared to other mood and anxiety disorders (Mennin & Fresco, 2013). Further research should be done not only on facial expressions but other forms of behavioral expressivity that may be associated with emotional avoidance in GAD (e.g. blinking, fidgeting, looking away from the stimulus). The current findings present preliminary associations between self-reported measures of emotion dysregulation and emotional expressivity.
Facial Expressions in GAD

References

anchor scales for worry and rumination.
Table 1.
Percentage of agreement between raters on target and non-target emotions by video type.

<table>
<thead>
<tr>
<th>Emotion Expression</th>
<th>Fear Video</th>
<th>Sad Video</th>
<th>Neutral Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anger</td>
<td>0.90</td>
<td>0.91</td>
<td>0.96</td>
</tr>
<tr>
<td>Disgust</td>
<td>0.79</td>
<td>0.87</td>
<td>0.93</td>
</tr>
<tr>
<td>Fear</td>
<td>0.74</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>Sadness</td>
<td>0.85</td>
<td>0.74</td>
<td>0.82</td>
</tr>
<tr>
<td>Body Movement</td>
<td>0.48</td>
<td>0.51</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Note. Bold numbers indicate target facial expressions.
Table 2. Summary of independent t-tests for target facial expressions and body movement by group.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Control</th>
<th></th>
<th></th>
<th>t</th>
<th>df</th>
<th>95% C.I. Lower</th>
<th>95% C.I. Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target facial expressions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadness</td>
<td>.31</td>
<td>.84</td>
<td>.45</td>
<td>1.09</td>
<td>-.91</td>
<td>182</td>
<td>-.42</td>
</tr>
<tr>
<td>Fear</td>
<td>.29</td>
<td>.89</td>
<td>.21</td>
<td>.67</td>
<td>.68</td>
<td>183</td>
<td>-.15</td>
</tr>
<tr>
<td>Body movement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mov. during sad video</td>
<td>1.02</td>
<td>1.22</td>
<td>1.21</td>
<td>1.55</td>
<td>-.89</td>
<td>182.81</td>
<td>-.58</td>
</tr>
<tr>
<td>Body mov. during fear video</td>
<td>1.07</td>
<td>1.29</td>
<td>.99</td>
<td>1.38</td>
<td>.41</td>
<td>183</td>
<td>-.31</td>
</tr>
</tbody>
</table>

Note. M = mean, SD = standard deviation, C.I. = confidence interval.
*p ≤ .05
Table 3.
Summary of independent t-tests at Baseline by group.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Control M</th>
<th>SD</th>
<th>GAD M</th>
<th>SD</th>
<th>t</th>
<th>df</th>
<th>95% C.I. Lower</th>
<th>95% C.I. Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trait-level self report measures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM Neg Int</td>
<td>2.67</td>
<td>.79</td>
<td>13.44**</td>
<td>15.38</td>
<td>-3.42</td>
<td>23.15</td>
<td>-17.26</td>
<td>-4.26</td>
</tr>
<tr>
<td>BDI-II</td>
<td>3.37</td>
<td>4.83</td>
<td>17.79**</td>
<td>7.16</td>
<td>-7.86</td>
<td>40.11</td>
<td>-18.13</td>
<td>-10.72</td>
</tr>
<tr>
<td>DERS</td>
<td>1.69</td>
<td>.42</td>
<td>28.23**</td>
<td>42.09</td>
<td>-3.09</td>
<td>23.01</td>
<td>-44.31</td>
<td>-8.76</td>
</tr>
<tr>
<td>ERQ-REAP</td>
<td>5.14</td>
<td>.99</td>
<td>10.02*</td>
<td>10.43</td>
<td>-2.28</td>
<td>23.53</td>
<td>-9.31</td>
<td>-.46</td>
</tr>
<tr>
<td>ERQ-SUPP</td>
<td>2.89</td>
<td>1.05</td>
<td>4.90*</td>
<td>3.24</td>
<td>-2.85</td>
<td>28.91</td>
<td>-3.44</td>
<td>-5.77</td>
</tr>
<tr>
<td>MASQ-GDA</td>
<td>1.57</td>
<td>.46</td>
<td>10.73*</td>
<td>3.22</td>
<td>-3.39</td>
<td>23.07</td>
<td>-14.74</td>
<td>-3.57</td>
</tr>
<tr>
<td>MASQ-GDD</td>
<td>1.70</td>
<td>.75</td>
<td>11.85**</td>
<td>15.59</td>
<td>-3.19</td>
<td>23.13</td>
<td>-16.74</td>
<td>-3.56</td>
</tr>
<tr>
<td>PSWQ</td>
<td>34.42</td>
<td>17.12</td>
<td>62.33**</td>
<td>13.11</td>
<td>-6.06</td>
<td>41</td>
<td>-37.22</td>
<td>-18.61</td>
</tr>
<tr>
<td>State-level subjective measures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVAS</td>
<td>15.00</td>
<td>18.84</td>
<td>31.75</td>
<td>32.90</td>
<td>-1.80</td>
<td>28.89</td>
<td>-35.76</td>
<td>2.26</td>
</tr>
<tr>
<td>WVAS</td>
<td>13.64</td>
<td>18.52</td>
<td>43.25**</td>
<td>27.06</td>
<td>-3.23</td>
<td>29</td>
<td>-48.39</td>
<td>-10.84</td>
</tr>
<tr>
<td>State subj. fear</td>
<td>.09</td>
<td>.30</td>
<td>.85*</td>
<td>1.39</td>
<td>-2.35</td>
<td>22.10</td>
<td>-1.43</td>
<td>-.09</td>
</tr>
<tr>
<td>State subj. sadness</td>
<td>.00</td>
<td>.00</td>
<td>.74</td>
<td>1.66</td>
<td>-1.93</td>
<td>18</td>
<td>-1.54</td>
<td>.06</td>
</tr>
<tr>
<td>HRV</td>
<td>29.27</td>
<td>18.31</td>
<td>26.26</td>
<td>15.29</td>
<td>.45</td>
<td>24</td>
<td>-10.72</td>
<td>16.72</td>
</tr>
</tbody>
</table>

*Note. M = mean, SD = standard deviation, C.I. = confidence interval, AIM Neg Int = Affect Intensity Measure- Negative Intensity subscale, BDI-II = Beck Depression Inventory-II, DERS = Difficulties in Emotion Regulation total score, ERQ-REAP = Emotion Regulation Questionnaire reappraisal subscale, ERQ-SUPP = Emotion Regulation Questionnaire suppression subscale, MASQ-GDA = The Mood and Anxiety Symptom Questionnaire- General Distress Anxiety subscale, MASQ-GDD = The Mood and Anxiety Symptom Questionnaire- General Distress Depression subscale, PSWQ = Penn State Worry Questionnaire, RVAS = Ruminination Visual Analogue Scale, WVAS = Worry Visual Analogue Scale, HRV = Heart Rate Variability.

*p ≤ .05, **p ≤ .01
Table 4. Bivariate correlations for trait-level self-report measures, sad, anger, fear and disgust facial expressions and body movement by group.

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AIM Neg Int</td>
<td>—</td>
<td>.27</td>
<td>.98</td>
<td>.88</td>
<td>.69</td>
<td>.97</td>
<td>.95</td>
<td>.11</td>
<td>.47*</td>
<td>.01</td>
<td>.01</td>
<td>-.33</td>
<td>.46*</td>
</tr>
<tr>
<td>2. BDI-II</td>
<td>.44</td>
<td>—</td>
<td>.28</td>
<td>.13</td>
<td>.33</td>
<td>.28</td>
<td>.36</td>
<td>.01</td>
<td>.39</td>
<td>.04</td>
<td>.37</td>
<td>-.38</td>
<td>.24</td>
</tr>
<tr>
<td>3. DERS</td>
<td>.49</td>
<td>.57</td>
<td>—</td>
<td>.84</td>
<td>.72</td>
<td>.94</td>
<td>.97</td>
<td>.13</td>
<td>.52*</td>
<td>.02</td>
<td>.04</td>
<td>-.33</td>
<td>.44*</td>
</tr>
<tr>
<td>4. ERQ-REAP</td>
<td>-.48</td>
<td>-.28</td>
<td>-.41</td>
<td>—</td>
<td>.40</td>
<td>.91</td>
<td>.80</td>
<td>.01</td>
<td>.23</td>
<td>.05</td>
<td>-.09</td>
<td>-.30</td>
<td>.39</td>
</tr>
<tr>
<td>5. ERQ-SUPP</td>
<td>-.39</td>
<td>.09</td>
<td>.30</td>
<td>-.15</td>
<td>—</td>
<td>.63</td>
<td>.72</td>
<td>.14</td>
<td>.41*</td>
<td>.10</td>
<td>-.01</td>
<td>-.23</td>
<td>.59*</td>
</tr>
<tr>
<td>6. MASQ-GDA</td>
<td>.73</td>
<td>.62</td>
<td>.43</td>
<td>-.17</td>
<td>-.31</td>
<td>—</td>
<td>.94</td>
<td>.09</td>
<td>.49*</td>
<td>.13</td>
<td>.01</td>
<td>-.32</td>
<td>.51*</td>
</tr>
<tr>
<td>7. MASQ-GDD</td>
<td>.69</td>
<td>.77</td>
<td>.58</td>
<td>-.32</td>
<td>-.30</td>
<td>.80</td>
<td>—</td>
<td>.20</td>
<td>.60*</td>
<td>.11</td>
<td>.06</td>
<td>-.31</td>
<td>.48*</td>
</tr>
<tr>
<td>8. PSWQ</td>
<td>.59</td>
<td>.63</td>
<td>.47</td>
<td>-.28</td>
<td>-.26</td>
<td>.70</td>
<td>.85</td>
<td>—</td>
<td>.08</td>
<td>.04</td>
<td>-.04</td>
<td>.04</td>
<td>.12</td>
</tr>
<tr>
<td>9. Sad facial exp.</td>
<td>.17</td>
<td>.13</td>
<td>-.06</td>
<td>.01</td>
<td>-.31</td>
<td>.06</td>
<td>.29</td>
<td>.24</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>-.11</td>
</tr>
<tr>
<td>10. Angry facial exp.</td>
<td>-.15</td>
<td>-.05</td>
<td>-.25</td>
<td>.04</td>
<td>-.02</td>
<td>-.08</td>
<td>-.04</td>
<td>.08</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11. Fearful facial exp.</td>
<td>.05</td>
<td>-.14</td>
<td>-.15</td>
<td>.01</td>
<td>-.12</td>
<td>-.17</td>
<td>-.14</td>
<td>-.16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12. Disgust facial exp.</td>
<td>.04</td>
<td>.28</td>
<td>-.11</td>
<td>-.05</td>
<td>-.05</td>
<td>.08</td>
<td>.12</td>
<td>.03</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>-.26</td>
</tr>
<tr>
<td>13. Body movement</td>
<td>.04</td>
<td>-.31</td>
<td>.04</td>
<td>-.05</td>
<td>.01</td>
<td>-.12</td>
<td>-.26</td>
<td>-.38</td>
<td>-.11</td>
<td>.13</td>
<td>.42</td>
<td>.23</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. Correlations for GAD participants (n=26) are presented above the diagonal, and correlations for control participants (n=22) are presented below the diagonal. A test of independent correlations was computed by converting Pearson’s r to Fisher’s z and examining the difference between controls and GADs. AIM Neg Int = Affect Intensity Measure- Negative Intensity subscale, BDI-II = Beck Depression Inventory-II, DERS = Difficulties in Emotion Regulation total score, ERQ-REAP = Emotion Regulation Questionnaire reappraisal subscale, ERQ-SUPP = Emotion Regulation Questionnaire suppression subscale, MASQ-GDA = The Mood and Anxiety Symptom Questionnaire- General Distress Anxiety subscale, MASQ-GDD = The Mood and Anxiety Symptom Questionnaire- General Distress Depression subscale, PSWQ = Penn State Worry Questionnaire

p ≤ .05
Table 5.
Partial correlations between state-level subjective and physiological ratings and sad facial expressions as a Function of group during the Sad Video.

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sad facial exp.</td>
<td>—</td>
<td>.00</td>
<td>-.30</td>
<td>.00</td>
<td>.04</td>
<td>.42</td>
<td>.75</td>
</tr>
<tr>
<td>2. State subj. sad</td>
<td>.17</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.61</td>
<td>2.33</td>
</tr>
<tr>
<td>3. RVAS</td>
<td>—</td>
<td>-.53</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>24.95</td>
<td>25.96</td>
</tr>
<tr>
<td>4. WVAS</td>
<td>—</td>
<td>-.68</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>32.63</td>
<td>30.25</td>
</tr>
<tr>
<td>5. HRV</td>
<td>—</td>
<td>-.33</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>29.99</td>
<td>20.77</td>
</tr>
<tr>
<td>M</td>
<td>3.18</td>
<td>.34</td>
<td>23.91</td>
<td>20.64</td>
<td>31.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>2.32</td>
<td>.70</td>
<td>30.32</td>
<td>28.19</td>
<td>18.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Correlations for GAD participants (n=26) are presented above the diagonal, and correlations for control participants (n=22) are presented below the diagonal. Means and standard deviations for GAD participants are presented in the vertical columns, and means and standard deviations for control participants are presented in the horizontal rows. A test of independent correlations was computed by converting Pearson’s r to Fisher’s z and examining the difference between controls and GADs. M = mean, SD = standard deviation, RVAS = Rumination Visual Analogue Scale, WVAS = Worry Visual Analogue Scale, HRV = Heart Rate Variability

p ≤ .05
Table 6.
Partial correlations between state-level subjective and physiological ratings and fearful facial expressions as a Function of group during the Fear Video.

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fear facial exp.</td>
<td>—</td>
<td>-.30</td>
<td>.04</td>
<td>-.13</td>
<td>-.17</td>
<td>.16</td>
<td>.27</td>
</tr>
<tr>
<td>2. State subj. fear</td>
<td>.05</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.95</td>
<td>2.39</td>
</tr>
<tr>
<td>3. RVAS</td>
<td>—</td>
<td>-.69*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>21.00</td>
<td>27.51</td>
</tr>
<tr>
<td>4. WVAS</td>
<td>—</td>
<td>-.68*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>34.75</td>
<td>33.42</td>
</tr>
<tr>
<td>5. HRV</td>
<td>—</td>
<td>-.18</td>
<td>—</td>
<td>-.68</td>
<td>—</td>
<td>27.38</td>
<td>13.39</td>
</tr>
<tr>
<td>M</td>
<td>2.72</td>
<td>.27</td>
<td>14.55</td>
<td>22.09</td>
<td>.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>2.00</td>
<td>.51</td>
<td>24.36</td>
<td>28.21</td>
<td>.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Correlations for GAD participants (n=26) are presented above the diagonal, and correlations for control participants (n=22) are presented below the diagonal. Means and standard deviations for GAD participants are presented in the vertical columns, and means and standard deviations for control participants are presented in the horizontal rows. A test of independent correlations was computed by converting Pearson’s r to Fisher’s z and examining the difference between controls and GADs. M = mean, SD = standard deviation, RVAS = Rumination Visual Analogue Scale, WVAS = Worry Visual Analogue Scale, HRV = Heart Rate Variability.

*p ≤ .05
Figure 1.

Note: MASQ-GDD = The Mood and Anxiety Symptom Questionnaire- General Distress Depression subscale.
Figure 2.

Correlations between the MASQ-GDD and Sad Facial Expressions in the Control group

Note: MASQ-GDD = The Mood and Anxiety Symptom Questionnaire- General Distress Depression subscale.
Figure 3.

Correlations between the RVAS and Fearful Facial Expressions during the fear video in the GAD group

Note: RVAS = Rumination Visual Analogue Scale.
Figure 4.

Correlations between the RVAS and Fearful Facial Expressions during the fear video in the Control group

Note: RVAS = Ruminations Visual Analogue Scale.