THE BOOK OF NUMBERS
by louis marder

SOMEWHERE west of Australia there is a forlorn bit of the Pacific Ocean for which no one in Brooklyn College would give sixpence. But diametrically opposite is a forty-two acre patch of land that will be the Alma Mater of thousands and thousands of students in years to come.

A Brooklyn College campus, the cherished dream of Brooklyn students for the past seven years, has at last become an actuality. Five buildings are already ours; I have seen plans for two more, and it has been pointed out where three others can be erected should the need occur. We are, and have a right to be, proud of our new home.

The site next to the Brooklyn Museum might have been ours had not Father Knickerbocker decided that it was too small. Flatbush, God's gift to man, was chosen. Messieurs Wood-Harman had asked $4,000,000 for the site, but the lean years of the depression brought the price down to $1,475,000; and at this price, on December 21, 1934, it was purchased.

On October 2, 1935 Mayor LaGuardia broke the ground. It was not until October 28, 1936 that President Roosevelt laid the cornerstone before 25,000 people. (Should you wish to touch that stone, it is the one on the right side of the main entrance to the gymnasium.) At that time the gymnasium was all there was to see in finished state; the other buildings were half clothed skeletons.

But let us get down to some facts, starting at the very bottom. Nineteen feet below the northern wall of the library building lie the two mains of one of Brooklyn's largest sewers. Each main is twelve by eight feet. Above that is a six and one-half foot tunnel, running from the power house to the library, in which are located the steam and water pipes supplying the school. This explains the mysterious turrets on the lower campus.

The first building completed was the power house. Here are situated the water pumps and the heating equipment. Four gigantic boilers containing twenty oil-burning units will consume five thousand gallons of oil per day to keep us warm. Three tanks each with a capacity of twenty-five thousand gallons will hold a fifteen day supply of fuel.

The chimney occupies about two-thirds of the diameter of the 165 foot tower. Surrounding the smoke shaft there are four tanks holding forty thousand gallons of water. Two of these tanks (and 100 fifty foot sections of fire hose at fifty stations) are reserved for fire extinguishing; the other two contain our drinking supply. To cool the water there are two large coolers in the main buildings. They lower the temperature of four hundred gallons of water per hour from seventy to forty degrees. One thousand cooled gallons of aqua pura are available at over thirty drinking fountains at all times. Remember this you pushers at water-fountains, there is plenty for all of us.

While we are yet on the subject of coolness, let us turn to the problem of snow. We find that the contracts called for one snow-plow, thirty
snow shovels, twenty walk-scrapers, and ten ice-choppers. That, my friends, is equipment of which the University of Southern California cannot boast. Before we leave the power house, I must say that already we have progressed so far that an addition is soon to be built.

Between the power house and the gymnasium is the site that has been selected for the stadium when it will be built in the future. Mr. Evans, the architect, showed me the temporary plans. It will be "U" shaped with a seating capacity of twenty thousand persons. Twelve thousand seats will be permanent; the remaining seats will be of the bleacher type. It is designed primarily as a football field, but a baseball diamond can be laid out on it if desired. The field will also have a quarter mile running track.

The site in front of the gymnasium has been selected for an auditorium seating 3,500 persons. In the sketched plans this building was 250 feet long.

The gymnasium building occupies a space equivalent to sixty-two rooms. The two gymnasiums besides their other equipment will contain a gymnasium, a piano, and a phonograph. The swimming pool is of regulation size with a built-in gallery. Here and in the other buildings 4,551 lockers are provided.

The science building contains some of the most modern equipment in the world. Seven different voltages are available for laboratory experiments. It cost $283,000 to wire this building, as compared with the $143,500 for electrical work in the academic building. Over 134 miles of wire are used in this building alone.

There are 312 rooms, fifty-six store-rooms, and six lecture halls. In the basement of the building is the only room in the school that has a sprinkler system. This room is used to store chemicals.

The highest room in the building is the observatory. The Fecker Company, who have made the telescopes for many of the largest colleges in the country, will install a durallium telescope with a 105-inch focal length and a seven and one-half inch lens. The old telescope will also be installed. The observatory has a sixteen foot revolving dome whose radius is nine feet.

Although the green-house behind the building is made of double strength plate glass, testing its strength with stone is not advisable.

The design of the library reminds one of Fanueil Hall in Boston. The building contains twenty-seven rooms, two study halls, a reference room, and a circulating room. The murals were painted by our Mr. Ricci of the Art Department. The bronze grill above the entrance showing the primitive printing press as well as the other grills beneath the windows serve a practical as well as an aesthetic purpose. They are intakes for fresh air, which is first heated and then passed into the rooms.

The rear wall of glass bricks adds a modern touch to the building. These pyrex bricks, of which there are 616, were made at the Corning Glass Works, and cost $1.50 per brick; an expensive feature when we learn that the other bricks cost only four cents each.

The clock was made by Telechron and is electrically controlled. The large hand is five feet and seven inches long; the small hand four feet and six inches. The numbers are eighteen inches high. (If you are from Missouri you may measure them yourself.) The hands and numerals of the clock are made of an aluminum composition that has been plated with twenty-one carat gold. By some error, the plater put the gold on the wrong side of the hands. Replacing was necessary. Mr. Evans said that the only consolation for the price paid in gilding both sides was that the gold would preserve them for a longer period.

The chimes in the clock are quite small and are enclosed in a sound-proof case to which amplifiers are attached. (The largest clock that Telechron has made is on the Williamsburg Bank Building in Brooklyn.)

The tower (170 feet high) is taller than the chimney tower. The part above the bricks is made entirely of copper.

The academic building contains 322 rooms, three lecture halls, a cafeteria for students, a dining room for the faculty, and an auditorium for the Speech Department. The cafeteria will contain 111 tables and 1154 cafeteria chairs. Interesting features in the kitchen are a salad-mander mixer (look it up) and a garbage refriger-ator. Somewhere will be placed 882 Windsor chairs, 300 folding chairs and 51 stools, for the dunces, perhaps.

The medical department, besides the necessary equipment such as instrument stands, stretchers, examining tables, etc., will have four beds with inner-spring mattresses. There is nothing like comfort for a sick student.

There are several sound-proof rooms in the building. These are called "floating rooms"; that is, they are insulated from the vibrations of the rest of the building by thick padding and double doors. Even the lighting connections are so constructed as to minimize contact with the neighboring rooms.

The Speech Department has a broadcasting studio. It has an amplifier room, a studio and an adjoining room with a glass wall for the spectators. Three microphones will be connected with as many loud speakers in lecture room Number One.

The plans for Brooklyn College took thirty men three years to make and cost the city $330,000. More than one thousand blue prints and drawings have been made, and the architects are still engaged at this task.

The five buildings have a gross area of 810,000 square feet. In the 11,415,000 cubic feet capacity there are a total of 948 rooms. Access to many of these rooms may be had by seven elevators in the science, academic and library
buildings. These elevators cost $41,500 to install.

Perhaps it will be a comfort to learn that there are over fifty comfort stations in these three buildings, accommodating 398 persons at one time, not counting the 235 that may be washing their hands at the same time.

12,700,000 pounds of steel are surrounded with 1,700,000 hand made face bricks not counting over 100,000 rough, inner brick. The bricks if laid end to end would stretch a distance of over 200 miles, or from here to Keene, New Hampshire. It might also be interesting to note that it costs as much to lay a brick as it does to buy it, that is, four cents to buy and four cents to lay. The glass bricks cost almost fifty cents each to put into place.

It would have been a queer sight to have seen some of the more radical students picketing the buildings while they were under construction. Fortunately, there was no need for pickets since all workers on the project were paid according to a fixed union scale for each trade.

The highest paid workers were the plasterers who received $2.00 per hour. Bricklayers received $1.80 per hour, steeple-jacks $12.00 per day, and so on down to the unskilled electrical apprentice who according to the scale received only thirty cents per hour. No contracts were let to companies outside of New York City.

Lighting fixtures in the science, academic, and library buildings cost over $9,000, excluding the cost of the 1,790 windows. (But alas and alack, windows bring no light to evening session students!)

Should we desire to make a grand total of the public expense to give Brooklyn College a new home, we would have to add the following figures:

$1,475,000—Cost of Site
5,500,000—Federal Public Works Administration loan
400,000—City appropriation for equipment
18,075—Cost of moving from old buildings

This gives us a grand total of $7,393,075 which will surely be augmented in the near future.

Completely surrounding this huge campus will be erected a seven foot wrought iron picket fence. The main entrance will be divided into three double gates fourteen feet high. Although the fence will be only a little over a mile in length, the pickets if stood end on end would make a spear sixty-eight times as high as the Empire State Building, or more than two and one-half times higher than Mount Everest.

In reply to my question to Mr. Evans as to why Georgian architecture was used and not modern, he pointed out of his ninth story window, into the fading sunlight, at the Singer Building.

"That was the most modern building in the city when it was erected," he said, "but now it is antiquated." He then beckoned me to look at the towering spires and Gothic design of the Woolworth Building. "It was beautiful when it was built; it is beautiful now, and will always be considered beautiful. Modern buildings would soon become antiquated, but Georgian buildings, never. Some buildings are like young women who paint up in the latest fashion with the latest cosmetics, but would look much more beautiful if they adhered to the simple beauty of the past ages."